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Foreword 

Much has happened in the TMS320 Family since Volume 1 of Digital Signal Processing 
Applications with the TMS320 Family was published, and Volumes 2 and 3 are a timely update to 
the family history. 

The DSP microcomputers keep changing the perspective of the systems designers by offer­
ing more computational power and better interfacing capabilities. The steps of change are coming 
more quickly, and the potential impact is greater and greater. Because things change so rapidly in 
this area, there is a pressing need for ways to quickly learn how to utilize the new technology. These 
new volumes respond to that need. 

As with Volume 1, the purpose of these books is to teach us about the issues and techniques 
that are important in implementing digital signal processing systems using microprocessors in the 
TMS320 Family. Volume 2 highlights the TMS320C25; and Volume 3, the TMS320C30 chip. A 
large part of the books is devoted to such matters as characteristics of the TMS320C25 and 
TMS320C30 chips, useful program code for implementing special DSP functions, and details on 
interfacing the new chips to external devices. The remainder of the books illustrates how these 
chips can be used in communications, control, and computer graphics applications. 

What these two volumes make clear is how remarkably fast the field ofDSP microcomputing 
is evolving. IC technologists and designers are simply packing more and more of the right kind of 
computing power into affordable microprocessor chips. The high-speed floating-point computing 
power and huge address spaces of chips like the TMS320C30 open the door to a whole new class 
of applications that were difficult or impractical with earlier generations of fixed-point DSP chips. 
The signal processing theorists and system designers are clearly being challenged to match the cre­
ativity of the chip designers. 

The present books differ from Volume 1 in the inclusion of a small section on tools. This is 
a hopeful sign, because it is progress in this area that is likely to have the greatest impact on speeding 
the widespread application of DSP microprocessors. While useful design tools are beginning to 
emerge, much more can be done to help system designers manage the complexity of sophisticated 
DSP systems, which often involve a unique combination of theory, numerical and symbolic pro­
cessing algorithms, real-time programming, and multiprocessing. No doubt future volumes of Dig­
ital Signal Processing Applications with the TMS320 Family will have more to say about this im­
portant topic. Until then, Volumes 2 and 3 have much useful information to help system designers 
keep up with the TMS320 Family. 

Ronald W. Schafer 
Atlanta, Georgia 

November 14, 1989 
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Preface 

The newer, floating-point DSP devices, such as the TMS320C30, have brought an added di­
mension to DSP applications. With the TMS20C30, programming is much easier because the de­
signer does not have to worry about dynamic range and accuracy issues. An algorithm implemented 
in floating-point in a high-level language can be easily ported to such a device. The new architecture 
contains other features, besides the floating point capability, that simplify programming. Some of 
these features (such as the software stack, the large register file, etc.) were added to facilitate the 
development of high-level language compilers. Currently, C and Ada compilers have been intro­
duced. In addition, Spectron Microsystems introduced an operating system for DSPs (called 
SPOX) that further facilitates the development of algorithms on the DSP devices. 

Volume 3 of Digital Signal Processing Applications with the TMS320 F amity contains appli­
cation reports primarily on the third generation of the TMS320 Family (floating-point devices). 
This book is a continuation of Volumes 1 and 2 in the sense that it addresses the same needs of the 
designer. The designer still has the task of selecting the DSP device with the appropriate cost, per­
formance, and support, developing the DSP algorithm that will solve the problem, and implement­
ing the algorithm on the processor. This volume tries to help by bringing the designer up to date 
on the applications of newer processors or in different applications of earlier processors. 

The objectives remain the same as in earlier volumes. First, the application reports supply 
examples of device use and serve as tutorials in programming the devices. Of course, the same pur­
pose is served on a more elementary basis by the software and hardware applications sections of 
the corresponding user's guides. Second, since the source code of each application is provided with 
the report, the designer can take it intact (or extract a portion of it) and place it in the application. 

I t is assumed that the reader has exposure to the TMS320 devices or, at least, has the necessary 
manuals (such as the appropriate TMS320 user's guides) that will help the reader understand the 
explanations in the reports. The reports themselves include as references the necessary background 
material. Additionally, the Introduction gives a brief overview of the available devices at the time 
of the writing and points to the source of more information. 

The reports are grouped by application area. The term report is used here in a broad sense, 
since some articles from technical publications are also included. The authors of the reports are ei­
ther the digital signal processing engineering staff of the Texas Instruments Semiconductor Group 
(including both field and factory personnel, and sUmmer students) or third parties. 

The source code associated with the reports is also available in electronic form, and the reader 
can download it from the TI DSP Electronic Bulletin Board (telephone (713) 274-2323). If more 
information is needed, the DSP Hotline can be called at (713) 274-2320. 

The editor thanks all the authors and the reviewers for their contribution to this volume of 
application reports. 

Panos E. Papamichalis, Ph.D. 
Senior Member of Technical Staff 
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Part I. Introduction 
1. The TMS320C20 Family and Book Overview 

2. The TMS320C20 Family of Digital Signal Processors 
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from 
PROCEEDINGS OF THE IEEE, Vol. 75, No.9, September 1987) 

3. The TMS320C30 Floating-Point Digital Signal Processor 
(Panos Papamichalis and Ray Simar, Jr., reprinted from IEEE Micro 
Magazine, Vol. 8, No.6, December 1988) 
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TMS320 Family and Book Overview 

Digital signal processors have found applications in areas where they were not even consid­
ered a few years ago. The two major reasons for such proliferation are an increase in processor per­
formance and a reduction in cost. Volume 3 of Digital Signal Processing Applications with the 
TMS320 F amity presents a set of application reports primarily on the TMS320C30, the third-gener­
ation TMS320 device. 

Organization of the Book 

The material in this book is grouped by subject area: 

• Introduction 

• Digital Signal Processing Routines 

• DSP Interface Techniques 

• Telecommunications 

• Computers 

• Tools 

• Bibliography 

The Introduction contains this overview and two review articles. The first article gives a 
general description of the TMS320 family and is reprinted from a special issue of the IEEE Pro­
ceedings, while the second article discusses the TMS320C30 device and is reprinted from the IEEE 
Micro Magazine. The overview points out how the TMS320 family has grown since the two articles 
were published and also introduces newer devices. 

The five articles in the Digital Signal Processing Routines section present useful algo­
rithms, such as the FIT, the Discrete Cosine Transform, etc., that are implemented on the 
TMS320C30. Two of the reports also consider implementations on the TMS320C25. 

The section on DSP Interface Techniques contains an article on interfacing the 
TMS320C30with external hardware, such as memorfes and AID and D/ A converters, andan article 
on a hardware implementation of a floating-point converter between the IEEE and the TMS320C30 
formats. 

The following three sections contain one article each. In the Telecommunications section, 
an implementation of the government-standard CELP speech-coding algorithm is presented. The 
Computers section contains an article on 3-D graphics systems, which shows examples of using 
the TMS320C30 device for graphics problems. In the Tools section, the article gives a functional 
description of the TMS320C30 Application Board that is part of the hardware emulator for that de­
vice. 

The Bibliography section contains a list of articles mentioning DSP implementations using 

TMS320 devices. The different titles are listed chronologically and are grouped by subject. The list 

is not exhaustive, but it gives pointers for pursuing practical implementations in representative 

application areas. 
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The TMS320 Family of Processors 

The TMS320 Family of digital signal processors started with the TMS32010 in 1982, but it 
has been expanded to encompass five generations (at the time of this writing) with devices in each 
generation. Figure 1 shows this progression through the generations. The TMS320 devices can be 
grouped in two broad categories: fixed-point and floating-point devices. As implied by Figure 1, 
the first, second, and fifth generations are the fixed-point devices, while the third and the fourth 
generations (the latest one under development) support floating-point arithmetic. 

4 

Figure 1. TMS320 Family Roadmap 
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The following article, "The TMS320 Family of Digital Signal Processors," by Lin, et. al., 
is reprinted from the Proceedings of the IEEE and gives an overview of the TMS320 family. Since 
additional devices have been developed from the time the article was written, this section highlights 
these newer devices. Table 1 shows a comprehensive list ofthe currently available TMS320 devices 
and their salient characteristics. 

Table 1. TMS320 Family Overview 

Memory I/O 

Data Cycle On- aIT- On-
Device 

Type 
Time RAM Chip EPROM 

Chip 
Parallel Serial DMA Chip Package 

(ns) ROM Timers 

TMS320ClO ~ Integer 200 144 UK 4K 8x16 DIPIPLCC 
TMS320ClO-25 Integer 160 144 I.5K 4K 8xl6 DlPIPLCC 
TMS320ClO-14 Integer 280 144 UK 4K 8xl6 DIPIPLCC 
TMS320E14 Integer 160 256 4K 4K 7x16 1 4 CERQUAD 
TMS320C15' Integer 200 256 4K 4K 8x16 DIPIPLCC 
TMS320CI5-25 ~ Integer 160 256 4K 4K 8xl6 DIPIPLCC 
TMS320E15' Integer 200 256 4K 4K 8xl6 DIP/CERQUAD 
TMS320E15-25 Integer 160 256 4K 4K 8x16 DIP/CERQUAD 
TMS320C17 Integer 200 256 4K 4K 6xl6 2 1 DIPIPLCC 
TMS320EI7 Integer 200 256 4K 4K 6xl6 2 1 DIP/CERQUAD 

TMS32020 ~ Integer 200 544 128K 16xl6 1 t 1 PGA 
TMS320C25 ~ Integer 100 544 4K 128K 16xl6 1 t 1 PGAlPLCC 
TMS320C25-50' Integer 80 544 4K 128K 16xl6 1 t 1 PGAlPLCC 
TMS320E25' Integer 100 544 4K 128K 16xl6 1 t 1 CERQUAD 
TMS320C26 Integer 100 UK 256 128K 1 t 1 PLCC 

TMS320C30 ~ Float Pt 60 2K 4K 16M 16Mx32 2 t 2 PGA 

TMS320C50 ~ Integer 50 8.5K 2K 128K 16xl6 1 t 1 CLCC 

External DMA 
Extemalnntemal DMA 
For information on military versions of these devices, contact your local 11 sales office. 
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The additions to the first generation are the TMS320C14 and the TMS320E14; the latter is 
identical with the former, except that the latter's on-chip program memory is EPROM. The 
TMS320C14/E14 devices have features that make them suitable for control applications. Figure 
2 shows the components of these devices. The memory and the CPU are identical to 
TMS320C15/E15, while the peripherals reflect the orientation of the devices toward control. 

Figure 2. TMS320C141E14 Key Features 
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Some of the key features of the TMS320C14/E14 are: 

• 160-ns instruction cycle time 

• Object-code-compatible with the TMS320C15 

• Four 16-bit timers 
- 1\vo general-purpose timers 
- One watchdog timer 
- One baud-rate generator 

• 16 individual bit-selectable I/O pins 

• Serial port/USART with codec-compatible mode 

• Event manager with 6-channel PWM D/A 

• CMOS technology, 68-pin CERQUAD 

The additions to the second generation are the TMS320E25, the TMS320C25-50, and the 
TMS320C26. The TMS320E25 is identical to the TMS320C25, except that the 4K-word on-chip 
program memory is EPROM. Since increased speed is very important for the real-time implemen-
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tation of certain applications, the TMS320C25-50 was designed as a faster version of the 
TMS320C25 and has a clock frequency of 50 MHz instead of 40 MHz. 

The TMS320C26 is a modification of the TMS320C25 in which the program ROM has been 
exchanged for RAM. The memory space of the TMS320C26 has l.5K words of on-chip RAM and 
256 words of on-chip ROM, making it ideal for applications requiring larger RAM but minimal 
external memory. 

A new generation of higher-performance fixed-point processors has been introduced in the 
TMS320 Family: the TMS320C5x devices. This generation shares many features with the first and 
the second generations, but it also encompasses significant new features. Figure 3 shows the basic 
components of the first device in that generation, the TMS320C50. 

Figure 3. TMS320C50 Key Features 
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16x16 
Inputs 
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Some of the important features of the TMS320C50 are listed below: 

• Source code is upward compatible with the TMS320C1x/C2x devices 

• 50/35-ns instruction cycle time 

• 8K words of on-chip program/data RAM 

• 2K words boot ROM 

• 544 words of data/program RAM 

• 128K words addressable total memory 

• Enhanced general-purpose and DSP-specific instructions 

• Static CMOS, 84-pin CERQUAD 

• JTAG serial scan path 
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The software and hardware development tools for the TMS320 family make the develop­
ment of applications easy. Such tools include assemblers, linkers, simulators, and Ccompilers for 
the software. They include evaluation modules, software development boards, and extended devel­
opment systems for hardware. These tools are mentioned in the following paper by Lin, et. al. The 
interested reader can find much more information in the additional literature that is published by 
Texas Instruments and mentioned in the next section. In particular, the TMS320 Family Develop­
ment Support Reference Guide is an excellent source. 

One important addition to the list of tools is the SPOX operating system, developed by Spec­
tron Microsystems. SPOX permits you to write an application in a high-level language (C) and run 
it on actual DSP hardware. The operating system of SPOX hides the details of the interface from 
you and lets you concentrate on your algorithm while running it at supercomputer speeds on the 
TMS320C30. 

References 

Texas Instruments publishes an extensive bibliography to help designers use the TMS320 de­
vices effectively. Besides the user's guides for corresponding generations, there are manuals for 
the software and the hardware tools. The TMS320 Family Development Support Reference Guide 
is particularly useful because it provides information, not only on development tools offered by TI, 
but also on those produced by third parties. Here is a partial list of the literature available (the litera­
ture number is in parentheses) 

• TMS320 Family Development Support Reference Guide (SPRUOllA) 

• TMS320Clx User's Guide (SPRU013A) 

• TMS320C2x User's Guide (SPRU014) 

• TMS320C3x User's Guide (SPRU031) 

• TMS320Clx/TMS320C2xAssembly Language Tools User's Guide (SPRU018) 

• TMS320C30Assembly Language Tools User's Guide (SPRU035) 

• TMS320C25 C Compiler Reference Guide (SPRU024) 

• TMS320C30 C Compiler Reference Guide (SPRU034) 

• Digital Signal Processing Applications with the TMS320 Family, Volume 1 (SPRA012) 

• Digital Signal Processing Applications with the TMS320 Family, Volume 2 (SPRA016) 

You can request this literature by calling the Customer Response Center at 1-800-232-3200, 
or the DSP Hotline at 1-713-274-2320. 
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The TMS320 Family of Digital Signal 
Processors 

KUN-SHAN LIN, MEMBER, IEEE, GENE A. FRANTZ, SENIOR MEMBER, IEEE, 
AND RAY SIMAR, JR. 

This paper begins with a discussion of the characteristics of dig­
ital signal processing, which are the driving force behind the design 
of digital signal processors. The remainder of the paper describes 
the three generations of the TMS320 family of digital signal proces­
sors available from Texas Instruments. The evolution in architec­
tural design of these processors and key features of each genera­
tion of processors are discussed. More detailed information ~s 
provided for the TMS320C25 and TMS32OC30, the newest members 
in the family. The benefits and cost-performance tradeoffs of these 
processors become obvious when applied to digital signal pro­
cessing applications, such as telecommunications, data commu­
nications, graphics/image processing, etc. 

DIGITAL SIGNAL PROCESSING CHARACTERISTICS 

Digital signal processing (DSP) encompasses a broad 
spectrum of applications. Some application examples 
include digital filtering, speech vocoding, image process­
ing, fast Fouriertransforms, and digital audio [1]-[10]. These 
applications and those considered digital signal processing 
have several characteristics in common: 

mathematically intensive algorithms, 
real-time operation, 
sampled data. implementation, 
system flexibility. 

To illustrate these characteristics in this section, we will use 
the digital filter as an example. Specifically, we will use the 
Finite Impulse Response (FIR) filter which in the time 
domain takes the general form of 

N 

yin) = 2: ali) • x(n - i) 
;=1 

(1) 

where yin) is the output sample at time n, ali) is the ith coef­
ficient or weighting factor, and x(n - i) is the (n - i)th input 
sample. 

With this example in mind, we can discuss the various 
characteristics of digital signal processing: mathematically 
intensive algorithms, real-time processing, sampled data 
implementation, and system flexibility. First, let us look at 
the concept of mathematically intensive algorithms. 

Manuscript received October 6, 1986; revised March 27, 1987. 
The authors are with the Semiconductor Group, Texas Instru­

ments Inc., Houston, TX 77521-1445, USA. 
IEEE Log Number 8716214. 

Mathematically Intensive Algorithms 

From (1), we can see that to generate every yin), we have 
to compute N multiplications and additions or sums of 
products. This computation makes it mathematically inten­
sive, especially when N is large. 

At this point it is worthwhile to give the FIR filter some 
physical significance. An FIR filter is a common technique 
used to eliminate the erratic nature of stock market prices. 
When the day-to-day closing prices are plotted, it is some­
times difficult to obtain thedesired information, such as the 
trend of the stock, because of the large variations. A simple 
way of smoothing the data is to calculate the average clos­
ing values of the previous five days. For the new average 
value each day, the oldest value is dropped and the newest 
value added. Each daily average value (average (n» would 
be the sum of the weighted value of the latest five days, 
where the weighting factors (a(i)'s) are 1/5. In equation form, 
the average is determined by 

average (n) = .! • din - 1) + .! • din - 2) 
5 5 

+ .! • din - 3) + .! • din - 4) 
5 5 

+.!'d(n-5) 
5 

(2) 

where din - i) is the daily stock closing price for the (n -
i)th day. Equation (2) assumes the same form as (1). This is 
also the general form of the convolution of two sequences 
of numbers, ali) and xli) [5], [6]. Both FIR filtering and con­
volution are fundamental to digital Signal processing. 

Real· Time Processing 

In addition to being mathematically intensive, DSP algo­
rithms must be performed in real time. Real time can be 
defined as a process that is accomplished by the DSP with­
out creating a delay noticeable to the user. In the stock mar­
ket example, as long as the new average value can be com­
puted priortothe next day when it is needed, it is considered 
to be completed in real time. In digital signal processing 
applications, processes happen faster than on a daily basis. 
In the FIR filter example in (1), the sum of products must 

©1989 ffiEE. Reprinted, with permission, from PROCEEDINGS OF THE IEEE; 
Vol. 75, No.9, pp. 1143-1159; September 1987 
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be computed usually within hundreds of microseconds 
before the next sample comes into the system. A second 
example is in a speech recognition system where a notice­
able delay between a word being spoken and being rec­
ognized would be unacceptable and not considered real­
time. Another example is in image processing, where it is 
considered real-time if the processor finishes the process­
ing within the frame update period. If the pixel information 
cannot be updated within the frame update period, prob­
lems such as flicker, smearing, or missing information will 
occur. 

Sampled Data Implementation 

The application must be capable of being handled as a 
sampled data system in order to be processed by digital 
processors, such as digital signal processors. The stock 
market is an example of a sarrpled data system. That is, a 
specific value (closing value) .s assigned to each sample 
period or day. Other periods may be chosen such as hourly 
prices or weekly prices. In an FIR filter as shown in (1), the 
output yin) is calculated to be the weighted sum of the pre­
vious N inputs. In other words, the input signal is sampled 
at periodic intervals (1 over the sample rate), multiplied by 
weighting factor aU), and then added together to give the 
output result of yin). Examples of sample rates for some typ­
ical sampled data applications [2], [4] are shown in Table 1. 

Table 1 Sample Rates versus Applications 

Application 

Control 
Telecommunications 
Speech processing 
Audio processing 
Video frame rate 
Video pixel rate 

Nominal 
Sample Rate 

1 kHz 
'8 kHz 
8-10 kHz 

40-48 kHz 
30 Hz 
14MHz 

. In a typical DSP application, the processor must be able 
to effectively handle sampled data in large quantity and also 
perform arithmetic computations in real time. 

System Flexibility 

The design of the digital signal processing system must 
be flexible enough to allow improvements in the state of 
the art. We may find out after several weeks of using the 
average stock price as a means of measuring a particular 
stock's value that a different method of obtaining the daily 
information is more suited to our needs, e.g., using dif­
ferent daily weightings, a different number of periods over 
which to average, or a different procedure for calculating 
the result. Enough flexibility in the system must be available 
to' allow for these variations. In many of the DSP applica­
tions, techniques are still in the developmental phase, and 
therefore the algorithms tend to change over time. As an 
example, speech recogn'ition is presently an inexact tech­
nique requiring continual algorithmic modification. From 
this example we can see the need for system flexibility so 
that the DSP algorithm can be updated. A programmable 
DSP system can provide this flexibility to the user. 
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HISTORICAL DSP SOlUTIONS 

Over the past several decades, digital signal processing 
machines have taken on several evolutions in order to 
incorporate these characteristics. large mainframe com­
puters were initially used to process Signals in the digital 
domain. Typically, because of state-of-the-art limitations, 
this was done in nonreal time. As the state of the art 
advanced, array processors we!e added to the processing 
task. Because of their flexibility and speed, array processors 
have become the accepted solution for the resealch lab­
oratory, and have been extended to end-applications in 
many instances. However, integrated circuit technology has 
matured, thus allowing for the design of faster micropro­
cessors and microcomputers. As a result, many digital sig­
nal processing applications have migrated from the array 
processor to microprocessor subsystems (i.e., bit-slice 
machines) to single-chip integrated circuit solutions. This 
migration has brought the cost of the DSP solution down 
to a point that allows pervasive use of the technology. The 
increased performance of these highly integrated circuits 
has also expanded DSP applications from traditional tele­
communications to graphics/image processing, then to 
consumer audio processing. 

A recent development in DSP technology is the single­
chip digital Signal processor, such as the TMS320 family of 
processors. These processors give the designer a DSP solu­
tion with its performance attainable only by the array pro­
cessors a few years ago. Fig. 1 shows the TMS320 family in 
graphical form with the y-axis indicating the hypothetical 
performance and the x-axis being the evolution of the semi­
conductor processing technology. The first member of the 
family, the TMS32010, was disclosed to the market in 1982 
[11], [12]. It gave the system designer the first microcom­
puter capable of performing five million DSP operations 
per second (5 MIPS), including the add and multiply func­
tions [13] required in (1). Today there are a dozen spinoffs 
from the TMS32010 in the first generation of the TMS320 
family. Some of these devices are the TMS320C10, 
TMS320C15, and TMS320C17 [14]. The second generation 
of devices include the TMS32020 [15] and TMS320C25 [16]. 
The TMS320C25 can perform 10 MIPS [16]. In addition, 
expanded memory space, combined single-cycle multiply/ 
accumulate operation, multiprocessing capabilities, and 
expanded I/O functions have given the TMS320C25 a 
2 to 4 times performance improvement over its predeces­
sors. The third generation of the TMS320 family of proces­
sors, the TMS320C30 [26], [27]. has a computational rate ot' 
33 million DSP floating-point operations per second (33 
MFlOPS). Its performance (speed, throughput, and pre­
cision) has far exceeded the digital Signal processors avail­
able today and has reached the level of a supercomputer. 

It we look closely at the TMS320 family as shown in Fig. 
1, we can see that devices in the same generation, such as 
the TMS320C10, TMS320C15, and TMS320C17, are assembly 
object-code compatible. Devices across generations, such 
as the TMS320C10 and TMS320C25, are assembly source­
code compatible. Software investment on DSP algorithms 
therefore can be maintained during the system upgrade. 
Another point is that since the introduction of the 
TMS32010, semiconductor processing technology has 
emerged from 3-l'm NMOS to 2-l'm CMOS to 1-l'm CMOS. 

The TMS320 Family of Digital Signal Processors 



Fig. 1. The TMS320 family of digital signal processors. 

The TMS320 generations of processors have also taken the 
same evolution in processing technology. Low power con· 
sumption, high performance, and high-density circuit inte­
gration are some of the direct benefits of this semicon­
ductor processing evolution. 

From Fig. 1, it can be observed that various DSP building 
blocks, such as the CPU, RAM, ROM, 110 configurations, 
and processor speeds, have been designed as individual 
modules and can be rearranged or combined with other 
standard cells to meet the needs of specific applications. 
Each of the three generations (and future generations) will 
evolve in the same manner. As applications become more 
sophisticated, semicustom solutions based on the core CPU 
will become the solution of choice. An example of this 
approach is the TMS320C17/E17, which consists of the 
TMS320C10 core CPU, expanded 4K-word program ROM 
(TMS320C17) or EPROM (TMS320E17), enlarged data RAM 
of 256 words, dual serial ports, companding hardware, and 
a coprocessor interface. Furthermore, as integrated circuit 
layout rules move into smaller geometry (now at 21'm, rap­
idly going to 1 I'm), not onlywill the TMS320 devices become 
smaller in size, but also multiple CPUs will be incorporated 
on the same device along with application-specific 110 to 
achieve low-cost integrated system solutions. 

BASIC TMS320 ARCHITECTURE 

As noted previously, the underlying assumption regard­
ing a digital signal processor is fast arithmetic operations 
and high throughput to handle mathematically intensive 
algorithms in real time. In the TM5320 family [11J-[17], [26], 
[27], this is accomplished by using the following basic con­
cepts: 

Harvard architecture, 
extensive pipelining, 
dedicated hardware multiplier, 

• special DSP instructions, 
fast instruction cycle. 
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These concepts were designed into the TMS320 digital sig­
nal processors to handle the vast amount of data charac­
teristic of DSP operations, and to allow most DSP opera­
tions to be executed in a single-cycle instruction. 
Furthermore, the TMS320 processors are programmable 
devices, providing the flexibility and ease of use of general­
purpose microprocessors. The following paragraphs dis­
cuss how each of the above concepts is used in the TMS320 
family of devices to make them useful in digital signal pro­
cessing applications. 

Harvard Architecture 

The TMS320 utilizes a modified Harvard architecture for 
speed and flexibility. In a strict Harvard architecture [18], 
[19J, the program and data memories lie in two separate 
spaces, permitting a full overlap of instruction fetch and 
execution. The TMS320 family's modification of the Har­
vard architecture further allows transfer between program 
and data spaces, thereby increasing the flexibility of the 
device. This architectural modification eliminates the need 
for a separate coefficient ROM and also maximizes the pro­
cessing power by maintaining two separate bus structures 
(program and data) for full-speed execution. 

Extensive Pipe lining 

In conjunction with the Harvard architecture, pipelining 
is used extensively to reduce the instruction cycle time to 
its absolute minimum, and to increase the throughput of 
the processor. The pipeline can be anywhere from two to 
four levels deep, depending on which processor in the fam­
ily is used. The TMS320 family architecture uses a two-level 
pipeline for its first generation, a three-level pipeline for its 
second generation, and a four-level pipeline for its third 
generation of processors. This means that the device is pro­
cessing from two to four instructions in parallel, and each 
instruction isat a different stage in its execution. Fig. 2 shows 
an example of a three-level pipeline operation. 
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Fig. 2. Three-level pipeline operation. 

In pipeline operation, the prefetch, decode, and execute 
. operations can be handled independently, thus allowing 

the execution of instructions to overlap. During any instruc­
tion cycle, three different instructions are active, each at a 
different stage of completion. For example, as the Nth 
instruction is being prefetched, the previous (N - 1)th 
instruction is being decoded, and the previous (N - 2)th 
instruction is being executed. In general, the pipeline is 
transparent to the user. 

DedicatedHardware Multiplier 

As we saw in the general form of an FIR filter, multipli­
cation is an important part of digital signal processing. For 
each filter tap (denoted by i), a multiplication and an addi­
tion must take place. The faster a multiplication can be per­
formed, the higher the performance of the digital signal 
processor. In general-purpose microprocessors, the mul­
tiplication instruction is constructed by a series of addi­
tions, ther~fore taking many instruction cycles. In com­
parison, tIlecharacteristic of every DSP device is a dedicated 
multiplier. In the TMS320 family, multiplication is a single­
cycle instruction as a result of the dedicated hardware mul­
tiplier. If we look at the arithmetic for each tap of the FIR 
filter to be performed by the TMS32010, we see that each 
tap of the filter requires a multiplication (MPY) instruction. 

LT 
DMOV 
MPY 
APAC 

;LOAD MULTIPLICAND INTO T REGISTER 
;MOVE DATA IN MEMORY TO DO DELAY 
;MULTIPLY 
;ADD MULTIPLICATION RESULT TO ACC 

The other three instructions are used to load the multiplier 
circuit with the multiplicand (LT), move the data through 
the filter tap (DMOV), and add the result of the multipli­
cation (stored in the product register) to the accumulator 
(APAC). SpeCifically, the multiply instruction (MPY) loads 
the multiplier into the dedicated multiplier and performs 
the multiplication, placing the result in a product register. 
Therefore, if a 256-tap FIR filter is used, these four instruc­
tions are repeated 256 times. At each sample period, 256 
multiplications must be performed. In a typical general­
purpose microprocessor, this requires each tap to be 30 to 
40 instruction cycles long, whereas in the TMS320C10, it is 
only four instruction cycles. We will see in the next section 
how special DSP instructions reduce the time required for 
each FIR tap even further. 

Special DSP instructions 

Another characteristic of DSP devices is the use of special 
instructions. We were introduced to one ofthem in the pre­
vious example, the DMOV (data move) instruction. In dig­
ital signal processing, the delay operator (z -1) is very impor­
tant. Recalling the stock market example, during each new 
sample period (Le., each new day), the oldest piece of data 
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(the closing price five days ago) was dropped and a new one 
(today's closing price) was added. Or, each piece of the old 
data is delayed or moved one sample period to make room 
for the incoming most current sample. This delay is the 
function of the DMOV instruction. Another special instruc­
tion in the TMS32010 is the LTD instruction. It executes the 
LT, DMOV, and APAC instructions in a single cycle. The LTD 
and MPY instruction then reduce the number of instruction 
cycles per FIR filtertap from four to two. In the second-gen­
eration TMS320, such as the TMS320C25, two more special 
instructions have been included (the RPT and MACD 
instructions) to reduce the number of cycles per tap to one, 
as shown in the following: 

RPTK 255 ;REPEAT THE NEXT INSTRUCTION 256 TIMES 
(N + 1) 

MACD ;LT, DMOV, MPY, AND APAC 

Fast instruction Cycle 

The real-time processing capability is further enhanced 
by the raw speed ofthe processor in executing instructions. 
The characteristics which we have discussed, combined 
with optimization of the integrated circuit design for speed, 
give the DSP devices instruction cycle times less than 200 
ns. The speCific instruction cycle times for the TMS320 fam­
ily are given in Table 2. These fast cycle times have made 

Table 2 TM5320 Cycle Times 

Device 

TMS320C10' 
TMS32020 
TMS320C25 
TMS320C30 

Cycle Time 
(ns) 

160-200 
160-200 
100-125 
60-75 

-The same cycle time applies to all of the first-generation processors. 

the TM5320 family of processors highly suited for mahy real­
time DSP applications. Table 1 showed the sample rates for 
some typical DSP applications. This table can be combined 
with the cycle times indicated in Table 2 to show how many 
instruction cycles per sample can be achieved by the var­
ious generations of the TMS320 for real-time applications 
(see Fig. 3). 

As we can see from Fig. 3, many instruction cycles are 
available to process the Signal or to generate commands for 
real-time control applications. Therefore, for simple con­
trol applications, the general-purpose microprocessors or 
controllers would be adequate. However, for more math­
ematically intensive control applications, such as robotics 
and adaptive control, digital Signal processors are much 
better suited [24]. The number of available instruction cycles 
is reduced as we increase the sample rate from 8 kHz for 
typical telecommunication applications to 40-48 kHz for 
audio processing. Since most of these real-time applica­
tions require only a few hundreds of instructions per sam­
ple (such as ADPCM [4], and echo cancelation [4]), this is 
within the reach of the TMS320. For higher sample rate 
applications, such as video/image processing, digital signal 
processors available today are not capable of handling the 
processing of the real-time video data. Therefore, for these 
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Fig. 3. Number of instruction cycles/sample versus sample rate for the TMS320 family_ 

types of applications, multiple digital signal processors and 
frame buffers are usually required. From Fig. 3, it can also 
be seen that for slower speed applications, such as control, 
the first-generation TMS320 provides better cost-perfor­
mance-tradeoffs than the other processors. For high sample 
rate applications, such as video/image processing, the sec­
ond and third generations of the TMS320 with their mul­
tiprocessing capabilities and high throughput are better 
suited. 

Now that we have discussed the basic characteristics of 
digital Signal processors, we can concentrate on specific 
details of each of the three generations of the TMS320 fam­
ily devices. 

THE FIRST GENERATION OF THE TMS320 FAMILY 

The first generation of the TMS320 family includes the 
TMS32010 [13], and TMS32011 [17], which are processed in 
2.4-l'm NMOS technology, and the TMS320C10 [13], 
TMS320C15/E15 [14], and TMS320C17/E17 [14], processed in 
1.8-l'm CMOS technology. Someolthe key features of these 
devices are [14] as follows: 

Instruction cycle timing: 
-160 ns 
-200 ns 
-280 ns. 

On-chip data RAM: 
-144 words 
-256 words (TMS320C1S/E15, TMS320C17/E17). 

On-chip program ROM: 
-1.5K words 
-4K words (TMS320C15, TMS320C17). 

4K words of on-chip program EPROM (TMS320E15, 
TMS320E17). 

External memory expansion up to 4K words at full 
speed. 

16 x 16-bit parallel multiplier with 32-bit result. 
Barrel shifter for shifting data memory words into the 

AlU. 
Parallel shifter. 
4 x 12-bit stack that allows context switching. 
Two auxiliary registers for indirect addressing. 
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Dual-channel serial port (TMS32011, TMS320C17, 
TMS320E17). 

On-chip companding hardware (TMS32011, 
TMS320C17, TMS320E17). 

Coprocessor interface (TMS320C17, TMS320E17). 
Device packaging 

-40-pin DIP 
-44-pin PlCC. 

TMS320C1O 

The first generation of the TMS320 processors is based 
on the architecture of the TMS32010 and its CMOS replica, 
the TMS320C10. The TMS32010 was introduced in 1982 and 
was the first microcomputer capable of performing 5 MIPS. 
Since the TMS32010 has been covered extensively in the 
literature [4], [11]-[14], wewill only provide a cursory review 
here. A functional block diagram olthe TMS320C10 is shown 
in Fig. 4. 

As shown in Fig. 4, the TMS320C10 utilizes the modified 
Harvard architecture in which program memory and data 
memory lie in two separate spaces. Program memory can 
reside both on-chip (1.5Kwords)oroff-chip (4Kwords). Data 
memoryisthe144 x 16-bit on-chip data RAM. Therearefour 
basic arithmetic elements: the AlU, the accumulator, the 
multiplier, and the shifters. All arithmetic operations are 
performed using two's-complement arithmetic. 

ALU: The AlU is a general-purpose arithmetic logic unit 
that operates with a 32-bit data word. The unit can add, sub­
tract, and perform logical operations. 

Accumulator: The accumulator stores the output from the 
AlU and is also often an input to the AlU. It op"rOltes with 
a32-bitword length. The accumulator is divided into a high­
order word (bits 31 through 16) and a low-order word (bits 
15 through 0). Instructions are provided for storing the high­
and low-order accumulator words in data memory (SACH 
for store accumulator high and SACl for store accumulator 
low). 

Multiplier: The 16 x 16-bit parallel multiplier consists of 
three units: the T register, the P register, and the multipler 
array. The T register is a 16-bit register that stores the mul­
tiplicand, while the P register is a 32-bit register that stores 
the product. In order to use the multiplier, the multiplicand 
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fig. 4. TMS320Cl0 functional block diagram. 

must first be loaded into the T register from the data RAM 
by using one of the following instructions: LT, LTA, or LTD. 
Then the MPY (multiply) or the MPYK (multiply immediate) 
instruction is executed. The multiply and accumulate oper­
ations can be accomplished in two instruction cycles with 
the LTNLTD and MPYiMPYK instructions. 

Shiflers: Two shifters are available for manipulating data: 
a barrel shifter and a parallel shifter. The barrel shifter per­
forms a left-shift of 0 to 16 bits on all data memory words 
that are to be loaded into, subtracted from, or added to the 
accumulator. The parallel shifter, activated by the SACH 
instruction, can execute a shift of 0, 1, or 4 bits to take care 
of the sign bits in two's-complement arithmetic calcula· 
tions. 

Based on the architecture of the TMS32010/C10, several 
spinoffs have been generated offering different processor 
speeds, expanded memory, and various 1/0 integration. 
Currently, the newest members in this generation are the 
TMS320C15iE15 and the TMS320C17/E17 [14]. 
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I. I. 

TMS320C151E15 

The TMS320C15 and TMS320E15 are fu lIy object-code and 
pin-for-pin compatible with the TMS32010 and offer 
expanded on-chip RAM of 256 words and on-chip program 
ROM (TMS320C15) or EPROM (TMS320E15) of 4Kwords. The 
TMS320C15 is available in either a 200·ns version or a 160-
ns version (TMS320C15-25). 

TMS320C171E17 

The TMS320C17/E17 is a dedicated microcomputer with 
4K words of on-chip program ROM (TMS320C17) or EPROM 
(TMS320E17), a dual·channel serial port for full-duplex serial 
communication, on-chip companding hardware (u-Iawl 
A·law), a serial port timer for stand-alone serial commu­
nication, and a coprocessor interface for zero glue interface 
between t~e processor and any 4lB/16-bit microprocessor. 
The TMS320C17/E17 isalsoobject-code compatible with the 
TMS32010 and can use the same development tools. The 
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Table 3 TMS320 First-Generation Processors 

Instruction On-Chip 
TMS320 Cycle Time Prog ROM 
Devices (ns) Process (words) 

TMS32010 200 NMOS 1.5K 
TMS32010-25 160 NMOS 1.5K 
TMS32010-14 280 NMOS l.5K 
TMS32011 200 NMOS I.5K 
TMS320Cl0 200 CMOS l.5K 
TMS320Cl0-25 160 CMOS l.5K 
TMS320C15 200 CMOS 4.0K 
TMS320C15-25 160 CMOS 4.0K 
TMS320E15 200 CMOS 
TMS320C17 200 CMOS 4.0K 
TMS320C17-25 160 CMOS 4.0K 
TMS320E17 200 CMOS 

device is based on the TMS320Cl0 core CPU with added 
peripheral memory and I/O modules added on-chip. The 
TMS320C17/E17 can be regarded as a semicustom DSP solu­
tion suited for high-volume telecommunication and con­
sumer applications. 

Table 3 provides a feature comparison of all members of 
the first-generation TMS320 processors. References to more 
detailed information on these processors are also provided. 

THE SECOND GENERATION OF THE TMS320 FAMILY 

The secDnd-generation TMS320 digital signal processors 
includes two members, the TMS32020 [151 and the 
TMS320C25 [161. The architecture of these devices has been 
evolved from the TMS32010, the first member of the TMS320 
family. Key features of the second-generation TMS320 are 
as follows: 

Instruction cycle timing: 
-100 ns (TMS320C25) 
-200 ns (TMS32020). 

4K words of on-chip masked ROM (TMS320C25). 
544 words of on-chip data RAM. 
12BK words of total program data memory space. 
Eight auxiliary registers with a dedicated arithmetic 
unit. 
Eight-level hardware stack. 
Fully static double-buffered serial port. 
Wait states for communication to slower off-chip 
memories. 
Serial port for multiprocessing or interfacing to codecs. 
Concurrent DMA using an extended hold operation 
(TMS320C25). 
Bit-reversed addressing modes for fast Fourier trans­
forms (TMS320C25). 
Extended-precision arithmetic and adaptive filtering 
support (TMS320C25). 
Full-speed operation of MAC/MACD instructions from 
external memory (TMS320C25). 
Accumulator carry bit and related instructions 
(TMS320C25). 
1.B-l'm CMOS technology (TMS320C25): 

-6B-pin grid array (PGA) package. 
-6B-pin lead chip carrier (PLCC) package. 

2.4-l'm NMOS technology (TMS32020): 
-68-pin PGA package. 
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On-Chip On-Chip Off-Chip 
Prog EPROM Data RAM Prog 

(words) (words) (words) Ref 

144 4K [13] 
144 4K [13] 
144 4K [13] 
144 [17] 
144 4K [13] 
144 4K [13] 
256 4K [13] 
256 4K [14] 

4.0K 256 4K [14] 
256 [14] 
256 [14] 

4.0K 256 [14] 

TMS320C25 Architecture 

The TMS320C25 is the latest member in the second gen­
eration ofTMS320 digital signal processors. It is a pin-com­
patible CMOS version of the TMS32020 microprocessor, 
but with an instruction cycle time twice as fast and the inclu­
sion of additional hardware and software features. The 
instruction set is a superset of both the TMS32010 and 
TMS32020, maintaining source-code compatibility. In addi­
tion, it is completely object-code compatible with the 
TMS32020 so that TMS32020 programs run unmodified on 
the TMS320C25. 

The 100-ns instruction cycle time provides a significant 
throughput advantage for many existing applications. Since 
most instructions are capable of executing in a single cycle, 
the processor is capable of executing ten million instruc­
tions per second (10 MIPS). Increased throughput on the 
TMS320C25 for many DSP applications is attained by means 
of Single-cycle multiply/accumulate instructions with a data 
move option (MAC/MACD), eight auxiliary registers with a 
dedicated arithmetic unit, instruction set support for adap­
tive filtering and extended-precision arithmetic, bit-rever­
sal addreSSing, and faster I/O necessary for data-intensive 
signal processing. 

Instructions are included to provide data transfers 
between the two memory spaces. Externally, the program 
and data memory spaces are multiplexed over the same bus 
so as to maximize the address range for both spaces while 
minimizing the pin count of the device. Internally, the 
TMS320C25 architecture maximizes processing power by 
maintaining two separate bus structures, program and data, 
for full-speed execution. 

Program execution in thedevice takes the form of a three­
level instruction fetch-decade-execute pipeline (see Fig. 
2). The pipeline is essentially invisible to the user, except 
in some cases where it must be broken (such as for branch 
instructions), In this case, the instruction timing takes into 
account the fact that the pipeline must be emptied and 
refilled. Two large on-chip data RAM blocks (a total of 544 
words), one of which is configu rable either as program or 
data memory, provide increased flexibility in syslem design. 
An ott-chip 64K-word directly addressable' dOla memory 
address space is included to facilitate implelTll'ntations of 
DSP algorithms. The large on-chip 4K-word ",,,,ked ROM 
can be used for cost-reduced systems, thll' p,"viding for 
a true single-chip DSP solution. The remai"d"r IIf the 64K­
word program memory space is located e,I,-, ",Illy. Large 
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programs can execute at full speed from this memory space. 
Programs may also be downloaded from slow external 
memory to on·chip RAM for full·speed operation. The VlSI 
implementation of the TMS320C25 incorporates all of these 

features as well as many others such as a hardware timer, 
serial port, and block data transfer capabilities. 

A functional block diagram of the TMS320C25, shown in 
Fig. 5, outlines the principal blocks and data paths within 
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Fig. 5. TMS320C25 functional block diagram. 
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the processor. The diagram also shows all of the TMS320C25 
interface pins. 

In the following architectural discussions on the mem­
ory, central arithmetic logic unit, hardware multiplier, con­
trol operations, serial port, and 110 interface, please refer 
to the block diagram shown in Fig. 5. 

Memory Allocation: The TMS320C25 provides a total of 
4K 16-bit words of on-chip program ROM and 544 16-bit 
words of on.chip data RAM. The RAM is divided into three 
separate Blocks (BO, B1, and B2). Olthe 544 words, 256 words 
(block BO) are configurable as either data or program mem­
ory by CNFD (configure data memory) or CNFP (configure 
program memory) instructions provided for that purpose; 
288 words (blocks B1 and B2) are always data memory. A 
data memory size of 544 words allows the TMS320C25 to 
handle a data array of 512 words while still leaving 32 loca­
tions for intermediate storage. The TMS320C25 provides 
64K words of off-chip directly addressable data memory 
space as well as a 64K-word off-chip program memory space. 

A register file containing eight Auxiliary Registers (ARO­
AR7), which are used for indirect addressing of data mem­
ory and for temporary storage, increase the flexibility and 
efficiency of the device. These registers may be either 
directly addressed by an instruction or indirectly addressed 
by a 3·bit Auxiliary Register Pointer (ARP). The auxiliary reg· 
isters and the ARP may be loaded from either data memory 
or by an immediate operand defined in the instruction. The 
contents of these registers may also be stored into data 
memory. The auxiliary register file is connected to the Aux· 
iliary Register Arithmetic Unit (ARAU). Using the ARAU 
accessing tables of information does not require the CAlU 
for address manipulation, thus freeing it for other opera­
tions. 

Central Arithmetic Logic Vnit (CAL V): The CAlU contains 
a 16-bit scaling shifter, a 16 x 16-bit parallel multiplier, a 32-
bit Arithmetic logic Unit (AlU), and a 32·bit accumulator. 
The scaling shifter has a 16-bit input connected to the data 
bus and a 32·bit output connected to the AlU. This shifter 
produces a left·shift of 0 to 16 bits on the input data, as pro­
grammed in the instruction. Additional shifters at the out­
puts of both the accumulator and the multiplier are suitable 
for numerical scaling, bit extraction, extended-precision 
arithmetic, and overflow prevention. 

The following steps occur in the implementation of a typ­
ical AlU instruction: 

1) Data are fetched from the RAM on the data bus. 
2) Data are passed through the scaling shifter and the 

AlU where the arithmetic is performed. 
3) The result is moved into the accumulator. 

The 32-bit accumulator is split into two 16-bit segments 
for storage in data memory: ACCH (accumulator high) and 
ACCl (accumulator low). The accumulator has a carry bit 
to facilitate multiple-precision arithmetic for both addition 
and subtract instructions. 

Hardware Multiplier: The TMS320C25 utilizes a 16 x 16-
bit hardware multiplier, which is capable of computing a 
32·bit product during every machine cycle. Two registers 
are associated with the multiplier: 

a 16·bit Temporary Register (TR) that holds one of the 
operands for the multiplier, and 
a 32-bit Product Register (PR) that holds the product. 
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The output of the product register can be left-shifted 1 or 
4 bits. This is useful for implementing fractional arithmetic 
or justifying fractional products. The output of the PR can 
also be right-shifted 6 bits to enable the execution of up to 
128 consecutive multiplelaccumulates without overflow. 
An unSigned multiply (MPYU) instruction facilitates 
extended-precision multiplication. 

110 Interface: The TMS320C25 110 space consists of 16 
input and 16 output ports. These ports provide the full16-
bit parallel 110 interface via the data bus on the device. A 
single input (IN) or output (OUT) operation typically takes 
two cycles; however, when used with the repeat counter, 
the operation becomes single-cycle. 110 devices are mapped 
into the 110 address space using the processor's external 
address and data buses in the same manner as memory­
mapped devices. Interfacing to memory and 110 devices of 
varying speeds is accomplished by using the READY line. 

A Direct Memory Access (DMA) to external programldata 
memory is also supported. Another processor can take 
complete control of the TMS320C25's external memory by 
asserting HOLD low, causing the TMS320C25 to place its 
address, data, and control lines in the high-impedance state. 
Signaling between the external processor and the 
TMS320C25 can be performed using interrupts. Two modes 
of DMA are available on the device. In the first, execution 
is suspended during assertion of HOLD. In the second 
"concurrent DMA" mode, the TMS320C25 continues to 
execute its program while operating from internal RAM or 
ROM, thus greatly increasing throughput in data-intensive 
applications. 

TMS320C2S Software 

The majority of the TMS320C25 instructions (97 out of 133) 
are executed in a single instruction cycle. Of the 36 instruc­
tions that require additional cycles of execution, 21 involve 
branches, calls, and returns that result in a reload of the 
program counter and a break in the execution pipeline. 
Another seven of the instructions are two·word, long­
immediate instructions. The remaining eight instructions 
support 110, transfers of data between memory spaces, or 
provide for additional parallel operation in the processor. 
Furthermore, these eight instructions (IN, OUT, BlKD, 
BlKP, TBlR, TBlW, MAC, and MAC D) become single-cycle 
when used in conjunction with the repeat counter. The 
functional performance olthe instructions exploits the par­
allelism of the processor, allowing complex andlor numer­
ically intensive computations to be implemented in rela­
tively few instructions. 

Addressing Modes: Since most of the instructions are 
coded in a single 16-bit word, most instructions can be exe­
cuted in a single cycle. Three memory addressing modes 
are available with the instruction set: direct, indirect, and 
immediate addreSSing. Both direct and indirect addreSSing 
are used to access data memory. Immediate addressing uses 
the contents of the memory addressed by the program 
counter. 

When using direct addreSSing, 7 bits of the instruction 
word are concatenated with the 9 bits of the data memory 
page pointer (DP) to form the 16-bit data memory address. 
With a 128-word page length, the DP register points to one 
of 512 possible data memory pages to obtain a64K total data 
memory space. Indirect addressing is provided by the aux-

21 



iliary registers (ARO-AR7). The seven types of indirect 
addressing are shown in Table 4. Bit·reversed indexed 
addressing modes allow efficient I/O to be performed for 

. the resequencing of data points in a radix·2 FFT program. 

Table 4 Addressing Modes of the TMS320C25 

Addressing Mode 

OPA 
OP' (,NARP) 
OP '+CNARP) 
OP '-(,NARP) 
OP 'O+CNARP) 
OP 'O-CNARP) 

OP 'BRO+CNARP) 

OP 'BRO-CNARP) 

Operation 

direct addressing 
indirect; no change to AR. 
indirect; current AR is incremented. 
indirect; current AR is decremented. 
indirect; ARO is added to current AR. 
indirect; ARO is subtracted from 

current AR. 
indirect; ARO is added to current AR 

(with reverse carry propagation). 
indirect; ARO is subtracted from 

current AR (with reverse carry 
propagation), 

Note: The optional NARP field specifies a new value of the ARP. 

TMS320C25 System Configurations 

The flexibility of the TMS320C25 allows systems config­
urations to satisfy a wide range of application requirements 
[16]. The TMS320C25 can be used in the following config­
urations: 

a stand-alone system (a single processor using 4K 
words of on-chip ROM and 544words of on-chip RAM), 
parallel multiprocessing systems with shared global 
data memory, or 
host/peripheral coprocessing using interface control 
signals. 

A minimal processing system is shown in Fig. 6 using 
external data RAM. and PROM/EPROM. Parallel multipro­
cessing and host/peripheral coprocessing systems can be 
designed by taking advantage of the TMS320C25's direct 
memory access and global memory configuration capabil­
ities. 

In some digital processing tasks, the algorithm being 
implemented can be divided into sections with a distinct 
processor dedicated to each section. In this case, the first 
and second processors may share global data memory, as 
well as the second and third, the third and fourth, etc. Arbi­
tration logic may be required to determine which section 
of the algorithm is executing and which processor has 
access tothe global memory. With multiple processors ded-

SERIAL ::: .. " 
COMMUNICA nON . 

icated to distinct sections of the algorithm, throughput can 
be increased via pipelined execution. The TMS320C25 is 
capable of allocating up to 32K words of data memory as 
global memory for multiprocessing applications . 

THE THIRD GENERATION OF THE TMS320 FAMILY 

The TMS320C30 [26]-[27] is Texas Instruments third-gen­
eration member of the TMS320 family of compatible digital 
signal processors. With a computational rate of 33 MFLOPS 
(million floating-point operations per second), the 
TMS320C30 far exceeds the performance of any program­
mable DSP available today. Total system performance has 
been maximized through internal parallelism, more than 
twenty-four thousand bytes of on-chip memory, Single-cycle 
floating-point operations, and concurrent I/O. Thetotal sys­
tem cost is minimized with on-chip memory and on-chip 
peripherals such as timers qnd serial ports. Finally, the user's 
system design time is dramatically reduced with the avail­
ability of the floating-point operations, general-purpose 
instructions and features, and quality development tools. 

The TMS320C30 provides the user with a level of per­
formance that, at one time, was the exclusive domain of 
supercomputers. The strong architectural emphasis of pro­
viding a low-cost system solution to demanding arithmetic 
algorithms has resulted in the architecture shown in Fig. 7. 

The key features of the TMS320C30 [26], [27] are as fol­
lows: 

60-ns single-cycle execution time, l-l'm CMOS. 
Two 1K x 32-bit Single-cycle dual-access RAM blocks. 
One 4K x 32-bit single-cycle dual-access ROM block. 
64 x 32-bit instruction cache. 
32-bit instruction and data words, 24-bit addresses. 
32/40·bit floating-pOint and integer multiplier. 
32/40-bit floating-point, integer, and logical ALU. 
32-bit barrel shifter. 
Eight extended-precision registers. 
Two address-generators with eight auxiliary registers. 
On-chip Direct Memory Access (DMA) controller for 
concurrent I/O and CPU operation. 
Peripheral bus and modules for easy customization. 
High-level language support. 
Interlocked instructions for multiprocessing support. 
Zero overhead loops and single-cycle branches. 

The architecture of the TMS320C30 is targeted at 60-ns 
and faster cycle times. To achieve such high-performance 

Fig. 6. Minimal processing system With external data RAM and PROM/EPRO~. 
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Fig. 7. TMS320C30 functional block diagram. 

goals while still providing low·cost system solutions, the 
TMS320C30 is designed using Texas Instruments state·of­
the-art 1-l'm CMOS process. The TMS320C30 's high system 
performance is achieved through a high degree of paral­
lelism, the accuracy and precision of its floating-point units, 
its on-chip DMA controller that supports concurrent 110, 
and its general-purpose features. At the heart of the archi­
tecture is the Central Processing Unit (CPU). 

The CPU 

The CPU consists of the following elements: floating­
point/integer mu Itiplier; ALU for performing floating-poi nt, 
integer, and logical operations; auxiliary register arithmetic 
units; supporting register file, and associated buses. The 
multiplier of the CpU performs floating-point and integer 
multiplication. When performing floating-point multipli­
cation, the inputs are 32-bit floating-point numbers, and the 
result is a 40-bit floating-point number. When performing 
integer multiplication, the input data is 24 bits and yields 
a 32-bit result. The ALU performs 32-bit integer, 32-bit log­
ical, and 40-bit floating-point operations. Results of the mul­
tiplier and the ALU are always maintained in 32-bit integer 
or 40-bit floating-point formats. The TMS320C30 has the 
ability to perform, in a single cycle, parallel mUltiplies and 
adds (subtracts) on integer or floating-point data. It is this 
ability to perform floating-point multiplies and adds (sub­
tracts) in a single cycle which give the TMS320C30 its peak 
computational rate of 33 MFLOPS. 

Floating-point operations provide the user with a con­
venient and Virtually trouble-free means of performing 
computations while maintaining accuracy and precision. 
The TMS320C30 implementation of floating-point arith-

FSXO 

OXO 

SOURCE AND DESTINATION CLKXO 

ADDRESS GENERATORS FSRO 

ORO 

CONTROL REGISTERS CLKRO 

FSXl 

OX, 

CLKXl 

FSRl 

DR. 

ClKRl 

TClKD 

TClKl 

metic allows for floating-point operations at integer speeds. 
The floating-point capability allows the user to ignore, to 
a large extent, problems with overflow, operand alignment, 
and other burdensome tasks common to integer opera­
tions. 

The register file contains 28 registers, which may be oper­
ated upon by the multiplier and ALU. Thefirsteightofthese 
registers (RO-R7) are the extended-precision registers, 
which support operations on 40-bit floating-point numbers 
and 32-bit integers. 

The next eight registers (ARO-AR7) are the auxiliary reg­
isters, whose primary function is related to the generation 
of addresses. However, they also may be used as general­
purpose 32-bit registers. Two auxiliary register arithmetic 
units (ARAUO and ARAU1) can generate two addresses in 
a single cycle. The ARAUs operate in parallel with the mul­
tiplier and ALU. They support addressing with displace­
ments, index registers (lRO and IR1), and circular and bit­
reversed addressing. 

The remaining registers support a variety of system func­
tions: addressing, stack management, processor status, 
block repeat, and interrupts. 

Data Organization 

Two integer formats are supported on the TMS320C30: 
a 16-bit format used for immediate integer operands and 
a 32-bit Single-precision integer format. 

Two unsigned-integer formats are available: a 16-bit for­
mat for immediate unsigned-integer operands and a 32-bit 
single-precision unsigned-integer format. 

The three floating-point formats are assumed to be nor­
malized, thus providing an extra bit of precision. The first 
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is a 16-bit short floating-point format for immediate float­
ing-point operands, which consists of a 4-bit exponent, 1 
sign bit, and an 11-bit fraction. The second is a single-pre­
cision format consisting of an 8-bit exponent, 1 sign bit, and 
a 23-bit fraction. The third is an extended-precision format 
consisting of an 8-bit exponent, 1 sign bit, and a 31-bit frac­
tion. 

The total memory space of the TMS320C30 is 16M (mil­
lion) x 32 bits. A machine word is 32 bits, and all addressing 
is performed byword. Program, data, and 1/0 space are con­
tained within the 16M-word address space. 

RAM blocks 0 and 1 are each 1K x 32 bits. The ROM block 
is 4K x 32 bits. Each RAM block and ROM block is capable 
of supporting two data accesses in a single cycle. For exam­
ple, the user may, in a single cycle, access a program word 
and a data word from the ROM block. 

The separate program data, and DMA buses allow for par­
allel program fetches, data reads and writes, and DMAoper­
ations. Management of memory resources and busing is 
handled by the memory controller. For example, a typical 
mode of operation could involve a program fetch from the 
on-chip program cache, two data fetches from RAM block 
0, and the DMA moving data from off-chip memory to RAM 
block 1. All of this can be done in parallel with no impact 
on the performance of the CPU. 

A 64 x 32-bit instruction cache allows for maximum sys­
tem performance with minimal system cost. The instruction 
cache stores often repeated sections of code. The code may 
then be fetched from the cache, thus greatly reducing the 
number of off-chip accesses necessary. This allows for code 
to be stored off-chip in slower, lower cost memories. Also, 
the external buses are freed, thus allowing for their use by 
the DMA or other devices in the system. 

DMA 

The TMS320C30 processes an on-chip Direct Memory 
Access (DMA) controller. The DMA controller is able to per­
form reads from and writes to any location in the memory 
map without interfering with the operation of the CPU. As 
a consequence, it is possible to interface the TMS320C30 
to slow external memories and peripherals (AIDs, serial 
ports, etc.) without affecting the computational throughput 
·of the CPU. The result is improved system performance and 
decreased system cost. 

The DMA controller contains its own address generators, 
source and destination registers, and transfer counter. 
Dedicated DMAaddress and data buses allow for operation 
with no conflicts between the CPU and DMA controller. 

The DMA controller responds to interrupts in a similar 
way to the CPU. This ability allows the DMA to transfer data 
based upon the interrupts received. Thus 1/0 transfers that 
would normally be performed by the CPU may instead be 
performed by the DMA. Again, the CPU may continue pro­
cessing data while the DMA receives or transmits data. 

Peripherals 

All peripheral modules are manipulated through mem­
ory-mapped registers located on a dedicated peripheral bus. 
This peripheral bus allows for the straightforward addition, 
removal, and creation of peripheral modules. The initial 
TMS320C30 peripheral library will include timers and serial 
ports. The peripheral library concept allows Texas Instru-
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ments to create new modules to serve a-wide variety of 
applications. For example, the configuration of the 
TMS320C30 in Fig. 7 includes two timers and two serial ports. 

Timers: The two timer modules are general-purpose 
timer/event counters, with two signaling modes and inter­
nal or external clocking. 

Available to each timer is an 1/0 pin that can be used as 
an input clock to the timer or as an output signal driven by 
the timer. The pin may also be configured as a general-pur­
pose 1/0 pin. 

Serial Ports: The two serial ports are modular and totally 
independent. Each serial port can be configured to transfer 
8,16,24, or 32 bits of data per frame. The clock for each serial 
port can originate either internally or externally. An inter­
nally generated divide-down clock is prOVided. The pins of 
the serial ports are configurable as general-purpose 1/0 
pins. A special handshake mode allows TMS320C30s to 
communicate over their serial ports with ,guaranteed syn­
chronization. The serial ports may also be configured to 
operate as timers. 

External Interfaces 

The TMS320C30 provides two external interfaces: the par­
allel interface and the 1/0 interface. The parallel interface 
consists of a 32-bit data bus, a 24-bit address bus, and a set 
of control Signals. The 110 interface consists of a 32-bit data 
bus, a 13-bit address bus, and a set of control Signals. Both 
ports support an external ready Signal for wait-state gen­
eration and the use of software-controlled wait states. 

TheTMS320C30 supports four external interrupts, a num­
ber of internal interrupts, and a nonmaskable external reset 
signal. Two dedicated, general-purpose, external 1/0 flags, 
XFO and XF1, may be configured as input or output pins 
under software control. These pins are also used by the 
interlocked instructions to support multiprocessor com­
munication. 

Pipelining In the TMS320C30 

The operation of the TMS320C30 is controlled by five 
major functional units. The five major units and their func­
tion are as follows: 

Fetch Unit (F) which controls the program counter 
updates and fetches of the instruction words from 
memory. 
Decode Unit (D) which decodes the instruction word 
and controls address generation. 
Read Unit (R) which controls the operand reads from 
memory. 
Execute Unit (E) which reads operands from the reg­
ister file, performs the necessary operation, and writes 
results back to the register file and memory. 
DMA Channel (DMA) which reads and writes memory 
concurrently with CPU operation. 

Each instruction is operated upon by four of these stages; 
namely, fetch, decode, read, and execute. To provide for 
maximum processor throughput these units can perform 
in parallel with each unit operating on a different instruc­
tion. The overlapping of the fetch, decode, read, and exe­
cute operations of different instructions is called pipelin­
ing. The DMA controller runs concurrently with these units. 
The pipelining of these operations is key to the high per-
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formance of the TMS320C30. The ability ofthe DMA to move 
data within the processor's memory space results in an even 
greater utilization of the CPU with fewer interruptions of 
the pipeline which inevitably yields greater performance. 

The pipeline control of the TMS320C30 allows for 
extremely high-speed execution rate by allowing an effec· 
tive rate of one execution per cycle. It also manages pipe­
line conflicts in a way that makes them transparent to the 
user. 

While the pipelining of the different phases of an instruc­
tion is key to the performance of the TMS320C30, the 
designers felt it essential to avoid pipelining the operation 
of the multiplier or AlU. By ruling out this additional level 
of pipelining it was possible to greatly improve the pro­
cessor's useability. 

Instructions 

The TMS320C30 instruction set is exceptionally well 
suited to digital signal processing and other numerically 
intensive applications. The TMS320C30 also possesses a full 
complement of general-purpose instructions. The instruc­
tion set is organized into the following groups: 

load and store instructions; 
two-operand arithmetic instructions; 
two-operand logical instructions; 
three-operand arithmetic instructions; 
three-operand logic instructions; 
parallel operation instructions; 
arithmeticllogical instruction with store instructions; 
program control instructions; 
interlocked operations instructions. 

The load and store instructions perform the movement 
of a single word to and from the registers and memory. 
Included is the ability to load a register conditionally. This 
operation is particularly useful for locating the maximum 
and minimum of a set of data. 

The two-operand arithmetic and logical instructions con­
sist of a complete set of arithmetic instructions. They have 
two operands; src and dst for source and destination, 
respectively. The src operand may come from memory, a 
register, or be part of the instruction word. The dst operand 
is always a register. This portion of the instruction set 
includes floating-point integer and logical operations, sup­
port of multiprecision arithmetic, and 32-bit arithmetic and 
logical shifts. 

Thethree-operand arithmetic and logical instructions are 
a subset of the two-operand arithmetic and logical instruc· 
tions. They have three operands: two src operands and a 
dst operand. The src operands may come from memory or 
a register. The dst operand is always a register. These 
instructions allow for the reading of two operands from 
memory andlor the CPU register file in a single cycle. 

The parallel operation instructions allow for a high degree 
of parallelism. They support very flexible, parallel floating­
point and integer multiplies and adds. They also includethe 
ability to load two registers in parallel. 

The arithmeticllogical and store instructions support a 
high degree of parallelism, thus complementing the par­
allel operation instructions. They allow for the performance 
of an arithmetic or logical instruction between a register 
and an operand read from memory, in parallel with the stor-
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ing of a register to memory. They also provide for extremely 
rapid operations on blocks of memory. 

The program control instructions consist of all those 
operations that affect the program flow. This section of the 
instruction set includes a set of flexible and powerful con­
structs that allow for software control of the program flow. 
These fall into two main types: repeat modes and branch­
ing. 

For many algorithms, there is an inner kernel of code 
where most of the execution time is spent. The repeat modes 
of the TMS320C30 allow for the implementation of zero 
overhead looping. Using the repeat modes allows these 
time-critical sections of code to be executed in the shortest 
possible time. The instructions supporting the repeat 
modes are RPTB (repeat a block of code) and RPTS (repeat 
a Single instruction). Through the useofthe dedicated stack­
pointer, block repeats (RPTBs) may be nested. 

The branching capabilities of the TMS320C30 include two 
main subsets: standard and delayed branches. Standard 
branches, as in any pipelined machine that comprehends 
them, empty the pipeline to guarantee correct manage­
ment of the program counter. This results in a branch 
requiring, in the case of the TMS320C30, four cycles to exe­
cute. Included in this subset are calls and returns. A stan­
dard branch (BR) is illustrated below. 

BR 
MPYF 
ADDF 
SUBF 
AND 

THREE MPYF 

THREE ; standard branch. 
; not executed. 
; not executed. 
; not executed. 
; not executed. 

; fetched 3 cycles after BR 
is fetched. 

Delayed branches do not empty the pipe, but rather, 
guarantee that the next three instructions will be fetched 
before the program counter is modified by the branch. The 
result is a branch that only requires a single cycle. Every 
delayed branch has a standard branch counterpart. A 
delayed branch (BRD) is illustrated below. 

BRD THREE 
MPYF 
ADDF 
SUBF 
AND 

THREE MPYF 

; delayed branch. 
i executed. 
; executed. 
; executed. 
; not executed. 

; fetched after SUBF fetched. 

The combination of the repeat modes, standard branches, 
and delayed branches provides the user with a set of pro­
gramming constructs which are well suited to awide range 
of performance requirements. 

The program control instructions also include condi­
tional calls and returns. The decrement and branch con­
ditionally instruction allows for efficient loop control by 
combining the comparison of a loop counter to zero with 
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the check of condition flags, i.e., floating-point overflow. 
Thecondition codes available include unsigned and signed 
comparisons, comparisons to zero, and comparisons based 
upon the status of individual condition flags. These con­
ditions may be used with any of the conditional instruc­
tions. 

The interlocked operations instructions support multi­
processor communication. Through the use of external sig­
nals, these instructions allow for powerful synchronization 
mechanisms, such as semaphores, to be implemented. The 
interlocked operations use the two external flag pins, XFO 
and XF1. XFO signals an interlocked-operation request and 
XF1 acts as an acknowledge signal for the requested inter­
locked operation. The interlocked operations include inter­
locked loads and stores. When an interlocked operation is 
performed the external request and acknowledge signals 
can be used to arbitrate between multiple processors shar­
ing memory, semaphores, or counters. 

DEVELOPMENT. AND SUPPORT TOOLS 

Digital signal processors are essentially application-spe­
cific microprocessors (or microcomputers). Like any other 
microprocessor, no matter how impressive the perfor­
mance of the processor or the ease of interfacing, without 
good development tools and technical support, it is very 
difficult to design it into the system. In developing an appli­
cation, problems are encountered and questions are asked. 
Oftentimes the tools and vendor support provided to the 
designer are the difference between the success and failure 
of the project. 

The TMS320 family has a wide range of development tools 
available [25]. These tools range from very inexpensive eval­
uation modules for application evaluation and bench­
marking purposes, assembler/linkers, ·and software simu­
lators, to full-capability hardware emulators. A brief sum­
mary of these support tools is prOVided in the succeeding 
subsections. 

Software Tools 

Assembler/linkers and software simulators are available 
on PC and VAX for users to develop and debug TMS320 DSP 
algorithms. Their features are described as follows: 

Assembler/Linker: The Macro Assembler translates 
assembly language source code into executable object 
code. The Linker permits a program to be designed and 
implemented in separate modules that will later be linked 
together to form the complete program. 

Simulator: The Simulator simulates operations of the 
device in software to allow program verification and debug. 
The simulator uses the object code produced by the Macro 
Assembler/Linker. 

C Complier: The C Compiler is a full implementation of 
the standard Kernighan and Ritchie C as defined in The C 
Programming Language [28]. The compiler supports the 
.insertion of assembly language code into the C source code. 
The user may also write functions in assembly language, 
and then call these functions from the C source. Similarly, 
C functions may be called from assembly language. 
Variables defined in the C source may be accessed in 
assembly language modules and vice versa. The result is a 
complier that allows the user to tailor the amount of high­
level programming versus the amount of assembly lan-
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guage according to his application. The C compiler is sup­
ported on the TMS320C25 and the TMS320C30. 

Hardware Tools 

Evaluation modules and emulation tools are available for 
in-circuit emulation and hardware program debugging for 
developing and testing DSP algorithms in a real product 
environment. 

Evaluation Modu/e (EVM): The EVM is a stand-alone sin­
gle-board module that contains all of the tools necessary 
to evaluate the device as well as provide basic in-circuit 
emulation. The EVM contains a debug monitor, editor, 
assembler, reverse assembler, and software communica­
tions to a host computer or a line printer. 

SoftWare Development System (SWDS): The SoftWare 
Development System is a PC plug-in card with similarfunc­
tionality of the EVM. 

Emulator (XDS): The eXtended Development System pro­
vides full-speed in-circuit emulation with real-time hard­
ware breakpoint/trace and program execution capability 
from target memory. By setting breakpoints based on inter­
nal conditions or external events, execution of the program 
can be suspended and the XDS placed into the debug mode. 
In the debug mode, all registers and memory locations can 
be inspected and modified. Full-trace capabilities at full 
speed and a reverse assembler that translates machinecode 
back into assembly instructions are included. The XDS sys­
tem is designed to interface with either a terminal or a host 
computer. In addition to the above design tools, other 
development support is available [25]: 

ApPLICATIONS 

The TMS320 is designed for real-time DSP and other com­
putation-intensive applications [4]. In these applications, 
the TMS320 provides an excellent means for executing sig­
nal processing algorithms such as fast Fourier transforms 
(FFTs), digital filters, frequency synthesis, correlation, and 
convolution. The TMS320 also provides for more general­
purpose functions via bit-manipulation instructions, block 
data move capabilities, large program and data memory 
address spaces, and flexible memory mapping. 

To introduce applications performed by the TMS320, dig­
ital filters will be used as examples. The remaining portion 
of this section will briefly cover applications, and conclude 
by showing some benchmarks. 

Digital Filtering 

As discussed several times in this paper, the FIR filter is 
simply the sum of products in a sampled data system. This 
was shown in (1). A simple implementation of the FIR filter 
uses the MACD instruction (multiply/accumulate and data 
move) for each filter tap, with the RPT/RPTK instruction 
repeating the MACD for each filter tap. As we saw earlier, 
a 256-tap FIR filter can be implemented by using the fol­
lowing two instructions: 

RPTK 255 
MACD *-,COEFFP 

In this example, the coefficients may be stored anywhere 
in program memory (reconfigurable on-chip RAM, on-chip 
ROM, or external memories). When the coefficients are 
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stored in on-chip ROM or externally, the entire on-chip data 
RAM may be used to store the sample sequence. This allows 
filters of up to 512 taps to be implemented. Execution ofthe 
filter will be at full speed or 100 ns per tap as long as the 
memory supports full-speed execution (either on-chip RAM 
or high-speed external RAM). 

Up to this point, it has been assumed that the filter coef­
ficients are fixed from sample to sample. If the coefficients 
are adapted or updated with time, such as in adaptive filters 
for echo cancelation [4], [20], then the DSP algorithm 
requires a greater computational capacity from the pro­
cessor. The requirement to adapt each of the coefficients, 
usually with each sample, is accomplished by three instruc­
tions (MPYA or MPYS, ZALR, and SACH) on the TMS320C25 
[16]. A means of adapting the coefficients is the least-mean­
square (LMS) algorithm given by the following equation: 

bk(i + 1) = bk(i) + 2B[e(i) , x(i - k)] 

where bk(i + 1) is the weighting coefficient for the next sam­
ple period, bk(i) is the weighting coefficient for the present 
sample period, B is the gain factor or adaptation step size, 
e(;) is the error function, and x(i - k) is the input of the filter. 

In an adaptive filter, it is important to update the coef­
ficients bk(i) in order to minimize the error function e(i), 
which is the difference between the output of the filter and 
a reference signal. Quantization·errors are critical to the 
performance of the filter when updating the coefficients 
and can be minimized if the result is obtained by rounding 
rather than truncating. For each coefficient in the filter at 
a given point in time, the factor 2*B*e(i) is a constant. This 
factor can then be computed once and stored in the T reg­
ister for each of the. updates. Thus the computational 
requirement has become one multiply/accumulate plus 
rounding. Without the new instructions, the adaptation of 
each coefficient is five instructions corresponding to five 
clock cycles. This is shown in the following instruction 
sequence: 

LRLK AR2,COEFFD ; LOAD ADDRESS OF 
COEFFICIENTS. 

LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA 
SAMPLES. 

LARP AR2 
LT ERRF ; errf = 2'B'e(i) 

ZALH ',AR3 ; ACC = bk(i)'2"16 
ADD ONE,15 ; ACC = bk(i)'2"16 + 2"15 
MPY '-,AR2 
APAC ; ACC = bk(i)'2"16 

+ errf'x(i-k) + 2"15 
SACH '+ ; SAVE bk(i+l). 

When the MPYA and ZALR instructions are used, the 
adaptation reduces to three instructions corresponding to 
three clock cycles, as shown in the following instruction 
sequence. Note that the processing order has been slightly 
changed to incorporate the use of the MPYA instruction. 
This is due to the fact that the accumulation performed by 
the MPYA is the accumulation of the previous product. 
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LRLK AR2,COEFFD ; LOAD ADDRESS OF 
COEFFICIENTS. 

LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA 
SAMPLES. 

LARP AR2 
LT ERRF ; errf = 2'B'e(i) 

ZALR ',AR3 ; ACC = bk(i)'2"16 + 2"15 
MPYA '-,AR2 ; ACC = bk(i)'2"16 

+ errf'x(i-k) + 2"15 
; PREG = errf'x(i-k+l) 

SACH '+ ; SAVE bk(i+l). 

The adaptive filter coefficient update can further be sim­
plified using the TMS320C30 [27) as shown below. The first 
instruction defines the number of times to repeat the ker­
nel. The second instruction is the repeat-block instruction 
(RPTB). The RPTB instruction allows the iterations ofthe ker­
nel to be performed with zero overhead looping. The kernel 
assumes that the error term is stored in register RO. It is 
important to note that all of the calculations are performed 
in floating-point arithmetic. The MPYF3 is a three-operand 
floating-point multiply of the input sample x(i - k), which 
is stored in memory by the error term errf. The next step 
is a three-operand floating-point add (ADDF3) of the change 
in the filtertap to the filter tap in parallel with the store (STF) 
of the previously updated filter tap. That is, the store (STF) 
is to be performed in parallel withADDF3. Thus the number 
of cyles for a fioating-point adaptation is only two. 

LDI N,RC ; load length N in-
to block repeat 
counter 

RPTB adapt ; repeat the adap-
tation loop N + 1 
times 

MPYF3 • + +ARO(l),RO,Rl ; errf ' x(i-k) - Rl 
adapt: 

ADDF3 '+AR1(1),Rl,R2 ; b(k,i) + errf ' x(i - k) 
R2 

STF R2,'ARl + +(1) ; R2 - b(k-l,i) 

Since we have discussed the application of digital filter­
ing, we can now describe several applications in the areas 
of telecommunications, graphicslimage processing, high­
speed control, instrumentation, and numeric processing, 
and then conclude this section with several benchm·arks. 
If more detail is needed on any of these applications, the 
reader is referred to [4]. 

Te/ecommun{cations Applications 

Many aspects of the telecommunications network can 
take advantage of the TMS320. As telecommunications 
evolves more toward an all-digital network, DSPwili become 
even more utilized [23]. Several typical uses of the TMS320 
are discussed. 

Echo Canceler: In echo cancellation [4], [20], an adaptive 
FIR filter performs the modeling routine and signal mod­
ifications to adaptively cancel the echo caused by the 
impedance mismatches in the telephone transmission lines. 
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For this application, a large on-chip RAM of 544 words and 
on-chip ROM of 4K words on the TMS320C25 provides for 
a 256-tap adaptive filter (32-ms echo cancellation) to be exe­
cuted in a single chip without external data or program 
memory. 

High-Speed Modems: The TMS320 can perform numer­
ous functions such a modulation/demodulation, adaptive 
equalization, and echo cancellation [21], [22]. For lower 
speed modems, such as BeIl212A and V.22 bis modems, the 
TMS320C17 provides the most cost-effective Single-chip 
solution to these applications. For higher speed modems, 
such as the V.32, requiring more processing power and 
multiprocessing capabilities, the TMS320C25 and TMS-
320C30 are the designer'S choice. 

Voice Coding: Voice-coding techniques [3], [4], such 
as full-duplex 32-kbit/s ADPCM (CCIn G.721), CVSD, 
16-kbit/s sub band coders, and LPC, are frequently used in 
voice transmission and storage. Arithmetic speed, nor­
malization, and the .bit-manipulation capability of the 
TMS320 provide for implementation of these functions, 
usually in a single chip. For example, the TMS320C17 can 
be used as a Single-chip ADPCM [4], subband [4], or LPC [4] 
coder. An application of voice coding is an ADPCM trans­
coder implemented in half-duplex on a single TMS320C17 
or full-duplex on a TMS320C25 fortelecommunication mul­
tiplexing applications. Another example is a secure-voice 
communication system, requiring voice coding, as well as 
data encryption and transmission over a public-switched 
network via a modem; the TMS320C25 offers an ideal solu­
tion. 

Graphics/Image Processing Applications 

In graphics and image processing applications [4], the 
ability to interface with a host processor is important. Both 
the TMS320C30 and the TMS320C25 multiprocessor inter­
face enable them to be used in a variety of host/coprocessor 
configurations [4]. Graphics and image processing appli­
cations can use the large directly addressable external data 
space and global memory capability to allow graphical 
images in memory to be shared with a host processor, thus 
minimizing unnecessary data transfers. The ind'exed indi­
rect addressing modes allow matrices to be processed row­
by-row when performing matrix multiplication for three­
dimensional image rotations, translations, and scaling. 

The TMS320C30 has a number of features that support 
graphics and image processing extremely well. The float­
ing-point capabilities allow for extremely precise compu­
tation of perspective transformations. They also support 
more sophisticated algorithms such as shading and hidden 
line removal, operations which are computationally inten­
sive. 

The large address space allows for straightforward 
addressing of large images or displays. Theflexible address­
ing registers, coupled with the integer multiply, support 
powerful addressing of multiple-dimensional arrays. Vec­
tor-oriented instructions allow the user to efficiently 
manipulate large blocks of memory. Finally, the on-chip 
DMA controller allows the user to easily overlap the pro­
cessing of data with its 110. 

High-Speed Control 

High-speed control applications [4], [24] use the 
TMS320C17 and TMS320C25 general-purpose features for 
bit-test and logical operations, timing synchronization, and 
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high data-transfer rate (ten, million 16-bit words per sec­
ond). Both devices can be used in closed-loop systems for 
control signal conditioning, filtering, high-speed comput­
ing, and multichannel multiplexing capabilities. The fol­
lowing demonstrates two typical control applications: 

Disk Control: Digital filtering in a closed-loop actuation 
mechanism positions the read/write heads over the disk 
surface. Supplemented with many general-purpose fea­
tures, the TMS320 can replace costly bit-slice/custom/ana­
log solutions to perform such tasks as compensation, fil­
tering, fine/coarse tuning, and other signal conditioning 
algorithms. 

Robotics: Digital signal processing and bit-manipulation 
power, coupled with host interface, allow the TMS320C25 
to be useful in robotics control [24]. The TMS320C25 can 
replace both the digital controllers and analog signal pro­
cessing hardware for communication to a central host pro­
cessor and for the performance of numerically intensive 
control functions. 

Instrumentation 

Instrumentation, such as spectrum analyzers and various 
high-speed/high-precision instruments, often requires a 
large data memory space and the high performance of a 
digital signal processor. The TMS320C25 and TMS320C30 
are capable of performing very long-length FFTs and gen­
erating precision functions with minimal external hard­
ware. 

Numeric Processing 

Numeric and array processing applications benefit from 
TMS320 performance. High throughput resulting from fea­
tures, such as a fast cycle time and an on-chip hardware 
multiplier, combined with multiprocessing capabilities and 
data memory expansion, provide for a low-cost, easy-ta-use 
replacement for a typical bit-slice solution. The TMS-
320C30's floating-point precision, high throughput, and 
interface flexibility are excellent for this application. 

TMS320 Benchmarks 

To complete the discussion on the applications that the 
TMS320 can perform, we will provide some benchmarks. 
The TMS320 has demonstrated impressive benchmarks in 
performing some of the common DSP routines and system 
applications. Table 5 shows typical TMS320 benchmarks [4]. 

Table 5 TMS320 Family Benchmarks 

First Second Third 
DSP Routines/Applications Generation Generation Generation 

FIR filter tap 400 ns 100 ns 60 ns 
256-tap FIR sample rate 9.25 kHz 37 kHz >60 kHz 
lMS adaptive FIR filter tap 700 ns 400 ns 180 ns 
256-tap adaptive FIR filter 5.4 kHz 9.5 kHz >20 kHz 

sample rate 
Bi-quad filter element (five 2 ps 1 ~s 360 ns 

multiplies) 
Echo canceler (single 8 ms 32 ms >64 ms 

chip) 

SUMMARY 

This paper has discussed characteristics of digital signal 
processing and how these characteristics have influenced 
the architectural design of the Texas Instruments TMS320 
family of digital Signal processors. Three generations of the 
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TMS320 family were covered, and their support tools nec­
essary to develop end-applications were briefly reviewed. 
The paper concluded with an overview of digital signal pro­
cessing applications using these devices. 
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The TMS320C30 
Floating-Point 
Digital Signal Processor 

Digital signal processors have significantly impacted the way we bring 
real-time implementations of sophisticated DSP algorithms to life. 
What was once only a laboratory curiosity that required large comput-

ers or specialized, bulky, and expensive hardware is now incorporated into low­
cost consumer products. The rapid advancement of programmable DSPs since 
their commerciai'introduction in the early 1980s lets us satisfy the needs of very 
demanding applications. Implementation of basic DSP functions, such as digital 
filters and fast Fourier transforms, has been integrated into advanced system 
solutions involving speech algorithms, image processing, and control applica­
tions. The variety of the applications increases every day as researchers, 
developers, and entrepreneurs discover new areas in which DSP devices can be 
used. At the same time, the design of new devices incorporates features that make 
such implementations easier. 

The Texas Instruments family ofTMS320 DSPs' evolved with the expanding 
needs of the DSP applications and currently encompasses over 17 devices. The 
TMS320 family consists of three generations of devices. The first two genera­
tions are 16-bit, fixed-poi nt-arithmetic devices while the third one, represented 
by the TMS320C30 and explained in detail here, is a 32-bit, floating-point 
device. Architecturally, the TMS320 family, like most DSP devices, relies on 
multiple Harvard buses. In the first two generations, we expanded the basic 
Harvard architecture to permit communication between the program and data 
spaces. In the third generation, we unified the two spaces to form an organization 
that encompasses the advantages of both the Harvard and the von Neumann 
architectures. 

Overview of the TMS320C30 
The 32OC30 is a fast processor (16.7 million instructions per second for an 

instruction cycle time of 60 nanoseconds) with a large memory space (16 million 
32-bit words) and floating-point-arithmetic capabilities. This last feature is a 
major trend in new DSP devices, which was developed to answer the need for 
quicker, more accurate solutions to numerical problems. DSP algorithms, being 
very intensive numerically, cause a designer to worry about overflows and the 
accuracy of results. The introduction of floating-point capabilities eliminates 
these difficulties. 

©1989 IEEE. Reprinted, with permission, from IEEE MICRO MAGAZINE; 
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In the 32OC30, a chip design with I-J.lm geometries 
produces instruction cycle times lower than those achieved 
with the fixed-point devices of the first two generations. In 
addition, the design produces a controlled increase in die 
size that results more from the extended on-chip memory 
spaces than from the floating-point capabilities. 

The pipelined architecture of the 32OC30 permits the 
higher throughput achieved by the device, as we explain 
later : Yet, programmers do not have to worry about the 
pipeline when writing the code. We can describe the design 
philosophy of the 320C30 (as well as all the other devices 
in the TMS320 family) as an "interlocked" or "hidden­
pipeline" approach. When writing the program, program­
mers can assume that the result of any instruction will be 
available for the next instruction. Most of the instructions 
execute in one machine cycle. If a conflict arises between 
executing an instruction in one cycle and having the data 
available for the next instruction, the device automatically 
inserts the necessary delay to eliminate the conflict. Since 
this delay could result in loss of performance, we provide 
developmenttools that identify where such conflicts occur. 
With this data, programmers can rearrange and optimize 
code. 
M~y applications, such as graphics and image process­

ing, are difficult to implement on the earlier DSP devices 
because they require a large memory space. To satisfy this 
need, the 320C30 provides a total memory space of 16 
million 32-bit words, memory several orders of magnitude 
larger than the fixed-point devices. Furthermore, it con­
tains significantly increased on-chip memory: six thou­
sand 32-bit words of RAM and ROM. The desire to have 
a device capable of offering system-level solutions to the 
implemented algorithms guided the design decision to 
increase on-chip memory. In other words, the 320C30 
attempts to offer the capability of implementing an algo­
rithm with as little peripheral circuitry as possible. 

Along the same lines, the 320C30 contains a peripheral 
bus on which on-chip peripherals can be attached using a 
memory-mapped approach. Currently available peripher­
als include two serial ports, two timers, and a DMA 
controller. The modularity of the design permits easy 
change, addition, or deletion of peripherals to accommo­
date different needs. For instance, if a J.I-Iaw-to-linear 
format converter or a gate array is more important than one 
of the timers for certain applications, a user can make th.e 
change without impacting the core of the device. 

As the power of the DSP devices increases, so does the 
sophistication of the algorithms that are implemented. The 
implication is that constructing and debugging an algo­
rithm at the assembly-language level becomes a more and 
more tedious task. To address that problem, we provide the 
320C30 development tools, which include a high-Ievel­
language compiler and a DSP operating system. The ex~ 
tended memory space, the software stack, and the large on­
chip register file also facilitate such a development. We've 
already introduced a C compiler and announced an Ada 
compiler. We expect compiler availability to change sig-

nificantly the way DSP algorithms are ported to DSP 
devices. With these tools, programmers can develop the 
algorithms on large computers, requiring at the most only 
selective optimization when they incorporate the algo­
rithm on the 320C30. 

Here, we describe the 320C30 architecture in detail, 
discussing both the internal organization of the device and 
the external interfaces. We also explain the pipeline struc­
ture, addressing software-related issues and constructs, 
and examine the development tools and support. Finally, 
we present examples of applications. 

Architecture of the 320C30 
Studying the architecture of the device helps in under­

standing how the different components contribute toward 
a high-throughput system. The interaction and the efficient 
use of the parts can contribute to very effective program­
ming. Another very important aspect to consider is the 
system cost of the application. We designed the device to 
incorporate on-chip features.that minimize the amount and 
the cost of external logic, thus leading to very compact and 
cost-effective solutions. These advantages become ex­
plicit when looking at the architecture in detail. The inter­
nal structure of the 320C30, as shown in Figure I, consists 
of the 

• on-chip memory and cache, 
• CPU with register file, 
• peripheral bus and peripherals, and 
• interconnecting buses. 

See Figure 2 for the die photograph. To interface with 
the external world, the 32OC30 provides pins correspond­
ingto 

• two buses (primary and expansion), 
• two serial ports and two timers, 
• four external interrupt signals, 
• two external flags, and 
• hold and hold-acknowledge signals. 

In addition, other pins exist for address and data strobs, 
power, and so on. 

The overall architecture of the device is a Harvard type 
in the sense that internally and externally it has multiple 
buses to access program instructions, data, or perform 
DMA transfers. However, it also has a von Neumann flavor 
since the memory space is unified, and there is no separa­
tion of program and data spaces. As a result, the user can 
choose to locate programs and data at any desired location. 

Some of the major features of the 320C30 are: 

• a 6O-ns cycle time that results in execution of over 16 
million instructions per second (MIPS) and over 33 million 
floating-point operations per second (Mflops); 

• 32-bitdata buses and 24-bit address buses for a 16M. 
word overall memory space; 

• dual-access, 4K X 32-bit on-chip ROM and 2K X 32-
bit on-chip RAM; 
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Figure 1. Block diagram of the TMS320&30 architecture. 

• a 64 X 32-bit program cache; 
• a 32-bit integer/40-bit floating-point multiplier and 

ALU; 
• eight extended-precision regIsters, eight auxiliary 

registers, and 12 control and status registers; 
• generally single-cycle instructions; 
• integer, floating-point, and logical operations; 
• two- and three-operand instructions; 
• an on-chip DMA controller; and 
• fabrication in I-IUD CMOS technology and packag­

ing in a ISO-pin package. 

Memory organization; The 320C30 provides 4K 32-
bit words of on-chip ROM, and 2K 32-bit words of on-chip 
RAM. The on-chip ROM is mapped into the first4K of the 
overall memory map; it is accessed when the processor 
operates in the microcomputer mode. Location 0 of the 
memory map holds the reset vector, and adjacent locations 
hold other interrupt vectors. In microprocessor mode, the 
reset vector resides in external memory, and on-chip ROM 
is not accessed. The 2K on-chip RAM consists physically 
of two segments of IK words each. These two segments of 
RAM are mapped into adjacent sections of the memory. 
Figure 3 on the next page shows the arrangement of the on­
chip memory, as well as the cache, buses, and two external 
interfaceslbuses, which we examine later. 

Address 
generators 

Control registers 

Figure 2. Die photograph of the 320&30. 
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Figure 3. On·chip memory, cache, and buses. 

The internal memory (both ROM and RAM) supports 
two accesses for reads and/or writes in one cycle. This key 
feature permits high throughput and ease of programming, 
since it makes possible three·operand instructions with 
two operands residing in the memory. Notice that, to 
support this feature, we include two buses dedicated to data 
addresses (DADDRl, DADDR2) and one bus to carry the 
data (DDATA). There are also separate program buses, 
PDATA and PADDR. 

The address buses are 24 bits wide, indicating that the 
overall memory space is 16 million (32·bit) words. We 
believe this large space will facilitate implementation of 
algorithms in image processing applications that often 
require large amounts of memory. The unified memory 
space offers flexibility in placing program and data. But it 
also permits optimal use of the memory space as a trade-off 
between program and data. 

An important addition to the architecture is the 64-word 
instruction cache. To reduce the overall system cost of 
applications, system designers often use slower (and 
cheaper) external memories, a tactic that could slow down 
the processor and degrade the performance. The instruc­
tion cache addresses this problem by storing on-chip in­
structions that have been fetched previously. Its main 
advantage becomes obvious when loops must be executed. 
In this case, the first time the instructions are fetched, they 
are also stored in the cache. Any subsequent execution of 
the loop does not access external memory but fetches 
instructions from the cache, resulting in higher speed and 

I / 
CPU DMA 

making the external buses available for data transfers. 
The cache is segmented into two sections of 32 words 

each that are transparent to users. A user can, however, 
control the operation of the cache by manipulating three 
control bits that are contained in the status register of the 
CPU. Each control bit is dedicated to a specific operation: 
cache enable/disable, cache freeze, and cache clear. When 
a cache miss occurs, that is, when the next instruction is not 
included in the cache, the instruction is brought in and also 
stored in the cache. The two cache sections are updated on 
a least recently used basis. 

CPU organization. The CPU consists of the ALU 
(arithmetic logic unit), the hardware multiplier, and the 
register file. These units are shown in Figure 4. 

The register file consists of 

·eight 40-bit-wide, extended-precision registers RO 
through R7, 

• eight 32-bit auxiliary registers ARO through AR7, 
and 

• twelve 32-bit control registers. 

The extended-precision registers function as accumula­
tors and can handle both floating-point and integer num­
bers. When they are used for floating-point numbers, the 
top eight bits represent the exponent and the bottom 32 bits 
the mantissa of the number. In their integer format, regis­
ters RO through R7 use only their bottom 32 bits, keeping 
the top 8 bits unchanged in any intege~or logical operation. 
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The eight auxiliary registers ARO through AR7 can 
function as memory pointers in indirect addressing, as loop 
counters, or as general-purpose registers in integer arith­
metic or logical operations. Associated with these registers 
are two auxiliary register arithmetic units (ARAU) that 
generate two memory addresses in parallel for the instruc­
tions that need them. The flexibility of indirect addressing 
increases even further when two index registers are used in 
conjunction with the auxiliary registers, as we discuss 
later. 

The register file contains 12 control registers designated 
for specific functions. If the control registers are not used 
for these functions, they can be treated as general-purpose 
registers in integer arithmetic and logical operations. 
Examples of such control registers are the 

• status register, 
• index registers, 
• stack pointer, 
• interrupt mask and interrupt flag registers, and 
• repeat-block registers. 

In particular, the stack-pointer register points to the 
software stack. The user has the flexibility of designating 
where the stack resides, and even of changing its location 
during the program execution. This feature also makes the 
stack of essentially unlimited depth and permits its usage 
not only for storing the program counter during subroutine 
calls but also for passing arguments to subroutines. Such an 
arrangement is particularly convenient in the development 
of compilers, and we have used it extensively in the 
320C30's optimizing C compiler. 

The ALU performs floating-point, integer, and logical 
operations. The ALU always stores the result in the register 
file, but the input can come either from the register file or 
from memory, or it can be an immediate value. 

In the case of floating-point arithmetic, the input to the 
ALU can originate from either a 40-bit extended-precision 
register or a 32-bit memory datum. Registers RO through 
R7 store the 40-bit-word result. On the other hand, in 
integer arithmetic, both input and output are 32-bit num­
bers, and the output can move to either the lower 32 bits of 
the RO through R7 registers or to any other register in the 
register file. 

The single-cycle hardware multiplier has been an inte­
gral part of DSPs because any real-time application relies 
on the fast execution of multiplies. Following the same 
distinction as in the previous paragraph on the ALU, the 
multiplier performs both floating-point and integer multi­
plications. The 32-bit inputs to a floating-point multiplica­
tion yield a 4O-bit-wide result for storage in one of the 
extended-precision registers. 

In both the ALU and the multiplier the results of the 
operations are automatically normalized, thus handling 
any overflows of the mantissa. If there is an exponent 
overflow, the result is saturated in the direction of overflow 
and the overflow flag is set. Underflows are handled by 
setting the result to zero and setting an underflow flag. 
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Figure 4. The 320C30 central processing unit. 

Buses and peripherals. Figure 3 shows that multiple 
on-chip buses handle program, data, and DMA operations 
in parallel. The device contains separate address and data 
buses for these three operations, with the data having two 
address buses to accommodate the access of multiple 
operands from the memory in one cycle. Also, separate 
buses lead to the register file. The rule to remember is that, 
in one cycle, up to two data memory accesses are permitted 
for anyon-chip memory block. This multiplicity of buses 
eliminates bottlenecks. The user can maximize the through­
put of the device by ajudicious combination of the on-chip 
memory with the two external buses (the primary bus and 
the expansion bus). 

The primary bus contains a 24-bit address bus and a 32-
bit data bus. Its true space, though, is 16M words minus the 
on-chip memory and the expansion bus. The primary bus 
can be placed in high impedance when the device is put on 
hold. To facilitate its interfacing with slow memories, the 
32OC30 offers programmable wait states (up to seven) as 
well as an external ready signal. . 

The expansion bus contains a 13-bit address bus and a 
32-bit data bus. It has two strobes, one for memory and one 
for I/O accesses. In other words, the memory space of the 
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Figure 5. Peripheral bus and peripherals. 

expansion bus is two segments of 8K words each. one 
segment mapped as regular memory and the other one 
mapped as I/O. Like the primary bus, the expansion bus 
has up to seven software-programmable wait states. 

A major innovation in the 320C30-to support system­
level solutions and to help in adapting the device to 
changing needs-is the peripheral bus shown in Figures I 
and 5. The peripheral bus supplies a way of expanding or 
varying the interface with the outside world without chang­
ing the core of the device. All of the peripherals attached to 
this bus are mapped to memory, and they can be replaced 
by others with a minimal effort if certain applications have 
different demands. ' 

Currently, we have implemented a DMA controller, two 
serial ports, and two, timers as peripherals. The DMA 
controller performs reads from and writes to any location 
in the 320C30 memory map without interfering with the 
operation of the CPU. The DMA controller contains its 
own address generators, source and destination address 
registers, and transfer counter. The two modular and totally 
independent serial ports are identical with a complemen­
tary set of control registers. Each serial port can be config­
ured to transfer 8, 16, 24, or 32 bits of data per word, with 
each port clock originating either internally or externally. 
The pins of the serial ports are configurable as general­
purpose I/O pins, while the serial ports can also be config­
ured and used as timers. 

The two 320C30 timer modules function as general­
purpose timer/event counters; each have two s'ignaling 
modes and internal or external clocking. Available to each 
timer is an I/O pin for use as an input clock to the timer, as 
an output signal driven by the timer, or as a general­
purpose pin. 

Software 
The software features of a programmable DSP are 

probably the most important features beca~se they.deter­
mine the effectiveness of the implementatIon. TYPIcally, 
the user first develops an application on a large computer 
using a high-level language and, once it is working satis­
factorily, ports it to a DSP device . .The software features 
of the 320C30 that we discuss include the integer and 
floating-point number representations, addressing modes, 
pipeline effects, and different types of instructions and 
constructs. 

Integer and floating-point formats. A 32-bit, twos­
complement notation represents the integers. In addition to 
this single-precision format, we have a short format, con­
sisting of l6-bit, twos-complement numbers used only for 
immediate operands. Every instruction of the 320C30 
consists of one 32-bit word. 

We use three formats for floating-point numbers: short, 
single precision, and extended precision. The single-preci­
sion, 32-bit-wide format assigns 24 bits to the mantissa and 
8 bits to the exponent. The exponent occupies the 8 most 
significant bits, and it is represented in twos-complement 
notation, taking values between -128 and 127. The expo­
nent value -128 is the result reserved to represent zero. 

The mantissa, placed at the 24 least significant bits of a 
32-bit number, is normalized to a number with an absolute 
value between 1.0 and 2.0. Since the mantissa is repre­
sented in a normalized, twos-complement notation, the 
leftmost bit, which corresponds to the sign, and its adjacent 
bit will always be the complement of each other. As a 
result, only the sign bit is represented, with the most 
significant bit suppressed, In other words, the mantissa 
contains 24 significant bits plus the sign bit, with the most 
significant bit implied. 

Addressing modes. The 320C30 supports several ad­
dressing modes that allow the user to access data from 
memory, registers, and the instruction word. The basic 
addressing modes are 

• register, 
• direct, 
• indirect, 
• short immediate, 
• long immediate, and 
• PC relative. 

In register mode the operand is placed into a CPU 
register that is explicitly specified in an instruction. In 
direct mode the data memory address is formed by preced­
ing the 16 least significant bits of the instruction word with 
the 8 least significant bits of the data page pointer. To keep 
all instructions one word long, we store only the 161east 
significant bits from the address in the instruction word; the 
rest become the data page pointer. This restriction implies 
that in direct addressing the memory space is segmented 
into 256 pages of 64K words each. 
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Table 1. 
Addressing modes of the 320C30. 

Mode Example Operation Description 

Register ADDF RO,RI Operand in RO 
Direct ADDF @MEM, RI Addr=MEM Operand in MEM 
Short 

immediate ADDF 3.14,RI Operand = 3.14 
Long 

immediate BRLABEL Branch to LABEL 
PC relative BGE LABEL Branch to LABEL 
Indirect ADDF * +ARO(di),RI Addr = ARO + di Predisplacement add 

without modification 
Indirect ADDF ,.. -ARO(di),RI Addr=ARO- di Predisplacement subtract 

without modification 
Indirect ADDF * + + ARO(di),RI Addr=ARO+di Predisplacement add and 

ARO=ARO+di modify 

Indirect ADDF * - -ARO(di),RI Addr=ARO-di Predisplacement subtract 
ARO=ARO-di and modify 

Indirect ADDF *ARO+ +(di),RI Addr= ARO Postdisplacement add 
ARO=ARO+di and modify 

Indirect ADDF *ARO- -(di),RI Addr=ARO Postdisplacement 
ARO=ARO-di subtract and modify 

Indirect ADDF *ARO+ +(di)%,RI Addr= ARO Postdisplacement add 
ARO = circ(ARO + di) and circular modify 

Indirect ADDF *ARO- -(di)OJo,RI Addr= ARO Postdisplacement subtract 
ARO = circ(ARO-di) and circular modify 

Indirect ADDF *ARO+ + (lRO)B,RI Addr= ARO Postindex (IRO) add and 
ARO = B(ARO + IRO) bit-reversed modify 

di is an integer between 0 and 255 or one of the index registers IRO and IRI. 

Indirect addressing. the most versatile of all the modes. 
specifies the address of an operand in memory through the 
contents of an auxiliary register. As an option, the contents 
of the register can be modified by constant displacements 
or by the contents ofthe index registers. Table 1 lists all of 
the addressing modes, with particular emphasis on indirect 
addressing modes. 

An instruction explicitly specifies the auxiliary register 
used for indirect addressing. The user can modify it by a 
constant displacement taking values 0 to 255 or by the 
contents of one of the two index registers IRO or IR I. The 
modification can take place before or after accessing the 
memory. In the case of premodification. the user has the 
option to change the contents of the auxiliary registereither 
permanently or temporarily. The notation used for such 
modifications is reminiscent of the C-Ianguage syntax. 

Two special forms of indirect addressing that are par­
ticularly useful are bit-reversed and circular addressing. 
Bit-reversed addressing is used with the fast Fourier trans­
form to compensate for the fact that normally ordered data 

at the input of the transform are scrambled at output (bit­
reversed order). To avoid moving the data around to place 
them in the proper order. bit-reversed addressing accesses 
the data in scrambled order for any subsequent operation. 

Circular addressing implements circular buffers. Such 
buffers are very convenient for use in digital-filtering 
operations. In circular addressing. BK. one of the control 
registers, specifies the size of the block. Then. when the 
user modifies the contents of an auxiliary register (pointing 
within that block) in a circular fashion. the final value is 
tested to determine if it is still within the block. If it is not. 
it is wrapped around using modulo arithmetic. 

The short-immediate mode encodes immediate, 16-bit­
long operands of arithmetic operations. The long-immedi­
ate mode encodes program control instructions (branch 
instructions) for which it is useful to have a 24-bit absolute 
address contained in the instruction word. Finally. the PC­
relative addressing also applies to program control instruc­
tions and uses the difference from the present location of 
the PC counter rather than an absolute address. The last two 
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modes are transparent to the user. The user specifies the 
branching label wanted, and the assembler assigns the 
appropriate addressing mode. 

Pipeline. To achieve the high throughput of the device, 
the 32OC30 uses a four-phase pipeline with five major 
functional units operating in parallel. These five units are 

• instruction fetching, 
• instruction decoding and address generation, 
• operand reads, 
• instruction execution, and 
• DMA transfer. 

Figure 6 shows diagrammatically how the pipeline 
operates on successive instructions. When the pipeline is 
full, an instruction completes the execution phase every 
60-ns machine cycle. 

Occasionally conflicts may arise, as in the case of a 
loaded auxiliary register that needs to be used for indirect 
addressing in the next instruction. To handle such cases, we 
established a priority between the different units, giving 
DMA the lowest priority. Among the others, an Execute 
instruction has the highest and a Fetch instruction the 
lowest priority. . 

In programming the device, the user does not have to 
worry about the pipeline conflicts, which do not occur that 
often anyway. When a conflict does occur, the device 
automatically inserts the necessary extra cycle(s) to make 
the instructions behave as expected. In most cases, this 
arrangement will be sufficient for successful operation. 
For time-critical operations, though, it may be necessary to 
remove the extra cycles caused by pipeline conflicts. The 
user can make this correction by rearranging the instruc­
tions of the program. To do so, the user must determine 
how to identify the locations where insertions occur. For 
that purpose, the development tools (simulator, emulators) 
contain a tracing feature that'can display the pipeline. In 
this trace, any conflicts are immediately identified, and 
then the user can take steps to correct the problem. 

Instruction set features. The instruction set of the 
320C30 supports both two- and three-operand instruc­
tions. In all arithmetic instructions (except Store), the 
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Figure 6. Pipeline of 3ZOC30 instructions. 

destination is a register in the register file. The source 
operands can come from memory or from a register or, in 
the case of two-operand instructions, can be part of the 
instruction word. 

A unique feature of the 320C30 is the set of instructions 
in which operations execute' in parallel. This construct 
permits a high degree of concurrency and execution of any 
arithmetic or logical instruction in parallel with a Store 
instruction. It also supports parallel multiplies and adds, as 
well as parallel loading and storing of two registers. Paral­
lel multiply and adds lead to the peak performance of 33 
Mflops. Executing the Store instruction at the same time 
with another arithmetic operation essentially permits this 
kind of data movement without a penalty. As an example, 
the following instruction adds the contents of memory 
pointed to by ARI (indicated by 'ARl) to register RO 
(treating them as floating-point numbers) and places the 
result in register R 1. In parallel with that process, the 
original contents of R I are stored in the memory location 
indicated by AR3. 

ADDF 
STF 

*ARI,RO,RI 
RI,*AR3 

When executing a branch instruction, the pipeline must 
be flushed since the path followed after the branch is data 
dependent; As a result, a regular branch instruction is more 
costly than other instructions, taking four cycles to com­
plete. This overhead may be unacceptable in some time­
critical applications. To alleviate this probl~m and to offer 
more flexibility to the programmer, the 320C30 contains 
a set of delayed branches that complement the set of 
standard branches. In a delayed branch, the three instruc­
tions following the branch instruction execute whether the 
branch is taken or not taken. As a result, the delayed branch 
ends up taking only one cycle to execute. The same 
approach can be used even when there are less than three 
such instructions, by adding NOPs (no operations). The 
branch will still take less than four cycles. 

The greatest cost of branching occurs during the execu­
tion of loops. In looping, a counter is decremented and 
compared to zero at the end of the loop. If it is not zero, a 
branch is taken to the beginning of the loop. The 320C30 
offers a special arrangement that implements loops with no 

4 5 6 7 
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40 The TMS320C30 Floating-Point Digital Signal Processor 



User-friendly development tools 
offer extra support: 

an optimizing C compiler and 
a DSP operating system. 

overhead. The two instructions RPTB (repeat block) and 
RPTS (repeat single) realize this arrangement. The format 
of the RPTB instruction is: 

RPTB LABEL 

(put instructions here) 

LABEL (last instruction) 

Associated with the repeat-block construct are three of 
the 12 control registers in the register file. One register 
indicates the beginning of the block, the second indicates 
the end of the block, and the third acts as the repeat counter. 
The assembler automatically assigns values to the first two 
registers. They contain the address of the instruction 
immediately below RPTB, and the address of LABEL 
respectively. Users should initialize the repeat counter 
before entering the loop. In terms of execution time, this 
arrangement behaves as if the loop were implemented with 
straight-line code. 

The instruction RPTS has the format 

RPTS count 

and it repeats the following instruction "count" times. It 
differs from RPTB in that it 

• applies to only one instruction; 
• does not refetch the instruction for every execution, but 

keeps it in the instruction register thus freeing the buses for 
data transfers, and 

• is not interruptible. 

Table 2 on the next page is a sample of the instructions 
available on the 320C30. Although we included a rich set 
of instructions for both DSP and general-purpose process­
ing, the perceived size of the instruction set is much 
smaller. The reason is that a symmetry exists between 
integer and floating-point instructions, between instruc­
tions with two or three operands, and between single and 
parallel instructions. For instance, addition is represented 
by ADD!, ADDF, or ADDC in the case of adding integers, 
floating-point numbers, or adding with a carry. The three­
operand instructions have the same form, with a 3 ap­
pended at the end (ADDF3). All of the multiplier and ALU 
operations can be performed in parallel with a Store in­
struction, and such instructions take the form of the follow­
ing example: 

ADDF3 
STF 

*ARO,Rl,R2 
RO,*ARI 

Furthermore, two loads or two stores can execute in 
parallel, as is also the case with a multiply and an add or a 
multiply and a subtract. The design of the instruction set 
has been guided by a desire to ease programming efforts. 
The execution results of an instruction are always available 
for use in the instruction that follows. 

Besides the regular arithmetic and logical instructions, 
the 320C30 includes instructions to handle the software 
stack, internal and external interrupts, and branches and 
subroutine calls. Conditional loads and calls make the 
programming more compact and efficient, while special 
instructions (called interlocked instructions) can be used in 
multiprocessor environments. 

Development tools and support 
The newer DSP devices offer increased processing 

power that permits the implementation of more compli­
cated and demanding algorithms. However, as the com­
plexity of the algorithm increases, the task of debugging 
the implementation becomes more difficult. The 320C30 
addresses this problem by providing user-friendly devel­
opment tools and offering extra support in the form of an 
optimizing C compiler and a DSP operating system. 

The asse"lbler translates assembly-language source 
files into machine-language object files. Source files can 
contain instructions, assembler directives, and macro di­
rectives. Assembler directives control various aspects of 
the assembly process such as the source-listing format, 
symbol definition, and method of placing the source code 
into sections. Macro directives permit a concise represen­
tation of groups of instructions that occur frequently. 

The linker combines object files into one executable 
object module. As it creates the executable module, the 
linker performs relocation operations and resolves external 
references. The linker accepts relocatable COFF (Com­
mon Object File Format) object files, created by the assem­
bler, as input. It can also accept archive library members 
and output modules created by a previous linker run. 
Linker directives allow the user to combine object-file 
sections, bind sections or symbols to specific addresses or 

'within specific portions of 320C30 memory, and define or 
redefine global symbols. An associated archiver can create 
macro or objeci-file libraries. 

The software simulator is a very important tool for 
debugging 320C30 programs. Its interface consists of a 
screen broken into windows that display the internal regis­
ters, the reverse-assembled program, and a versatile win­
dow where memory, breakpoints, and a wealth of other 
information can be displayed. The same interface (modi­
fied to accommodate some special features) is also used 
with the hardware emulator. The major features of the 
simulator include: 

• Simulation of the entire 32OC30 instruction set and the 
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Table 2. 
Instructions for the 320C30. 

Instruction Description Instruction Description 

Load and store instructions 
LDE Load floating-point exponent POP Pop integer from stack 
LDF Load floating-point value POPF Pop floating-point value from stack 
LDFcond Load floating-point value conditionally PUSH Push integer on stack 
LDI Load integer PUSHF Push floating-point value on stack 
LDIcond Load integer conditionally STF Store floating-point value 
LDM Load floating-point mantissa STI Store integer 

Two-operand instructions 
ABSF Absolute value of a floating-point NORM Normalize floating-point value 

number 
ABSI Absolute value of an integer NOT Bitwise logical-complement 
ADDC t Add integers with carry OR t Bitwise logical-OR 
ADDF t Add floating-point values RND Round floating-point value 
ADDI t Add integers ROL Rotate left 
AND t Bitwise logical-AND ROLC Rotate left through carry 
ANDN t Bitwise logical-AND with complement ROR Rotate right 
ASH t Arithmetic shift RORC Rotate right through carry 
CMPF t Compare floating-point values SUBB t Subtract integers with borrow 
CMPI t Compare integers SUBC Subtract integers conditionally 
FIX Convert floating-point value to integer SUBF Subtract floating-point values 
FLOAT Convert integer to floating-point value SUBI Subtract integer 
LSH t Logical shift SUBRB Subtract reverse integer with borrow 
MPYF t Multiply floating-point values SUBRF Subtract reverse floating-point value 
MPYI t Multiply integers SUBRI Subtract reverse integer 
NEGB Negate integer with borrow TSTB t Test bit fields 
NEGF Negate floating-point value XOR t Bitwise exclusive-OR 
NEGI Negate integer 

Program control instructions 
Bcond Branch conditionally (standard) IDLE Idle until interrupt 
BcondD Branch conditionally (delayed) NOP No operation 
BR Branch unconditionally (standard) RETIcond Return from interrupt conditionally 
BRD Branch unconditionally (delayed) RETScond Return from subroutine conditionally 
CALL Call subroutine RPTB Repeat block of instructions 
CALLcond Call subroutine conditionally RPTS Repeat single instruction 
DBcond Decrement and branch conditionally SWI Software interrupt 

(standard) 
DBcondD Decrement and branch conditionally TRAPcond Trap conditionally 

(delayed) 

---
t Two- and three-operand versions 
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key peripheral features; 
• Command entry from either menu-driven keystrokes 

(menu mode) or from line commands (line mode); 
• Help menus for all screen modes; 
• Quick storage and retrieval of simulation parameters 

from files to facilitate preparation for individual sessions; 
• Reverse assembly allowing editing and reassembly of 

source statements; 
• Multiple execution modes; 
• Trace expressions that are easy to define; 
• Trace execution that can display designated expression 

values, cache memory, and the instruction pipeline; and 
• Breakpoints that can occur on address read, write, or 

both, on address execute, and on expression valid. 

Perhaps the most important trend with the newer DSPs 
is the availability of high-level-language compilers. The 
presence of C and Ada compilers in the 320C30 is not an 
accident since the 320C30 was designed with a compiler in 
mind. We expect this path to a high-level language to make 
the porting of application programs from large computers 
much easier. The algorithm can be developed almost 
entirely on a large computer and then converted to the 
320C30 assembly language by compilation. 

The C compiler for the 320C30 has exceptional effi­
ciency,2 which makes a good C program almost as effec­
tive as the assembly-language program. The C compiler 
will be sufficient for most applications. The exception is 
time-critical applicaiions. In such cases one can use the fact 
that most DSP algorithms spend the vast majority of the 
execution time on a small section of the code. (Researchers 
often mention the 90/1 0 rule: 90 percent of the time is spent 
on 10 percent of the code.) Under these circumstances, the 
user can optimize execution by creating very fast assem­
bly-language routines that implement the time-critical 
sections, and call them from C as regular C functions. To 
achieve this, we define the C function interface very 
precisely so that users can create their own routines. The C­
compiler package comes with a library of general-purpose 
mathematical, interface, and I/O functions. 

Besides this method of optimizing the performance of 
the C language, two more methods can be used. The first 
one is based on the fact that the output of the compiler is an 
assembly-language program. The user can edit this pro­
gram and optimize it by rearranging the instructions. The 
second method is to use the "asm" directive supported by 
the C compiler. The arguments of this directive are passed 
to the output of the compilation without any alteration so 
that the user can insert assembly-language instructions into 
the middle of the C program. 

A key part of the 320C30 development environment is 
Spox, the first real-time operating-system for a single-chip 
DSP. Spox, developed by Spectron Microsystems, extends 
the core C language with a library of standard I/O routines 
and, most importantly, a DSPmath package. One of Spox' s 
unique features is that it provides users with software 
objects that are especially suited for DSP. Some of these 
objects are vectors, matrices, filters, and streams. The math 

Perhaps the most important 
trend with the newer DSPs is 
the availability of high-level­

language compilers. 

package and these software objects are carefully designed 
to take full advantage ofthe capabilities of the 320C30. 
Spox also supports multitasking, thus allowing the user to 
easily implement the more complex control structures that 
are becoming essential for DSP systems. 

By providing a complete software development envi­
ronment that includes compilers and operating systems 
along with the more-traditional tools such as assemblers 
and linkers, we allow the user to move from system 
conception to system implementation in the shortest pos­
sible time. 

The next level of development tools includes the hard­
ware emulators for debugging target hardware or deter­
mining the performance of an algorithm on the 320C30 
device itself. The XDS 1000 is a real-time, in-circuit emu­
lator/software development tool based on the 320C30. 
Besides these tools from Texas Instruments, other compa­
niesoffer related support, such as the PC-based develop­
ment board by Atlanta Signal Processors and the develop­
ment platform of Spectron Microsystems for PCs and Sun 
workstations. 

Applications 
Certain features of the 320C30 such as its high speed, 

versatile architecture, and rich instruction set, make it easy 
to implement very demanding algorithms. The large 
memory space makes the device suitable for application 
areas such as image processing in which memory address­
ing is one of the prime considerations. And the C compiler 
makes it easy to construct algorithms with complicated 
logic. . 

. General nsp algorithms. Almost every OSP applica­
tIOn needs to perform some kind of filtering, the first 
application considered for a DSP device. Digital filters are 
categorized as FIR (finite-length impulse response) and 
IIR (infinite impulse response) filters,'" or, equivalently, 
as filters that have only zeros or both poles and zeros. Each 
of these categories can have either fixed or adaptive coef­
ficients. 

The 320C30 implements FIR filters very efficiently. For 
instance, let an FIR filter have an impulse response h[O], 
h[ 11, ... , h[N Xl], and let x[nl represent the input of the 
filter at time n. Then, the following equation gives the 
output y[n1 with the equation: 

yin] = h[O] X x[n] + h[l] X x[n - 1] + ... + 

h[N - 1] X x[n - N + 1] 
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Typical Calling Sequence: 

load ARc) 
load ARl 
load RC 
load BK 
CALL FIR 

Data Memory Organization~ 

Impul se 
response 

Low +------------+ 
address I h (N-l) 

h(N-2) 

+------------+ +------------.+ 
x (n-1) x (n-2) 

Hi gh +------------+ Newest +------------+ +------------+ 
address h<O) input x(n) x(n-1) :---+ 

+------------+ +------------+ 

The physical address for the start of the input samples mLlst be on 
a boundary wi th the LSBs set to zero according to the length of the 
buff er. The poi nter to the input sequence (x) is incremented and 
assumed to be moving from an older input to a ne .... er input~ At the 
end of the subroutine AR1 will be pointing to the position for the 
nei:t input sample. . 

Argument Assi gnments: 

Argument : Function 
---------+-----------------------
ARO Address of h (N-1) 
AR1 Address of x (N-1) 
RC ; Length of fi 1 ter - 2 (N-2) 
B~~ : Length of f i 1 ter (N) 

Regi sters used as input: ARO, AR1, RC, BK 
Registers modified: RO, R.2, ARO, AR1, RC 
Register containing resLtlt: RO 

Prografll sIZe: 6 words 

ExecLltion eycl es: 11 + (N-l) 

; ===========""====================""'=="'""'-.;::=-'-=====================::==cc======== 

.global FIR 
; initialize Rl): 
FIR MPYF3 *ARO++(1),*AR1++(1}'l.,RO h(N-1) * x(n-(N-l» -) RO 

LDF I).O,R2 initialize R2. 

f i 1 ter ( 1 <= 1 < N) 

RPTS RC setup the repeat single. 
MPYF3 *AR()++(t) ,*ARl++(1)X,RO h(N-1-i) * x(n-(N-l-l)) -> RO 

:: ADDF3 RO,R2,R2 multiply and add operation 

ADDF . RO,R2,RO add last product 

return sequence 

RETS ; return 

end 

.end 

Figure 7. FIR filter implementation on the 32OC30. 
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Typical Calling Sequence: 

load R2 
load ARC) 
load ARt 
load IRO. 
load IRI 
load BK 
load RC 
CALL IIR2 

Data Memory Organization: 

Filter Initial delay Final delay 
coefficients node values node values 

Low +------------+ Newest +------------+ +-------.:..----+ 
address I aiW) delay d(O,n) dCO,n-l) :----+ 

+------------+ +_ ... _---------+ +------------+ 
I b2(O) d(O,n-U dCO,n-2): circular 

queue 
+------------+ oldest +------------+ +------------+ I 

al (0) delay d (O,n-2) d(O,n) 1----+ 

bl (0) 
+------------+ 

bO(O) 
+------------+ 

+------------+ 
a2CN-l) 

+------------+ 
b2 (N-I) 

al (N-l) 

bl (N-I) 
Hi gh +------------+ 

address I bO<N-l) 
+------------+ 

+------------+ +------------+ 
Empty Empty 

+------------+ +------------+ 

+------------+ +------------+ 
deN-1,n) : d(N-l,n-l> :----+ 

+------------+ +------------+ 
: d(N-l,n-1> I I d(N-l,n-2) t circular 

queue 
+------------+ +------------+ I 
I d(N-l,n-2): d(N-l,n) :----+ 
+---------~--+ +------------+ 

Empty Empty 

The physical address for the start of each circular queue of delay node 
values must be on a boundary with the LS8s set to zero according to thE" 

; length of the buffer. The BK <block size) register must contain the {Conlinued on page 26) 

Figure 8. Implementation of N biquads on the 320C30. 

Two features of the 320C30 facilitate the implementa­
tion of the FIR filters: parallel multiply/add operations and 
circular addressing. The first feature pennits a multiplica­
tion and an addition to execute in one machine cycle, while 
the second makes a finite buffer of length N sufficient for 
the data xl n J. Figure 7 shows the arrangement of the data 
and the assembly code for an FIR filter. Note that the filter 
takes one cycle of execution per tap. 

The transfer function of the IIR filters contains both 
poles and zeros, and its output depends on both the input 
and the past output. As a rule, these filters need less 
computation than a FIR filter of similar frequency re­
sponse, but they have the drawback of being sensitive to 
coefficient quantization. Most often, the IIR filters are 
implemented as a cascade of second-order sections, called 
biquads. To implement an IIR filter consisting of Nbiquads, 
let al Ii], a2li] be the numerator coefficients of the ith bi­
quad and bO[i], b I Ii], b2111 the denominator coefficients of 

the same biquad. Also, letx[n] be the input andy[n] be the 
output of the IIR filter. In canonic fonn, the following C 
code implements the N biquads: 

y[O.nj = x[nj; 
for (i=O; i<N; i++){ 
d[i.nj = a2[ij*d[i.n-2j + al[ij*d[i,n-Ij + y[i-I,nj; 
y[i,nj = b2[ij*d[i,n-2j + bl[ij*d[i,n-Ij + 

bO[ij*d[i,nj; 
} 
y[nj = y[N-I,nj; 

Figure 8 shows the memory arrangement and the code 
for this implementation on the 320C30. 

In addition to the fixed-coefficient filters, the 320C30 
can also implement very effectively adaptive filters (with 
three cycles per updated tap). 

Fourier transfonns are another important tool often used 
in DSP systems. The purpose of the transfonn is to convert 
infonnation from the time domain to the frequency do-
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value 3. The result y(n) is placed in RO. At the end of the prografll. 
AR1 points to the new d(O,n-2) so that it is set when the new sample 
comes in. 

~.rql..!lnent ?"$si Clnment s: 

Argument : FunctIon 
---------+-----------------------
R2 Input sdmple x (n) 
ARO Address of filter coeffIcients (0.2(0» 
AR1 Address of delay node values (d (O,n-2» 
BI< BK .= :: 
IRO IRI) = 4 
JR1 IRl = 4*N-4' 
RC Number of biquads (N) - 2 

Registers used as input: R2, ARO, AR1, IRO, IR1, BK, RC 
Registers modified: RO, R1, R2, ARO, AR1, RC 
Register containing result: RO 

Program size: 17 words 

Execution cycles: 23 + 6N 

; ==:::::::;;::0=====:::=========================================,""""========= ... ::11=0::::=.,""::1= 
.global I JR2 

; 
IIR2 MPYF3 *ARO, *AR1,··RO 

MPYF3 *++ARO( 1) , *AR1-- (1) 7., 

MPYF3 *++ARO(l) , *ARt, RO 
I: ADDF3 RO, R2, R2 

MPYF3 *++ARO(l) , *AR1--(Ui!., 
:t ADDF3 RO, R2, R2 

MPYF3 *++ARO (1), R2, R2 
:t STF R2, *AR1-- (1) 'l. 

RPTB LOOP 

MPYF3 *++ARO(l) , *++ARI (IRO) , 
:t ADDF3 RO,R2,R2 

MPYF3 *++ARO(1) , *AR1--(U7., .. AODF3 Rl,R2,R2 

MPYF·3 *++ARO (1) , *AR1, RO .. ADDF3 RQ, R2, R2 

MPYF3 *++ARO(l) , *AR1-- (1) 7., 
:: ADOF3 RO, R2, R2 

STF R2, *AR1-- (1) % 
; 
LOOP MPYF·3 *++ARO(I) , R2, R2 

flnal 5ummatlon 

AOOF RO,R2 
ADOF3 R1,R2,RO 

NOP *AR1--(IRll 
NOP ,*AR1--(1)% 

return sequence 

RETS 

end 

.end 

RI 

RO 

RO 

RI 

RO 

a2 (O) * d (O,n-2) -) RO 
b2(Q) * d(O,n-2) -) R1 

at (0) * d <O,n-l) -> RO 
first sum term of d(O,n). 

b1 (0) * d (O,n-1) -) RO 
second sum term of d (O,n). 

bO(O) * d<O,n) -> R2 
store d (O,n); point to 

d (0,n-2). 

I loop for 1 <:= i < N 

I a2(i) * d (i ,n-2) -) RO 
first sum term of y(i-l,n) 

b2(i) * d(i,n-2) -> Rl 
second sum term of y(i-l,n) 

al (i) * d (i ,n-1) -> RO 
first sum term of dU ,n). 

bl(i) * d(i,n-l) -> RO 
second sum term of d (i ,n). 

; store d (i ,n); pOint to 
d (i ,n-2). 

bO (i) * d (i , n) - > R2 

first sum term of y(N-l,n) 
I second sum term 0+ y <N-1 ,n) 

return to + i rst b i quad 
point to d (O,n-1> 

, return 

Figure 8 (confd.) 
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main. Computationally efficient implementation of Fourier 
transforms are known as the fast Fourier transform 
(FFT).3.5 Table 3 shows the timing for different FFTs on 
the 320C30. The code for these FFTs, as well as the 
routines listed in Table 4, appear in the TMS320C30 User's 
Guide.· 

The 320C30 has many features that make it well suited 
for FFTs, such as the high speed of the device, the floating­
point capability, the block-repeat construct, and the bit­
reversed addressing mode. For instance, the FFT shown in 
Figure 9 on the next page can be implemented in code that 
can be entirely contained in the 64-word cache of the 
320C30.' 

Telecommunications and speech. Telecommunica­
tions and speech applications have many requirements in 
common with other DSP applications, but they also have 
some special needs. For instance, telecommunications 
applications interfacing to TI carriers sometimes need to 
convert between a linear signal and one compressed by !!­
law or A-law formats. Such a conversion can be realized 
with hardware by adding a peripheral to the DSP peripheral 
bus. This is the approach taken in some members of the 
TMS320 first generation of devices. An alternative way is 
to do the same function with software. 

In speech applications, digital filters are often imple­
mented in lattice form. Depending on the application, both 
FIR and IIR filters are realized this way, although some­
times the terminology lattice filter and inverse lattice filter 
is used respectively. 

Graphics and image processing. In graphics and im­
age processing applications DSPs perform operations on 
two-dimensional signals, and matrix arithmetic takes on 
particular significance. In the 320C30 matrix arithmetic 
can be decomposed into a series of dot products, which can 
be very effectively implemented using constructs similar 
to the FIR filter implementation discussed earlier. Addi­
tionally, the large memory space of the 320C30 allows 
processing of large segments of data at a time. 

Benchmarks. We have implemented several general­
purpose and applications-oriented routines for the 320C30 
and include these in the User's Guide.· Table 4 lists some 
of these routines with the necessary cycles and the memory 
requirements for the program. 

T he last five years have seen a tremendous growth 
in the utility of digital signal processors. This 
growth has been fueled, at least in part, by the 

ever-increasing level of performance and ease of use of 
general-purpose DSPs. The TMS320C30 represents the 
newest generation of DSPs. But, the end of this trend is not 
yet in sight. Rather, we expect the trend of higher levels of 
performance and greater ease of use to continue. For DSPs, 
the next five years look bright indeed. 

Table 3. 
Timing of an FFT on the 320C30. 

Number of Radix-2 Radix-4 Radix-2 
points (complex) (complex) (real) 

FFT timing (ms) 
64 0.167 0.123 0.075 

128 0.367 - 0.162 
256 0.801 0.624 0.354 
512 1.740 - 0.771 

1,024 3.750 3.040 1.670 

Code size 
(Words) 55 176 86 

The code size does not include the sinel 
cosine tables. The timing does not include bit 
reversal or data I/O. 

Table 4. 
Program memory and timing 

requirements for 320C30 routines. 

Cycles 
(best easel 

Application Words worst case) 

Inverse of a floating-point 
number 31 31 

Integer division 27 27/58 
Double-precision integer 

multiplication 24 20/24 
Square root 32 35 
Dot product of two vectors 10 8 + (N - 1) 
Matrix times vector 

operation 10 2 + R(C + 9) 
FIR filter 5 7 + (N - I) 
IIR filter (one biquad) 7 7 
IIR filter (N) 1 biquads) 16 19+6N 
LMS adaptive filter 9 8 + 3(N - 1) 
LPC lattice filter 11 9 + 5(P - 1) 
Inverse LPC lattice filter 9 9 + 3(P - 1) 
/L-law compression 16 16 
)L-law expansion 13 11116 
A-law compression 18 18 
A-law expansion 15 14/21 

N = length of appropriate vector 
P = length of lattice filter 
R = number of rows of a matrix 
C = number of columns of a matrix 
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GENERIC PROGRAM TO DO A LOOPED-CODE RAOIX-2 FFT COMPUTATION IN 320C30. 

THE PROGRAM IS AOAPTED FROM THE FORTRAN PROGRAM IN PAGE 111 OF 
REFERENCE [5] 

AUTHOR. PANOS E. PAPAM I CHALI S 
TEXAS INSTRUMENTS 

.GLOBL N 

.GLOBL M 
• GLOBL SINE 
.SSS INP,1024 

• TEXT 

INITIALIZE 
.WORD 
• SPACE 

FFT 51 ZE 
LOG2 (N) 

JULY 16, 1987 

ADDRESS OF SINE TABLE 
MEMORY WITH INPUT/OUTPUT DATA 

STARTING LOCATION OF THE PROGRAM 
RESERVE 100 WORDS FOR VECTORS, ETC • 

FFTSIZ 
LOGFFT 

. SINTAB 

• WORD 
.WORD 
.WORD 
• WORD 

FFT 
100 
N 
M 
SINE 
INP INPUT 

FFT. LOP 
LDI 
LSH 
LDI 
LOI· 
LSH 
LOI 
LOI 
LOI 

FFTSIZ 
@FFTSIZ,IR1 
-2,IR1 
O,AR6 > 

@FFTSI Z , I RO 
1,IRO 
@FFTSIZ,R7 
1,AR7 
1,AR5 

COMMAND TO LOAD DATA PAGE POINTER 

IR1=N/4, POINTER FOR SIN/COS TABLE 
AR6 HOLOS THE CURRENT STAGE NUMBER 

IRO=2*Nl (BECAUSE OF REAL II MAG) 
R7=N2 
INITIALIZE REPEAT COUNTER OF FIRST LOOP 
INITIALIZE IE INDEX (AR5=IE) 

; OUTER LOOP 
L[JOF': NOP *++AF,6 ( 1 j 

@INPUT • A~'; 
R/,AF:O,I'~K •. 
Af,/ ,Re 
1.RC 

CURRENT FFT STHGE 
ARO POINTS TO X(I) 
AR2 POIN1S TO A (li 

LOI 
ADDI 
LOI 
SUBI RC SHOULD BE ONE LESS THAN DESlFiED .. 

BUTTERFLY WITHOUT TWIDDLE FACTORS 
RPTB BlK1 
ADDF *ARO,*AR2,RO RO=XlI)+XIL> 
SUeF *AR2++, *ARO++ ,Rl Rl =X (I) -X (L> 
AODF *AR2,*ARO,R2 R2=Y (I) +Y (U 
SUBF *AR2,*ARO,R3 R.3=Y(I)-Y(U 
STF R2, *ARO-- Y (I) =R2 AND ••• 

II STF R3, *AR2-- Y <U =R3 
ELK! STF RC/ *AR(I+ + ( I RO) X ( I ) :=R() AND ••• 
:: STF Rl,*AF,2++lIP(I) X(L)",-Rl AN[· ~lF:(J,2 AR(I,2 + 2.-Nl 

; IF THIS IS THE LAST STAGE, YOU ARE DONE 
CMPI @LOGFFT,AR6 
BZD END 

; MAIN INNER LOOP 
LDl 2,ARl 
LOI @SINTAB,AR4 

INLOP: ADOI AR5,AR4 
LOI AR1.ARCt 
ADDI 2,ARl 
ADDI @INPUT,ARO 
ADDI R7,ARO,AR2 
LOt AR7,RC 
SUBt 1,Re 
LOF *AR4,R6 

I GENERAL BUTTERFLY 
RPTS BLK2 
SUBF *AR2, *ARQ ,R2 
SUBF *+AR2 t *+ARO, R 1 
MPYF R2,R6,RO 

I: ADOF *+AR2,*+ARO,R3 
MPYF Rl ,*+AR4 <IRl> ,R3 

INIT LOOP COUNTER FOR INNER LOOf' 
INITIALl ZE IA INDEX (AR4=IAi 
IA=IA+IE; AR4 POINTS TO COSINE 

I NCRnlENT I NNER LOOP COUNTER 
(X(I> ,Y(l» POINTER 
(X(L),YCL» POINTER 

I RC SHOULD BE ONE LESS THAN DES I RED * 
; R6=SIN 

R2=X(I)-X(L) 
R!~Y(j)-Y(Ll 

RO=R2*SIN AND ••• 
K$=Y (I) +Y (L> 

J R3""Rl *COS AND ••• 

Figure 9. Example of a radix·2, decimation·in·frequency FFT. 
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II 

II 

BLK2 
AND ••• 
II 

STF 
SUBF 
MPYF 
ADDF 
MPYF 
STF 
ADDF 
STF 

STF 

CMPI 
BNE 

R3,*+ARO 
RO,R3,R4 
Rl,R6,RO 
*AR2, *ARO 1 R3 
R2, *+AR4 (IRl) ,R3 
R3,*ARO++(IRO) 
RO,R3,RS 
R5, *AR2++ (IRO) 

R4 t *+AR2 

R7,ARl 
INLOP 

Y'!)=Y(!)+Y(L) 
R4=Rl*CaS-R2*SIN 
R(J=Rl*SIN AND. ~. 
R3=X <I )+X (L) 
R3=R2*COS AND ••• 
X (I) =X (I) +X (L) AND ARO=ARO+2*Nl 

; RS ... R2*COS+Rl*SIN 
X (L) aR2*CaS+Rl*SIN I INCR AR2 

; LOOP BACK TO THE INNER LOOP 

LSH 
LSH 

1,AR7 
1,AR5 

I INCREMENT LOOP COUNTER FOR NEXT TlME 
IE=2*IE 

LDI R7,IRO 
LSH -l,R7 
BR LOOP 

END NOP 
.END 

Figure 9 (tont'd.) 

References 
I. K.-S. Lin, G.A. Frantz, and R. Simar, "The TMS320 Family 

of Digital Signal Processors," Proc. IEEE. Vol. 75, No.9, 
Sept.1987,pp.1143-1159. 

2. R. Simar and A. Davis, "The Application of High-Level 
Languages to Single-Chip Digital Signal Pr~essors," Proc. 
19881nt'l. Con! Acoustics, Speech, and Signal Processing, 
Apr. 1988, pp. 1678-1681. 

3. A. Oppenheim and R. Schafer, Digital Signal Processing. 
Prentice Hall, Englewood Cliffs, N.J., 1975,585 pp. 

4. L. Rabiner and B. Gold, Theory and Application of Digital 
Signal Processing, Prentice Hall, 1975, 762 pp. 

5. C.S. Burrus and T.W. Parks, DFTIFFT and Convolution 
Algorithms, John Wiley & Sons, New York, 1985,232 pp. 

6. TMS320C30 User's Guide, Texas Instruments, Dallas, Tex., 
1988. 

7. P. Papamichalis, "FFT Implementation on the TMS320C30," 
Proc. 1988 In!' I. Con! on Acoustics, Speech, and Signal 
Processing, Apr. 1988, pp. 1399-1402. 

Panos Papamichalis is a senior member of the technical staff and 
a section manager in the Texas Instruments DSP Applications 
Group. He is also an adjunct professor for the Electrical and 
Computer Engineering Department at Rice University in Houston. 
Author of Practical Approaches to Speech Coding, his interests 
include digital signal processing with applications to speech 

NI=N2 
N2=N2/2 
NEXT FFT STAGE 

processing and telecommunications. 
Papamichalis received his engineering degree from the School 

of Mechanical and Electrical Engineering, National Technical 
University of Athens. His MS and PhD degrees in electrical 
engineering come from the Georgia Institute of Technology in 
Atlanta. He is amemberofthe Institute of Electrical and Electronics 
Engineers and Sigma Xi. 

Ray Simar, Jr. is a group member of the TI Semiconductor 
technical staff and the principal architect and program manager of 
the TMS320C30. He has supported the TMS320 family of digital 
signal processors. 

Simar holds a BS degree in bioengineering from Texas A&M 
University, College Station, and an MSEE from Rice University. 
He is a member ofTau Beta Pi, Phi Eta Sigma, and Phi Kappa Phi. 

Questions concerning this article can be directed to Panos 
Papamichalis, Texas Instruments, Inc., PO Box 1443, MIS 701, 
Houston, TX 77251-1443. 

The TMS320C30 Floating-Point Digital Signal Processor 49 



50 The TMS320C30 Floating-Point Digital Signal Processor 



Part II. Digital Signal Processing Routines 
4. An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 

(Panos Papamichalis) 

5. Doublelength Floating-Point Arithmetic on the TMS320C30 
(AI Lovrich) 

6. An 8 x 8 Discrete Cosine Transform Implementation on the TMS320C25 
or the TMS320C30 
(William Hohl) 

7. An Implementation of Adaptive Filters with the TMS320C25 
or the TMS320C30 
(Sen Kuo ami Chein Chen) 

8. A Collection of Functions for the TMS320C30 
(Gary Sitton) 

51 



52 



An Implementation of FFT, nCT, 
and Other Transforms on the 

TMS320C30 

Panos Papamichalis 

Digital Signal Processor Products-Semiconductor Group 
Texas Instruments 

53 



54 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 



This report describes the implementation of several Fast Fourier Transforms (FFTs) 
and related algorithms on the TMS320C30. The TMS320C30 is the first device in the 
third generation of 32-bit floating-point Digital Signal Processors (DSPs) in the Texas 
Instruments TMS320 family. The algorithms considered here are the complex radix-2 FFT, 
the complex radix-4 FFT, the real-valued radix-2 FFT (both forward and inverse 
transforms), the Discrete Hartley Transform (DHT), and the Discrete Cosine Transform 
(DCT). These transforms have many applications, such as in image processing, sonar, 
and radar. 

The introduction briefly describes transforms and their implementation on the 
TMS320 family of processors. Next, the different kinds of FFTs (including the real FFT), 
the closely-related Hartley transform, and the Cosine transform are described and com­
pared. This is followed by a description of the TMS320C30 features that permit efficient 
implementations of these algorithms. Then, specific implementations, transforms, and 
TMS320C30 C Compiler facts are outlined. Finally, the report discusses some implemen­
tation issues, and the appendices list actual TMS320C30 code for performing transforms. 

The powerful architecture and instruction set of the TMS320C30 permit flexible 
and compact coding of the algorithms in assembly language while preserving close cor­
respondence to a high-level language implementation. The efficiency of the architecture 
and the speed of the device make faster realization of real and complex transforms possi­
ble. With the availability of a C compiler, these routines can be put in C-callable form 
and used as faster versions of FFT C functions. 

Introduction 

The Fast Fourier Transform (FFT) is an important tool used in Digital Signal Pro­
cessing (DSP) applications. Its development by Cooley and Tuckey gave impetus to the 
establishment of DSP as an independent discipline. The well-structured form of the FFT 
has also made it one of the benchmarks in assessing the performance of number-crunching 
devices and systems. 

In recent years, because of the popularity of this signal-processing tool, there have 
been efforts to improve its performance by advances both at the algorithmic level and 
in hardware implementation. Researchers have been developing efficient algorithms to 
increase the execution speed of FFTs while keeping requirements for memory size low. 
On the other hand, developers of VLSI systems are including features in their designs 
that improve system performance for applications requiring FFTs. In particular, single­
chip programmable DSP devices, currently available or under development, can realize 
FFTs with speeds that allow the implementation of very complex systems in realtime. 
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The Texas Instruments TMS320 family consists of five generations of programmable 
digital signal processors. The TMS32010 introduced the first generation, which today en­
compasses more than twelve devices with various speeds, interfacing capabilities, and 
price/performance combinations. FFT implementations on the TMS32010can be found 
in the appendix of the book by Burrus and Parks [1]. 

The second-generation TMS320 devices (the TMS32020, the TMS320C25, and their 
spinoffs) enhanced the architecture and speed capabilities of the first generation. Examples 
of FFT programs implemented oli the TMS32020 can be found in an application report 
in the book Digital Signal Processing Applications with the TMS320 Family [2]. Such pro­
grams are easily extended to the TMS320C25 because of the code compatibility between 
devices. 

The architectural and speed improvements on the processors from one generation 
to the next have made the FFT computation faster and the programming easier. These 
advantages have reached a new high level in the third generation. The TMS320C30 is 
the first device in the third generation, and this report examines implementation of the 
FFT algorithms on it. The fourth generation (TMS320C4x) is a new set of floating-point 
devices, while the fifth generation (TMS320C5x) is a continuation of the fixed-point devices. 
Since software compatibility is maintained within the fixed-point and the floating-point 
devices, the existing FFT implementations will also be applicable to these new generations. 

The Fourier Transform of an analog signal x(t), given as 

X(w) = r 00 x(t) e-jwtdt 
j - 00 

(1) 

determines the frequency content of the signal x (t). In other words, for every frequency, 
the Fourier transform X(w) determines the contribution of a sinusoid of that frequency 
in the composition of the signal x(t). For computations on a digital computer, the signal 
x(t) is sampled at discrete-time instants. If the input signal is digitized, a sequence of numbers 
x(n) is available instead of the continuous-time signal x(t). Then, the Fourier transform 
takes the form 

00 

X(dw) = .E x(n) e-jwn (2) 
n=-oo 
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The resulting transform X(dw) is a periodic function of w, and it needs to 
be computed for only one period. The actual computation of the Fourier transform of a 
stream of data presents difficulties because X(dw) is a continuous function in w. Since 
the transform must be computed at discrete points, the properties of the Fourier transform 
led to the definition of the Discrete Fourier Transfonn (DFT), given by 

X(k) 

N-l 

E 
n=O 

_ j27rkn 

x(n) e N (3) 

When x(n) consists of N points x(O), x(I), ... , x(N-l), the frequency-domain 
representation is given by the set of N points X(k), k=O,I, .. . ,N-I. Equation (3) is often 
written in the form 

N-l 

X(k) E x(n) wr;: (4) 
n=O 

where W ': = e - j 27r:nk / N. The factor WN is sometimes referred to as the twiddle factor. 

A detailed description of the DFT can be found in references [1,3,4]. The computational 
requirements of the DFT increase rapidly with increasing block size N, having an impact 
on the real-time system performance. This problem was alleviated with the development 
of special fast algorithms, collectively known as Fast Fourier Transform (FFT).With an 
FFT, the computational burden increases much less rapidly with N, and for any given 
N, the FFT computational load, measured in terms of required mUltiplications and addi­
tions, is smaller than a brute-force computation of the DFT. 

The definition of the FFT is identical to the DFT: only the method of computation 
differs. To achieve the efficiency of an FFT, it is important that N be a highly composite 
number. Typically, the length N of the FFT is a power of 2: N = 2M , and the whole 
algorithm breaks down into a repeated application of an elementary transform known as 
a butterfly. If N is not a power of 2, the sequence x(n) is appended with enough zeroes 
to make the total length a power of2. Again, references [1,3,4] contain a detailed develop­
ment of the FFT. Reference [2] also discusses the same topic. 
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Different Forms of the FFT 

Over the years, researchers have developed different forms of FFT for more effi­
cient computation. Special cases, such as those in which the input is a sequence of real 
numbers, have been investigated, and even more sophisticated algorithms have been 
developed. The general form of the FFT butterfly is given in Figure 1. 

P 0 • P+Q w~ 

Q --_�i...,L.--------to 0 --.~ P-Q W ~ 
wk 

N -1 

Figure 1. Radix-2 Butterfly for Decimation in Time 

If the inputs to the butterfly are the two complex numbers P and Q, the outputs will 
be the complex numbers P' and Q', such that 

P' = P + Q w~ (5) 

and 

Q' = P - Q W~ (6) 

The quantities P, Q, and P', Q' represent different points in the array being trans­
formed, and they mayor may not occupy adjacent locations in that array. In an in-place 
computation, the result P' will overwrite P, and Q' will overwrite Q. W k represents again 

N 

the twiddle factor, and its exponent is determined by the location of the corresponding 
butterfly in the FFT algorithm. 

Figure 2 shows an alternate form of the same FFT butterfly. 

Figure 2. Alternate Form of Radix-2 Butterfly for Decimation in Time. 
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Although the notation is now less descriptive, it creates a clearer picture when several 
butterflies are put together to form an FFT. Using the first notation, Figure 3 is the 
flow graph of an 8-point FFT example. 

x(O) X(O) 

x(1) X(4) 

x(2) X(2) 

x(3) X(6) 
WO 

N 
x(4) 

WO 
X(1) 

N 
x(5) X(5) 

WO 
N 

x(6) X(3) 
WO 

N 
x(7) X(7) 

-1 -1 -1 

Figure 3. Example of 8-Point FFT with Decimation in Time. 

Note that the input sequence x(n) is in the correct order, while the output X(k) is 
scrambled. Actually, this scrambling occurs in a very systematic way, called bit-reversed 
order: If you express the indices of a scrambled sequence in binary and you reverse this 
number, the result is the order that this particular point occupies. For instance, X(3) oc­
cupies the sixth position in the output (when counting from the zero position). In binary 
form, 310 = 0112, and if bit-reversed, you get 1102 = 610, which is the position that 
X(3) occupies. It turns out that the third position is occupied by X(6), and to restore the 
correct order at the output, you need only to swap these two numbers. 
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The same procedure can be repeated with all the scrambled numbers not occupying 
the position that their index suggests. If the input sequence x(n) is rearranged to appear 
in bit-reversed form, the output X(k) appears in the correct order, as shown in Figure 4. 

x(O) 
WO 

X(O) 

N 
x(4) X(1) 

x(2) X(2) 
WO 

N 
x(6) X(3) 

x(1) X(4) 
WO 

N 
X(5) x(5) 

x(3) X(6) 
WO 

N 
X(7) x(7) 

-1 -1 -1 

Figure 4. Alternate Form of 8-Poiut FFT with Decimation in Time. The Input Is in 
Bit-Reversed Order and the Output Is in the Correct Order. 

Since the only difference between Figures 3 and 4 is a rearrangement of the but­
terflies, the computational load and the final results are identical. In terms of implementa­
tion, this rearrangement means that the nesting of the two innermost loops in the FFT 
routine is interchanged. 

The butterflies and the FFT configurations presented thus far implement the FFT 
with a decimation in time. This terminology essentially describes a way of grouping the 
terms of the DFT definition; see Equation (3). An alternative way of grouping the DFT 
terms together is called decimation infrequency. Figures 5 and 6 show the same example 
of an 8-point FFT: Figure 5 with the input in correct order and the output in bit-reversed 
order, and Figure 6 vice-versa, and using the decimation in frequency (DIF). 
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x(o) 
Wo 

X(O) 

N 
x(1 ) X(4) 

x(2) X(2) 
WO 

N 
x(3) X(6) 

x(4) X(1 ) 
WO 

N 
x(5) X(5) 

x(6) X(3) 
WO 

N 
x(7) 

-1 -1 -1 
X(7) 

Figure 5. Example of an 8-Point FFT with Decimation in Frequency. 

x(o) X(O) 

x(4) X(1) 

x(2) X(2) 

x(6) X(3) 
WO 

N 
x(1 ) 

wO 
X(4) 

N 
x(5) X(5) 

WO 
N 

x(3) X(6) 
WO 

N 
x(7) X(7) 

-1 -1 -1 

Figure 6. Alternate Form of 8-PointFFT with Decimation in Frequency. The Input 
Is in Bit-Reversed Order and the Output Is in the Correct Order 

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 61 



Pictorially, the difference between decimation in time and decimation in frequency 
is that the twiddle factor appears at the input of the butterfly in the first, and at the output 
in the second. Otherwise, the two methods are identical in terms of results. However, 
depending on what is the most convenient order of getting the twiddle factors and where 
the longest-span butterfly appears, you may prefer one method over the other. 

The butterfly shown in Figure 1 (or Figure 2) is the smallest element in a radix-2 
FFT. The radix of the FFT represents the number of inputs that are combined in a butter­
fly. The Fast Fourier Transform is usually explained around the radix-2 algorithm for 
conceptual simplicity. If, however, higher-order radices are used, more computational 
savings can be achieved. These savings increase with the radix, but there is very little 
improvement above radix 4. That's why the radix-2 and radix-4 FFTs are the most com­
monly used algorithms. 

In radix-4 FFT, each butterfly has 4 inputs and 4 outputs, essentially combining 
two stages of a radix-2 algorithm in one. Figure 7 shows this combination graphically. 

A A1 A' 

A ~ 

B B1 B' B· B' 

C C1 C' C C' 

D D' 

D D1 D' 

Figure 7. Butterfly for Radix-4, Decimation-in-Time FFT. 
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Although four radix-2 butterflies are combined into one radix-4 butterfly, the com­
putationalload of the latter is less than four times the load of a radix-2 butterfly. Ex­
amples of radix-4, 16-point FFTs are shown in Figures 8 and 9 for decimation in time 
and decimation in frequency, respectively. 

0 0 

4 

2 8 

3 12 

4 

5 5 

6 9 

7 13 

8 2 

9 6 

10 10 

11 14 

12 3 

13 7 

14 11 

15 15 

Figure 8. Example of a 16-Point, Radix-4, Decimation-in-Time FFT. 
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0 0 

4 

2 8 

3 12 

4 

5 5 

6 9 

7 13 

8 2 

9 6 

10 10 

11 14 

12 3 

13 7 

14 11 

15 15 

Figure 9. Example of a 16-Point, Radix-4, Decimation-in-Frequency FFT. 

These configurations take the incoming sequence in order and produce the frequency­
domain result in digit-reversed form. It is a simple matter to rearrange the FFT and have 
the input in digit-reversed form and the output in order. 

Digit reversal is similar to bit reversal, except that the number whose digits are re­
versed is written in base 4 (equal to the radix) rather than base 2. For example, the output 
value X(14) in a 16-point, radix-4 FFT occupies position eleven (again starting from zero) 
because 1410 = 324 and, reversing the digits of the number, 234 = 1110. To restore the 
output to the correct order, the contents of locations with digit-reversed indices should 
be swapped. However, since the TMS320C30 has a special bit-reversed addressing mode, 
it is desirable to have the output of the radix-4 computation in biHeversed rather than 
digit-reversed form. This is accomplished quite simply if, in each radix-4 butterfly, the 
two middle output legs are interchanged. That is, whenever the output of the butterfly 
is the four numbers A', B', C', and D', instead of storing them in that order, store them 
in the order A', C', B', and D', as shown in Figure 10. 
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A A' A ~ 

B B' B C' 

C C' C B' 

0 0' 0 0' 

(a) (b) 

Figure 10. Radix-4 Butterflies. (a) Regularly-Ordered· Output, (b) Bit-Reversed 
Output. 

References [5, 6] explain why this simple rearrangement puts the result in bit-reversed 
order. 

Features of the TMS320C30 

The TMS320C30 is the first device introduced in the third generation of the TMS320 
. Digital Signal Processors [7,8]. Ithas many architectural features that permit very effi­

cient implementation of algorithms. Some of those features pertinent to the FFT implemen­
tation are discussed in this section. 

The two most salient characteristics of the TMS320C30 device are its high speed 
(60-ns cycle time) and floating-point arithmetic. The higher speed makes the implementa­
tion of real-time application easier than in earlier processors, even when the other architec­
tural advantages are not considered. Each instruction executes in a single cycle under mild 
pipeline restrictions. The device automatically takes care of any potential conflicts. The 
pipeline should be observed Closely (e.g., using the trace capability of the simulator) only 
if code optimization for speed is required. 

The noating-point capability permits the handling of numbers of high dynamic range 
without concern for overflows. In FFT programs, in particular, the computed values tend 
to increase from one stage to the next, as discussed in reference [2]. Then, the fixed-point 
arithmetic will cause overflows if the incoming numbers are large enough and no provi­
sions are made for scaling. All these considerations are eliminated with the floating-point 
capability of the TMS320C30. The TMS320C30 performs floating-point arithmetic with 
the same speed as any fixed point operation; no performance is sacrificed for this feature. 
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There are eight extended-precision registers, RO-R7, that can be used as ac­
cumulators or general-purpose registers, and eight auxiliary registers, ARO-AR7, for 
addressing and integer arithmetic. For many applications, these registers are sufficient 
for temporary storage of values, and there is no need to use memory locations. This is 
the case with the radix-2 FFT algorithm, where no locations are required other than those 
for the transformation of incoming data to be transformed. Also, arithmetic using these 
registers greatly increases the programming efficiency. The two index registers, IRO and 
IR 1, are used for indexing the contents of the auxiliary registers ARO-AR 7, thus making 
the access of the butterfly legs and the twiddle factors easy. 

A powerful structure in the TMS320C30 is the block-repeat capability that has the 
form 

LABEL 

RPTB LABEL 
put instructions here 
last instruction 

Whatever occurs after the RPTB instruction and up to the LABEL is repeated one· 
time more than the number included in the repeat counter register, RC. The RC register 
must be initialized before entering the block-repeat construct. The net effect is that the 
repeated code behaves as if it were straight-line coded (no penalty for looping), with pro­
gram size equal to the one in looped code. In this way, the FFT butterfly, being the core 
of the program, can be implemented in a block-repeat form, thereby saving execution time 
while preserving the clarity of the program and conserving program space. 

A bit-reversed addressing mode is available to eliminate the need for swapping 
memory locations at the beginning or the end of the FFT (depending on the FFT type). 
When you use this addressing mode, you access a sequence of data points in bit-reversed 
order rather than sequentially, and you can recover the points in the correct order during 
retrieval of the data instead of spending extra cycles to accomplish it in software. 

Implementation of Radix-2 and Radix-4 Complex FFTs 

Because of the powerful architecture and the instruction set of the TMS320C30, 
the assembly language program follows closely the flow of a high-level language pro­
gram; this makes it easy to read and debug. It also keeps the size of the program small 
and reduces the requirements for program memory. Appendix A presents an example of 
code for a Radix-2 complex FFT, while Appendix B is a radix-4 complex FFT. The pro­
gram memory requirements for these programs (as well as others to be discussed later) 
are given in Table 1. 
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Table 1. Program Memory Requirements for the Core of the FFT and Hartley 
Transforms 

Routine Type Program Size 

Radix-2, complex FFT 50 words 

Radix-4, complex FFT 170 words 

Radix-2, real FFT 68 words 

Radix-2, real inverse FFT 76 words 

Hartley transform 71 words 

The numbers in the table correspond only to the core program and do not include 
the sine/cosine tables for the twiddle factors, any input/output, or any bit-reversing opera­
tions. Note also that they are independent of the FFT data size. 

The data memory requirements are, of course, dependent on the FFT size. The max­
imum length of a complex, radix-2 FFT that can be implemented entirely on the internal 
memory of the TMS320C30 is 1024 points. In the present implementation, the 1024-point 
radix-4 FFT requires a few more locations (about 7) than are available on-chip. 

The code (provided in the appendices) has been written to be independent of the 
FFT length. The length N, together with the sine/cosine tables for the twiddle factors, 
should be provided separately to maintain the generic nature of the core FFT program. 
An example of a file with the sine/cosine tables for a 64-point FFT is given in the Appen­
dix F. Note thatthe FFT size and the number of stages are declared .global in both files 
(i.e., the main routine and the file with the table) so that the core program gets the actual 
values during linking. 

To reduce the storage requirements of a sine/cosine table, a full sine and a cosine 
cycle are overlapped. The table stores 5/4 of a full sine wave, with the cosine table start­
ing with a phase delay of 114 cycle from the sine table. This table size is larger than ac­
tually needed, and it is selected merely for testing convenience of the algorithms. The 
minimum table size for a radix-2 complex FFT includes 112 of a full sine wave, and 112 
of a full cosine wave. If these two half waves are combined using the above quarter-cycle 
phase delay, the minimum table size for this kind of FFT is 3/4 of a full sine wave. For 
instance, for a 1024-point FFT, the table can be the first 768 points of a sine wave, where 
a full cycle would be 1024 points. In the case of a radix-4 complex FFT, the minimum 
table size should include 3/4 of a sine and 3/4 of a cosine wave. Overlapping these re­
quirements, we get the minimum table size of a radix-4 algorithm to be one full sine wave. 

An example of a linking file is also included in Appendix F to show how the dif­
ferent segments are assigned. For a complete description of the assembler and linker, consult 
the corresponding manual [6]. 
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The timing of the FFT routines was done using the cycle-counting capability of the 
TMS320C30 simulator. For the conversion of the number of cycles into seconds, a cycle 
time of 60 ns was used. The timing refers only to the core FFT computation, ignoring 
read-in and write-out requirements, since such requirements are application-dependent. 
Also, no bit reversal is counted (although it may be included in the program), since it 
is performed as part of the read-in or read-out. Table 2 gives the timing for the different 
FFT routines and for the Hartley transform. 

Table 2. FFf Timing in Milliseconds 

Radix-2 Radix-4 Radix-2 Radix-2 
Transform Hartley 

Complex Complex Real Real 
Size Transform 

FFT FFT FFT Inverse FFT 

64 0.165 0.123 0.077 0.085 0.081 

128 0.370 - 0.174 0.193 0.181 

256 0.816 0.624 0.387 0.434 0.403 

512 1.784 - 0.857 0.964 1.132 

1024 3.873 3.040 1.879 2.124 2.430 

1024 2.366 

For the complex FFTs, the radix-4 algorithm reduces the execution time by 20-25% 
compared to radix-2, depending on the FFT size. The last entry in this table represents 
the timing of the radix-2, DIT routine generated at the University of Erlangen [18] and 
given in Appendix A. These numbers are typically used for benchmarking. 

Implementation of Real FFT 

The development of FFT algorithms is centered mostly around the assumption that 
the input sequence consists of complex numbers (as does the output). This assumption 
guarantees the generality of the algorithm. However, in a large number of actual applica­
tions, the input is a sequence of real numbers. If this condition is taken into consideration, 
additional computational savings can be achieved because the FFT of a real sequence 
demonstrates the following symmetries: Assuming that the FFT output X(k) is complex, 

X(k) = R(k) + j /(k) (7) 

and that the sequence has length N, R(k) and I(k) should satisfy the following relations: 

68 

R(k) = R(N-k), k = 1, ... , N12-1 
/(k) = -/(N-k), k = 1, ... , N12-1 
/(0) = /(NI2) = O. 

(8) 
(9) 

(10) 
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In other words, the real part of the transform is symmetric around zero frequency, 
while the imaginary part is antisymmetric. Similar conditions hold if the transform is ex­
pressed in terms of magnitude and phase. 

The savings are due to the fact that not all points need to be computed. Since the 
not -computed points do not need to be saved either, there are also storage savings. An 
efficient algorithm for real-valued FFTs is described in [10]. This algorithm was im­
plemented in the present study in such a way that, given the sequence of N real numbers 
x(O), x(1), .. . ,x(N-I), the resulting FFT, consisting of complex numbers, is stored as 
R(O), R(I), .. . ,R(NI2), I(NI2-I), I(NI2-2), ... ,/(1). R(k) and I(k) represent the real and 
imaginary parts of the complex number X(k). Figure 11 shows the memory arrangement 
for the FFT. Note that the input to the real FFT should be bit-reversed, but the bit rever­
sal can be done as the data is brought in. With this arrangement, an N-point FFT uses 
exactly N memory locations. If the full array X(k) is needed, the following relations should 
be used: 

X(O) = R(O) 
X(k) = R(k) + j I(k), K = 1, ... , NI2-I 
X(NI2) = R(NI2) 
X(k) = R(N-k) - j I(N-k), k = NI2+ 1, ... , N-I 

x(O) 

x(1) 

x(2) 

- BIT- REAL --. --II ... REVERSAL FFT -

-

x(N-2) 

x(N-1) 

.. ... 

Figure 11. Memory Arrangement of a Real FFT. 

R(O) 

R(1 ) 

-

R(N/2) 

I(N/2-1) 

1 (N/2-2) 

-

1(1 ) 

(11) 
(12) 
(13) 
(14) 

It is expected that, in most signal processing applications, there will be no need to 
reconstruct the full X(k) array and that the output shown in Figure 11 will be sufficient 
for any further processing. 
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Appendix C contains TMS320C30 routines implementing a radix-2 real FFT and 
its inverse. The implementation of the forward transformation is based on the FORTRAN 
programs contained in [10]. The inverse transformation assumes that the input data are 
given in the order presented at the output of the forward transformation and produces a 
time signal in the proper order (i.e., bit-reversing takes place at the end of the program). 
Viewed another way, the inverse real FFT operates as shown in Figure 11 but with the 
arrows reversed (and inverse FFT taking the place of the FFT). 

The timing for the real-valued FFT (both forward and inverse) is included in Table 
2, and the corresponding program sizes are shown in Table 1. As you can see, the real­
valued FFT is considerably faster than the corresponding complex FFT because not all 
the computations need be performed. Furthermore, there are data storage savings because 
only half the values must be stored. As a result, the maximum length of real-valued FFT 
that can be implemented on the TMS320C30 without using any external memory is 2048 
points. Of course, if all the values are needed, they can be recovered using the symmetry 
conditions mentioned earlier. To achieve the efficiencies of real FFT and not use any ex­
tra memory locations during the computation, the decimation-in-time method is applied 
[10]. Decimation in time requires the bit-reversal operation in the forward transform to 
be performed at the beginning of the program rather than at the end. The reverse is true 
for bit-reversing in the inverse transform. 

The Discrete Hartley Transform 

Another transform that has attracted attention recently is the Discrete Hartley 
Transform (DHT)[ll, 12]. The DHT is applicable to real-valued signals and is closely 
related to the real-valued FFT. Comparison of references [10] and [12] describing the 
implementation of the two algorithms on FORTRAN programs shows that their implemen­
tation on the TMS320C30 should be similar. And indeed, this is the case. 

The DHT pair is defined for a real-valued sequence x(n), n = 0, .. . ,N-l, by 
the following equations: 

N-l 

H(k) 

x(n) = _1 
N 

~ x(n) cas(27Tk n / N), k=O, ... , N-l 
n=O 

N-l 

~ 
k=O 

H(k) cas(27Tk n / N), k=O, ... , N-l 

(15) 

(16) 

where cas(x) = cos(x) + sin(x). The DHT demonstrates a symmetry that is convenient 
for implementations: The same program can be used for both the forward and the inverse 
transforms, and the result is correct within a scale factor. Also, the real FFT and the DHT 
can be derived from each other [12]. 
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A radix-2 Hartley transform was implemented on the TMS320C30, and the cor­
responding code is included in Appendix n. This code follows the structure of the real 
FFT in Appendix C. Tables 1 and 2 show the program memory requirements and the 
timing for the execution of Hartley transforms of different sizes. The sine/cosine table 
sizes are the same as in the case ofa real FFT. 

The Discrete Cosine Transform 

The Discrete Cosine Transform (DCT), since its introduction in 1974 [13], has gained 
popularity in speech and image processing applications because of its near-optimal behavior. 
This discussion is based on the paper by Lee [14]. The nCT code was developed and 
implemented by Paul Wilhelm of the University of Washington. 

If x (n), n=O, .. . ,N-l is a time-domain signal and X(k) is the corresponding nCT, 
x(n) and X(k) are related by the following equations: 

N-I 
x(k) = ~ E 

N n=O 

N-I 

x(n) = E 
k=O 

e(O) = 11 -J 2 

e(k) x(n) cos (2k + 1)1I"n 
2N 

e(k) X(k) cos (2k + I)1I"n 

2N 

e(k) = 1, for k '* 0 

(17) 

(18) 

(19) 
(20) 

Appendix E shows an implementation of the nCT based on the paper by Lee [14]. 
The appendix contains the algorithms for both the forward and the inverse transformations 
and an example of a table for a 16-point nCT. Note that, because of the structure of the 
algorithm, the cosine table needed contains actually the inverses of the cosines (within 
a scale factor), and it is not stored in the natural order. Instead, it is generated by the 
following C pseudocode: 

for [k= 2, i=O; k= N/2; k* = 2] 
'for O=kl2; j<N/2; j+ =k]( 

cos_table[i + +] = 1/[2*cosO*pi/[2*N]]]; 
cos_table[i + +] = 1/[2*cos[[N-jJ*pi/[2*N]]]; 

J 
cos_table[N-2] = 
cos_table[N-1 ] 

cos[pi/4]; 
2/N; 
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The last entry to the table is not part of the cosine itself; it is a constant that is used 
by the algorithm, and it is placed at the end of the cosine table for convenience. 

Table 3 shows the timing of the forward and inverse transforms for different transform 
lengths. The difference in the timing between the forward and the inverse transforms is 
due to the fact that more time was expended to optimize the performance of the inverse 
transform. Since four of the smallest butterflies were done simultaneously in the center 
program loop, the minimum permissible array size to be transformed is 8. 

Table 3. DCT Timing in Milliseconds 

Transform Forward Inverse 

Size Transform Transform 

16 0.023 0.020 

64 0.105 0.088 

128 0.230 0.193 

256 0.502 0.416 

512 1.094 0.905 

1024 2.378 1.982 

Other Related Transforms 

In addition to the FFT types mentioned earlier (complex, real, decimation-in-time, 
decimation-in-frequency, etc.), newer forms of the FFT have been developed to reduce 
the computational load. One of the latest in the literature is the Split-Radix FFT. The Split­
Radix FFT [16] has the lowest number of multiplies and adds of any known algorithm. 
It achieves this efficiency by combining certain radix-2 and radix-4 butterflies, but, as 
a result, the classical concept of FFT stages' is lost. The new structure uses a rather 
complicated indexing scheme, which is the price paid for the reduced mUltiplies/adds. 
Since, on the TMS320C30, multiplies/adds are not more expensive computationally than 
any other operation, the indexing scheme wipes out the gains of the reduced arithmetic. 
Actually, an implementation of the split-radix FFT showed it to be slower than the radix-2 
FFT, one of the main reasons being that the block-repeat structure could no longer be 
used effectively. 

Very often, there is a question on what the different benchmark numbers mean. A 
useful comparison of execution times for different algorithms on different machines has 
been made [17]. Table 4 presents a small segment of the resulting information that is relevant 
to the present discussion: the timing in seconds for the radix-8, mix-radix, and split-radix 
algorithms that were implemented on various machines. Different operating systems and 
compilers have been used, as shown. The execution times of Table 4 should be compared 
with the 0.001879 s that it takes to implement a 1024-point, radix-2, real FFT on a 
TMS32OC30. As can be seen, the TMS320C30 compares favorably to all the other machines 
investigated. 
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Table 4. Execution Times in Seconds for a 1024-Point Real FFT. The Numbers Should 
Be Compared with 0.001879 s of a 1024-Point Real FFT on the TMS320C30 

Machine Radix-8 Mix-radix Split-radix 

VAX 750 UNIX 8S04.2 f77 0.3634 0.3902 0.3021 

VAX 750 UNIX 8S04.2 f77 -0 0.2376 0.2948 0.2089 

VAX 750 UNIX 8S04.3 f77 0.2545 0.2600 0.2371 

VAX 750 UNIX 8S04.3 f77 -0 0.1825 0.2127 0.1672 

VAX 785 UL TRIX f77 0.1046 0.1107 0.1101 

VAX 785 ULTRIX f77 -0 0.0796 0.0943 0.0811 

VAX 785 VMS FOR/NOOPTM 0.0767 0.0871 0.0975 

VAX 785 VMS FOR/OPTM 0.0539 0.0641 0.0633 

VAX 8600 VMS FOR/OPTM 0.0217 0.0243 0.0235 

MICROVAX VMS FOR/NOOPTM 0.1671 0.1846 0.1864 

MICROVAX VMS FOR/OPTM 0.1299 0.1527 0.1419 

OEC-10 TOPS-1 0 FOR/NOOPTM 0.0940 0.1184 0.0991 

OEC-10 TOPS-1 0 FOR/OPTM 0.0885 0.1110 0.0845 

COC 855 FTN5,OPT = 0 0.0277 0.0319 0.0338 

COC 855 FTN5,OPT = 1 0.0277 0.0316 0.0337 

COC 855 FTN5,OPT = 2 0.0182 0.0171 0.0151 

COC 855 FTN5,OPT = 3 0.0180 0.0173 0.0150 

SUN 3/50 UNIX 8S04.2 f77 - 0 -f68881 0.2518 0.3365 0.2103 

SUN 3/50 UNIX 8S04.2 f77 -f68881 0.2806 0.3897 0.2802 

SUN 3/50 UNIX 8S04.2 f77 - 0 0.7586 1.047 0.6955 

SUN 3/50 UNIX 8S04.2 f77 0.7476 1.029 0.7033 

SUN 3/160 UNIX 8S04.2 f77 0.6037 0.6895 0.5660 

SUN 3/160 UNIX 8S04.2 f77 -pfa 0.0983 0.1060 0.0946 

SUN 3/260 UNIX 8S04.3 f77 0.3689 0.4126 0.3390 

SUN 3/260 UNIX 8S04.3 f77 -0 0.3530 0.4142 0.3297 

Pyramid 90X UNIX 8S04.2 f77 -0 0.2053 0.2244 0.1416 

Pyramid 90X UNIX 8S04.2 f77 0.2206 0.2457 0.1326 

HP-1000 21MX-E FTN7X 0.9400 1.248 0.9478 

Apple MAC Microsoft FOR 2.6670 3.1600 2.8260 

AST PC Microsoft FOR 1.5040 2.0800 1.4630 
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The TMS320C30 C Compiler 

The C compiler for the TMS320C30 permits easy porting of high-level language 
programs to the DSP device. If the CPU loading of a particular application is not very 
high, the C compiler can create programs that run on the TMS320C30 in real time. If, 
however, the result is non-realtime, it may be necessary to use assembly language for 
more efficient coding. 

In most cases, only a portion of the code needs to be written in assembly language. 
Typically, there are a few code segments where the device spends most of the time and 
which, when optimized in assembly language, yield the necessary performance 
improvement. By following the conventions outlined in the run-time environment of the 
C compiler [15], you can write these time-critical routines in assembly language and call 
them in a C program. This is also true for the FFT routines. In appendices A, B, and 
C, the radix-2, radix-4, and real FFT routines mentioned earlier are also put in a C-callable 
form by adding the necessary interface at the beginning and the end of the code. The tables 
with the sines and cosines are again assumed to be supplied during link time. 

Issues in FFT Implementation 

There are many ways of actually implementing the· FFT code (and the other 
transformations), taking into consideration the different possibilities of program locations, 
the data locations, the ways of input and output, etc. Since it is impractical to cover every 
possible case, this report has concentrated on a configuration in which the use of external 
memory is minimized. With the source code and additional explanations provided, you 
should be able to customize the FFT implementation for a particular application. 

Use of External Memory 

In these implementations, only on-chip memory was used, and that's why the 
maximum transform size considered was 1024 points long (2048 for a real transform). 
Often, though, applications call for use of external memory for program or data or both. 
When external memory is used, the structure of the code does not change at all; it is only 
the timing that may be affected. 

Fast external memory can be selected so that no wait states are necessary. But even 
when there are no wait states, accessing external memory may impose some limitations. 
For instance, you can make only one external memory access in a full cycle, but you can 
make two accesses of internal memory in each cycle. Also, because of mutliplexing of 
the busses, pipeline conflicts may arise if both program and data are placed on the same 
external port. Resolution of such conflicts causes extra cycles for the execution. The section 
on pipelining in the TMS320C30 User's Guide explains in detail what kind of potential 
conflicts may occur. 
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To minimize or avoid such conflicts, there are some simple steps that the designer 
can take. The TMS320C30 has three separate memory areas (one on-chip, one accessed 
by the primary bus, and one accessed by the expansion bus) that can be combined. For 
instance, the program can be placed on the expansion port and the data on the primary 
port. Or the data can first be brought into internal memory and then operated upon. 
Alternatively, the program may be relocated to internal memory. A related approach is 
to use the cache. All the transforms are implemented as loops that are executed many 
times. If you activate the on-chip cache after the first access of the code, the instructions 
execute from the cache instead of the external memory. 

If there are additional conflicts, they can typically be resolved by some rearrangement 
of the code. For instance, consecutively writing to external memory takes two cycles per 
write. If, however, a write is followed by some internal operation, then the second cycle 
of the write is transparent, and the actual cost is one cycle. 

Bit Reversal 

The TMS320C30 has a special form of the indirect addressing mode for the bit­
reversing operation that is required at the beginning or the end of an FFT. Through this 
addressing mode, the scrambled data are accessed in their proper order. This addressing 
mode works as follows: 

Let ARn (n=O .. 7) be the auxiliary register pointing to the array with scrambled 
data. The index register IRO contains a. number equal to one-half the size of the FFT. 
Then, after every access of the data, ARn is incremented by IRO using the construct 

* ARn + + [IRO]8 

This causes the contents of ARn to be incremented by the contents of IRO, but if 
there is a carry in this incrementing, the carry propagates to the right instead of to the 
left. The result is the generation of the addresses in a bit-reversed order. The bit-reversed 
addressing mode works correctly if the array with the data is aligned in memory so that 
the first memory address is a multiple of the FFT size. This can be achieved if the first 
memory address has zeros for the last M bits, where M = iog2N, with N being the FFT 
size. For example, in the case of a 1024-point FFT, the last 10 bits of the memory address 
of the first datum should be zeros. 

In the implementation of the complex FFT, the output is complex even when the 
input is real. So, there is a need to consider both the real and the imaginary parts of the 
data array. The above description of the bit-reversed addressing mode assumed that the 
real and the imaginary parts are stored as separate arrays in the memory. In this case, 
each of the arrays (real or imaginary parts) can be accessed as described. However, in 
most cases (including this report), the real and imaginary points alternate in the same array. 
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In this arrangement, the following simple modification achieves the same goal: set IRO 
equal to N instead of N12, and access the N points of the transform. At every access, the 
auxiliary register is pointing to the real part of the FFT. The imaginary part is located 
in the next higher location, and it can be easily accessed. 

With the bit-reversed addressing mode, the unscrambling of the data can take place 
when the FFT result is accessed for further processing or for 110. It is possible, though, 
that certain applications demand the reordering of the data in the same array. Such a 
rearrangement can be done very simply for a complex FFT with the following code. 

: DO THE BIT-REVERSING EXPLICITLY 

* 

LDI 
SUBI 
LDI 
LDI 
LDI 

@FFrSIZ,RC 
1,RC 
@FFrSIZ,IRO 
@INPUT,ARO 
@INPUT,AR1 

RPTB BITRV 
CMPI AR1,ARO 
BGE CONT 
LDF *ARO,RO 

II LDF *AR1,R1 
STF RO,*AR1 

II STF R1, * ARO 
LDF * +ARO,RD 

II LDF * +AR1,R1 
STF RO, * + AR1 

II STF R1,* +ARO 
CONT NOP * ARO + + [2] 
BITRV NOP * AR1 + + [IRO]B 

: RC = FFr SIZE 
; RC SHOULD BE ONE LESS THAN DESIRED # 
; IRO = FFr SIZE 

; EXCHANGE LOCATIONS- ONLY 
IF AROAR1 

EXCHANGE REAL PARTS 

EXCHANGE IMAGINARY PARTS 

Note that ARt is pointing to the bit-reversed version of the address contained in 
ARO. For real-valued FFT, or for FFTs that store the real and the imaginary parts in 
separate arrays, the real-FFT routine in Appendix C contains a modified example of the 
above code. 

Use ofDMA 

If the signal to be transformed arrives as a continuous stream of data, the DMA 
could be used to collect the new data while the data already collected are processed. In 
this case, the data source address of the DMA points to the memory location correspond­
ing to a serial port, or to another port associated with an external device. The destination 
is a memory space designated for storage. 
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There are two ways to use such buffers. One possibility is to designate one buffer 
as the temporary storage and the other buffer as the working area. When the storage buffer 
receives the necessary amount of data, the data is transferred to the working area, and 
the DMA starts refilling the storage buffer. Alternatively, the two buffers are considered 
equivalent: when the processor finishes processing and outputting the data from one and 
the DMA has filled the other, the two buffers switch functions; i.e., the DMA starts filling 
the first buffer while the CPU is processing the data in the buffer just filled. 

Test Vector 

For testing purposes, a vector with 64 (quasi-random) data points and the 
corresponding FFT values is given in Appendix F. In this way, if any of the routines is 
implemented, the test vectors can be used to verify the correct functionality of the routines. 
Together with the test vectors, Appendix C gives a sine/cosine table for a 64-point 
transform, and the linking file for such a transform. 

Summary 

This report examined implementations of fast transforms on the Texas Instruments 
TMS320C3x floating-point devices. The transforms considered were several forms of the 
FFT, the Discrete Hartley Transform, and the Discrete Cosine Transform. Because of 
the powerful architecture of the device, the implementation was done easily and efficiently. 
It was shown that a TMS32OC30 executes the FFTs several times faster than large computers 
such as V AX and SUN workstations. With the availability of the C compiler, these routines 
can be put in C-callable form and be used to compute the corresponding transforms 
efficiently. 
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Appendices 

Appendices A to F contain the TMS320C30 assembly language programs for the 
different algorithms considered. The contents of the appendices are as follows: 
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Appendix A: Radix-2 Complex FFT. 
composed of 

AI: Generic Program to Do a Looped-Code Radix-2 FFT 
Computation on the TMS320C30. 

A2: ffL2 - Radix-2 Complex FFT to Be Called as a C 
Function. 

A3: Complex, Radix-2 DIT FFT - R2DIT.ASM. 
A4: Complex, Radix-2 DIT FFT - R2DITB.ASM. 
A5: TWIDIKBR.ASM - Table with Twiddle Factors for a FFT 

up to a Length of 1024 Complex Points. 

Appendix B: Radix-4 Complex FFT. 
composed of 

BI: Generic Program to Do a Looped-Code Radix-4 FFT on the 
TMS320C30. 

B2: fft_4 - Radix-4 Complex FFT to Be Called as a C 
Function. 

Appendix C: Radix-2 Real FFT. 
composed of 

CI: Generic Program to Do a Radix-2 Real FFT Computation 
on the TMS320C30. 

C2: fft~l - Radix-2 Real FFT to Be Called as a C Function. 
C3: Generic Program to Do a Radix-2 Real Inverse FFT 

Computation on the TMS320C30. 

Appendix D: Discrete Hartley Transform. 
composed of 

DI: Generic Program to Do a Radix-2 Hartley Transform on the 
TMS320C30. 

Appendix E: Discrete Cosine Transform. 
composed of 

EI: A Fast Cosine Transform. 
E2: A Fast Cosine Transform (Inverse Transform). 
E3: FCT Cosine Tables File. 
E4: Data File. 
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Appendix F: Test Vectors, 64-Point Sine Table, Link Command File. 
composed of 

Fl: Example of a 64-Point Vector to Test the FFT Routines. 
F2: File to Be Linked with the Source Code for a 64-Point, 

Radix-4 FFT. 
F3: Link Command File. 

The flrst three appendices contain the code for the radix-2, complex radix-4, and 
real radix-2 FFT transformations. These routines are given in both the regular form and 
in a C-callable form. Furthermore, the contents of a rue with the twiddle factors are given, 
as well as an example of a link command me for a 64-point FFT. Note that the source 
code of these routines can be downloaded from the TI DSP bulletin board (BBS) by calling 
(713) 274-2323. For questions regarding the BBS, call the TI DSP hotline at (713) 274-2320. 
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Appendix A. Radix-2 Complex FFT 
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LDF 1/IRO++(!ROIB,RI 
STF RO,HARlIll 
STF RI,.IIRI++IIRll 

!Ill SELF , IlRAtOl TO ITSELF AT TI£ END 
.END 



00 ... NAI'E: 
0-

ffU --- RADIX-2.C!l'If'LEX FFT TO BE CAlL£D AS A C RKTlON. FP .set AA3 > 
• SYtO'SIS: • GLOB!. _ffU ; ENTRY P\JINT FOR EXECUTION "C 

INT ffUIN,~, DATAl • GLOB!. _Slne : ADOOESS {F SINE TAfU "C 
INT N FFT SIZE: No2"~ 

~ 

INT ~ NlI1IlER {F STAGES = UlG2(NI . ass FFTSIZ.I = 
FLOAT 'DATA ARRAY WITH I~ AND OOTPUT OATA .BSS LOGFFT,I Q. .... 

.SSS Itf'UT,1 ~ 
• DESCRIPTION: 

::.. G£N£RIC FlKTlON TO 00 A RADIX-2 FfT CM'UTATIOO ON TIE 32OC3O. • TEXT ~ ::: Tft: DATA rHlAY IS 2'N-U}(;, WITH REAL AND IMAGINARY VALUES ALTERNATHI3. 

~ 
THE _ IS BASED 00 THE FORTRAN _ IN Tft: lltIlRUS AND PARKS SINTAB .~or-d _sine 

BOOK, P. 111. ~ 

C 
"'<:S INITlALlZE C FUtUIOO ::: 
" THE COMPlITATlOli IS OONE IN PlACE, AND Tft: ORIGINAL DATA IS [€STROYED. 
::! BIT REVrnSAL IS Itf?LEI1ENTED AT THE END (F THE FOCTlON. IF THIS IS t{)T _fiL2: PUSH FP : SAVE [€OICATED REGISTERS = 
~ 

r':l 
::: NECESSARY, THIS PART CAN BE ClMNTED OJT. LDI SP,FP .... 
is' PUSH R4 

.... 
I 0 

g. THE SINE/COSINE TABLE FOR Tft: TWIDIl.E FACTORS IS EXPECTED TO BE SlI'PlIED MH RS = :;:d 
::: DURIND LINK TIlE, AND IT SfW..I) HAVE Tft: F!llOWING FORM!: PUSti' R6 

<5;, 
PUSHF R7 = 

• GLOBAL PUSH AR4 Q. .... 
~ 

• DATA PUSH AR5 ~ 
_swe .FLOAT VAlUE! = sinlOf2fpilNl PUSH ARb I 

.'-3 • FLOAT VAlLE = sinU*2*pilNI PUSH AR7 N 

t.:::? • FLOAT VALUE(5N/41 = sin! (5+N/4-11*2tpi/N) LOI t-FP(21,RO ; ~ ARGUMENTS TO LOCATIONS ~TQHNG ~ 
(j 0 
.'-3 

STI RO,!f'FTSIZ ; Tft: NMES I N THE PROOW1 9 THE VALUES VALUEI, VALUE2, ETC., ARE Tft: SAllE WAVE VALUES. FOR AN Lal .-FPi3I, RO 

\:l N-P\JINT FFT, H£RE ARE N+N/4 VALUES FOR A FLU AND A IlUARTER PERIOD {F STI RD. !LOGFfT "C 
::: 

THE SINE WAVE. IN THIS WAY, A FULL SINE AND COSINE PERIOD ARE AVAILABlE LDI f-FP(41,RO -\:l.. ~ 

a IS/.f'ERlt1POSEDI. STI RO.!INPUT ~ 

Sf. STACK STROCTIJlE tf'ON THE CALL: INITlALlZE FFT ROUTINE ~ 
~ .... +---------+ ~ 

~ 
-FP(41 DATA LDI !FFTSIZ ,IRI ~ ., -FP131 LSH -1.IRI ; IRI=N/4, POINTER FOR SIN/COS TABLE 

::: -FP(11 N LDI O,AAb ; ARb lO..DS Tft: crnRENT STAGE llJl10CR .... 
~ -FP(11 : RETlIIN AOOR LDI !FFTSIZ.IRO 

0 
C -FPIOI ruJ FP LSH I.IRO ; lRO=2.NI (BECAUSE {F REAlII~GI 0= 
~ +------+ LDI @fFTSIZ,R7 ; R7=N2 ~ 

'" LDI I,AR7 ; IN ITI AL IZE REPEAT ClWTER {F FIRST 

C REGISTERS USED: RD, RI, R2, R3, R4, R5, Rb, R7, ARC, ARI, AR2, AR4, AR5 LOCI' ~ 
::: ARb, AR7, IRO, IRI, RS, RE, fit LD! 1,AA5 ; INITIALIZE IE INDEX (AR5=IEl = Sf. --~ AUTHOR: PANOS E. P~MICHALIS (J.ITER LOOP ~ 

~ 
TEXAS INSTRUIENTS OCTOOCR 13, 1987 Q. 

LOOP: NaP H+AR6(1) ; crnRENT FFT STAGE = ~ HHHffftUfHHnH**ffHff-HHHUHtttHHHHU.UHHHHHft-HIf.UfH LDI @INPUT.ARO ; ARO POINTS TO XlI I ~ 

tv ADDI R7.ARD,AR2 ; AR2 POINTS TO X(ll 

0 LDI AR7, R( = 
0 SUBI 1,RC ; fit S!Ulll BE ONE LESS HWI ~SIREO • 

~ 
0 
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FIST LOW 

RPTB ILKI 
AIlIF tMO, tAA2, RO , ~XIII+XILl 
SUBf fAR2tt, tMO++, Rl , RI~XIII-XILl 
ADIIF tAR2, tARO, R2 , ~YIII+YILl 
SUBf 1M2, fAAO, R3 , R3=YIII-YILl 
STF R2,+ARO- , YIII~2 AND, •• 
STF R3, tAA2- YILI~3 

ILK! SIF ROt fMQH( lROJ , XIII~O AND ... 

" STF RI, tAA2++ I lRO I XfLI~1 AND ARO,2 ~ ARO,2 + 2+NI 

IF THIS IS TI£ lJIST STAGE, YW ARE IXH: 

Cl'l'1 @l.OGFfT,AR6 
BZD END 

MAIN II*R LOOP 

LDI 2,ARI , INIT LOOP COUNTER Foo Itf£R LOO' 
LDI tsINTAB,AR4 , INITIALIZE IA INDEX IAR4~IAI 

INLOP: ADDI AR5,AR4 , IA=IA+IE, AR4 POINTS TO COSINE 
LDI ARI,ARO 
ADDI 2,ARI , INCREIIENT Itf£R UXP CWNTER 
ADDI ~ltflJT ,ARO , IXIII,YIIiI POINTER 
ADDI RI,ARO,AR2 , IIILl,YILlI POINTER 
LDI ARI,RC 
SUBI I,RC , RC SIUUI BE ONE LESS THAN [(SIRED I 
LDF +AR4,R6 , R6--$IN 

SECOND LOOP 

RPTB BLK2 
SUBf tAR2, tARO, R2 , R2~XIII-XILI 
SUBf HAR2, '+MO,Rl , RI~YIII-YILl 
II'YF R2,R6,RO ,~tSIN AND ... 
ADDF f+AR2, t-tARO,R3 R~YIII+YILI 

IIPYF RI, HAR4IIRII,R3 , ~I+COS /MI ... 
STF R3,HMO Y1I1~YIII+YILl 

SUBf RO,R3,R4 , R~I tCOS-R2tSIN 
ItPYF RI,R6,RO , ~ltSIN AND ... 
ADDF tAR2,tMO,R3 R3=X III +X III 
IIPYF R2, HAR41 IRII,R3 , R3=R2tCOS AND ... 
STF R3,tARO++llROI XIII~XIII+XILI AND ~ARO+2tNI 
ADDF RO,R3,R5 , ~tCOS+RI+SIN 

I1LK2 STF R5, +AR2++1 IROI , XILI~tCOS+R1tSIN, INCR AR2 AND ... 

" STF R4, HAR2 Y ILI~RI tCOS-R2+SIN 

CIIPI RI,ARI 
lINE INLOP , LOO' BACK TO TI£ Itf£R LOO' 

LSH I,AR7 INCREI£NT LOW CW'ITER Foo NEXT TH£ 

LSH 1,AR5 IE~2tIE 

LDI RI,IRO 
LSH -1,R7 
DR LOW 

00 THE BIT -R!:VERSING OF THE WTPUT 

END: LDI ~FTSIl,RC 

SUBI I,RC 
LDI ~FTSIl, IRO 
LDI IltflJT,ARO 
LDI !INPUT,ARI 

RPTB B!TRV 
CMPI ARO,ARI 
IIGE CONT 
LIF *ARO,RO 
LDF tARI,RI 
STF ROt "'ARl 
STF Rl,fARO 
LDF t+ARQ(1) ,RO 
LDF HAA1(t),Rl 

STF RO,t+ARlIll 
STF RI, t+AROI I I 

CONT II(p H+ARO(2) 

BITRV NOP tARI++llROIB 

NI~ 

~/2 

NEXT FFT STAGE 

~ 

RC SIUUI lIE (WE LESS THAN [(SIRED I 
I~SIZE OF FFT~ 

R!:STQRE TI£ R!:GISTER VALUES AND R!:TURN 

POP AR7 
POP AR6 
POP AR5 
POP AR4 
POPF R7 
POPF R6 
POP R5 
POP R4 
PIP FP 
R!:TS 
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C(H'lEX, RADlX-2 DlT FFT R2DlT,ASII 

GENERIC _ FIR A FAST LOCf'ED-CDIE RADIX-2 DIT FFT CMIITATIOO 
00 TIE TI1S320C30 

WRITTEN BY' RAIIUID I£YER, KARL SOIIARZ 
LEHlSTlIL FOOl ~ICHTENTECHNIK 
UNIVERSITAET ERLANGElHt£RNIIERG 
CAOOlSTRASSE 7, D-1l520 ERlANGEN, FRG 

19,07,89 

THE ICOI'I'lEXI DATA RESIDE IN INTERNAL tEI'OOY. TIE COI1PUTATIOO IS 11M * 
IN-PlACE, IlUT TIE RESlI.T IS !1OI'ED TO IWlTI£R tEl10RY SECTlIli TO 
DEMONSTRATE THE BIT-REVERSED ADDRESSING. 

FOR THIS PROORAII THE ~INIIDI FFTLENGTHIS 32 POINTS IlECIiJSE IF TIE 
SEPARATE STAGES, 

FIRST 1110 PASSES IIIlE REALIZED AS A FlU! BUTTERFLY LIXJ' SINCE TIE 
rt.t.TIPLlESIIIlE TRIVIAL. THE rt.t.TIPLIER IS DIU USED FOR A LOAD IN 
PARAlLEL WITH IW ADIIF IR SUBF. 

HtlHHHHHHffHHHfHHffHtHHHUHHHffHHHfHHtHHHHHHHft 

EXAIf'lE FOR A 1024-POINT FFT IEXCLUDING BIT REVERSALI' 

I'CIIRY SIZE' 
PROORAII 
DATA ITWIDDLE FACTMSI 

CYCLES PER BUTTERFL VI 
STAGES 1 AND 2 
STAGES 3 TO a 
STAGE 9 
STAGE 10 

229 WOOOS 
512 IIMIIS 

8.25 
a,5 

A~AGE CYCLES/BUTTERFLY 7,275 
TOTAL BUTTERFLYCYCLES = 37249 
INITIALIZATION OVERHEAD = 2181 = 5,55, (F TOTAL TItE 
TOTAL NIJ1BER OF INSTRUCTION CYClES = 39429 
TOTAL TIME FOR A 1024 POINT FFT 2.36 os IEXCLUDING BIT 

RE~I 

HUtHtHftHHIHnHHfHltftfHfHHtfftttftHHltlHHffHHfHfHltftfH 

HtU .... UtfHHtHH' .... HtHttH ... HfHHtHHHHHfHHttlHHHHffffH 

THIS _ IIOJIlES F!l.L~ING FILES' 

THE FILE 'llIIDIKBR,ASII' COOSISTS IF TWIDDLE FACTMS 

TIE TWIDDLE FACTMS IIIlE SHRED IN BIT1If.IIERSED IRIEl AND WITH A TAa.E 
LENGTH IF N/2 IN = FFTLENGTHI, 
EX1<'I'LE' SOOWN FIR N=32, WNlnl = COSI2IPItn/NI - j>SINI21PItn/NI 

ADIRESS COEFFICIENT 
RUoNIO)) = COSI2*PItO/321 = 1 

-!(WNIO)) = SINI2*PIt01321 = 0 

R{WN(4)) = COSI2*PI*4/321 = 0,707 
-!(WNI4Il = SINI2*PI*41321 = 0.707 

12 R{WNI3IJ = COSI21P!J3/321 = 0,831 
13 -!(WNI3)) = SINI2IPI*3/321 = 0.550 
14 R{WNI7Il = COS I 21PI>7I32 I = O,I9:i 
15 -!(WNI7I) = SINI2*PI*7/321 = 0.981 

WHEN GENERATED FOR A FFT LENGTH IIF 1024, TIE TABLE IS FOR ALL 
AVAILABLE FFT IIF LESS OR EIllW. LENGTH, 

THE ~ISSING TWIDIILE FACTMS IWNII,WNII, .... I ARE GENERATED BY USING 
THE SYMTRY WNIN/4+nl = -J*WNlnl. THIS CIW lIE EASILY REALIZED BY 
CHANGING R£AL - AND It1AGINARY PART IIF THE TWIDIILE FACTMS AND BY 
NEGATING THE NEW REAL PART. 

TO CHIWGE THE FFT LENGTH, OOL Y THE PA/WETERS IN TIE I£AIEl (F 

TWIDIKBR.ASII AND THE INPUT AND ()JTM ~CTOR LENGTHS NEED TO lIE 
ALTERED. 

ttffttftHtftfftU-ttfHHffHHffHfHffHIHHflHfHflfllfHfHffHfHlfIHI 

f Ail: + j Al ------------------------------------------- AR'- t j AI/ 
/ + 

\ / 
\ / 
/ \ 

/ \ 
/ \ + 

DR + J BI --- I cos - j SIN I -------------------- DR' + j BI' 

f TR = ~ f cos t 81 f SIN 
* TI = DR * SIN - Bl * cos 

AR'= AA + TR 
* AI'=AI-TI 

DR'= AR - TR 
f 81/= AI + Tl 

ftfftHHftftfHHfHtHHfHfHffHftHHfHffHfHtHfHHffffHff-HfffHftf 

~ a 
~ 
~ . 
n 

J 
~ 
~ 
N 
~ 
~ 

3 
I 

~ 
~ . 
> 
~ 



~ FIRST 2 STAGES AS RADlX-4 IlJTTERflY 
;:, 

.,lobil m 
~ .globil N FILL PIPELllE 

"i:5 .globil IfW.B 

~ .globl! N'lIERT ADIJ' 1M2,<ARO,R4 R4=AR+CR 
.;:! .global ~TCI£L SUBF 1M2, tAROtt ,RS RS=AR-CR 

~ .global " ADIJ' IMI, tAR3, Rb Rb=M+IIR 

~ _global SINE SUBf tARl ++. IM3++ I R7 R7=M-IIR 

~. 
ADIJ' Rb,R4,RO AR'=RO=R4+Rb 

.BSS 111'.2048 INPUT IlECTCll lENGTH = 2N IIEPENDS II'YF tAR3++,1M7,RI RI=OI, I1R'=RJ=R4-Rb 
;:, 

IJj NI " SUIIf Rb,R4,RJ 

~ .BSS OOTP,2048 OOTPUT IlECTCll lENGTH = 2N 1_ ADIJ' RI,tARI,RO ; RO=BI +01, AR' =RO 

-~ 
IJj HI " STF RO,.fAR4++ 

SUIIf RI,lMltt,RI ; RI = 51 - DI , BR' = R3 
.tixt " STF RJ,tAR5++ 

ADIF RI,RS,R2 ;CR'=R2=R5+RI 
t:1 FFTSIZ .lIiord N II'YF t+AR2,1M7,RI ; RI=CI, M'=RJ=RS-RI 
C) FG4Il2 ,word N'lIERT-2 " SlIIIF RI,RS,RJ 
-~ FG4"3 .lIIord INIERT -3 AIIIJ' RI,tllRO,R2 ; R2=AI +CI, CR' =R2 
I:> FGSt12 .word ~TCHEL-2 " STF R2,lM2ttIlRII 
;:, FG2 .lIIord fWolB SlIIIF Rt, tMO+-t I R6 ; Rb=AI -CI, M' =RJ 
~ FG2I13 ."ord fWolB-3 " STF RJ,lMbtt 

~ LOOm .word " ADIF RO,R2,R4 ; AI' = R4 = R2 + RO 
SINTAB .lIIord SIIE 

'" SINT"I ,lIIord SIIE-I RADIX-4 IIJTTERFLY UXP .., 
~ 

SINTP2 .word SIIE+2 
INPUT .1II0rd INP RPTB IlKI 

I:> INPUTP2 ,word 111'+2 II'YF 1M2-, 1M7, RO ; RO = CR , IBI' = R2 = R2 - ROI ;:, 

~ (UJTPUT .lIIord OOTP :: SUIIf RO,R2,R2 
c:::; II'YF IMI tt, tAR7, RI ; RI = IIR , ICI' = RJ = Rb + R71 

~ ARO AA + Al J: ADIF R7,Rb,RJ 
ARI SR + HI ADIF RO,<ARO,R4 ; R4 = AR+ CR , IAI' = R41 

§ AA2 CR ... CI ... CR' t CI~ :: STF R4,1M4tt 
M3:DR+OI SUBf RO, _ARO++,R5 ; R5 = AR - CR , IBI' = R21 

S- AR4 : AR' + AI' " STF R2,tAR5++ 

'" ARS , SR' + HI' SlIIIF R7,Rb,R7 ; 101' = R7 = Rb - R71 

~ 
ARb : M' + 01' ADIJ' RI,tAR3,Rb ; Rb = M + BR , 101' = R71 
AR7 : FIRST TWIDIl£ FACTCll = I " STF R7,tAR6++ 

~ SUIIf RI, tM3tt, R7 : R7 = M - BR , ICI' = R31 

N 
FFT: I.lf' FFTSIZ LDAD PAGE POIHTER :: STF R3, IM2tt 

C LOI fFG2,IOO lRO = N/2 = IJ'FSET BETWEEN INPUTS AIIIJ' Rb,R4,RO ;AR'=OO=R4+Rb 

0 LDI fSIHTAB,AR7 AR7 POINTS TO TWIDOLE FACTCll I II'YF tAR3tt, 1M7, RI ; RI=DI, BR' =R3=R4-Rb 
LOI IINPUT,IIRO IIRO POINTS TO AR :: SUIIf Rb,R4,R3 C ADDI lRO,IIRO,ARI ARI POINTS TO IIR ADIF RI,tARI,OO ; 00 = BI + DI , AR' = 00 
ADDI IRO,ARI,AR2 AR2 POIHTS TO CR :: STF RO,1M4tt 
ADDI lRO,AR2,AR3 AR3 POINTS TO M SUIIf RI,lMltt,RI ; RI = BI - DI , I1R' = R3 
LOI ARO,AR4 AR4 POIHTS TO AR' :1 STF R3, 1M5++ 
LOI ARI,ARS ARS POINTS TO I1R' ADIF RI,RS,R2 ;CR'=R2=R5+RI 
LDI AR3,ARb ARb POINTS TO M' II'YF ttAR2, 1M7,RI ; RI = CI , M' = R3 = RS - RI 
LOI 2.IRI ADMESS OFFSET :: SUIIf RI,RS,R3 
LSH -I,IRO lRO = H/4 = lUUIER OF R4-BUTTERflIES ADIF RI,<ARO,R2 ;R2=AI+CI,CR'=R2 
LOI lRO,RC 

" STF R2, IM2ttllRIl 
SUBI 2,RC SUIIf RI,_,Rb ; Rb=AI -CI, M' =R3 

" STF R3,tM6++ 

00 
\0 



8 8LKI ADIIf RO,R2,R4 ; AI' = R4 = R2 + RO " STF R2,IM3++ 
llll AR5,RC 

nEAR PIPELINE fHIHfnHfHHt+4ftf+fH'UH.H.HtffHtfHtH ....... tHHH ... UHHH ...... 

SUIlf RO,R2,R2 ; BI' = R2 = R2 - RO FIRST BUTTERFLY-TYPE; 
ADIIf R7,Rb,R3 ; CI' = R3 = Rb + R7 
STF R4,IM4 ; AI' = R4 , SI' = R2 TR = BR • cos + BI • SIN 
STF R2,tAR5 TI=BR'SIN-BI'1lIS 
SUIIf R7,Rb,R7 ; DI' = R7 = Rb - R7 AR"= AR + TR 
STF R7,IMb ; DI' = R7 , CI' = R3 AI'= AI - TI 
STF R3,'-AR2 BR'= AR - TR 

~ BI'= AI + TI ;:, 

~ THIRD TO lAST OF STAGE 2 .... t:tlHHtHtHHHffHfH+HHt+HH .. fHHH-If .. HHHHfHfffHfff'.HtH 
'tj 

" RPTB IIfLY! 
::l llll fFG2,IRI 
~ llll IRO,AR5 If'YF t+AR!, RO, R5 ; RS = BI • SIN, IAR' = RSI ;:, 
is SUBI 1,AR5 " STF RS, tAR2++ 

~. llll I,ARb SUIIf RI,RO,R2 ; IR2 = TI = RO - RII 
;:, If'YF IMI,R7,RO ; RQ = BR • cos , IR3 = AI + TIl 

STLH LDI !SINTAB,AR7 ; POINTER TD TlIIDILE F~TOR " ADDF R2,'ARO,R3 
.Q, llll O,AR4 ; mru> ctUlTER SUIIf R2, 'MOH ,R4 ; IR4= AI - TI , BI' = R31 

~ 
llll @INPUT,ARO ; LI'PER REAl BUTTERFLY I tf'UT " STF R3, IM3++ 
LDI ARO,AR2 ; LI'PER REAL BUTTERFLY OOTPUT ADIIf RQ,RS,R3 ;R3=TR=RQ+RS 

~ ADDI IRQ,ARO,ARJ ; LOIER REAl BUTTERFLY OOTPUT If'YF tARltt,Rb,RO ; RO = BR • SIN, R2 = AR - TR 

tl llll AR3,ARI ; LOIER IIfAL BUTTERFLY INPUT " SUIlf R3, 'ARO,R2 
LSI! I,ARb ; rnJBLE mru> ctUIT If'YF IMI++,R7,RI ; RI = BI • cos , IAI' = R41 (j LSI! -2,AR5 ; HALF BUTTERFL Y ~T 

" STF R4, IM2++ ~ LSI! 1,AR5 ; CLEAR LSB IIFLYI ADIIf IMO++, R3, RS ;RS=AR+TR,BR'=R2 
I:l LSH -I,IRQ ; HALF STEP FR01 LI'PER TO LOIER REAl 

" STF R2,IM3++ ;:, PART I:l.. 
LSH -I,IRI SWITCH MR TO NEXT mru> a ADDI I,IRI ; STEP FR01 CUI IttAGlNARY TO NEN REAl 

S. VALl.( SUIIf RI,RO,R2 ; R2 = TI = RQ - RI ~ L!F IMI++,Rb ; IllItIY LOAD, IlLY FOR AOOOfSS UPDATE ADOF R2, tARO,R3 ; R3 = AI + TI , AR' = RS ... 
~ 

:: L!F tAR7,R7 ; R7 = cos 
" STF RS,IM2++ 

SUIIf R2, tAROHURIl ,R4 ; R4 = AI - TI , BI' = R3 \:l GRLI'PE :: STF R3, IM3++URII ;:, 

~ NOP IMI++URII ; AOOOfSS UPDATE c:; FILL PIPELINE ; ARC = UPPER REAl BUTTERFLY INPUT If'YF tARl-,R7,RI ; RI = BI t cos , AI' = R4 
~ ; ARI = LOIER REAl BUTTERFLY INPUT 

" STF R4, tAR2HlIRII 

'" ; AR2 = lI'PER REAl BUTTERFLY OOTPUT If'YF 'ARI,Rb,RQ ; RQ = BR • SIN 
c:; ; ARJ = Lc.ER IIfAL BUTTERFLY OOTPUT If'YF t-ARl++,tM7++,RO ; R3 = TR = RI - RQ , RQ = BR • cos ;:, ; TI£ IttAGlNARY PART HAS TO F(ll(ll 

" SUIIf RQ,RI,R3 
S. L!F H+AR7,Rb ; Rb = SIN I1PYF IMI++,Rb,RI ; RI = BI • SIN, R2 = AR - TR 
~ If'YF IMI-,Rb,RI ; RI = BI • SIN 

" SUBF R3, tARO,R2 

~ " ADIIf H+AR4,RO,R3 ; W1I1Y ADIIf FOR ~TER lPOATE ADIIf IMO++,R3,RS ;RS=AR+TR,BR'=R2 
MPYF IMI,R7,RO ;RQ=BR.cos 

" STF R2, IM3++ 

~ I1PYF tARt++, tAR7--, RO ; R3 = TR = RO + RI , RO = BR • SIN llll AR5,RC 
N " ADDF RO,RI,R3 
C If'VF 'ARI++,R7,RI ; RI = BIt cos , R2 = AR - TR 

a " SUIIf R3, tARO,R2 

C ADIIf tARO++,R3,RS ;RS=AR+TR,BR'=R2 



~ 
~ 

"(5 
~ 
;;J 
~ 
IS 
~. 
;: 

~ 
~ 
:--J 
o 
("J 
:--J 
§ 
"'-

~ 
'" .., 
~ 
" ;: 
s, c 
~ 
'" § 

~ 
~ 
~ 
tv 
a a a 

\0 -

H**Ufn***H.H·fftU**Hf-lHftHffHffHfHf .. fHfHt*HffUf"Hf-l .... H+IH"" 

SECOND BUTTERFLY-TYPE: 

TR = BI • COS - SR < SIN 
II = BI • SIN + DR .. cos 
IIR'=AR+TR 
AI'= AI - TI 
SR'= AR - TR 
BI'= AI + TI 

f*+.HHUH·UfHHHHHHHHtHHfHHfHUHffHfHfUH+HHHHHHTHH 

RPTB BFLY2 

MPYF f+ARl,R7,R5 ; 115 = BI < COS , (IIR' = 1151 
STF RS, tAA2++ 
ADlIF RI,RO,R2 ; (R2 = TI = RO + RII 
MPYF tARI,Rb,RO , RO = 00 I SIN, (R3 = AI + TIl 
ADDF R2, IAIlO,R3 
SUBF R2,IARO+t ,R4 ; (RI = AI - TI , BI' = R31 
STF R3, tAR3++ 
WBF RO,R5,R3 ;TR=R3=I15-RO 
MPYF *ARl++,R7,RO ; RO=OO.COS, R2=AR-TR 
SUBF R3, .ARD,R2 
MPYF fARl++,R6,Rl ; RI = BI • SIN, (AI' = RII 
STF R4,IAR2+t 

BfLY2 ADDF *ARQ++ • R3. R5 ; I15=IIR+TR, 00' =R2 

" STF R2. fAR3++ 

CLEAR PIPELINE 

AOOF Rl,RO,~l R2=TI=RO'RI 
ADIIF R2, <ARD,R3 R3=AI+TI 
STF RS, *AR2++ AR'=R5 
CMPI ARb,AR4 
BHED GIlUPPE , 00 FOLLOWING 3 INSTRUCTIONS 
SUBF R2, .fARO++! IRt) ,R4 , RI = AI - TI , BI' = R3 
STF R3, 1M3-ttl IRI) 
L!IF H+AR7,R7 R7 = cos 
STF R4, *AR2H( JRI) AI' = R4 
N(f> *ARl++!IRlJ BRANCH HERE 

END OF THI S BUTTERFLY GROUP 

C'lP1 I,IRO ; JLIt' OUT ,AFTER LD(NI-3 STAGE 
BNZ snn 

SEW'ID TO LAST STAGE 

LDI ~INPlJT,ARO UPPER Itf'UT 
LDI ARO,1IR2 Lf'PER OUTPUT 
ADD! IRO,ARO,IIRI UlER Itf'UT 

" 

" 

LDI 
LDI 
LDI 
LDI 

FILL PIPELINE 

IIRI,1IR3 
ts1NTP2,1IR7 
5,IRO 
fFG8I12,RC 

I. BUTTERFLY' 0('() 

ADDF 
SUBF 
ADDF 
SUBF 

.ARO, .ARI,R2 
tAAt ++, fARO ... , R3 
tARO,'ARI,RO 
fAAl++,*A/lO++,Rl 

2, BUTTERFLY' ."() 

LMIl OUTPUT 
POINTER TO TWIDlLE FACTOR 
OISTiVU IIETI£EN TWO GRIlPS 

1IR'=R2=IIR+OO 
OO'=R3=AR-OO 
AI' = RO = AI + BI 
BI' = RI = AI - BI 

ADDF fARO, IAIlI,Rb ; IIR' = Rb = AR + 00 
SUBF <ARIH,*ARO++,R7 ; 00' = R7 = AR - 00 
ADDF .ARO,IAIlI,RI ; AI' = R4 = AI < BI 
SUBF tARIHIlROI,IAROHIIROI,RS; BI' = 115 = AI - BI 
STF R2,IAR2++ ; (AR' = R21 
STF R3,IM3+t ; IBW = R31 
STF RO,tAR2++ ; (AI' =RO) 
STF RI, 1AIl3H ; (81' = Rli 
STF R6,tAR2++ ; ARf = Rb 
STF R7, tAR3H ; 00' = R7 

, STF R4,-tAA2++(JRO) ; AI' = R4 
STF 115, 1AIl3++IIROI ; BI' = 115 

3. BUTTERFLY: .rM/4 

ADIIF 
SUBF 
ADDF 
SUBF 

tARo ... , '+ARl, R5 
IARl,fARO,R4 
IftRl++,IARO--,Rb 
tARl t+, 1AIl0++, R7 

4. BUTTERFLY' 1<'1114 

AR' = 115 = IIR + BI 
AI' = Rl = AI - 00 
BI' = Rb = AI + 00 
00' = RT = AR - BI 

ADLf HARI,H+ARO,R3 ; AR' = R3 = AR + SI 
LIF +-ART,RI ; RI = ° IFoo INNER LW'I 
LOF IAIlI++,RO ; RO = 00 (FOR INlIER LOO"I 
SUBF IAIlIHIIROI,IARO++,R2; 00' = R2 = IIR - BI 
STF R5,IIIR2++ (AR' = 1151 
STF R7,tAR3++ 100' = RTI 
STF R6,fM3H (81' = Rbl 

5. TO M. BUTTERFLY: 

APTB BF2£ND 

LDF «-AR7++,R7 ; RT = cos , ((AI' = RIll 
STF RI, tAR2++ 
LIF tAR7++,Rb ; Rb = SIN, 100' = R21 
STF R2,tAR3++ 



\0 
tv rl'VF f+ARI,Rb,RS , RS = BI • SIN, (AR' = R31 " SUBF R3, 'ARO,R2 

" STF R3, tAR2++ HF2END rl'VF tARI++( IROI ,Rb, RI , RI = 01 • SIN, R3 = AR + TR 
ADlF RI,RO,R2 , (R2 = TI = RO + Rll " ADlF tARO++, R3, R3 
rl'YF 'ARl,R7,RO , RO = DR • COS , (R3 = AI + TIl 
ADDF R2,+ARO,R3 a.EAR PIPELINE 
SUBF R2, 'ARO++(JROI ,RI , (R4 = AI - TI , BI' 0 R31 
STF R3,tM3++ilROI STF R2, fM3++ , DR' = R2 , AI' 0 R4 
ADDF RO,RS,R3 ,R3=TR=RO+RS " STF RI,tAR2++ 
rtPVF fARl++,Rb,RO ,RO=DR'SIN, R2=AR-TR ADDF Rl,RO,R2 ,R2=TI=RO+Rl 
SUHF R3,.ARO,R2 ADIF R2, +ARO,R3 , R3 = AI + TI , AR' = R3 

;.,. rtPYF tARI++,R7,RI , RI = BI • COS , (AI' = RII 
" STF RJ,I-M2++ 

;:: 
" STF R4,tAR2++(IROI SUBF R2, +ARO,R4 , RI = AI - TI , 01' 0 R3 

~ 
ADIF +ARO++, R3, RS ,RS=AR+TR,DR'=R2 :: STF R3,tAR3 

" STF R2,tAR3++ STF R4,+AR2 , AI' = R4 ':j 
~ rtPYF +tARI,R6,RS , RS 0 BI + SIN, (AR' 0 RSI LAST STIa ;:;: 
'" " STF RS,tAR2++ 
;:: SUBF RI,RO,R2 , (R2 = TI = RO - RII LDI tINPtiT,ARO ; UPPER II~UT 
Ei rwYF tARI,R7,RO , RO = DR + COS , (R3 = AI + TIl lOI ARO,AR2 ; UPPER ClJTPUT 

5° " ADDF R2, .ARO,R3 lOI tINPtiTP2,ARI ,LMR IIf'UT 
;:: SUHF R2, fARO++,R4 , (R4 = AI - TI , BI' 0 R31 lOI ARI,AR3 , LMR ClJTPUT 

~ " STF R3, t-AR3++ LDI ts I NTP2, AR7 , POINTER TO TlUDIH FACTORS 
ADDF RO,RS,R3 ,R3=TRoRO'RS lOI 3,IRO , GR«P OFFSET 

~ I1PVF ~l++,Rb,RO ; RO = DR + SIN, R2 = AR - TR lOI @FG4r12,RC 

" SUBF R3,+ARO,R2 
.'"-3 rl'YF tAR I ++1 IROI ,R7,RI , RI = BI • COS , IAI' = R41 FILL PIPELINE 

tI " STF RI, tAR2++ 

C) ADDF tARO++, R3, R3 ,R3=AR+TR,DR'=R2 I. BUTTERFLY' ."0 
.'"-3 " STF R2. tAR3++ 

DDF tARO, tAR I ,Rb ,AR'oR6=AR+DR 
1:> II'VF f+ARI,R7,RS , RS = BI • COS, IAR' = R31 SUBF fAA 1 ++ • *ARO++ • R7 ,BR'=R7=AR-DR ;:: 
;:,. " STF R3, 'lM2++ ADDF tARO, tARI, R4 , AI' = R4 = AI + BI 

a SUHF RI,RO,R2 , 1R2 = TI = RO - RII SUHF tARI++1 IROI, tARO++l IROI,RS , BI' = RS = AI - 01 

s- II'YF tARI,Rb,RO , RO = DR + SIN, 1R3 0 AI + TIl 

'" " ADDF R2, .ARO,R3 2. BUTTERFLY: w"tt/4 ... SUHF R2, +ARO++I IROI, R4 , IR4 = AI - TI , BI' = R31 

~ " STF R3, tM3++{lRO) ADDF f+ARI,+ARO,R3 ,AR'=R3=AR+BI 
1:> SUBF RO,RS,R3 ,R3oTR=RS-RO LDF <-AR7,RI , RI = 0 IFOO INf'ER LOiJ'I 
;:: rtPVF t-Ml++,R7,RO ,RO=DR'COS, R2=AR-TR :: LDF tMl++,RO , RO 0 DR IFOR IIH:R LOiJ'I "3, " SUHF R3,+ARO,R2 SUHF tAR1++( IRO). fARO++ ,R2 , DR' = R2 = AR - BI c:; 

II'YF tARl++,Rb,Rl , RI = BI + SIN, IAI' = R41 STF Rb, tUt2++ , IAR' = Rbi ~ " STF R4,+AR2++IIROI STF R7,+AR3++ , IDR' = R71 
'" ADDF fAAO++,R3,RS , RS = AR + TR , DR' = R2 STF RS, iM3++(IROI , IBI' = RSI c:; 

" STF R2, IM3++ ;:: 

s- 3. TO M. BUTTERFLY: 
II'VF f+ARI,R7,RS , RS = BI • COS, IAR' = RSI 

'" " STF RS, tAR2++ LDF +AR7++,R7 , R7 = COS , IAI' 0 R41 

~ ADDF RI,RO,R2 , 1R2 = TI = RO + Ril :: STF RI, +AR2++IIROI 
II'YF +ARI,R6,RO , RO = DR • SIN, 1R3 = AI + TIl LDF +AR7++,Rb , Rb = SIN, IDR' = R21 

~ " ADDF R2, +ARO,R3 :: STF R2, +AR3++ 
tv SUBF R2, fARO++,R4 , IR4 = AI - TI , ylLi = BI' 0 R31 rl'YF f+ARI,Rb,RS , RS = BI • SIN, IAR' = R31 
0 

" STF R3, tAR3++ 
" STF R3,+AR2++ 0 SUBF RO,RS,R3 ,R3=TR=RS-RO ADDF RI,RO,R2 , 1R2 = TI = RO + RII 

0 rtPVF tARl++,R7,RO ,ROoDR+COS, R2=AR-TR rtPYF tARI,R7,RO , RO = DR + COS , 1R3 = AI + TIl 



~ 
;:s II ADIF R2,<ARO,R3 SIF RI,IMI 

~ 
SUIIF R2, fMOttl IROI,R4 , (R4 = AI - TI , BI' = R31 .. SIF R3,IAR3++(JROI END: NIP 

'G ADIF RO,R5,R3 ,R3=TR=RO+R5 NIP 

~ rlf'YF IMltt,R6,RO , RO = BR • SIN, R2 = AR - TR NIP 

~ 
II SUIIF R3,'ARO,R2 NIP 

If>YF IMltt(JROI,R7,RI , RI = BI • COS , (AI' = R41 
!:i .. SIF R4,1AR2++( IROI SELF BR SELF 
~. ADIF IARO++,R3,R3 ,R3=AR+TR, BR' =R2 .tnd § .. STF R2,_ 

~ If>YF _I, R7, R5 ; R5"::: BI :I COS ,iAR' = R3J 

~ 
.. SIF R3,1M2tt 

SUIIF RI,RO,R2 , 1R2 = TI = RO - Rll 
If>YF IMI,R6,RO , RO = BR • SIN, 1R3 = AI + TIl 

t:l .. ADIF R2,<ARO,R3 

(") SUlF R2, tAROttilROl, R4 , IR4 = AI - TI , BI' = R31 

-...., .. SIF R3,1M3tt (JROI 
SUIIF RO,R5,R3 ,R3=TR=RO-R5 

I:l If>YF IMltt,R7,RO ,RO=BRt.COS, R2=AR-TR ;:s 
!:l.. .. SUIIF R3,<ARO,R2 

0 lFLEND If>YF tARltt(JROI,R6,RI , RI = BI t SIN, R3 = AR + TR 

So .. ADIF tARO++ ,R3,R3 

'" ... Il.EAR PIPELINE 

~ SIF R2,lAR3tt , BR' = R2 , IAI' = R41 § .. SIF R4,1M2++(JROI 
~ ADIF RI,RO,R2 ,R2=T1=RO+RI 
~ ADIF R2,<ARO,R3 ,R3=AI+T1,AR'=R3 

~ .. STF R3,I-M2++ 
SUIIF R2, <ARO,R4 , R4 = AI - TI , BI' = R3 

§ II SIF R3,1AR3 
STF R4,tAR2 , AI'= R4 

So 
'" END IF m 

~ BIT REVERSAl 

~ 
LOI I!FHSIl,IRO N 

C LOI 2,IRI a LOI @INPUT,ARO 
C LOI !OUTPUT, ARI 

LOI I!FFTSIl,RC 
SUBI 2,RC 

LDF ttAROlll,RO 
Rf'TB BlTRY 
IN ~++IIROlb,Rl 

SIF RO, _1 (I I 
BITRV LDF ttAROUl ,RO .. SIF RI,IMl++lIRIl 

\0 LDF tARO++(JROlb,RI 
W .. STF RO,_11l1 
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ftfHff .......... fflHHftH .. HffffHU .. UHt .. HHftIHHf .. Hf .. HffHffHf+fH 

APPENIIIlM 

COIfl.EX, RADIX-2 DIT FFT R2DITB.ASIt 

GEl£RIC PROOlJII1 FOO A FAST L~IE AADIl-2 DIT FFT OO'PUTATIOO 
OOTIETIIS32OC:Jl 

II!ITTEN BY: AAIP'I.NIJ IEYER, KARL SCIlWlI 
LE!flSTIIL FLER _IDfTENTEOflIK 
~IVERSITA£T ERLI'o'«N-ItE!NII 
CAlERSTAASSE 7, 0.8520 ERIJIt«N, FRG 

24.07.89 

TIE 1000000XI DATA RESIlE IN INTEANAI. 1EIOlY. TIE C(lf'UTATION IS WoE 
IN-PLACE, BUT TIE RESULT IS tiMlI TO AMlTIER HEI100Y SECTION TO 
WKJNSTRATE TIE BIT-RE<ElSED ADDRESSIt«i. 

FOO THIS PROGRAI! TIE "INIIU1 FFT lfNGTH IS 32 POINTS IECAUSE IF 
THE SEPARATE STAGES. 

FIRST Till PASSES ARE R£Al.IZED AS A FlUl BUTTERFLY LIXP Situ TIE 
I1lI.TlPLIES ARE TRIVI~. TIE I1lI.TlPLIER IS ONLY USED FOO A LOAD IN 
PARALLEL WITH AN ADDF 00 SUBF • 

tfHtHHHHHfHffHnHHHfHHtHfHHfHtfHHtfHffHffHHHffHlfHff 

EXAI'I'LE FOR A 1024-POINT FFT (WITH BIT REVERSAL) : 

I£IIORY SIZE : 
PROO 
DATA 

CYCLES PER BUTTERFLY: 

231 WOODS 
512 WOODS 

4 
8 

STAGES 1 AND 2 
STAGES 3 TO 8 
STAGE 9 
STAGE 10 

8.25 • 
10.5 (DUE TO EIT. IEI100Y WAITS) • 

AVERAGE CYCLES/BUTTERFLY 7.475 
TOT~ BUTTERFLYCYCLES = 38272 
INITIALIIATIOO OVERI£AD = 2185 = 5.4 Z DF TOT~ TIlE 
TOT~ NlIIIER IF INSTROCTIOO CYCLES = 40457 
TOTAL TIlE FOR A 1024 POINT m 2.42 .5 IINCLUDIt«i BIT 

REVERSIL) • 

fHHffH-+ ...... H .. HfoHHHfHIt .. HHHffHttH.HHHHHH-tHH .... fHfHHff 

H ... Hff .... 'Hff ... UHHfHlfffftHfff+HttfHfHHfHfHHtfffHfHHHHHH 

THIS PROOlJII1 IIUJDES FOLLOWIt«i FILES: 

THE FILE 'TWIDIKIIR.ASIt' COOSISTS DF TWIDIl.E FACTOOS 

THE TWIDIl.E FACTOOS ARE STORED IN BIT REVERSED ORDER AND WITH A TABLE • 
LOOTH IF N/2 (N = FFTlfNGTHI. 

EXAffl.E: SHloIN Foo N=32, lIol(n) = COS(2*PItn/N) - j*SINC2tPIt-n/N) 

ADDRESS COEFFICIENT 
o R{WNIO)) = COSI2.PltO/32) = 1 

-I(WNIO)) = SINI2tPltO/32) = 0 
R{ljNI4)) = COSI2tPl.4/32) = 0.707 

-I(WNI4)) = SINI2tPl'4/321 = 0.707 

12 R(Wlmll = COS(2'P!t3/32) = 0.831 
13 -I(WNI3)) = SIN(2tPl'3/321 = 0.550 
14 R{1IH17Il = COSI2'PIt7/321 = 0.195 
15 -I(WNl7Il = SINI2tPl'7/32) = 0.981 

III£N G8£AATED FOO A FFT lfNGTH IF 1024, TIE TABLE IS Fill ~L 
AVAILABLE FFT OF LESS OR EI!.JAI.. LEt«iTH. 

TIE MISSING TWIDIl.E FACTOOS IWNO,WNO, .... I AIlE GENERATED BY USING 
TIE S¥MTRY WN(N/4+n) = -J'WNlnl. THIS CAN IE EASILY R£Al.IlED, BY 
C>WIDING REAL- AND IMGINARY PART OF TIE TWIDIl.E FACTOOS AND BY 
NEMTING TIE NEW REAL PART. 

TO CIIAN(£ TIE FFT LENGTH ONLY TIE PAAAI£TERS IN TIE IEAIEl IF 
TWIDIKBR.ASI1 AND THE IIf'UT AND OOTPUT VECTOO LENGTHS NEED TO BE 
~TERED. 

fHftIHHfffHffHfHUHffHfff+ffH4HfHIIHUffHfftfffHHf.fHffHfo+H. 

f AR + j AI ------------------------------------ M' + j AI' 

I 
\ I 
I \ 

/ \ 

It 

I \ + 
• SR + j BI -- I cos - j SIN) ------------------- SR' + j BI' 

f TR = BR f COS + SI * SIN 
f TI = BR f SIN - BI f cos 
f AR'= AR T TR 
• AI'= AI - TI 
• SR'= AR - TR 
f Bl'= Al + TI 

'H+UHffHHfflU.HfHfHHflltfHHHHHffHIHffHtHIIH'IIHHHHHHt 

~ 
'i = c::I.o .... 
~ 

~ 
~ c 

~ 
~ 
'" r; 
c::I.o .... 
~ 
~ 
::3 

~ 
I 

~ 
> 
~ 



::.. 
;:: 

~ 
.global FFT FIRST 2 STAGES AS RADlX-4 BUTTERFLY 

.global H 

"* 
,glob.1 IfW.B FILL PIP£W£ 

.global NVIERT ;:! ,glob.1 NACHT£L ADDF 1AR2, <MO, R4 R4=AIl'CR 
~ 
;:: .global " SUBF 1AR2, .ARO++ , RS RS=AIl-CR 

Ei .global SIN!: ADDF <Ml,<M3,R6 Rb=M:+BR 

~. SUBF tAR1++, *AR3++,R7 R7 = III - IIR 
;:: ,bss ltf',2048 I"'UT I'ECToo LENGTH = IN IW'ENDS ADIF Rb,R4,RO AIl'=RO=R4.R6 

~ 
ON HI I1PYF fAR3tt, -tAR7, Rl RI = DI , IIR' = R3 = R4 - R6 

.bS5 OOTP,2048 OOlI'UT I'ECTIll LEIf3TH = IN 1!EP9IDS " SUBF Rb,R4,R3 

Sl ON HI ADLl' RI,'IIRI,RO ; RO=BI'Dl, All' =RO 

" STF RO, fAR4++ 
_"-l .text SUBF Rt, fARt ++, Rt ; RI = BI - DI , IIR' = R3 

i::) • " STF RJ,IARS++ 

(j FFTSIZ ,!IIord H ADLl' Rl,R5,R2 ; CR' = R2 = RS • Rl 

_"-l FG4M2 .word NVIERT-2 II'YF ttAR2,tM7,Rl ; RI = CI , 00' = R3 = R5 - RI 
FG4"3 .word NVIERT -3 .. SUBF Rl,R5,R3 

~ FGBM2 ,word NACHT[L-2 ADLl' Rl,'IIRO,R2 ; R2 = Al t CI , CR' = R2 ;:: 
I:l.. FG2 .word ~B " STF R2,<M2++IlRII 

a FG2I13 .word ttiAUl-3 SUBF Rt, IMO++, Rb ; R6 = AI - CI , Ill' = R3 

S- LooFFT .lIIord " " STF R3,IARb++ 

~ 
SINTAB ,!IIord SINE ADDF ~~,R2,R4 ; AI' = R4 = Rl • RO .., SINT"I .word SINE-l 

~ SINTP2 ,word SINE'2 RADJX-4 lIJTTERFLY LOOP 

$:I INPUT ,word Iii' 
;:: INPUTP2 .liIord IhP+2 APTB BLKI 

~ OUTPUT .word WTP MPYF fAFU--. tAR7 ,RO ; RO = CR , IBI' = R2 = Rl - ROI 
~ wm .\IIord WTP.l " SUBF RO,Rl,Rl 
~ MPYF IARlt+,fM7,Rl ; RI = BR , ICI' = R3 = R6 • R71 

'" AIlO'AIl'AI " ADDF R7,R6,R3 
~ AIlI , IIR' BI ADLl' RO, 'IIRO,R4 ; R4 = All • CR , IAI' = R41 ;:: 

AR2 : CR .. CI + CR~ + CI I .. STF R4,tAR4++ 
S- AIl3 : III • DI SUBF RO, IARO++, R5 ; RS = All - CR , IBI' = RlI 
~ AIl4 : All' • AI' .. STF R2,IARS++ 

~ 
AIlS : IIR' • BI' SUBF R7,R6,R7 , IDI' = R7 = Rb - R71 
IIRb : DR' • Dl' ADLl' RI,'AIl3,Rb , R6 = III • IIR , IDI' = R7l 

~ AIl7 , FIRST TWIDDLE FACToo = I " STF R7, IMb++ 
N SUBF Rt, fAR3++, R7 ,R7=Ill-IIR,ICI'=R31 
c:> FFT: W' FFTSIZ LOAD PAGE roINTER " STF R3, tAR2++ 

0 LDI 1FG2,IRO IRO = N12 = IFFSET B£TlEEN lli'UTS ADLl' Rb,R4,RO ; All' = RO = RI + R6 
c:> LDI !SINTAB,AIl7 AIl7 roINTS TO TWIDDLE FACToo 1 MPYF tAR3++, <M7 ,RI , RI = DI , IIR' = R3 = RI - Rb 

LDI @IIf'UT,1IRO IIRO roINTS TO All " SUBF R6,R4,R3 
ADDI lRO,AIlO,AIlI AIlI roINTS TO IIR ADDF Rl,+AIll,RO ; RO = BI • DI , All' = RO 
ADDI IRO,AIlI,AR2 AR2 roINTS TO CR " STF RO, <MI++ 
ADDI lRO,AR2,AR3 AR3 roINTS TO III SUBF RI, fARl++,Rl , Rl = BI - Dl , IIR' = R3 
LOI AIlO,AIl4 AIlI roINTS TO All' .. STF R3, fAR5t+ 
LOI ARl,AR5 AIlS POINTS TO 1lR' ADDF Rl,RS,R2 ; CR/ :; R2 :: R5 + RI 
LDI AR3,AIlb ARb rolNTS TO Ill' MPYF f+AR2, *AfU ,R1 , RI = CI , 00' = R3 = R5 - Rl 
LDI 2,IRI ADmfSS IFFSET .. SUBF Rl,R5,R3 
LSH -1,IRO lRO = N/4 = IUIlIER Ll' R4-lIJTT£RfLIES ADLl' Rl,'ARO,R2 ; Rl = AI • CI , CR' = Rl 

\0 
LDI lRO,RC .. STF Rl,IAR2++IlRll 

UI SUBI 2,RC SUBF R1, 'ARO++, Rb ,R6=AI-CI, Ill' =R3 



~ I: STF Rl,W6++ LDI AR5,RC 

IlJCI ADIF RO,R2,R4 , AI' = R4 = R2 + RO 
FIRST IlITTERflY-TYPE: 

a.EAR PIPEl.INE 
TR = BR I COS + Bit SIN 

SUIIF RO,II2,II2 , BI' • 112 = 112 - RO TI = BR I SIN - Bit COS - R7,R6,Rl , CI' = Rl = 116 + R7 AR'= AR + TR 
STF M,_ , AI' = M , BI' = 112 AI'= AI - TI 

:: STF 112,_ BR'= AR - TR 
SUIIF R7,R6,R7 , DI' • R7 = R6 - R7 BI'= AI + Til 

~ SIF R7,<AR6 , DI' = R7 , CI' = Rl 
::s :: STF Rl,<-AR2 RPTB !FlY! 

~ T1iIRD TO lAST-2 STAGE If'YF _1,R6,R5 ; R5 = BI t SIN I tAR'· c R5J 

" :: STF R5,iM2++ 

~ LDI 1FG2,IRI SUIIF RI,RO,R2 , 1112 = TI = RO - RII 
LDI IRO,AR5 If'YF WI,R7,RO ; RO = lit f COS , (R3:1 AI + TI) 

~ SUBI 1,AR5 :: ADIF R2,'MO,R3 

is LDI 1,AR6 SUBF R2,fARO++,R4 , IR4 = AI - TI , BI' = Rl) 

5" :: SIF Rl,<AR3++ 
::s_ SllfE LDI tsINTAB,AR7 , POINTER TO 1lI1D1lf FACTOR ADIF RO,R5,Rl ;R3=TR=RO+R5 

~ 
LDI O,AR4 , CRKP CWIIER If'YF WI++,R6,RO ,RO=BRISIN,R2=AR-TR 
LDI 111I'UT,ARO , lI'fER lSI. IlITTERFlY III'UT II SUIIF R3,'ARO,R2 

~ 
LDI ARO,AR2 , lI'fER lSI. IlITTERfl Y OOTPUT If'YF WI++,R7,RI , RI = BI I COS , IAI' • R4) 
ADDI IRO,ARO,ARJ , u.ER lSI. IlITTERFl Y OOTPUT II STF R4,<AR2++ 
LDI ARJ,ARI , u.ER REIL IIJTTERflY III'UT !FlYI - WO++,Rl,R5 ,R5=AR+TR,BR'=R2 

t:l LSH I,AR6 , 1l1LlILE CRKP ClUIT .. STF 112,_ 

(J LSH -2,AR5 , W4I.F IllTTERfl Y ClUIT 

."-'l LSH 1,AR5 , CLEAR LSB SIIITOI MR TO NEXT CRKP 
LSH -I,IRO , W4I.F STEP FIlII lI'fER TO u.ER lSI. 

§ PART SUIIF RI,RO,R2 ,R2=TI=RO-RI 

$:l.. LSH -I,IRI - II2,<ARO,Rl ,Rl=AI+TI, AR' =R5 

c:> ADDI I,IRI , STEP FlU! ILD IItAGINARY TO NEW lSI. :: STF R5,<AR2++ 
YIIUE SUBF 112, IARO++IIRII ,R4 , R4 • AI - TI , BI' = Rl 

So LDF WI++,R6 , DUtIff LOAD, MY FOR AIlDiESS lPDATE .. SIF Rl, <AR3++IIRII 
'I> ., .. LDF <AR7,R7 , R7=COS HOP WI++IIRII , ADalESS lPDATE 

~ 
If'YF WI-,R7,RI , RI • BI I COS , AI' • R4 

!RPPE .. SIF R4, <AR2++IIRII § If'YF WI,R6,RO ,RO=BRISIN 

~ FILL PIPEl.INE , ARO = lI'fER lSI. IlITTERFlY III'UT If'YF tARl++,'M7++,RO , Rl = TR = RI - RO , RO = BR I COS 
c::s , ARI = LI¥R lSI. IlITTERFlY III'UT II SUBF RO,Rl,Rl 
~ , AR2 = lI'fER lSI. IlITTERFl Y OOTPUT If'YF Wl++,R6,Rl ,Rl=BItSIN,R2=AR-TR 

'" , ARJ = LI¥R lSI. IlITTERFlY OOTPUT II SUIIF Rl,<ARO,II2 

§ , TI£ IItAGINARY PART IMS TO FlUlII - _,Rl,R5 ,R5=AR+TR,BR'=R2 
LDF f++AR7,R6 ,R6=SIN II SIF R2,IAR3++ 

So If'YF WI-,R6,Rl , Rl = Bit SIN LDI AR5,RC 
'I> .. ADIF ++W4,RO,Rl , IUIIY ADIF FOR CWIIER lfDATE 

~ 
If'YF Wl,R7,RO ,RO=BRICOS SECOND IIJTTERFLY-TYPE: 
If'YF Wl++,W7-,RO ,Rl=TR=RO+Rl, RO=BR.SIN 

~ .. - RO,RI,R3 TR=BllCOS-BRISIN 
tv If'YF Wl++,R7,RI , Rl • Bit COS , 112 = AR C TR TI=BIISIN+BRICOS 
C .. SUIIF Rl,<ARO,II2 AIl'= AR +·TR a ADIF _,Rl,RS ,RS=AR+TR,BR'=R2 AI'= AI - TI 
C .. STF 112,_ BR': AR - TR 



SlIIIF fARI++,tIIRO++,RI , 91' = RI • A[ - 91 
~ 8['= AI I TJ ;:: 2, IlUTTERfLY: lO"O 

~ RPT9 IIfLY2 
~ ADlf tARO, fARI,R6 ,AR'=Rb=ARIBR 
;;;- If'YF HARI,R7,AS , AS = 9[ f COS, IAR' = ASI SUIIf tARt ++, tMO++, R7 : BR' = R7 = AR - BR 

:: I: STF AS,lAR2ff ADlf tARO, fARI,R4 , AI' = R4 = AI I 91 

!il AJIlF Rl,RO,R2 : 1R2 = TJ = RO I Rll SUIIf fARIIII IROI ,tIIRO++ I IROI ,AS , 91' = AS = A[ - 91 

S If'YF fARI,R6,RO , RO = BR f SIN, (R3 = AI I TIl STF R2,tAR2++ , (AR' = R21 ... 
" AIlIlF R2, tARO,R3 ;: STF R3,fAR3ff , IBR' = R31 -. Q SlIIIF R2,fMO++,R4 , IR4 = AI - TJ , 91' = R31 STF RO,tM2++ , (A!' = ROI 

;:: 
STF R3,tAR3ff " STF Rl,fAR3ff , (91' = Rll 

" 
~ SlIIIF RO,AS,R3 ,TR=R3=AS-RO STF R6, fM2++ ,AR'=Rb 

~ 
If'YF fAR1+l, R7, RO ,RO=BRtCOS,R2=AR-TR " STF R7, fAR3H , BR' = R7 

" SlIIIF R3,.MO,R2 STF R4,IAR2IHIROI ,AI'=R4 
If'YF fARl ff ,R6,Rl , Rl = 91 f S[N, IAI' = R41 " STF AS, tAR3ff( [ROI , 9[' = AS 

tl 
II STF R4,lAR2ff 
IIfLY2 ADlf fAROff ,R3,AS ,AS=ARITR, BR'=R2 3. IlUTTERfLY: W"ft/4 

<"'l II STF R2,fAR3ff 
,:--l AIlIlF fAROff, t+AR1 ,AS , AR' = AS = AR I 91 

I:> CLEAR PIPELIlE SUIIf fARl,tARO,R4 ,AI'=R4=A[-BR 

~ ADIf' fARlff, tARO-- ,R6 , BI' = Rb = AI I BR 
ADlf Rl,RO,R2 ;R2=TJ=ROIRI SUBF +ARll1,tIIRO++,R7 ;BR'=R7=AR-91 

~ AJIlF R2, tARO,R3 ,R3=Alln 

" STF R5,IAR2++ ; AR' = RS 4, BUTTERfLY; W"ft/4 
~ O'f[ AR6,AR4 .... 
~ 

BlED GfilPPE , 00 Rl.I.~INl 3 INSTROCTJONS ADlf HARl,tIlARO,R3 , AR' = R3 = AR I B[ 
SUIIf R2,tIIRO++URll,R4 , R4 = AI - n , 8[' = R3 LIf' t-AR7,RI ; RI = 0 IFOR IIftR UXI'I 

§ " STF R3, tAR3ffURll " LIf' fARlff,RO , RO = BR IFOR lItER LOOPI 

~ LIf' fHAR7,R7 ;R7=COS SUIIf fARlffUROI, tAROtl, R2 ;BR'=R2=AR-91 
c::; 

" STF R4, IM2++( IRll ; A[' = R4 STF R5,fAR2++ , IAR' = RSI 

~ NOP fARlIIURIJ ; BRAI«li I£RE " STF R7,fAR3ff ; IBR' = Rll 

"" STF R6,*M3++ ; 191' = RbI 
Q END ~ THIS IlUTTERFLY GROUP 
;:: S, TO", BUTTERfLY: 

So O'fl 4,IRO ; .J.If' OOT AFTER lO(NI-3 STAG: 
~ aNZ STLfE RPT9 IIf2END 

~ S£COHD TO LAST STAG: LDF fAR7ff,Rl ; R7 = COS , IIA[' = R4ll 

~ " STF R4,IAR2ff 

N LD[ !INPUT,ARO ; lPPER [NPUT LDF fAR7ff,Rb ; R6 = SIN, IBR' = R21 
<::> lOl ARO,AR2 , lPPER OOTl'\JT " STF R2,fAR3ff 

Q ADD[ [RIl,ARO,ARI , L~ [NPUT If'YF HARI,R6,AS , AS = 91 f SIN , IAR' = RJI 

<::> lOl ARI,AR3 ; L~ OOTPUT " STF R3,fAR2ff 
LD[ IS I NTP2, ARl ; PO[NTER TO TW[Dll.E FACTOR ADlf RI,RO,R2 ; (R2 = TJ = RO I Rll 
lOl S,IRIl , DISTANCE IIETIEEN TIIIJ OROOPS If'YF fARI,R7,RO ; RO = BR t COS , (R3 = A[ I TIl 
lO[ !FGIlIt2,RC " AIlIlF R2,tARO,R3 

SUIIf R2,.ARQ++<IROI,R4 ; IR4 = A[ - Tl , B[' = R31 
FILL PIPELINE " STF R3, tAR3ffUROI 

ADDF RO,AS,RJ :R3=TR=RO+R5 
1. BUTTERFLY' 0('() If'YF fARl++,R6,RO , RO = BR f SIN, R2 = AR - TR 

" SlIIIF R3,tARO,R2 
ADlf tARO, fARl ,R2 ; AR' = R2 = AR + BR If'YF fARlff,R7,RI , Rl = BI f COS , IAI' = R41 
SUIIf tARl++, tAROt+ ,R3 ,BR'=R3=AR-BR " STF R4,iAR2++UROI 

\0 ADlf tARO, fARI,RO ,AI' = RO = AI + 91 -...I 



10 AIlIF tMO++,R3,R5 ,R5ollR+TR,IIR'=R2 " STF R3,'M3 
00 

:1 STF R2,_ STF R4,t11R2 , AI' = R4 

II'I'F t+ARI,Rt.,R5 , R5 = BI I SIN, tllR' = R51 LJST STAG: WITH INTEOOIlED BIT IIf\.£RSAl 

STF R5,tIIR2++ 
SlIIF RI,RO,R2 , tR2' TI =RO - RII LDI IINPUT,ARO , IJ'PER IIf'UT 

II'I'F tllRl,R7,RO ,RO=lIRlros, tR3=AI+TII LDI lOOTPUT, AR2 ; RB1. OOTPUT !!! 

ADIF R2,tMO,R3 LDI IINPUTP2,1IR1 , UIER INPUT 

SlIIF R2, tARO++,R4 , tR4 = AI - TI , BI' ," R31 LDI 1OOlP1,AR3 ; IMGlNARY OUTPUT !!! 

II STF R3,_ LDI ISINTP2;1iR7 , POINTER TO TWIDIl£ FACTORS - RO,R5,R3 ,R3=TR=RO+R5 LDI IFFTSIZ,IRO , BIT IIf\.£RSAl 
;l.. II'I'F tllRl++,Rt.,RO ,RO=IIRISIN, R2=IIR-TR LDI 3,IRI , GRIU' OFFSET 
;: 

:: SlIIF R3,tMO,R2 LDI IFtl4II2,fIC 

~ II'I'F tllRl++t1ROI,R7,RL , RI • BI I ros , tAl' = R41 
'I::i n STF R4,tAR2++ Fill PIPELIIE 

W - tARO++,R3,R3 ,R3=IIR+TR,IIR'=R2 
r: STF R2,_ I, WfTERFLY: 0"0 

~ 
is II'I'F t+ARI'R7,R5 , R5 = BI I ros , tllR' = R31 ADIF tMO,tllRI,R6 , IIR' = Rt. = IIR + IIR 

g' :: STF R3,tAR2++ SUBF tllRl ++, tARO++ ,R7 ,1IR'=R7=IIR-1IR 
SlIIF RI,RO,R2 , tR2 = TI =RO - RII SUBF tllRI,tMO,R4 : BI' = R4 = AI - BI 
II'I'F tllRl,R6,RO ,RO=IIRISIN, tR3=AI+TII AOOF tllRl++tlRI l,tIIRO++t IRII,R5 , AI' = R5 = AI + BI 

~ I: ADIF R2,tMO,R3 

~ 
SUBF R2, tIIRO++lIROI ,R4 , tR4' AI - TI , BI' = R31 2, WfTERFLY: 0"11/4 

If STF R3,_tlROI 
SUBF RO,R5,R3 ,R3=TR=R5-RO UBF t+ARI,tMO,R3 , IIR' = R3 = IIR - BI 

tl 
II'I'F tllRl++,R7,RO ,RO=lIRlros, R2=IIR-TR LDF t-AR7,RI , RI = 0 IFOR IMlER LOOPI 

:: SUBF R3,IARO,R2 " LDF tllRl++,RO , RO = IIR tFOR IMlER LOOP) 
(') II'I'F tllRl++,R6,RI , RI = BI I SIN, tAl' = R41 ADIF tARl ++tlRII, IAROt+, R2 ,1IR'=R2=IIR+BI 
!""'l :f STF R4, tAR2++tlROI STF R6,I~++(IRO)b , tllR' = 1161 
I:l AIlIF tIIRO++ , R3, R5 ,R5=IIR+TR,IIR'=R2 " STF R5,tIIR3++tlROlb , IAI' = R51 

S. :I STF R2,_ STF R7,1AR2++tlROlb , tllR' • R71 

C II'YF t+ARI,R7,R5 ,R5=Bllros,IIIR'=R51 3. TO K. BUTTERFLY: 
S- :: STF R5,tAR2++ 
<1> AIlIF RI,RO,R2 , ,tR2=T1=RO+RII PTB BFLEND ... 
~ 

II'I'F tllRl,R6,RO , RO = IIR I SIN, tR3 = AI + TIl 

" - R2,tMO,R3 17 CYCLES IF FFT SIZE (1024 IU: TO TI£ USE OF INTERNAL IEIDlY FOR BIT 
s::\ SUBF R2, tARO++ ,R4 , tR4 = AI - TI , ytLl = BI' = R31 1If\.£RSAl, 21 CYCLES IF m SIZE = 1024 IU: TO TI£ USE OF EXTEANAI. IEItORY ;: 
~ n STF R3,tAR3++ FOR BIT IIf\.£RSAl 
<:i SlIIF RO,R5,R3 ,R3=TR=R5-RO 

~ II'I'F tllRl++,R7,RO ,RO=lIRlros, R2=IIR-TR LDF tllR7++,R7 , R7 = ros , tlBI' = R4)) 

" SlIIF R3,tMO,R2 " STF R4, tllR3++IIROIB 

g BF2ElCI II'I'F tllRl++tlROI,R6,RI , RI = BI I SIN, R3 = IIR + TR LDF tllR7++,R6 , R6 = SIN, tllR' = R21 
:: ADIF tMO++,R3,R3 " STF R2, tAR2++IIROIB 

S- KPYF ttIlRI,R6,R5 , R5 = BI I SIN, tllR' = R31 
<1> CLEAR PlPELIIE " STF R3, tllR2++IIROIB 

~ 
AOOF RI,RO,R2 , 1R2' TI = RO + RII 

STF R2,tAR3++ , IIR' = R2 , AI' = R4 II'I'F tllRI,R7,RO , RO = IIR I ros , tAl' = R3 = AI - TIl 

~ " STF R4,tAR2++ " SlIIF R2,tMO,R3 

N AOOF RI,RO,R2 ,R2=T1=RO+RI ADOF R2, iARO++tIRII,R4 , tBI' = R4 = AI + TI , AI' • R31 

C AIlIF R2,tMO,R3 ,R3=AI+T1,IIR'=R3 " STF R3, tllR3++IIROIB 

Q :: STF R3,tIIR2++ AOOF RO,R5,R3 ,R3=TR=RO+R5 

C SlIIF R2,tMO,R4 I R4 = AI - TI , BI' = R3 II'I'F tARl++,A6,AO , RO = IIR I SIN, IIR' = R2 = IIR + TR 



~ 
;:: 

" ADIF R3,IMO,R2 

~ rl'YF tMI++IlRlI,R7,RI ; RI = BI I cos , IBI' = R41 

"t:l " STF R4, tM3ttilROIB 

~ WBF R3, fARO++ ,R3 ; Ill' = R3 = All - TR , All' = R2 
;:'l " STF R2, tM2++<1ROIB 

~ rf>YF .tMI,R7,RS ; RS = BI • COS , 11Il' = R31 Ei 
::;<. " STF R3, tM2++<1ROIB 

§ SIIBF RI,RO,R2 "- ; IR2 = 11 = RO - RII 
rl'VF tMI,R.,RO , RO = III I SIN, IAI' = R3 = Al - TIl 

<Q., " SIIBF R2,IMO,R3 

~ 
ADIF R2, IARO++<1Rll ,R4 ; IBI' = R4 = Al • Tl , AI' = R31 

" STF R3, tM3++<1ROIB 

_'-l SIIBF RO,RS,FtJ ,R3=TR=RO-RS 
I'I'VF *ARl++,R7,RO , RO = III I COS , All' = R2 = All + TR 

tl " ADIF R3,IMO,R2 
(J BFLEND rl'VF tMl++IIRII,Rb,RI , Rl = BI • SIN, BIt' = R3 = All - TR 
~ " WBF R3, tMO++, R3 

::, 
;:: CLEAR PIPELINE 
I:>... 
C) STF R2,IAR2++(lROIB , All' = R2 , IBI' = R41 

S- " STF R4, tM3tt<1ROIB 
'I> ADlIF RI,RO,R2 ;R2=Tl=RO+Rl 
""t WBF R2,IMO,R3 , AI' = R3 = Al - Tl , Ill' = R3 

~ " STF R3,IAIl2 
::, ADIF R2,IMO,R4 , Bl' = R4 = Al + 11 , AI' = R3 
;:: 

" STF R3, tM3++<1ROIB 
~ <:> STF R4,IAIl3 , BI' = R4 

~ END IF FFT 
'" <:> END: NlP ;:: 

S- NlP 

'I> N(f> 

~ 
NlP 

SELF III SELF 
~ .end 
tv 
<::::> 

0 
<::::> 

~ 
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HH .. HHH*nHfHfUHHHUHfHfffHffHHHfHHHfHHfftfffHffH-IftH 

IIPPfNDlX A5 

TITLE: llIlD1KBR.ASII 

TABlE WITH llIIDIl.E FOCT~ Foo A FFT LP TO A LENGTH (F 1024 CIl'f'lEX 
POINTS. 

FILE TO lIE L1N<ED WITH TI£ so.m COlE : R2DIT.ASII 00 R2DITB.ASII 

WRITTEN BY : RAI~IHJ IEYffi AND KARl SCHIARZ 
WIlSTlJL Fl£R tw1CIfUCHTEHTECHNIK 
~I'lERSITAEr ERI.A'aIHIJERNI 

14.07.89 

LENlTH (F llIIDIl.E FOCToo TABlE : 512 REAL VALl£S 1=1024 ml 

ffHHfflfHfffHfHHHffHffHfll-HfHHfHHH*HHHfH"HHffHHHfUHH 

.global 

.global 

.global 

.global 

.globa.l 

.global 

0 .set 
nhalb .set 
nvitrt .set 
nachtel .set 

sine 
0 

nhalb 
nviert 
naeMe I 

1024 
512 
2Sb 
128 

II .set 10 , 
, ANOTHER EXAII'LE (F m -tOOTH 0 = 32: 

m-tOOTH 0 

0/2 
0/4 
o/B 
NJ1IIER (F STAGES = Idlol 

, IlII.Y TI£ FIRST 16 VALLES (F TI£ TAILE ARE tIEEIED 

'0 .set 
fnhalb .set 16 
fnviert .set B 
toacbtel .set 4 .. .set 5 

.dita 

S1n! 

. float I. OOOOOOOOOOOOOOet<lOO 

.float O. OOOOOOOOOOOOOOet<lOO 

.float 7.07IOb7B11B6548t-«)1 

.float 7.07lOb7BIIB6548t-D01 

.float 9.i3879';32511287.-«)1 

.float 3. B26B34323650911e-«)1 

.floit 3. B26834323650911e-«)1 

.float 9.23879';32511287.-«)1 

.float 9.B07B52B040323Ot-«)1 

. fl,., 7. 11432195745216f-OOI 

.n"t 7.0275474445722'5<-«)1 

.fl .. t 0.1350041>4915452.-003 

.float 9.99981175282601.-«)1 

> :g 
~ = ~ .... 
~ 

~ . 
~~ 
~~ 
~"""" = ~ 
"0""" 

o~ 
~ ~ 
~> 
~ 00 

~~ 
-I 
=-~ 
Q ~ 
....,C" 

"""­=~ 

~~ .... 
(1~ 

9 ~ 
'a ~. 
~ ~ 
~ ~ 
-c;" 
s. ~ = ~ ~~ 
• Q 
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8' 
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HfHHffHfHlffUHUIHHHHHffffffHHHHHfHfffffffHftHfHHfHHI , 
APPENDIX BI 

GCNERIC _ TO !Xl A LOOPED-CODE RADlX-4 FFT IXfI'UTATl(w (W TIE 
TIIS320C30. 

THE PRiJGRAII IS TAKEN FRIl1 THE IIlIlRUS AND PARKS 1100(, P. 117. TIE ctH'I.EX 
DATA RESIl£ IN INTERNIi..~, AND THE IXfI'UTATl(W IS IIIH: IN-PLJ¥:E, 

THE TWIDCl..E FACTalS ARE SlPPLIED IN A TAILE PUT IN A .DATA SECTl(w, THIS 
DATA IS IN:lUl£D IN A SEPARaTE FILE TO PRESERVE TIE OENERIC NAME IF THE 
PROORA/t. FOR THE SAlE PlIlPOSE, THE SIZE IF TIE FFT NAND LOO4IN) ARE 
!£FINED IN A .Il.OIIL DlRECTl¥E AND SPECIFIED MlNO LIN<INO, 

IN OROER TO HAVE THE FItR RESULT IN BIT-RE¥ERSED ORl£R, THE 00 MIDDlE 
BRANCHES IF T)£ RADIX-4 BUTTERFLY ARE INTERCHANOED MlNO STIllAGE. t«JTE 
THIS DIFFERENCE lIEN CIJI'ARINO WITH T)£ _ IN P. 117 IF THE IIlIlRUS 
AND PARKS 1100(. 

AUTHOR' PANOS E. PAPAItICHALIS 
TEXAS INSTRlI£NTS AlXiUST 23, 1987 

fHHUHHfIHHH:lHHfUIHHHHUffHHHftH*UHHHfftftHfH*HfHfH 

, 
IIf> 

TEItP 
STORE 

.GLOIIL FFl 

.il.OIIL N 

.GLOIIL " 

.1l.01IL SINE 

.USEeT 'IN',1024 

• TEXT 

INITIAlIZE 

.WORD FFT 

.SPACE 100 

,WORD 
.WORD 
.IDlD 
• WORD 
• WORD 
• WORD 

.ass 

. ass 

.ass 
• ass 
.ass 
.ass 
.BSS 

$+2 

FFTSIZ 
N 

" SINE 
IIf> 

FFTSIZ, I 
LOGFFT,I 
SINTAII,I 
INPUT,I 
STAGE,I 
RPTCNT, I 
IEINDX,I 

ENTRY POINT Fell EXECUTI(W 
FFl SIZE 
L0041N) 
ADCIlESS IF SINE TAILE 

• I'EIOOY WITH INPUT DATA 

, STARTlNO LOCATl(w IF TIE PROORAII 

, RESERVE 100 IDlDS Fell ¥ECTalS, ETC. 

, BEGllfoIlNO IF TEIf' STORAGE AREA 

FFl SIZE 
L004IFFTSIZl 
SINE/COSINE TABLE BASE 
AREA WITH INPUT DATA TO PROCESS 
FFT STAGE • 
REPEAT COJlTER 
IE INl£X Fell SINE/COSINE 

FfT: 

LOOP: 

. ass 

. ass 
• ass 

LOP 
LOI 
LOI 
LOI 

STl 
LDI 
STl 
LOI 
STI 
LOI 
STl 

LOP 
LOI 
LOI 
LOI 
LOI 
STl 

LSH 
LSH 
LOI 
STl 

LSH 
STl 
ADDI 
STl 
SUBI 
LSH 

OUTER LOOP 

LDI 
ADDI 
ADDI 
ADDI 
LOI 
SUBI 

FIST LOOP 

RPTB 
ADIF 
ADDF 
ADDF 

LPCNT,I 
JT,I 
IAI,I 

TEll' 
tTEIIP,ARO 
!STeIlE,ARI 
tAROH,RO 

RO. fARt++ 
IARO++.RO 
RO, tAR1++ 
'AROH,RO 
RO,fAR1++ 
'ARO,RO 
RO,'AIlI 

FFTSI2 
IFFTSIZ.RO 
IfFTSIZ,IRO 
IFFTSIZ,IRI 
O,AR7 
AR7,tSTAGE 

I,IRO 
-2,IRI 
I,AR7 
AIl7, IRPTCNT 

-2,RO 
AR7,@IEINDX 
2,RO 
RO,M 
2,RO 
I,RO 

!INPUT,ARO 
RO,ARO,ARI 
RO,ARI,AR2 
RO,AR2,AR3 
!RPTCNT,RC 
I,RC 

IILKI 
*+ARO, f+AA2.Rl 
t+AR3, 'tARI, R3 
Rl,RI,R6 

SEcoo-\.OOP mNT 
JT mNTER IN _, P. 117 
IAI INl£X IN _, P. 117 

, INITIAliZE DATA LDCATlOO 
, rowND TO LOAD DATA PAGE POINTER 

, XFER DATA FRIl1 (WE I'EIOOY TO TIE 
OTHER 

, WI1ANIl TO LOAD DATA PAGE POINTER 

@STAGE lIlLOS TIE CURRENT STAGE 
NlI'IIIER 

lRO=2'NI lBECAUSE IF REALIIIIAG) 
IRI=N/4, POINTER Fell SIN/COS TAILE 

, INITIALIZE REPEAT ro..MER IF FIRST 
LOOP 

, INITIAliZE IE INl£X 

, JT=RO/2'2 

, RO=N2 

ARC POINTS TO XIII 
ARI POINTS TO XlIIl 
AR2 POINTS TO X1I2) 
AR3 POINTS TO X1I3) 

, RC SIlU.D BE (WE LESS THAN !£SIRED I 

RI=Y11 l+YI 121 
R3=YIIlI'Y(13) 
R6=RI+R3 

~ g 
~ 
~ 
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~ LDI @IAI,AR7 
;:: SUBF *+M2,f+ARO,R4 R4=YII)-Y(J2) LDI @IAI,AR4 

~ 
STF R6, ttARO YlIloRl<fi3 ADDI @5INTAB,AR4 , CREATE COSIlE INIIOX AR4 
SUBF RJ,RI RloRl-R3 ADDI AR4,AR7,AR5 't3 LDF tAR2,R5 R5=XII2) SUBI I,AIr.i , IA2=IAI+IAH ~ 

" LDF t+ARI,R7 R7=mll ADD! AR7,AR5,AR6 ;: ADDF tAR3, tAR I ,R3 R3=XiIIl+X(13) SUBI I,ARb , 1A3=1A2+IAH "" ;:: ADIF R5,tARO,RI , RI=IIIl+XII2) 
is' " STF RI, ttARl , VllIloRl-RJ seCOND LOOP 

5° ADIF R3,RI,R6 ,_I<fi3 
;:: SUBF 115, tARO,R2 , R2=XII l-X ([2) RPTB I1LK2 

<Q., " STF R6, tARO++<lRO) , XII)oRl<fi3 ADIF HAR2, ttARO,RJ , R3=V<ll+VII2) 
SUBF RJ,RI , RloRl-R3 ADDF nAR3 .... Ml,R5 , R5=VI1Il+V(13) 

~ SUBF 1M3, fM1,Rb , R6=XI11 l-X1!3) ADDF RS,R3,R6 , R6=R3+RS 
SUBF R7, ttAR3, RJ , -fl3=VIIIl-V<l3) '" SUBF HAR2,*tMO,R4 , R4=VII)-YI12) ."-'l " STF RI, tARl++<lRO) , XllI)oRl-R3 SUBF R5,R3 , R3=R3-RS 

i::1 SUBF R6,R4,RS , R5=R4-R6 ADIF IAR2, fMO,R1 , RI=IIIl+XII2) 
(J ADIF R6,R4 , R4=R4+R6 ADDF tAR3,tARI,R5 , R5=XIIIl+XII3) 
."-'l STF RS, t-+AR2 , m2)oR4-R6 N'YF R3, HAR5I1RIl, R6 , R6=R3tC02 

" STF R4, t+AR3 , VII3)oR4+R6 
" STF Rb, .tARO , YII)oR3+RS 

!:l 5tH RJ,R2,RS , R5=R2-R3 '" ADIF RS,RI,R7 , R7oR1+RS ;:: 
!:l. ADIF R3,R2 , R20R2<fi3 '" SUBF .AR2 , tARO ,R2 , R2=XIIl-XII2) 

0 I1LKI STF 115, tAR2++1 lRO) ; X<I2)::ft?-R3 ! ~! SUBF RS,R1 , RloRl-RS 

S. " STF R2,tAR3++IIRO) ; X(J3)~+R3 ! '! If'YF RI,tAR5,R7 , R7oRltSI2 

"" " STF R7, tARo++ I lRO) , lI11oRl+RS ... IF THIS IS TIE LAST STAGE, YW IilE OONE SUBF R),R. , R6=R3tC02-RI'SI2 

~ SUBF HAR3, f+ARl, RS , R5=YIII)-YI13) 
:::i LDI !STAGE,AR) If'YF RI, .. AR5(JRIl ,R7 , R7oRltC02 
;:: ADDI 1,AR7 

" STF Rb, .tARl , VI1I)oR3tC02-flltSI2 
~ CI1PI @LOGFFT,AR7 If'YF R3,*M5.R6 , R6=R3'SI2 C 

BID END ADIF R7,R6 , R6=R1tC02+R3tSI2 ~ STI AR7,@5TAGE , Ci.IlRENT m STAGE ADDF RS,R2,RI , R10R2+RS 
'" SUBF R5,R2 , R20R2-RS g ItAIN Itt£R LOOP SUBF tAR3, tARl ,115 , R5=X 1IIl-X 113) 

~JBF RS,R4,R3 , R30R4-llS 
S. LOI 1,AR7 ADIF RS,R4 , R4=R4+RS 

"" STI AR7,fIAI , INIT IA1 lNOEI If'YF R3, HAR41 IRI), R6 , R6=R3tCOl 

~ LDI 2,AR7 
" STF Rb,tAR1++(IRO) , XIIll=RItC02+R3tSI2 

STI AR7,@LPCNT , INIT UXP C!X.tITBl FOO IIf£R LOOP If'VF RI,tAR4,R7 , R7oR1'SlI 
~ INLCP: SUBF R7,Rb , R6=R3tCOl-RItSlI 
tv LDI 2,ARb , INCREIIENT IIf£R LOOP CWNTER N'VF RI, ttAR4IIRIl ,Rb , R6=RltCOl 
C ADDI I!LPCHT ,ARb 

" STF Rb,ttAR2 , m2)=RJtC01-RltSlI a LDI @LPCNT,ARO ItPYF R3, tAR4,R7 , R70R3'SlI 
C LDI @IA1,AR7 ADDF R7,Rb , R6=R1'C01+R3tSlI 

ADDI fIElHOX,AR7 , IA1=IAI+IE ItPYF R4, .tARbllRll ,Rb , R6=R4tC03 
ADDI @1tf'UT,ARO : IXIIl,VII)) POINTBl " STF Rb,tM2++(IRO) , XII2)oRltCOI+R3tSlI 
STI AR7,@IAI If'YF R2, tARb,R7 , R7oR2'S13 
ADDI RO,ARO,ARI , IXIIIl,VIII)) POINTBl SUBF R7,Rb , R6=R4'C03-R2tSIJ 
sn AR6, I!LPCHT IIPVF R2,.tARbIlRll,R6 , R6=R2tC03 
ADD! RO,ARl,AR2 ; U(I2),Y<I2)) POINTER " STF R6,++M3 ; Y(l3)=R4*C03-R2+S13 
ADDI RO,AR2,ARJ , 1I(I3),VI13)) POINTER If'IF R4, 'ARb,R7 , R7oR4tSI3 
LDI !RPTCNT,RC ADDF R7,R6 , R6=R2tC03+R4tSI3 - SUBI I,Re , RC SIIJlU) !If M LESS THAN IESlREO • BLK2 STF Rb, tAR3++IIRO) , XI!3)oR2tC03+R4'SI3 

0 Clf'1 @JT,ARb IF LPCNT=JT, GO TO 
IJ,) BlD SPCL Sl'ECIAl OOTTERFLV 



-i aPl ILf'CNT,RO STI AR6,tlEltill 
II III.OP ; LID' BlICK TO TIE INNER LID' lOl RO,IRO ; NI'IQ 
8ft COO LSH -3,RO 

ADDI 2,RO 
Sl'ECIIil. 1lImIIFlY FIIIIFJ STI RO,IJT ; JT'lQI2+2 

SUBl 2,RO 
SI'CI. LDI IRI,M4 i..SH I,RO ; N2=H2/4 

LSH -I,M4 ; POINT TO SIN(451 8ft LOOP ; NElT FFT STAlE 
AIIII tSINTAB,M4 ; CllEATE COSINE INIIEl M4>C021 

STORE RESll T .OUT USIM> BIT -i£VERSEII _1M> 

~ 
RP18 IILJ(3 

;:,; AIlIF IM2,_,RI RI=XIII+1tI21 END: LDI tFFTSlZ,Re :Re=N 

~ 
SIIF tM2,_,R2 R2-11l1-X 1121 SUBI I,Re ; Re SIWJI BE ONE LESS THAN IESIRED • 
AIlIF <+IIR2,<+MO;Rl R3=YIII+YII2I lOl ImSlZ,lRO ; IRO=SIZE IF FFT=N 

't:i SIIF <+IIR2,_,R4 R4aYIII-Y1121 LDI 2,IAI 
~ - tM3,tMI,RS RS=XCIII+Xml LDI tlNPUT,ARO := SlIIF RI,RS,Rt. R6oA5-RI LOP STIR 

'" ;:,; - RS,RI RI=RI+RS lOr tSTlR,AftI 
S AIXF <+M3,_I,RS RSoYIIII+Y1131 

g" SIIF RS,Rl,R7 R7=RH5 RP18 BITRV 
AIXF RS,Rl R3=R3+RS L!F _(II,RO 

.a. stF Rl,_ YIII- I! LDF tARO++IlROIB,RI 
:l S1f RI,IARO++IlROI XIII=RI+RS SITRV STF RO,_IUI 

~ 
SIIF tMl,tMI,RI RI.11II1-X 1131 ;: STF RI, IMI ++IIRII 
SIIF <+M3,_I,Rl R3=YCIII-yml 
S1f R6,ftM:l YCIIloR5-ftl SELF 8ft SELF ; IIRAIOI TO ITSElf AT TIE EtII 

t::I :: STF R7,tMl++IlROI ; XCIII>113-R5 • END 

~ 
AIlIF Rl,R2,RS ; R50R2+R3 
SIIF R2,Rl,R2 ; R2=-R2+R3 !!! 
SlIF RI,R4,Rl ; 1l3oR4-R1 

l AIlIF RI,R4 I R4=R4tRl 
SlIF RS,Rl,RI ; RI>113-R5 

C II'YF tM4,RI ; RloRltC021 

S- AIlIF RS,Rl ; R3=R3+RS 

'" II'YF _,Rl ; R3=R3tC02I ., .. S1f RI .. <+11R2 ; YII21-(Rl-RSltC02l 

~ SIIF R4,R2,RI ;Rl~'11 

~ 
II'YF _,RI ; RI=RltC021 .. S1f Rl,tM2++IIROI ; XII2I-(R3+RSltC02l 
AIIF R4,R2 ; R2-R2+R4 !!! 

C II'YF _,R2 ; R2=-R2tC021 ! ! ! 

~ IILJ(3 S1f RI,<+M3 ; Y(I3)-(R4-R2ltC02l !!' 
II STF R2,tM3++IIROI ; X(3)-(R4+R2)tC021 III 

§ 
S- aPl ILf'CNT,RO 

'" l1'li III.OP ; LOOP BlICK TO TIE INNER LID' 

~ coo LDI 1RPTCNT,M7 
~ LDI IIEINDX,AR6 
N LSH 2,AR7 I IIOIEI'BIT REPEAT CWI1ER fill NEXT 
C ; TIlE 
Q STI AR7,WTOO 
C LSH 2,AR6 ; IE=40IE 



~ > ;:: • 
~ 

Ii'PEIIIIl B2 fP .SET AR3 'C 
'C 

'i:l tw1E: ffU - RADIl-4 COI'l.£I m TO IE ClUED AS A C FlKTl(Jj. • GUll. .IFT_4 ,ENTAY POINT FCIl EIECUTI(Jj ~ 

~ = . [Loa. _SINE , AOCIlESS OF SINE TAIU ~ 
~ 

SYIO'SIS: .. 
int fft_4lN, ft, DATAl ,BSS FFTSlZ,1 ~ 

is int N FFT SIZE: No4Hf1 .BSS LOGFFT,I =:t. int IU1lIER OF STAGES = LOO4INI .BSS Itf'UT,1 t:= § flod Idatl ARRAY WITH Itf'UT AN) OOTPUT DATA ~ 
~ • TEXT 

lESCRIPTl(Jj: 
~::; 

~ GENERIC FlKTI(Jj TO 00 A RADIH m COI'UTATl(Jj (Jj TNE TIIS320C30. SINTAB .!IIord _SINE 
TNE DATA ARRAY IS2tNo-l(JjG, WITH REAL AN) llIAGINMY VALI£S AlTER- e -,:--l NATlMl. TNE _ IS BASED (Jj TNE FIIHRAN _ IN TNE lUlRUS INITIAlIZE C FlJI:Tl(Jj a I~ t::I AN) PMKS BOO<, p, 117, 

(J _ffU: PUSH FP , SA\£ lEDlCATED REGISTERS c· I 
,:--l IN CIlDER TO HA\£ THE FINAL RESllT IN BIT-R£\£RSED CIlDER, TI£ TWO LOI SP,FP = ~ ftID!l£ IIRAIDES OF THE RADIX-4 IIUTTEflfLY ARE INTERCHIIHGfD IIIJIIMl PUSH R4 
~ STCIlAGE. NOTE THIS DIFFERENCE WI£N COII'ARIMl WITH THE PROGRAII (Jj PUSH R5 ~ ;:: 
I:l... p, 117. TI£ CM'UTATl(Jj IS OONE IfH>LACE, ANI! TNE CIlIGlNAL DATA IS PUSHF Rb ~ 

lESTRDYED. BIT IIE\£RSAL IS IIflEIIENTED AT THE END OF THE FlKT!(Jj. PUSHF R7 
.. 

C ~ 
S- IF THIS IS NOT NECESSARY, THIS PART CAN IE ClXXENTED OOT. THE PUSH AR4 I 

'" SINE/COSlNE'TAIU FCIl TNE TWID!l£ FACTCIlS IS EIPECTED TO IE StPPLIED PUSH AR5 '~ ., 
IIIJIII«) LUt< TlIE, ANIIIT SHWl) HA\£ TI£ FI1WIIMl FCIlMT: PUSH ARb 

~ PUSH AR7 n 
I:j ,globoI .sine 0 
;:: • dati LOI <-FP121,RO ; ~ ARGlI'ENTS TO LOCATlCWS ftATCHl1«) e ~ .sine .floit 'l'lht.1 = sin(Ot2lpilNI ST! RO,IfFTSlZ ; TNE twES IN TNE _ c "e. 
~ 

.floit vllut2 ;: 5il'l(1'2Ipi/N) LOI .-FPI3I,RO 
ST! RO,@lOGFFT ~ .'float vi,lue(5N/41 = sinl 15tN/4-1 )12Ipi/N) LOI f-FP(41,RO 

<::> STl RO,!Itf'UT ;:: 

~ S-
TI£ VALlES vII ... l, .11 •• 2, ETC., ARE TNE SINE WA\£ VAlI£S. FCIl AN 
N-POINT m,' THERE ARE N+N/4 VALlES FCIl A All ANII A QlWlTER PERIOD INITIALIZE FFT ROOTlNE 

'" OF THE SINE WA\£. IN THIS WAY, A FLU SINE AND alSlNE PERIOD ARE ~ 
~ AYAILAIU IStftRllI'OSElIl. .BSS STAGE,! , FFT STAGE I 

.BSS RPTCNT ,I , REPEAT al.WTER -~ STACK STIUTLII£ lI'IJN TI£ ClU: .BSS IEINDI,! : IE INtEl FCIl SINE/alSllE 0 
N +--------+ .BSS LPCNT,! , SECINH.IXP al.WT t:= C -fP141 DATA .BSS JT,! , JT COltITER IN _, P. 117 

Q -fP131 ft .BSS IA1,1 , IAI INtEl IN PROORAII, P. 117 ~ 

C -fP121 N n -fP1ll : fIETIRj AOCIl LOI IfFTSlZ,RO 
!. -fPIOI OLDFP LOI IfFTSIl,IRO 

+-------. LDI IfFTSIl,IRI -~ LOI O,AR7 ~ 
REGISTERS USED: RO, RI, H2, Rl, R4, R5, R6, R7, MO, ARI, ARl, ARl, AR4, STl AR7,!!STAGE , !!STAGE IO.lS TI£ aRlEN! STAGE 

Nr.>, M6, M7, IRO, IR1, RS, RE, RC - ~ 
LSH I,IRO , lRO=2tNl llECAlISE OF REAL/lllAGl rIl 

li.rnaU I'iINOS E. PAPMIC»1l1S LSI! -2,IRI , IRI"ij/l, POINTER FCIl SIN/COS TAlIlE 
TEXAS [NSTRU£IITS OCTOBER 13, 1987 LOI I,AR7 ~ - STl AR7,IRPTOO ; INITIALIZE REPEAT COltITER OF F[RST g H'Htf.fHtH ...... tH •• HH ... fHH' ................ fHfHHtHH .. ffftHtff LOOP n 



-~ LSII -2,RO 
STI M7,tlEIlIX I INITIALIIE IE INDEX ItAIM IIf8 LOOP 
AIIII 2,RO 
STI RO,M I JT=RO/2+2 LDI I,M7 
SUBI 2,RO STJ 1IR7,tIAI I INIT IAI INDEX 
LSII I,RO I RO=II2 LDI 2,M7 

STJ M7,1LPCNT I INIT LOOP CIlNrER FtJl IIf8 LOOP 
IIJTER LOOP 11t.(J>: 

LDI 2,ARl> I ItcmENT IIf8 LOOP COlJjTER 
LOOP' ADDI IlKNT,IIR6 

~ LDI tINPUT,ARO I ARO POINTS TO XCII LDI ILPCNT,ARO 
:: ADDI RO,ARO,IIRI I IIRI POINTS TO XliII LDI IIAl,M7 

1i' ADDI RO,IIRI,IIR2 I IIR2 POINTS TO X1121 ADDI IIEIf()X,1IR7 I IAl=IAl+IE 
ADDI RO,IIR2,IIR3 I IIR3 POINTS TO 11131 ADDI IINPUT,ARO I CXCII, YIIII POINTER 'i;i LDI IRPTCNl,RC STJ 1IR7,tIAI ;;;-

l!I SIIII I,RC I RC SID.lII lIE (IE LESS !HAN lESlRED • ADDI RO,ARO,IIRI I (XIIII,YUIlI POINTER 
<10 STJ ARl>,tLPCNT :: FIST LOOP ADDI RO,lIRl,lIR2 I CXIl2I, YU211 POINTER 
is ADDI RO,IIR2,IIR3 I 111131, YII3I1 POINTER 

g" RPTB IlJ(I LDI IRPTCNl,RC 
ADIF 

_, t+IIR2,Rl 
I Rl=YUI+YII2I SUBI I,RC I RC SID.lII lIE (IE LESS !HAN lESIRED I 

~ 
ADIF ++ARl. -+MI ,R3 I R3=YIIII+Y( 131 Cl'PI M,ARl> I IF LPOiT=JT, 00 TO 
ADIF R3,Rl,R6 ; _1+R3 BiD 5I'CL SPECIAL BUTTERFLY 

.~ 
SUB' t+IIR2, _,R4 ; R4=YCII-YU21 LDI IIAl,M7 
STF R6,_ ; YIII=RI+R3 LDI tlAl,IIR4 
SUB' R3,Rl ; Rl=RI-R3' ADDI ISINTAB,IIR4 ; CREATE COSIIE INDEX 1IR4 

t1 LDF +IIR2,R5 ; R5=X1I21 ADDI 1IR4,1IR7,AR5 

~ 
:J LDF ttARl,R7 ; R7=YIIlI SUBI 1,AR5 ; 1A2=IAl+IAI-1 

ADIF tAR3,tMl,R3 I R3-XIIlItXII3I ADDI 1IR7,AR5,1IR6 
ADIF R5,_,Rl ; RI=XIII+1II21 SIIII 1,ARl> ; IA3=IA2+IAl-I 

§ :: STF Rl,t+AR1 ; YIIII=RI-R3 
~ ADIF R3,Rl,R6 ; _1+R3 SECOND LOOP 

C SUB' R5,_,R2 I R2=XIII-!II2I, 

So :: STF R6, tMO++llROI I XCII=RI+R3 RPTB IlJ(2 

<10 SUB' R3,Rl I Rl=Rl-R3 ADIF ftAR2.I+MO,R3 ; R3=YIII+YII21 .... SUB' tAR3, tMl,R6 ; R6=X III I-! 1131 ADDF ++IIR3,I+llRl,R5 I R5=YIIlItY(131 

~ SUB' R7,ttAR3,R3 ; -R3=YIIlI-YU31 '" ADDF R5,R3,R6 I-
s::; .. STF Rl,tllRl++IlROI ; XlIlI=RI-R3 SUB' 

t+IIR2, _, R4 ; R4=YUI-Y(121 

~ SUB' R6,R4,R5 ; R5=R4-R6 SUBF R5,R3 ; R3=R3-R5 
AIIIF R6,R4 ; R4=R4+R6 ADDF +IIR2,_,Rl ; Rl=XCII+1II21 0 
STF R5,t+AR2 ; YU21=R4-R6 ADIF +AR3, +ARI,R5 ; R5=XIIII+XII3I 

~ J: STF R4,ttAR3 ; YU31=R4+R6 IIPYF R3, ++AR5I1RIl, R6 ; _3+CD2 
SUB' R3,R2,R5 ; R5=R2-R3 ! ! ! .. STF R6,t+ARO ; YCII=R3+R5 

is ADDF R3,R2 ; R2=R2+R3 !! ! ADDF R5,Rl,R7 ; R7=Rl+R5 
IlJ(I STF R5,IIIR2++IIROI ; XU2}=R2-R3 !!! SUBF tllR2,+ARO,R2 ; R2=XIII-! 1121 

So .. STF R2, tM3++IIROI ; X(3)=R2+R3 !!! SUBF R5,Rl ; Rl=Rl-RS 
<10 IIPYF RI,'AR5,R7 ; R7=Rl+SI2 

~ IF THIS IS 11£ LAST STAGE, YIIJ lIRE lXJE .. STF R7,tllRO++llROI • XIII=RI+R5 
SUB' R7,R6 ; R6=R3+CD2-Rl'SI2 

~ LDI tsTAGE,M7 SU8F ttM3, HAR1, R5 ; R5=YIlIl-YIl3I 
tv ADDI 1,M7 IIPYF Rl,'+AR5I1RIl,R7 ; R7=Rl'C02 
C Cl'PI ILOOFFT,M7 .. STF R6,t+AR1 ; Y(IlI=R3+CD2-RI+sI2 
Q BiD END IIPYF R3,'AR5,R6 ; R6=R3'SI2 
C STI 1IR7,ISTAGE ; aReIT m STAGE ADDF R7,R6 ; _I +CD2+R3'SI2 



~ AD!}" RS,R2,RI ; RI=R2+RS ::: SUBF RS,R3,RI ; RI=R3-RS 

~ 
SUBF RS,R2 ; R2=R2-R5 I1PYF .AR4,RI ; RI=RI>C021 
SUBF >AR3, >ARI,RS ; RS=XIIIl-l{!31 AD[/' RS,R3 ; R3=R3+RS "i::l SIJBF RS,R4,R3 ; R3=R4-RS I1PYF *AR4,R3 ; R3=R3>C021 

" ;:; ADIJ" RS,R4 ; R4=R4+RS STF RI, f+AR2 ; YII2I=IR3-RSI'C021 

'" 
l'I'YF R3, ++AR4IIRII ,Rb ; Rb=R3+C01 SIIBF R4,R2,RI ; RI=R2-ll4 ,,, 

::: " STF Rb,>ARI+t(IROI ; XIIIl=RI'C02+R3'SI2 l'I'YF .AR4,RI ; RI=R1+C021 IS l'I'YF RI,>AR4,R7 ; R7=RI'SII 
" STF R3, *AR2++( lRO) ; X 1121=IR3+RSI+C021 :::to SIJBF R7,Rb ; Rb=R3*COI-RlfSIl AD!}" R4,R2 ; R2--R2+R4 ", C ::: I1PYF RI, ++AR411RIl ,Rb ; Rb=RI+CDl I1PYF .AR4,R2 ; R2=R2+C021 ", 

~ " STF Rb, .+AR2 ; YII21=R3'C01-Rl'SII BLK3 STF RI, 'tAR3 ; y(!31=-IR4-R21+C021 ,,, 
I1PYF R3, >AR4,R7 ; R7=R3'SIl 

" STF R2. +AR3++IlROI ; 1Il3)=IR4+R21'C021 

~ AD[/' R7,R6 ; Rb=RlfC01f.R3tSII 
l'I'YF R4, ++ARbllRl I ,Rb ; Rb=R4'CQ3 Cl'I'I I!I.PCNT, RO ."'-l 

" STF Rb, 'AR2++IIROI ; XI121=RI,COI+R3'SI1 BFD I,,-OP ; LOO' BACK TO THE IIf£R LW' 

tl l'I'YF R2, +ARb,R7 ; R7=R2'S13 

(j SIJBF R7,R6 ; Rb=R4'CQ3-R2'SI3 CONT LDI @APTCNT,AR7 
_"'-l I1PYF R2, ++ARbIIRIl ,Rb ; Rb=R2'CQ3 LOI @IEINDX,ARb 

" STF R6,HAR3 ; y(!31=R4'CQ3-R2'SI3 LSH 2,AR7 I~MENT REPEAT C[WTER FOR ~XT 
i:l l'I'YF R4, 'ARb,R7 ; R7=R4'SI3 TIlE ::: 
i:l.. ADDF R7,Rb ; Rb=R2fC03+R4+SI3 STI AR7, !RPICHI 

(;) lJL)(2 STF Rb, IAR3++( IRQ) ; XI131=R2+C03+R4'SI3 LSH 2, ARb ; IE=4'IE 

S- ST! ARb,mINDX 

'" Cl'I'I I!I.PCNT,RO LOI RO,IRO ; NI=N2 .... BP Irt..OP ; LW' BACK TO THE INNER LW' lSH -3,RO 

~ BR CONT ADDI 2,RD 
i:l STI RO,M ; JT=N2I2+2 
::: SPECIAL IIJTTERFLY Foo W=J SUBI 2,RD 
~ LSH I,RO ; N2=N2/4 C 

SPCL LOI IRI,AR4 BR LOOP ; ~XT FH STAI£ ~ LSH -1,AR4 ; POINT TO SINI4S1 

'" ADD! @SINTAB,AR4 ; CREATE COSI~ INDEX AR4=C021 [(I THE BIT-REVERSING OF THE OOTPUI 
C ::: 

END: LDI !fFTSIZ,Re Re=N RPTB BLKJ 
S- AlJ[/' >AR2,>ARO,RI ; RI=XI!)+l{!21 SUBI I.Re Re SIO.lD BE OOE LESS 1fW< DESIRED , 

'" SUBF 1AR2, -IARQ, R2 ; R2=XII1-X1121 LDI !fFTSlZ,IRO lRO=SIZE Of FFT=N 

~ AODF HARZ, HMO,R3 ; R3=YIlI+YI121 LOI @INPUT,ARD 
SUBF HAR2, HARO,R4 ; R4=YIIJ-Y1121 LDI @INI'UT,ARI 

~ AD[/' 1M3, *ARt ,RS ; RS=XIIIl+l{!31 
tv SUBF RI,R5,Rb ; Rb=RS-ll1 RPTa BlTRV 
0 AD!}" RS,RI ; RI=RI+RS eMPI ARO,ARI a AD[/' HARJ, ++ARI, R5 ; RS=YIIII+YII31 BGE CONT 
0 SUE<!' RS,R3,R7 ; R7=R3-RS L!}" 'MO,RO 

AD[/' RS,R3 ; R3=R3+RS LDF >ARI,RI 
STF R3, HMO ; YIlI=R3+R5 STF RO, *ARI 
STF RI, -tM{)t+( IROl ; XI!I=RI+RS STF Rl,fMO 
SUBf .AR3,>AR1,RI ; RI=XIlII-X(j3J LDF HARQ( 1) ,RO 

SUBF HAR3, ++ARt, R3 ; R3=YIIII-YI131 " LDF HARHlI,Rl 
STF Rb,HARl j Y(I1I=R5-Rl srF RO,HARt(l) 

STF R7,>ARJ++IIR()1 ; XIIII=R3-RS SIF RI,t+AROI11 
AD!}" R3,R2,RS ; RS=R2+R3 CONT NOP f+tAf(O(Zl 

SlJBF R2,R3,R2 ; R2=-R2+R3 !!! BITRV NOP 'ARI++llROIB - SlJBF Rl,R4,R3 : R3=R4-ll1 0 
-...I ADDF Rl,R4 ; R4=R4+Rl RESTffiE Tf'E REGISTER VALl£S AND RETLIIN 
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- CllPI MI,AAO , XCfWt)E LOCATI ()IS CIt. Y > 0 BGE CONT , IF AAO{MI "0 Pl'PENDlX CI 
LLf 'MO,RO "0 

GENERIC PROORAII TO 00 A RADlX-2 RfAL FFT COIf'UTATION ON TlE TI1S32OC30 .. LLf lIARl,RI ~ 
STF RO,lIARl := 

THE PROGRAM IS TAKEN FROM HE PPI'ER BY SORENSEN ET AL, cUE 1987 ISSUE .. STF Rl,*MO =-
OF THE TRIV<SACTIONS ON !\SSP, CONT tfl' tMO++ ~. 

BITRV tfl' tAR1 H( 1ROIB 
THE lREALI DATA RESIlE IN INTERNAL ~Y. TlE COMPUTATION IS lXJiE ~ 
IN-I'lACE. HE BIT REVERSAL IS lIOI£ AT TIE BEGINNItIJ Lf HE PROJRII/1. LENGTH-00 lIUTTERFLIES ~ 

~ 
tINPUT,M~ , AAO POINTS TO X!ll ;: THE TWIDDLE FACTffiS ME SlI'PLIED IN A TABLE PUT IN A .OATA SECTION. THIS LDl ~~ 

~ 
DATA IS INCLUlIED IN A SEPMATE FILE TO PRESEJM: TIE f£NERIC NATOOE OF THE LDI lRO,RC , REPEAT N/2 TItlES 
PROGRAM. FOR TIE SAllE MPDSE, THE SIZE OF THE FFT N AND Lffi21NI ARE SUBI I,RC , RC SOOlUI BE 01£ LESS THAA lIESIRED I Q ~ 

'G :3 := 
~ 

DEFINED IN A .GLOBL DIRECTlVE ANO SPECIFIED IDlING LINKING. TIE LENGTH OF ~ 

~ 
THE TABLE IS N/4 + N/4 = N/2. RPTB BLKI "0 .., 

ADDF HARO, *ARO++, RO , R(FXlll+X(J+11 a .... 
~ ~ ;: AlJTti(IR: PAN~; E. PAPAMICtlAlIS SUBF tARO,*-ARO,Rl , RI-X(! I-X(J+() 

i:i TEXAS INSTRlJMENTS SEPTEMBER 8, 1987 BLKI STF RO,*-AAO ; xn )=X( I 1+x{I+lI a~ 
~. .. STF RI,lIARO++ , X(!+II-X(1)-X!l+() ... . .., 
§ • (;LOft FFT , ENTRY POINT FOR EXECUTION Q Q 

~ 
.GLO~. N : FFT SIZE FIRST PASS Lf TIE 00-20 LOCI' ISTAGE K-2 IN 00-10 LOCI'I :=trQ 
.GLOBL M ; LOO2(NI Q 

.., 
~ .GLOBL SINE : AO!lfl£SS Lf SINE TABLE LDI @INPUT,ARO , AAO POINTS TO X (1) := 9 LDI 2,IRO : lRO-1ofl2 
.'"-l INP .USECT "IN",I024 , tlEtIJ<Y WITH INPUT DATA LOI eFFTSIZ,RC -:r-
\:j .BSS OOTP, 1024 , tlEMORY WITH OOTPUT DATA LSH -2,RC ; REPEAT N/4 TIMES ~ Q 
<'l SUBI I,RC , RC SOOlUI BE 01£ LESS THAN lESlRED I 

.'"-l • TEXT ~~ 
RPTB BLK2 a:: Q s::, INITIALIZE ADLf HARO{ IRO), *MO++( IRO),RO , R(FX(1)+XII+21 ;:: 00= :::.. SUBF tARO, .-AAOIIROI,RI ; RI-XIII-XII+21 

a • wORD fFT , STMTItIJ LOCATION Cf TlE PROGRAM NEGf t+AAO,RO , R(F-m+31 ~~ 
So .. STf RO, '-AROI lROI ; X(I)=X(J)+X{i+2J == ~ • SPACE 100 , RESERVE 100 WORDS fOR VECTORS, ETC • BLK2 STf Rl,*r:iKl++(JRQI , m+21-m )-X (J+21 

O~ .... .. STF RO, HARO , x(!+31--Xll+31 

::? FFTSIZ • WOOO 

\:i LOGfFT • WORD MAIN LOOF IFFT STAGESI =~ ;:: SINTAB • WORD SINE 
~ INPUT • WORD INP LOI eFFTSIZ,IRO ~ 0 OUTPUT .WOOO ClJTP LSH -2,IRO ; lRO-INDEX FOR E 
~ ~ 

LOI 3,R5 ; R5 IIlLDS TIE ClIlRENT STAGE NltIlIER !. '" FFT: LOP FfTSIZ ; Clit'MND TO LOAD DATA PAGE POINTER LOI I,R4 : R40N4 
0 LOI 2,R3 , R30Ia 

~ ;:: 
00 TIE BIT -REVERSING AT THE BEGINNltIJ LOOF LSH -I,IRO , EoE/2 

So LSH I,R4 ; N4=2ftt4 ~ 
~ LDI I!fFTSIZ.RC ; RC=N LSH 1,R3 , N2020m ~ 

~ 
SUBI I,Re ; Re SHOOLD BE ONE LESS THAN lIESlRED I 
LDI eFFTSlZ ,IRO INNER LOCI' 100-20 LOCI' IN TIE PROGRAM I 

t:i LSH -I,IRO , lRO=AALF TIE SIZE Cf FFT-N/2 

N LDI @INPUT,AAO LOI tINPUT,AR5 , AR5 POINTS TO X!II 
C LOI @INPUT.ARI INLOP LDI lRO,AAO a .. ADDI @SINTAB,AAO , AAO POINTS TO SIN/COS TABLE 

C RPTS Sl1RV LOI R4,IRI , IRI0N4 



~ 
;: N(p 

~ 
LDI IIRS,ARI MlP 
ADOI I,ARI , ARI POINTS TO I III I=XIl+JI 

~ LOI ARI,AR3 END BR END ,BRANCH TO ITSELF AT 11£ END 

:! ADDI R3,AR3 , AR3 POINTS TO XU31=XIl+J+N21 ,END 

~ 
LDI AR3,AR2 
SUBI 2,AR2 , ril2 POINTS TO 11121=XIl-J+N21 

is ADOI R3.M2,AR4 , ril4 POINTS TO XII41=XII-J+N1I 
~. 

§ LOF 'IIRS++IIRII,RO , RO=XUI 

~ 
ADOF HIIRSIIRII,RO,RI , RI=XUI+XIl+N21 
SUBF RO, mARSIlRI I ,RO , RO=-XIlIHIl+N21 

~ " STF RI,HIRSIlRlI , XIlI=XIIi+XIl+N21 
NEGF RO , RO=XIl I-XI I +H21 
NEGF Ht-M5(1RU,Rt , RI=-XII+N4+N21 

tI " STF RO,'M5 , XIl+N21=XIII-XII+N21 

(J STF RI,'IIRS , XII+N4+N21=-KIl+N4+N21 

."-l 
INNERIIOST LOOP 

I:> 
;: 
I:>.. LOI @FFTSII,IRI 

a LSH -2,IRI , IRI=SEPARATION BETIEEN SIN/COS TBLS 

S. LDI R4,Re 

'" 
SUBI l,Re , REPEAT N4-1 Tl~S ... 

~ RPTB ILK3 

s::i It'YF >AR3,>+ARQIIRII,RO ,RO=XII31'COS 
;: If'YF fAA4, 'ARO,R1 , RI=XII41'SIN 
~ I'I'YF >AR4,"AROIIRII,RI , RI=XI141.COS 
<::i ROOF RO,RI,R2 , R2=XtI31'COS+XI141'SIN 

~ " 
It'YF 'AR3,>ARO++lIROI,RO , RO=X!l3I'SIN 
SlJBF RO,RI,RO ; RO=-X(l3)ISINtX(J4)'COS !!! 

<::i SUBF >AR2,RO,RI ; Rl=-XII21+RO I!! ;: 
ADDF 'AR2,RO,RI : Rl=X(J2I+RO !!' 

S. " STF Rl.fAR3++ ; X( I31=-X021+RO ! I! 

'" ROOF >ARI,HZ,AI , RI=XII1I<il2 

~ " STF RI,>AR4- ; X(l4)=X(J2>+RO !! I 
SUBF R2,tARI,RI , RI=l(lIHl2 

f:::i " STF Rl,IAR1++ , XIlIl=XilIl+R2 
tv BLK3 STF RI, 'AR2- , XII21=XIlIl-R2 
C a SUBI !INPUT,ARS 

C ADDI R4.11RS , IIRS=I+NI 
Cl'l'I @FFTSII,1IRS 
SLID INLOP , LOOP BACK TO TI£ INNER LOOP 
ADDI !ItflJT,1IRS 
MlP 
HOP 

ADOI I,RS 
Cl'l'1 !LIXHT,RS 
BLE LOOP 
N(p 

I()p 



- > -N /\'PENDIK C2 FP • SET M3 "I:S 

NAI1E: .o..OIIl ..FFTJI!. ; ENTRY POINT FOR EXECUTION i 
ilL< I --- RADIX-2 REAl. FFT TO BE CAllED AS A C FtKTlIlN. .0..011.. _SItE : ADOOESS OF SItE TAIl.E = ~ 

SYNCf'SIS: .BSS FFTSIZ.I ;;:l' 
lnt ffLr\(N, !'t. data) • ass LCXJ'FT.I 

int N FFT SIZE: N=2*'" .BSS IIPUT.I n 
lnt PI ~BER OF STAGES = LOO21NI N 

~ floit Idata. MAAY WITH IIf'UT AND 0U1l'IJT IiITA • TEXT . 
:: 

~ ~ 
[(SCRIPTION: SINTAB .word _SINE 

G£NERIC Fl))C!ION TO JJO A RADIK-2 FFT CMUTATION ON THE T11S32OO). 
~ THE IiITA MAAY IS tHONG. WITH ONLY REAl. DATA. THE OUTPUT IS STORfD INITIALIZE C FtKTlON 

~ IN TIE SME LOCATIONS WITH REAL AND IIIAGINARY POINTS RAND I AS 

~ 
Fo..LOIIS: RIOI. Rill ••••• RINI2I. IINI2-lI ••••• 1111 ..FFT _RL: PUSH FP ; SA\{ mllCATED REGISTERS I LDI SP,FP 

is THE PflOGRAI1 IS BASED ON TIE FORTRAN PROORAII IN THE PIIPER BY SORfNSEN PUSH R4 ~ 
5' ET AL., .WE 1987 ISSl{ OF TRMS. ON ASSP. THE CMUTATION IS 00'£ PUSH RS = :: IN-PLACE. AND THE ffilGINAL DATA IS IlESTROYED. BIT REVERSAL IS PUSH AR4 ~ 

~ 
II1PLE~NTED AT THE BEGINNING OF THE FtKTlON. IF THIS IS NOT PUSH AR5 

.... 
~ 

N£(<:SSAAY. THIS PART CAN BE CI:fIIENTED OUT. I 

~ 
LDI +-fPI21.RO ; It1VE ARWtENTS TO LOCATIONS ItATCHING N 

THE SINE/COSINE TAiL£ Fffi THE TWIDILE FACTORS IS EXPECTED TO IE STI RO.@FFTSIZ THE~ IN THE_ 

~ SlI'PLlED WRING LIft( TI~. AND IT SIO.UI HAl{ THE FGLLOIIING FORItAr: LDI +-fPI31.RO 

tl STI RO.tLCXJ'FT a-
II .glot-al _sine LDI +-FPI41.RO 

,:-i ,dita STI RO.@INPUT ~ 
_sine .floit vahe1 = siniOI2f pi/NI ~ s:l .float vilue-2 = sinlllltpl/NJ JJO THE BIT REVERSING AT THE BEGIIfjING :: t-3 s:l.. 

<:) 
.fluat value{NI2) = c.os( (N/4)t2*pi/NI LDI IfFTSIZ.RC ; RC=N ..... 

S. 
SUBI I.RC ; RC SIO.UI IE ONE L<:SS THAN IlESIRED I Q 

"" 
TIE VALL€S v.luel TO v.I"INI41 ARE THE FIRST QUARTER OF THE SINE LDI IfFTSIZ.IRO = ., PERIOD AND; v.I"INI4+1I TO v.lu.INI2) ARE THE FIRST QUARTER OF THE LSH -I.IRO ; IRO=HALF TIE SIZE OF FFT=NI2 tD 

~ COSltE PERIOD. LDI @IIf'UT.ARO n 1:1 LOI tINPUT.ARI 
:: STACK STRUCTURE LfON THE CAW a-
~ +--------------+ IIPTB BITRV -<:::S -FP(4) DATA ClIPI ARI.ARO ; XCII1NGE LOCATIONS ONLY tD 

~ -FP<3l " BGE CONT ; IF AROCARI ~ 

'" -FP(2) N LDf oARO.RO = <:::S -FPIIl : RETLIlN ADffi " LDf +ARI.RI til 
:: -FP(O) 0..0 FP STF RO.+ARI = S. t--------------+ " STF RI.oARO n "" CONT IU' oARO++ 

~ 
REGISTERS USEO: RO. RI. R2. R3. R4. RS. ARO. ARI, ARl. AR4. AR5; IRO. BITRV IU' .AR1++IIROIB 

~ IRI, RS. RE. RC 

~ L<:NGTH-TWO BUTTERFLIES 

~ tv AUTH(ll: PANOS E. PAPAIIICHALIS 
C TEXAS INSTRIJ1ENTS OCTOBER 13. 1987 LDI !INPUT.ARO ARO POINTS TO XIIl a ..... 

LDI IRO.RC REPEAT NI2T1I£S 
.... 
Q 

C UfUU'U'.HUfffffU,ffffffffffffff.'HUH,fHfUfffH •• fffffU'HU'HH SUBI I.RC RC SIO.UI IE ONE LESS THAN IlESIRED I = 



~ 
NEGF l++iIR5tIRll,RI RI=-Xtl+N4+N21 ;: 

RPTS lUI STF RQ,+i1R5 Xt ItN2I=Xtll-XtltN21 .. rr ADOF HARO •• AROt+ ,RO ; RQ=XtII+xtl+11 STF RI,t-AR5 X tl +N4tN2I=-Xtl +N4+N21 '::l SUSF fARO, f-MO,Rl ; RI=Xtl I-Xtl +1 I 
~ ilK! STF RO,f~ARO ; XtII=XtlltXtl+11 INt£JmOSTLOCf> ::! .. STF Rl,lIARQtt ; Xtltll=ltIHtl+11 
~ LDI IFFTSll,IRI ti FIRST PASS OF TI£ 00-20 LW' tSTAG€ K=2 IN OO-IO-lW'1 

LSH -2,IRI ; IRI=SEPARATION IIETIEEN SIN/COS TillS 

g' lDI R4,Re 
LDI @INPUT,ARQ ; ARQ POINTS TO Xtl I SUSI 2,Re ; REPEAT N4-I TII£S LDI 2,IRQ ; IRQ=2=N2 

<Q., lDI tFFTSII,RC RPTB 1lK3 

~ 
lSH -2,Re ; IiH'EAT N/4 TII£S It'YF tM3,ftARQtlRII,RQ ; RQ=Xt!3lfCOS SUSI I,Re ; RC SIU.lII lIE 0hE LESS THAN 1I:SIREO • It'YF fAA4, .ARQ;RI ; RI=Xtl41'SIN 

It'YF 'AR4, ftARQt IRI I,RI ; RI=xtl41'COS RPTB IIlK2 .. ADOF RQ,RI,R2 ; R2=ltI3ItCO$+ltl4l'SIN i::l ADOF I+AROIIROI, 'AROt+IIROI, RO ; RO=XtlI+Xtl+21 II'YF 'AR3,tAAOt+IIRQI,RQ; RQ=XI!3I'SIN \) SUBF 'ARQ, f-MOtlROI ,RI ; RI=XtlI-XII+21 
SUIIf RQ,RI,RQ ; RO=-XIl3)*S]N+X(l4}tCOS !! I ."-3 NEGF ++ARO,RO ; RQ=-Xtl+31 
SUEIF fAR2,RQ,RI ; Rl=-XlI2)+RO !!! $:l .. STF RQ, f-ARQ tl RO I ; XIII=XtlI+1iI+21 
ADOF fAR2,RQ,RI ; RI=X I 121+RQ .. , ;: IIlK2 STF Rl,fMQH(IRO) ; Xtl+21=XIIHtl+21 .. STF Rl,fM3H ; XIJ31=-X(2)+RO !!! $:l.. .. STF RO, HMO ; Xllt31=-Xtl+31 
AOOF fARI,R2,RI ; RI=11ll 1+R2 0 .. STF RI, 'AR4- ; X(J41=XII2HRO !!! S- MAIN lOOP (FFT STAGES I 
SUBF R2,fAAI,RI ; RI=XllIH12 '" .. STF Rl,lARl++ ; ltlll=ltl1l+R2 ... 

~ 
LDI tFFTSII,lRO 

1lK3 STF RI, iAR2-- ; XI121=XIllI-R2 lSH -2,IRO ; IRQ=INDEX F~ E 
$:l lDI 3,RS ; R5 nos TI£ CLIlRENT STAG€ NLI1IIER 

SUBI !INPUT,AR5 ;: 
~ LDI I,R4 ; R4=N4 

ADOI R3,AR5 ; AR5=ltNl <:j LDI 2,R3 ; R3=N2 
CI1PI IFFTSIl,AR5 ~ lOOP lSH -I,IRQ ; E=E/2 
!l.ED IILDP ; LW' BACK TO TI£ IHR LW' '" lSf! I,R4 ; N4=2fN4 
ADDI !INPUT,AR5 g lSH I,RJ ; R2=2tN2 
HOP 

S- INNER lW' ([0-20 LOOP IN TI£ PROGRAIII fa' 

'" ADDI 1,R5 

~ 
lDI !INPUT,AR5 ; AR5 POINTS TO X tIl 

C!l'1 eUGFT,R5 INlOP lDI IRO,ARO 
!I.E lOOP 

~ ADDI ISINTAB,ARO ; ARO POINTS TO SIN/COS TABLE 

tv lDI R4,IRI ; IRI=N4 
RESTORE TI£ REGISTER V~UES AND RETlIlN C a LDI AR5,ARI 
POP AR5 ADDI I,ARI ; ARI POINTS TO X III I=Xtl+JI 
POP AR4 C 

lDI ARI,AR3 
POP R5 ADDI RJ,AR3 ; AR3 POINTS TO Xtl3I=Xtl+J+N21 
POP R4 LDI AR3,AR2 
POP FP SUBI 2,AR2 ; AR2 POINTS TO X 112 I=Xtl-J+N2 I 
RETS ADDI R3,AR2,AR4 ; AR4 POINTS TO Xtl41=Xtl-JtNl I 

LOF -IM5++(lRU ,RO RO=X(J) 

ADDF ftAR5IIRII,RQ,RI RI=Xt I I+XtltN21 
SUEIF RO, f .. AR5( IRI I ,RO RQ=-Xtl 1+11 1+N21 - .. STF RI, f-AR5tlRI I X tIl =XI! 1+1iI+N21 - NEGF RQ RQ= Xtll-l tl tN2 I W 
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APPENJUC3 

GENERIC I'ROGIWI TO 00 A lWIIX-2 REIl. INIIERSE FFT CM'UTATlIII III TI£ 
TIIS32OC3O. 

TI£ lREIl.I DATA RESIlE IN INTERIW. tEItORY. TI£ COIf'UTATlIII IS In£ 
IN-f'I.M:E. TI£ BIT REVERSIiL IS In£ AT TI£ IIEGlrtllNl IF TI£ I'ROGIWI. TI£ 
1tf'UT DATA ARE SraD IN TI£ FOLLOIIINl 0RlER: 

REIOI. REIII ..... REIN/21. 1"INl2-lI ..... 1"111 

TI£ T1IlDll£ FACTORS ARE !U'fLIED IN A TAIILE PUT IN A • DATA SECTlIII. THIS 
DATA IS IMl.UDEO IN A SEPARATE FILE TO PRESER'IE TI£ IiElERIC NATIJlE IF TI£ 
I'ROGIWI. FOR TI£ SNIE _. TI£ SIZE IF TI£ FFT N AND L0G2INI ARE 
lEFlNED IN A .WIIl. DIRECTIVE AND SPECIFIED WUNl LlNCINl. TI£ LEr«lTH IF 
TI£ TAIILE IS N/4 + N/4 • N/2. 

~TIDI: PANOS PIIPMIClW.IS 
TEIAS INSTRtIIEIITS 

.Ill.OBL IFFT 
.• 1ll.OBL N 

.1ll.OBL " 

.1ll.OBL SIIE 

.BSS INP.I024 

.TEIT 

INITIALIZE 

,WORD IFFT 

• SPACE 100 

0ECaIIIER 21. 1988 

ENTRY POINT FOR EIECUTIIII 
FFT SIZE 
L0G2INI 
AllDRESS IF SINE TAIILE 

, tEItORY WITH 1tf'UT DATA 

, STARTINl LOCATlIII IF TI£ PROGRAIt 

, RESERVE 100 WORDS FOR VECTORS. ETC • 

'FFTSIZ .IOIIRII N 

LOOFFT .1oIIRII " 
SINTAB .1oIIRII SINE 
1tf'UT .1oIIRII IMP 

IFFH UIP FFTSIZ 

IIIIN LID' IFFT STAGESI 

U11 
U11 
U11 
LSH 
LDI 
LSH 

IrtlER LID' 

I.IRO 
3.R5 
IFFTSIZ.Rl 
-1.Rl 
IfFTSIZ.R4 
-2.R4 

, COItIIHD TO LOAD DATA PAGE POINTER 

, lRO=INlEX FOR E 
, R5 IILDS TI£ CIIlRENT STAlE IUIIIER 

, R3oilII2=N2 

, R4=NII4=N4 

LID' U11 
U11 
ADDI 

INl.IP U11 

.. 

LDI 
ADDI, 
LDI 
ADDI 
U11 
SUBI 
ADDI 

NIP 
AIIIF 
SUIIF 
STF 
STF 
LIF 
NPYF 
STF 
LIF 
NPYF 
STF 

INNERIIOST LID' 

U11 
LSH 
U11 
SUBI 

RPTB 
SUIIF 
ADIF 
NPYF 

:: STF 
ADIF 
SUIF 
NPYF 

:: STF 
SUIIF 
NPYF 

:: STF 
NPYF 
ADIF 

1lK3 STF 

SUBI 
CNPI 
BLTO 
ADlII 
LDI 
ADDI 

11tf'UT.AR5 
lRO.1IRO 
ISINTAB.IIRO 
R4.IRI 

AR5.ARI 
I.ARI 
ARI.AR3 
Rl.AR3 
ARl.AR2 
2.AR2 
Rl.AR2.AR4 

, AR5 POINTS TO XUI 

, IIRO POINTS TO SIN/COS TAIILE 
, IRI=N4 

, ARI POINTS TO 11lI1=XUM 

, ARl POINTS TO 11131=XIl+J+N21 

, AR2 POINTS TO 11121=llhl'N21 
, AR4 POINTS TO 11141'IU-J+NlI 

t++IIR5URlI , POINT TO IIl+N41 
t-AR51 IRlI.f+IIR5URI I.RO 
t+AR5URI I. f-ARSURI I.RI 
RO.f-ARSURlI , IUI=IUI+XIl+N21 
RI .... AR5URlI , IU+N2I-IIII-lU+N21 
tAR5.RO 
2.0.RO 
RO. f-ARSURlI , IU+N4I=2tIU+N41 
t++IIR5URlI.RI 
-2.0.RI 
RI.fAR5++URlI , XU+N4+N2I~XIl+N4+N2lf2 

IFFTSIZ.IRI 
-2.IRI 
R4.RC 
2.Re 

1lK3 
tAR2.tARI.RI 
tAR2. tARI.RO 
RI.f+llROIlRlI.RO 
RO.tARI++ 
tAR3. tAR4.R2 
tAR3._.R6 
R2.fARO.R6 
R6.tAR2-
R6.RO 
R2.f+llROIIRlI.R6 
RO,IAR3++ 
RI. tARO++I lROI.RO 
R6.RO 
RO.tAR4-

11tf'UT.1IR5 
IfFTSlZ. AR5 
Irt.OP 
11tf'UT.AR5 
lRO.ARO 
ISINTAB. ARO 

, IRI=SEPARATlIllIIETIIEEII SINICOS TBLS 

, REPEAT N4-1 TINES 

, RI=T1"IUlI-11121 

RO=T1tCOS 
1111 1=1111 1+11121 
R2=T2=III3I+XIl41 

, R6=T2tSIN 
, 11121=XIl41-l1131 

R6=T2tCOS 
IU31=T1tCOS-T2tSIN 
RO=T1tSIN 

, XIl41=T1fSIN+T2tCDS 

, LID' BACX TO TI£ IrtIER LID' 

, IIRO POINTS TO SIN/COS TAIILE 

f 
~ 
Q . 

n~ = t'D a :s 
I'C t'D 
== :I. ;-n 
::.~ 
8ri5 = ... 
:s 9 -:1"-
t'D = 
~o 
::::= 
00= 
~~ == 
Q~ 
=~ 

l 
f 
~ 



~ 
;:s IIIi: CIJjT ; IF ARO<Ml 

~ 
ADDI I,RS UF tARO,RO 
Cll'1 ILOIFFT,RS 

" UF tMl,Rl 
~ Il£D L(IJ> STF RO,IARI 
~ LSI! 1,IRO E=E12 

" STF Rl,tARO S! LSH -1,R4 _12 ClJjT 10' tMl>++ 
~ LSI! -1,R3 N2=N212 BITRV to' tARl++IIROIB 
B go lAST PASS (F 11£ MIN L(IJ> END III END ; IIRIN:H TO ITSELF AT TIE END 
;:s .END 

~ 
LOI tINPIIT,ARO ; ARO POINTS TO XIII 
LDI 2,IRO ; lRO=2=ft2 

~ 
LOI tFFTSIZ,Re 
LSH -2,Re ; REPEAT N/4 T1I£S 
SUBI I,Re ; Re SIO..UI BE (J,( LESS 1lW1 DESIRED I 

tl UF t+MOUROI,RO ; RO=XII+21 ("') IIPTB BLK2 !-i ADDF RO,fIIR(}++(IROI,Rl ; Rl=XIII+XU+21 
!:> SUBF RO,t-AROIlROI,Rl ; Rl'XIII-XII+21 ;:s 

" STF Rl,'-ARO(IRO) ; XIII=XIII+XU+21 s::.. 
a STF Rl,tARO++ ; XII+21=X!Il-X1I+21 

:1 UF t-ARO,RI 
So II'IF 2,O,Rl ; Rl=2.OtXCI+1I 

"" .., STF Rl,t-AROIIROI ; XII+1I=2.OtXII+1I 

~ " UF tARO++,Rl 

I:i II'VF -2,O,Rl ; Rl=-2.OtXCI+31 

~ 
BLK2 STF Rl,t-ARO ; XCI+31=-2.0tXCI+31 
I: UF t+AROIlROl,RO ; RO=XII+4+21 

C 

~ LENGTH-Till MTERFLIES 

g LOI @INPIIT,ARO ; ARO POINTS TO XIII 
LDI IFFTSIZ,Re 

So LSI! -1,Re ; REPEAT Nl2 T11£S 

"" 51111 I,Re ; Re SIO..UI BE (J,( LESS THAN DESIRED I 

~ IIPTB BLKI 
.~ ADDF t+AAO, tARO++ , RO ; RO=XIIl+XH+1I 

~ SUIIF tARO, t-ARO, Rl ; Rl=X!II-XII+1I 
C BLKI STF RO,t-ARO ; XIII=X!Il+XCI+11 

a I: STF Rl,tMOt+ ; X 11+1 l=XII l-X1I+1 1 

C 
00 TIE BIT REVERSING AT THE END 

LOI IFFTSIZ,Re ; RC=N 
SUBI I,Re ; Re SIO..UI BE (J,( LESS THAN DESIRED I 
LOI IFFTSIZ,IRO 
LSI! -1,IRO ; lRO=HALF 11£ SIZE (F m=N12 
LDI IUfltJT,MO 
LOI @INPIIT,ARI 

.- IIPTB BITRV .- Cll'1 ARl,ARO ; XClMlE LOCATIIJj5 IJjLY VI 
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- ~ - APPENDIX Dl " UF tARl,Rl 
00 STF RO, 'ARI 

GENERIC PROGRA/I TO 00 A RADIX-2 IWULEY TRImF!JlI1 ~ TI£ TlIS32OC30, " STF Rl , tARO "t:S 
~T 10' tARO++ ~ 

TIE PROGRAI1 IS TIlKEN FR01 TIE PAPER BY roRENSEN ET AL" OCT 1985 1SSl£ BITR'! 10' tARl++URO)B = 
OF THE TAA'lSACTI~ ON ASSP. 

Q. 
LENGTH-TIll WTTERFLIES ~. 

THE I REAL) DATA RESIDE IN INTERNAL t£I1OOY. TI£ COItPUTATlON IS DONE ~ IN-fLACE. TIE BIT-RE~ IS DONE AT TIE BEGINNlOO OF TIE PR01l~. lOl @INPUT,ARO ARO POINTS TO XU) 
lOl lRO,RC REPEAT NI2 TII£S I-" 

~ THE TWIDDLE FACTORS ARE stfPLIED IN A TAlilE PUT IN A .DATA SECTION. THIS SlIiII 1,RC RC 5HllD BE OlE LESS TIWI DESIRED I . 
;:,: DATA IS IIQUDEO IN A SEPARATE FILE TO PRESERVE TIE GENERIC NATLIIf OF TIE Q ~ 
~ 

PIlOGRAl1. FOR TIE SM PURPOSE, THE SIZE OF TI£ FHT N AND LlmlNI ARE RPTB BLKl = ~ 
~ 

DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED OOUtIJ Llrt<IOO. TIE LENGTH OF AIU HARO, tARO++, RO ; RO=Xllltl(J+1I -= THE TABLE IS NI4 t NI4 = N/2. SlIIIF tARO, t-ARO, Rl ; Rl=XU)-lU+1) =-~ 
;:! BLKI STF RO,HIRO ; XU)=xtI)+xII+1I ~ '"1 

'" AUTHOR; PANOS PAPAIIICHALIS DECEl!BER 11, 1988 " STF Rl, tARO++ ; XII+II=xtII-XU+1I 
.,.. 

;:,: TEXAS INSTRlI£NTS 
~r':) 

is FIRST PASS OF TIE 00-30 LOOP ISTAGE K=2 IN 00-20 LOOP) ~::p :::to .il..0!Il FHT ; ENTRY POINT FOR EXECUTION ~ 
;:,: .GLOBL N ; FHT SIZE lOl @INPUT,ARO ; ARO POINTS TO XIJ) ~ci5 
..:;, .GLO!Il " ; L0G2IN) lOl 2,IRO ; lRO=2=N2 N'"1 

.GLOBL SINE ; ADMESS OF SINE TABLE lOl eFHTSIZ,RC 

~a ~ LSH -2,RC ; REPEAT N/4 TI~S 

:-J .BSS INP,1024 ; ~tQlY WITH INPUT DATA SlIiII 1,RC ; RC 5HllD BE OlE LESS TIWI DESIRED • 

~-
tl • TEXT RPTB BLK2 =Q 
(j AIU HAROI lRO), 'ARO++I lROI, RO ; RO=XIJ)+XIL2) 

~ --., INITIALIZE SlIIIF f'ARO,*-MO(IROI,Rl ; Rl=XIJI-XIL2) 

I:l 
STF RO, HIROURO) ; X(JI=X(JI+x(L2) Q 

;:,: • WORD FHT ; STMTlOO LOCATION OF TI£ PROGRAI1 " UF HARO,RO ; RO=XIL4) ~ 
I:l.. AODF RO, t-ARO,Rl ; Rl=XIL3)+XIL41 

~ 
• SPACE 100 ; RESERVE 100 WORDS FOR VECTORS, ETC. " STF RI, tARO++ ; XIL2I=IIJI-XIL2) t= SlIIIF RO,H.ROURO),Rl ; Rl=XIL31-XIL4) 

'" FHTSIZ • WORD " STF Rl, H.ROURO) ; XIL3)=IIL3)tXIL4) Q. 
.... LOGFHT • WORD " BLK2 STF Rl,tARO++ ; XIL4)=XIL3l-XIL4) ~. 

~ SINTAB • WORD SINE I 

I:l INPUT • WORD INP ~IN L()(J> IFHT STAGES) N 
;:,: 
..;, FHT< LOP FHTSIZ ; Wl'MD TO LOAD DATA PAGE POINTER lOl eFHTSIZ,IRO ~ ~ 

~ 
LSH -2,IRO ; lRO=INDEX FOO E 

'" 
00 TIE BIT REVERSIOO AT TIE BEGINNlOO lOl 3,R5 ; R5 f«.DS TIE ClIlRENT STAGE tuIBER '"1 

lOl 1,R4 ; R4=N4 -~ ~ 
;:,: LDI eFHTSIZ,RC ; RC=N lOl 2,R3 ; RJoII2 

S-
SUBI 1,RC ; RC SIIllD BE ONE LESS TIWI DESIRED • LOOP LSH -l,IRO ; E=E/2 '-<i 

'" 
LOI eFHTSIZ,IRO LSH 1,R4 ; N4=2'N4 ~ 
LSH -l,IRO ; IRO=HALF TIE SIZE OF FHT=NI2 LSH 1,R3 ; N2=21N2 

~ LDI @INPUT,ARO 
'"1 
~ 

~ 
lOl @INPUT,ARI INNER LOOP 100-30 LOOP IN TIE PROGRAII) = [IJ 

N RPTB BHRY lOl @INPUT,AR5 ; AR5 POINTS TO XIJ) ~ C CMPI ARl,ARO ; XCHANGE LOCIITI~ (H.y INlOP lOl lRO,ARO a '"1 
BGE CONT IF ARO<ARI ADDI tsINTAB,ARO ; ARO POINTS TO SINlCOS TAlilE :3 C LDF tARO,RO LDI R4,IRl , IRl0N4 



:l:.. 
IIl£ LOCI' ;:: 

!? 
LDI IIR5,ARI 
AIIDI I,ARI ; ARI POINTS TO XILII=XlJ+1-11 END III END ; IIRAIDt TO ITS£LF AT TI£ EHD 

'ti LDI ARI,AR3 ,END 
~ ADDI RJ,AR3 ; AR3 POINTS TO XIL31=XlU+N21 
i1! LDI AR3,AR2 

'" ;:: SUBI 2,AR2 ; AR2 POINTS TO XIL2I=XlJ-I+I+1121 
is ADDI RJ,AR2,AR4 ; AR4 POINTS TO X!L41=11L2+1121 

§' LDF tAR5++IIRlI,RO ; RO=IIJI 

.s;, AIIDF <+IIR5!1RII,RO,RI ; RI=XlJI+IIL21 
SUBF RO,u-tAR5(IRl),RO ; RO=-XlJ)+IIL2) 

.~ 
" STF RI,'-IIR5!1RlI ; IIJ)=XlJI+IIL2) 

NEGF RO ; RO=IIJHIL21 
STF RO,f1iR5 ; IIL2)=XIJHIL2) 

0 " LDF f+AR5!1RlI ,RO ; RO=llL41 

t"l 
AIIDF RO,'-IIR5IIRlI,RI ; RI=XIL31+IIL41 

.'-3 SUBF RO, '-AR51 IRII ,RI ; RI=IIL31-lIL4) 

" STF RI,'-IIR5!1RlI ; XIL31=IIL31+IIL41 
i:l STF RI, .fIiR5lIRli ; IIL41=X!L3HIL41 
;:: 
i:l.. 

INNI'III1OST LOCI' 

~ LDI @FHTSIZ,IRI 

'" .., LSH -2,IRI ; IRI=SEPARATIDN IIETlEEN SIN/COS TBLS 

~ 
LDI R4,Re 

!:\ 
SUBI 2,Re ; REPEAT N4-I TIlES 

;:: 

~ RPTB IlK3 
'l If'YF tAR3,f+AIlO!lRlI,RO ; RO=XIL31.COS 

~ If'YF fAR4,fMO,Rl ; RI=XIL41.SIN 
If'YF tAR4, f+AIlOI IRII ,RI ; RI=IIL411COS 

'l " ADDF RO,RI,R2 ; R2=IIL3IICOS+XIL4lfSIN=T1 
;:: If'YF tAR3,'ARO++IIROI,RO ; RO=IIL31.SIN 
S. SUBF RI,RO,RO ; RO=IIL31'SIN-1II41ICOS=T2 

'" SUBF RO,'AR2,RI ; RI=IIL2H2 

~ 
AIIDF fAR2,RO,RI ; RI=IIL2)+T2 

" STF RI,'AR4-- ; XIL41=IIL21-T2 

~ AIIDF tARI,R2,RI ; RI=XlL1I+T1 

N " STF RI,'AR2-- ; XIL2)=XIL21+T2 
c;:, SUBF R2,tARI,RI ; RI=IIUHI a :: STF Rl,*ARl++ ; XlU)=IIL1l+T1 

c;:, BLK3 STF RI, tAR3++ ; XIL31=XlUHI 

SUBI fINPUT,ARS 
ADDI R"J,1IR5 ; AR5=I+NI 
Clf'I @FHTSIZ,1IR5 
IlTD INLOP ; LOCI' BACK TO TI£ lIfER LOCI' 
ADDI fIIf'UT,1IR5 
Ia 
N(p 

..... AIIDI 1,R5 ..... 
Clf'I KOO'HT,RS I,C) 
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- OOTSllLLOOP. ; TIll IIUTT9FlIES ME CALCU.AlED AT t-l 
t-l IIPf'ENIIX EI ftlllllU.lD'l I 11£ SME T1~. 

A FAST COSIIE TRAIISFORII LIF 1AR2,R2 ; GET LIIER HIU IF EACH IlUTTERFLY. 
B LIF IM3,Rl ; I THIS ALLIIIS Fa! IQIE PMfLLEL 

!lASED IJI TIE ALGaUM OOTLIIED IIY IIYElNl GI LEE IN HIS ARTIQ.E, FCT - A ; ~LAml 
FAST COSIIE TRANSFORII, PUllLISIEII IN 11£ PROCEEDINGS IF 11£ IEEE INTER- SUllF3 1M3, tAR4,RI ; SIIInw;y SECOCI IlUTTERFLY !lATA. 
NATlIIW. CIJFEREM:E IJI N:OOSTICS, SPEECH. AND SIGNM. PIIlCESSING, SM SUIIF3 lAR2.tARI,RO 5IIi1lW:T FIRST IlUTTERFLY !lATA. 
DlEoo, CA, 19-21 IIARCH 1984. P 211A.3/1-4 YIL. 2, ICHI9$I-5/84/~I. 1I'YF3 RI,<++AR7,RI nTiPLY 2ND 5IIi1lW:T11IiI RESULT IIY 

:: AIIIIF3 Rl,tAR4,R3 COSIIE aEFFICIENT. ADD SECOII 

~ 
LEE'S AU~IUM HAS BEEN IIIDIFIED TG ALLIJI NATlRIL OIlER T1~ _IN IlUTTEllFLY DATA. > COO'FICIENTS RATHER THAN 11£ LESS _ INPUT SUGGESTED IN HIS ARTIQ.E. If'Yf3 RO,<-M7,RO nTiPLY 1ST SlllTRACTlIIiI RESULT IIY ;:s 

AlllF3 R2,tARl,R2 COSINE COO'FICIENT. AlII FIRST "C 
~ 

.. 
THE FRElW«:Y _IN aEFFICIENIS ME IN lilT RMRSE IIIIER. THIS IS AN IN IlUTTERFLY DATA. "C 

'e PLACE CALCULATlIJI. STF RI, tAR2++URIIX ~ 2ND nTiPLY AEStlT IN LIIER !! W II STF R3,tAR4++URIIl HIU IF IIUTTERFL Y. SA',{ 2ND 
"moll PAUL WllJ£LIt • ADDIllIIiI IN lfI'ER 2ND IIUTTERFL Y • ~ ~ END_CSlTER..LIIP' 

is tr:l ... .gl.btl FCT ; FAST COSIIE TRANSFORII ENTRY POINT. STF RO, tAR3++URlll ; ~ 1ST nTiPLY IN UIER HIU IF C· .gl.btl " ; LOOTH IF DATA ENTRY. .. STF R2, tARl++C1Rlll 0 2ND IIUTTERFL Y. ~ 1ST A1111T101 I-' ;:s 
• g,.b., COS-TAII o TAIILE IF COSIIE aEFFICIENTS. IN IfPER 1ST IlUTTERFLY • 

~ .glob., aEFF o TAIILE IF INPUT DATA. > 
. ~ 

END IF CSIT9 LIIP IF FIRST LIIP SERIES • 
• text I'!!j 

ADDI3 IRO,MS,ftC o lI'IIATE REPEAT ClIMER Fa! IEXT IIUICK = 
tl 

FCTSllE ... ord ft 0 REPEAT. ~ _COS • .ord COS_TAlI AIIIIF3 tAR3++ ,1AR2-,RO o lI'IIATE DATA POINTERS. 
<J ..DATA .word com CllPI ARl,AR2 o HAI'E IlUTTERFLIES BEEN COIf'l.ETD? n :-'l • lIGTD ftlDllLLIIP o lB.AYED IIRANCH, IF I«IT. C 
[ Fcn AlllF3 *ARl++,-tlR4- , RO o lI'IIATE FINAL TWG POINTERS Fa! IEXT III 

LDI IFCTSIZE,MO o LIIAD DATA LOOTH. 0 REPEAT. 5° LDI IfCTSIIE,IIK o SET IIUICK SIZE Fa! CIRCU.M ADDI 2,ART o lI'IIATE COSINE aEFFlCIENT POINTER. 
0 AlDIESSING. IR OIOOH,ST , SET REPEAT 1tW:. IFASm THAN USING ~ 

S- o 
LDI LllATA,AR6 . , LDAG DATA POINTER. , RPTII WHEN START All) END AlDlESS 1-3 '" ., LDI LCOS,M7 , LDAG COSINE TAIILE POINTER. , ME STILL 00001 ""I 

~ 
LDI MO,IRI o INITIALIZE nlEx REGISTERS Fa! FIRST § LDI -I,IRO , IlUTTERFLY SERIES. DELAY IIRANCH FID1 HERE TG ftlllllLLLOOP. 

!il LDI M6,MI , INITIALIZE DATA POINTERS. III 

~ ADDI3 AR6,MO,AR2 LSH -I,IRI , lI'DATE INDEX REGlsm. IDIVllE IIY 21 ~ c::; SIIII 1,AR2 LDI M6,ARI , AEINITIALIZE DATA POINTERS. ""I 
~ LSH3 IRO,MO,ARl ADDI IRO,AR6,AR2 a '" LDI 1,AR5 o INITIALIZE 2'S POWER ClIMER. ADDI IRI,AR2 

§ ADDI Mb,ARl o FINISH DATA POINTER INITIALIZATlIIiI. CllPI 2,IRI , IS FIRST IlUTTERFLY SERIES COftPLETE? 
ADDI3 IRO,ARl,M4 IIGTD OOTSIlLLlIP o lB.AY IIRANCH, IF I«IT. 

S- ADDI3 IRO. MS, ftC , ftC SIO.LD lE·1IiIE LESS THAN CIUIT LSH 1,AR5 o n TlPL Y 2'S POWER ClIMER IIY 2. 

'" lESlREG. SIJIII3 IRO,M4,ARl o CONTlIt£ AEINITIALIlING DATA 

~ 
, POINTERS. 

FIRST LIIP SERIES ADDI3 IRO,MS,ftC , SET REPEAT CWITER FIR REPEAT IIUICK. 

~ THIS LIIP SERIES lIlES ALL 1I£IIUTTERFLY STAGES EXCEPT 11£ FINAL 1IiIE. END IF FIRST LGOP SERIES. tv 
C 
@ RPTII END_CSlTER..LIIP FINAL IlUTTERFLY STAGE LIIP. 

C 



::... 
;:, INCLUDES LAST BUTTERfLIES ~ FIRST STAGE OF BIT REVERSE ADDITIONS. 

~ LDI 4.IRI ; INITIALIZE INDEX REGISTER. "t5 
~ ADDI 1,AR3 ; SET LP DATA POINTERS. 

:'l LSH -l,ARS 

'" ADDI 3,AR4 
;:, ADDI3 IRO,ARS,RC ; INITIALIZE REPEAT Ill.WER. 
is tf>YF3 fM7, HAR7, R4 ; CALClLATE 12/~ltCOSIPI/41. 
~. U.E.-} ISQRT1211/~ THIS VALl( IS 
;:, CALLED, S, IIEL~.) 

~ RPTB END_2ND_LOOP ; Til:) WTTERFLIES ARE CALClLATED PER 

Sl 
LOOP. 

SUBF3 1M2, *AA1,RO ; SUBTRACT 1ST WTTERfLY DATA. ."'l 
SUBF3 tllR4, 'AR3,RI ; SUBTRACT 2ND WTTERFLY DATA. 

tl tf>YF3 RO,R4,RO ; ~LTIPLY 1ST SUBTRACTI~ RESlLT 
(J .. ADOF3 IM3t+( IR1), tAR4++( IRl) ,R3 ; BY S. ADD 2ND WTTERFL Y 
• "'l DATA. 

I:> I1PYF3 R1,R4,R1 ; MTIPLY 2ND SUBTRACTI~ RESULT 
;:, .. AD(f3 .AR1 ++( IRl), 1M2tt( IRl) ,R2 BY S. ADD 1ST IIJTTERFLY 
i:l.. DATA. 

a I1PYF3 R3, HAR7 ,R3 ; MTIPLY 2ND ADDITION RESllT BY 

So .. STF RO, .-AR21 IR1 I 7071. SAVE 1ST SUBTRACTI~ IN 

'" LOWER 1/2 OF 1ST WTTERfLY. .., 
I1PYF3 R2, HAR7,R2 ; tt.LTlPLY 1ST ADDITI~ RESlLT BY 

~ .. STF R1,H1R411R11 .7071 SAVE 2ND SUBTRACTIOO IN 
l:l LOWER 1/2 OF 2ND BLTTERfLY. ;:, 

AD(f3 R3,R1,R3 ; ADD 2ND SUBTRACTIOO ILl. TIPL Y TO 2ND 
~ Cl ADDITI~ IlJLTlPLY. 

~ STF R2,H1RlIIR11 ; SAVE 1ST ADDITION MTIPLY IN lPPER 

'" 
112 OF IIJTTERFL Y • 

Cl ;:, END_2ND_LOOP: 

So STF R3, H1R31 IR1 I ; SAVE 2ND ADDITION tRTPLY IN lPPER '" 
~ 

112 OF lPPER IIJTTERfLY. 

~ 
END OF FINAL BUTTERfLY STAGE LOOP. 

tv BIT REVERSE ADDITION LOOP SERIES. <::> 
[$ THIS LOOP SERIES DOES ALL OF TIE BIT REVERSE ADDITIONS AT THE END OF FAST <::> COSINE TRANSfIlRl1. 

LOI 2,IRO ; INITIALIZE INDEX REGISTERS ~ DATA 
LDI !\Ro,ARl POINTERS FOR FINAL ADDITI~ 
ADDI 4,AR1 SERIES. 
LDI ARl,AR2 

'LDI B,IR1 

• 
LASUlJTSIDE_LOOP: .-N LDI AR2,AR4 ; Ll'DATE POIIITERS ~ WJNTERS. 

W LSH -l,ARS 

LDI ARS,RC ; SET LI' REPEAT m.wER. 
AD(f3 >AR2++IIROIB,'AR4++f1ROIB,RO ; DATA POINTER LPDATE. 
LDI AR1,R4 ; USE INITIAL !\R1 VALl( AS IIfi:R LOOP 

SUBI 
to' 
LDI 

RPT8 

LASLlNSIDE_LOOP: 

1,RC 
fAR4++tIROIB 
AR2,!\R3 

END_INSIDE 

CONTRQ. 

; CONTINLl lPDATlNG POINTERS. 

; Till ADDITIONS ARE 10£ IN EACH LOOP. 

AD(f3 tllR1,tllR2++f1R111,RO; ADD FIRST Till DATA. 
ADOF3 'AR3, 4AIl4++1IR1Il, R1 ; ADD SECOND Till DATA. 
STF RO, '!\R1 ++1 IR1 I, ; SAVE FIRST ADDITIOO. 

END_INSIDE: 

STr Rl,.tAR3++iIRll% ; SAVE SECOND ADDITIOO. 

END OF INSIDE LOOP FOR LAST LOOP SERIES. 

AD(f3 tllR1++IIROIB,>AR2++f1ROIB,RO ; LPDATE DATA POINTERS • 
ADOF3 'AR3++f1ROIB,'AR4++f1ROIB,RO 
AD(f3 tllR3++1 IROIB, tllR4++1 IROIB,RO 
ADDF3 fARl++( IROIB, *AR2++( IR01B,RO 
C~PI R4,AR4 ; IS THIS LOOP Clft'LETE' 
IlNED LASLlNSIIiU.OOP ; DELAYED IIlAI«:H, IF NOT. 
LDI ARS,RC ; SET LP REPEAT m.wER. 
SUBI 1,RC 
OR 0100H,ST ; SET REPEAT ~DE. 

IIlANCH DELAYED TO LASUNSIDLLOOP. 

RPTB LAST..BLOCK ; SIt<£ THERE ARE AN ODD ~ OF 
AD(f3 tllR1,>AR2++f1RlIl,RO ; ADDITIONS, TIE FINAL (l£S ARE 

10£ ~. 

LAST..BLOCK: 

STF RO,fARl-++(IR1)Z 

END (f LAST REPEAT II.OCK. 

LSH 
ADDI 
Ctf'1 
OOTD 
LDI 
LDI 
LSH 

1,IRO 
IRO,R4 
1,ARS 
LASLOOTSI[E_lOCF' 
R4,AR2 
R4,AR1 
1,IR1 

; SAVE ADDITI~. 

tRTlPLY IRO BY 2. 
LPDTEE IIf£R LOOP CONTRQ REGISTER. 
ARE CALCl.I.A TI ONS COtf'LHE , 
[£LAVED BRANCH, IF NJT. 
IN'DATE DATA POINTERS. 

; tRTlPLY IR1 BY 2. 

DELAYED IIlAI«:H TO LASUlITSIDLLOOP. 



~ 

~ 
;:: 

~ 
't:j 

!f 
~ 
I:i 
§. 
~ 
~ 
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\::l 
(J 
.:--l 

~ 
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~ 
§ 
~ 
~ 

~ 
~ 
;:;. 
~ 

~ 
~ 
N 
C o 
C 

END IF LAST l.O(p SERIES. 

IU.TIPLY COEfFICIENT ZERO BV .5, IF ttJT ZERO. 

LIf' 
BEQD 

LSH 

_,RO . 
!M*T..5TOOE 

24,AR5 

SUBI3 ARS, _,ARI 
10' 

SET ZERO ~ IF 1/IR6 = O. 
IF COEFFICIENT IS ZERO, !M*'T 00 

THIS. 
USE INTEIlfR !'ATH Fill FLOAT DIYIIE 

BV 2. 

IELAYED IIlANCH FmI I£RE IF VALlE IS ttJT TO BE STOOED. 

511 ARI,I/IR6 ; STOOE, IF EXPOIENT WASN'T -128. 

!M*L51ORE' 

!lETS 
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~ 
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Iff'EIIIlIX E2 

A FAST COSINE TRANSFIlRII UIfIERSE TRANSFlRIl 

lI1SED 00 1l£ ALOOUTItt OOTLINED BY BYElNl GI LEE IN HIS ARTla..E, FCT - A 
FAST COSINE TRANSFIRI, PIIUSIED IN 1l£ PROCEEDII«lS IF 1l£ IEEE Inte.­
MlTI __ COOFERfII:E !II ACOUSTICS, SPEECH, AND SIGNAL PROCESSlltl, SIIH 
DIEGO, CA, 19-21 IWICH 1984, P 281\,3/HIKl. 2" ICHI95H/84/O<lOO-0299l. 

LEE'S ALGORITHII HAS 1IEEN IIlDIFlED TO ALl.IlI NATURAl. IIIIER TIlE lUtAIN 
ClEFFICIEHTS. 

TIE FllEQl£NCY lUtAIN ClEFFICIEHTS ARE IN BIT REVERSE IIIIER. THIS IS AN IN 
PLACE CAl.CWITI!II. 

IiJTHOl: PAUL WlUELII 

.global 

• global 
• gl.b.l 
.global 

• text 

IFCT 

" COEFF 
COS_TAB 

IIfIERSE FAST COSINE TRANSFIRI EHlRY 
POINT. 

l.OOTH IF ARRAY TO BE TRANSFORlED • 
TAlIl£ IF COSINE C(EFFIClEHTS • 
TAlIl£ IF ARRAY DATA TO BE 

TRANSFORlED. 

FCTSIZE ••• rd " -DATA .lIIord 
_cos ,word 
t 

IFCT: 
LOI 
LOI 

LDI 
LOI 
ADOI 
SUBI 
LOI 
l.SH 
LOi 
LOI 
ADOI 

C(EFF 
COS_TAB 

IfCTSlZE,ARO 
IfCTSllE,lI( 

UlATA,AR6 
LCOS,AR7 
ARO,AR7 
2,AR7 
ARO,IRO 
-2,IRO 
ARO,IRI 
ARb,ARI 
IRO,ARI 

LOAD ARRAY SIZE. 
!.DAD 1Il0Cl< SIZE FOR CIRCWIR 

ADDRESSIIIl 
!.DAD POINTER TO DATA TAlII..E. 
LOAD POINTER TO COSINE TAlIl£. 
POINT TO LAST COSINE YALIE IN TAlIl£. 

, INITlALIZE INlEX REGISTIRS FOR BIT 
REVERSED ADOlTl!ll SEIlI£Nl:. 

, INlTlALIZE DATA POINTERS. 

START IF BIT REVERSED ADDlTl!ll LOOP SERIES. 

OOTSII(' 

ADOI 

LOI 
LOI 
SUBI 

lRO,ARI 

ARI,AR2 
IRO,RC 
2,RC 

T!P IF OOTSII( LOOP FOR BIT REVERSED 
ADDlTlOO. 

lI'DATE DATA POINTERS AND REPEAT 
COoMER. 

NOP tAR2+t IlRO 1 B 
ADIF3 tMI++IlROlB, *AR2++IlROlB,RO ,FIND FIRST SI.II. IItAKES 
LOI ARI, AR3 "IDlLE LOOP ftORE EFFICIENTl 
LDI AR2,AR4 
LOI ARI,AIlS 
ADIF3 tM3++UROlB,*AR4++IlROlB,RI, lUtIY ADD TO LfDATE 

, POINTERS. 
l.SH -I,IRO , IPDATE INlEl R£GISTER. 

RPTB END_CENTER , TOP OF INNER ftOST LOOP. 
t 

"!DOLE: , TOP IF "IDlLE LOOP. 

!.OF 
ADDF3 
STF 

tAR3,RJ , GET IJ'PER HALF IF SEC!WD ADDlTlON. 
tARI,*AR2++IlROlB,RI ,DO FIRST ADOlTl!ll. 
RO,tMI++IIROlB , STORE ADDlTlON DONE 1l£ LAST LOOP OR 

WIEN INlTlALlZATI!II lIAS DONE ABOVE 
END_CENTER' 

:1 

:1 

" 

ADDF3 
STF 

RJ,tAR4++IlROlB,RO ,DO SEC!WD ADDITION; 
RI,<AR3++IIROlB , STORE FIRST ADDlTl!ll. 

END IF INNER rIIlST LOOP. 

ADDF3 

LOF 
!.OF 
ADDF3 
STF 
ADIF3 

LOI 
CftPI 
SlED 
l.SH 
SUBI 
OR 

tAR3++IIRIlI,<AA4++IlRIlI,R2 ,lUtIY ADD TO LfDATE 
, POINTERS. 

tAR3++UROlB,RJ , GET YALI£ FOR LAST ADDlTl!ll. 
*AR2++IlROlB,R2 , lUItY ADD TO lI'DATE POINTER. 
R3,tM4++IIROlB,RO ,DO LAST ADDITlON. 
RO, tMI++IlROlB , STORE tEXT TO LAST ADDlTl!ll. 
tARI++IIR1l1,tAR2+tIlRllX,R2 ,lUtIY ADD TO LfDATE 

lRO,RC 
ARI,AIlS 
"IDlLE 
I,Rt 
2,RC 
OIOOH,ST 

POINTERS. 
IPDATE REPEAT to.MER. 
IS "IDlLE LOOP C!lI'lETE ? 
IF NOT, DO I(l.AYED BRANCH. 

, SET REPEAT lIIE. 
ISTART/STOP ADDRESSES STILL !»(l 

InAY BRANCH FROft IERE TO "IDlLE. 

CftPI 
BOTD 
lDI 

ADOI 
lSH 

I,IRO 
OUTSII( 
ARb,ARI 

lRO,ARI 
~I,IRI 

I(lAY BRANCH FROft HERE TO OUTSII(. 

IS OOTSIl£ LOOP C!lI'lETE ? 
IF NOT, DO I(l.AYED BRANCH. 
PREPARE TO LfDATE POINTERS AT TOP IF 

lOOP. 

, IPDATE INlEX REGISTER. 

END IF BIT R£YERSED ADDITION LOOP SERIES. 

START OF CENTER IlJTTERFlY LOOP. 

~ 
~ 
~ 
~ 
> 

r 
('i 

~ .... 
; 
1-3 

~ 
8' e 
~ 
~ 

~ 
~ 

i 
8' 
! 



..... 
N ENIUENTER_Lru': 
0'1 

THIS LOOP INCUJIES TlE LAST BIT REVERSED ADDITION STAGE, TIE FIRST 
IIIJTTERFLY, AND TlE COSINE InTlP\.ICATlOOS FOO THE SECOND IIIJTTERFLY STF Rl,*M4++{IRll% : STIllE LOWER fW.F OF 4TH BlJmRFLY. 

SERIES. STF R4, fAR3#(JRm : STIllE LOWER fW.F OF 3RD IIIJTTERFLY. 

SUBI 3,AR2 : ll'DATE DATA POINTER FOO THIS LOOP. END OF CENTER BUTTERFLY Lru'. 
LDI B,IRI : INITHILIZE INDEX REGISTER. 
LDI I'/lO.RC : INITIALIZE REPEAT COUNTER. START NEXT TO LAST LOOP SERIES. 
LSH -3,RC 
LDF fAR7--,R7 : GET COSINE P1/4. THIS SERIES OF LOOPS DOES ALL IIIJT TIE LAST IIIJTTERFLY STAGE. Iil TIE 

~ SUBI I,RC COSINE COEFFICIENT InTlPLlCATlOOS ARE DONE, INClUDII«3 TI£ InTl-
;:: LDI RC,AR5 , SAVE REFEAT COlMER FOO LATER USE. PLICATIONS FOO TlE LAST IIIJTTERFLY STAGE. (THIS _ FUll 1il(l(S FOO 

~ 
FAST EXECUTION.) 

Rl'TB END_CfNTEILLru' , FCffi IlUTTERFLlES ARE DONE EACH CYCLE 
"tj THRO.Gi THIS Lru'. SUBI 2,AR7 , ll'DATE COSINE C((FF1CIENT POINTER. 
~ SUBI I,AR4 , ll'DATE DATA POINTER. 
:=! ADDF3 *+AR2, *AR2,R4 , BIT REVERSED ADDITION FOR 2ND LDI ARS,RC , RELIIAD REPEAT ro..tmR. 

'" ;:: BUTTERFLY. LIF fAR7-, 115 , GET COSINE COEFFICIENTS. 
is tf>YF3 'ARl,R7,1I5 ,COSINE PI/4 T1I£S LOWER fiIU OF 1ST LDF tAR7--,R4 
g. IIIJTTERFLY. 
;:: It'YF3 R7, R4, RO , COSINE PI/4 T1I£S LOWER HALF OF 2ND Rl'TB END_NTL , TWO IlUTTERFLlES ARE CALaJ..ATED PER 

..Q., 
BUTTERFLY. CYQE _ TI£ INNER LOO' • 

" ADIF3 fAR4,'-AR4,R3 , BIT REVERSED ADDITION FOO 4TH 

~ BUTTERFLY. NTLLOOP: 
ADIlF3 115,HIRI,R4 , ADD ll'PER HALF OF 1ST IlUTTERFL Y. 

."-l It'YF3 HAR7,R3,Rl , COSINE PI/4 T1I£S LaER HALF OF 4TH SUBF3 'AR4,tAR3,Rb , SUBTIW:T LOWER fiIU OF 2ND 

tI IlUTTERFLY. IlUTTERFLY. 

(J " ADIF3 RO, tAR2,R2 , ADD UFPER HALF OF 2ND BUTTERFLY. ADDF3 fAR4,tAR3,R7 , ADD UFPER HALF OF 2ND IIIJTTERFL Y • 

,;--l SUBF3 115,HIRI,1I5 , SUBTRACT LaER HALF OF 1ST I1PYF3 R5,Rb,RO , ItLTlPLY UFPER HALF OF 2NDIIIJTTERFLY 
BUTTERFLY. BY COSINE c((FFICIENT. 

I:l !f'YF3 t-AR7, R2, RO , inTI PLY UPPER HALF OF. 2ND IIIJTTERFL Y 
" ADIF3 *AA2, 'ARl, R2 , ADD UFPER fiIU OF 1ST IIIJTTERFL Y • ;:: 

I:l. , BY COSINE C((FFIEIENT. It'YF3 R4,R7,Rl , inTI PLY LOWER HALF OF 2ND IlUTTERFL Y 

() " SUBF3 RO, 'AR2,R2 , SUBTRACT LIllER HALF OF 2ND BY COSINE COEFFIEICENT. 

S. BUTTERFLY. 
" SUBF3 fAR2, fARl,R3 , SUBTRACT LaER HALF OF 1ST 

STF R4,HIRI , STIllE ll'PER fiIU OF 1ST IlUTTERFLY. BUTTERFLY. 
'" ; STIllE I.I'F£R fW.F OF 2NDIlUTTERFLY. ..., 

" STF 115, fARl++(JRlll , STORE LOWER fiIU IF 1ST BUTTERFLY • STF RO,'!Il3#(IR1lX 

~ STF RQ, ttAR2 , STIllE LOWER HALF OF 2ND IlUTTERFLY. 
" STF R2, tAR(++( IR1I4 , STORE UFPER fiIU OF 15T BUTTERFLY. 

I:l It'YF3 tAR3,R7,R4 , COSINE PII4 111£5 LaER HALF OF 3RD 
;:: IIIJTTERFLY. END~TL: 

~ rt'YF3 tAR7,R2,RO , 1tL1IPLY LOWER fiIU OF 2ND BUTTERFLY O· 
BY COSINE CIEFFICIENT STF Rl,tM4++(IRllx' , STIllE L()j£R HALF OF 1ST IlUTTERFLY. 

~ " SU9'3 Rl, t-AR4,R3 , SUBTRACT LOWER fiIU OF 4TH 
" STF R3, tAR2tt( IRIIl , STIllE LOWER fiIU OF 2ND IIIJTTERFLY. 

'" IIIJTTERFLY. 
0 ADIF3 R4, .-AR3,R5 , ADD UFPER HALF OF 3RD BUTTERFLY. END OF CENTER Lru' OF NEXT TO LAST SERIES. ;:: 

It'YF3 'AR7,R3,Rl , InTlPLY ,lItER HALF OF 4TH BUTTERFLY 

S. , BY COSINE C((FFICIENT LDI ARS,RC , RELIIAD REPEAT ClWTER. 

'" " ADIlF3 Rl, t-AR4,R3 , ADD UPPER fiIU OF 4TH IIIJTTERFLY. LIF foPfl..7-,R5 , GET NEIl COSINE COEFFICIENTS. (FYI-

~ 
SUBF3 R4, HIR3,R4 , SUBTRACT LOWER fiIU OF 3RD LDF fAR7--,R4 TI£ LAST T1I£, THIS WILL FETCH 

IIIJTTERFLY. FRIl1 I'ElU!Y BELOW TlE COSINE 

~ rt'YF3 t-AR7,R3,Rl , inTI PL Y UFPER fiIU OF 4TH IIIJTTERFL Y TABLE. ) 
tv BY COSINE COEFFICIENT. Clf'1 ARl,!Ilb , HAS "IDDLE Lru' BEEN iXl'fUTED ? 

a " STF Rl, '-AR4 , STORE UFPER HALF OF 4TH BUTTERFLY. BNED NTLLOOP , IF I«3T, BRAI£H DELAYED. a STF RO, '!Il2#( IRl), , STIllE ll'PER HALF OF 2ND IIIJTTERFLY. ADIF3 tAR4#, tAR3-, RO , rut1Y ADOS TO ll'DATE DATA POINTERS. 
a " STF R5, *-AR3 , STORE UPPER fiIU OF 3RD BUTTERFLY. 



::a.. ;::r AIIII'3 tM2++,IMI-,00 

~ 
til OIOOH,ST I SET REPEAT IU£. (STMT/STIP 

'1:i 
ADIilESSES lIRE STILL 0000. ) 

~ ;: II!fIIDI IaAY FRQI lIRE TO NTLl.OIP. 

~ LDI AR3,MI , IJ'MTE DATA POINTERS. 
is' AIIll3 IRI,IIRI,AR3 

§" LSH I,IRI , Ll'DATE IlIlEX REGISTER. 
Cll'1 IRI,IIRO , IS THIS LOIP SfRIES COft£TE ? 

~ 
IIGED NTLUlII' , IF NlT, II!fIIDI IaAYED. 
AIIll3 IOO,AR3,AR4 , IJ'MTE DATA POINTER. 

~ 
LSH -1.1IR5 , Ll'DATE REPEAT CWIIER. 
LDI AR:i,RC 

C. IaAYED II!fIIDI FRQI lIRE TO NTL..LOOP. 

(') 
END IF lilT TO LAST LOll' SfRIES • • "-l 

§ STIIRT IF TIE LAST LDIP. 
~ 

~ 
11£ LAST LOll' IS 11£ LAST llITTERFI.Y STMlE WITIIlIT 11£ COSINE ClEFFICIENT 
IU.TlPlICATICIlS, IItICH IIA\£ AI..REMIY IlEEN WE. 

~ LDI 2,IRI , INITIALIIE IIIlEX REGISTER. 

~ AIlDI3 IOO,IIR2,AR4 , INITIALIIE DATA POINTERS. 

§ SIIII3 IOO,IIRI,AR3 
LDI 1IRO,1I: , INITIALIZE REl'£AT CWIIER. 

~ LSH -2,Re <:S 

~ 
SIIII I,Re 

RPlB ElLLAST ..LOOP , TWO llITTERFI.lES lIRE IDE F(I! EACH g , cvru: _ 11£ LOII'. 

So L<F tAR4,RO I GET IIALI£ FtII LOIER IIII.f IF 2t«l 

" , llUTTERFl Y. 

~ AIU3 tM2,tARI,RI , AIIl IfPER IIII.f IF 1ST llUTTERFl Y. 
SlIIF3 tM2,IMI,R2 , SlIITRACT LOIER IIII.f IF 1ST 

~ , IlIlTEIIfLY. 
N AIU3 RO,IMl,R3 , AIIlIfPER IIII.fIF 2t«llllTTERFl.Y. 
C II STF RI, tARI-URIl , sTalE IfPER IIII.f IF 1ST llUTTERFlY. 

Q SlIIF3 RO,IMl,R4 I SlIITRACT LOIER IIII.f IF 2t«l 
C , IlIlTEIIfLY. 

:: STF R2, tAR2++URI) , ST(I!E LOIER IIII.f IF 1ST llUTTERFl Y. 
STF R3,IIIR3-URll I STtIIE IfPER IIII.f IF 2t«llllTTERFl.Y • 

• 
ElLLAST ..LOOP' 

STF R4,IAR4++URll I STtIIE LOIER IIII.f IF 2IIlllUTTERFlY. 

END IF LAST LOII', All) JINERSE COSINE _IRI. - RETS 
~ .• ft' 
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Appendix EJ. FCT Cosine Tables File 

* * APPEND IX E3 

* * FCT COSINE TABLES FILE 

* f TO BE LINKED WITH FCT SOURCE CODE FOR 32 POINT FCT. 

* f COEFFICIENTS ARE 1/(2 * COS(NfPI/2M», WHERE N IS A NUMBER FROM 1 to 
* M-l. M IS THE ORDER OF THE TRANSFORM. 
f 

f FOR A 32 POINT FCT, N IS IN THE FOlLOWING ORDER: 
* 1, 15, 3, 13, 5, 11, 7, 9, 
f 2, 14, 6, 10, 
* 4, 12, 
f 8 

* * THE LAST VALUE IN THE TABLE IS 21M. 

* 
* 

* 
M 

* 

* COS_TAB 

.global COS_TAB 

.global M 

.set 16 

• data 

.float 0.5024193 
• float 5.1011487 
.float 0.5224986 
• float 1.7224471 
.float 0.5669440 
.float 1.0606777 
.float 0.6468218 
.float 0.7881546 
.float 0.5097956 
• float 2.5629154 
.float 0.6013449 
.float 0.8999762 
.float 0.5411961 
.float 1.3065630 
.float 0.7071068 
.float 0.1250000 
.end 

An Implementation of FFr, DCT, and Other Transforms on the TMS320C30 



Appendix E4. Data File 

:~ 

* APPENDIX E4 
:* 

* DATA FILE 
~. 

.glc.bal COEFF 

* • data 

* COEFF 
.float 137.0 
.float 249.0 
.float 105.0 
.float 217.0 
• float 73.0 
.float 185.0 
• float 41.0 
.float 153.0 
.float 9.0 
.float . 121.0 
.float 23:3.0 
.float 89.0 
.float 201.0 
.float 57.0 
• float 169.0 
.float 25.0 
.end 

An Implementation of FFI', DCT, and Other Transforms on the TMS320C30 129 
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Appendix F. Test Vectors, 64-Point Sine Table, Link Command File 
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- > w 0.5598 
IV IIPPENDrx Fl 0.9160 "C 

0.1402 "C 
£XAPf'lE OF A 64-fOINT IlECTOR TO TEST ThE FFT ROOTihES 0.7054 t!> 

0.0178 = X; 0.2611 e: 
0.1358 ~ 

0.2113 0.0503 ~ 
0.0824 0.5782 
0.7599 0.2432 

I--' . 
~ 0.0007 0.9448 
~ 0.8096 0.5876 tfj 

~ 
0.8474 0.7250 ~ 

0.4524 0.2849 ~ 
't:j 

0.8075 a 
~ 

0.6707 
0.4832 0.8642 "C 

'" 0.6135 0.1943 -~ 0.2749 
t!> 

is 0.8807 64-POINT FFT CORRESPIHIIt«; TO IlECTOR X Q 

5' 0.653S 
~ 

~ 0.4899 Y = ~ 

~ 
0.7741 Q\ 

~ 
0.9626 30.3774 .,. 
0.9933 1.7780 - 2.5S84i I 

_"-l O.83bO -1.0376 - 2.3999i ~ 0.7469 -1.0123 + 2.4889i 

tl 0.0378 0.6594 t 2.3639i 
.... 

(J 0.4237 -1.5228 - 0.7527i = -_"-l 0.2613 -3.8171 - O.205Qi -< 
s::. 0.2403 -2.7096 + l.284li 

~ 0.3405 2.1622 - 1.68b3i t!> 

s::... 0.1167 0.2879 + 1.867li 
n -a O.62'j() -1.5479 + I.6298i Q 

S. 0.5510 -O.b36b - O.l176i ... 
'" 0.= 2.2902 + 1.5S49i -.... 0.4943 -2.4837 - 0.5842i Q 

~ 0.0365 -1.733S + 0.073Si ~ 
$:l 0.2260 -0.2180 - 0.4726i 
~ 0.8159 -0.2104 + 0.4897i 

t!> 

S. 
tll 

Cj 0.2284 -1.7473 - 1.0213i -
~ 0.= 0.1233 - 2.3915i -0.0621 -0.6415 - 1.1144i =-
Cj 

0.7075 -2.7719 - 0.4802i t!> 

~ ').2408 -o.OOb3 - 0.3885i ~ 

S. 0.6907 -0.7163 + l.5682i ~ 

'" 
(1.1062 O.32IB - 1.3316i ~ 
0.2640 -0.7823 + I.OW7i 

~ 0.7034 -o.2S53 + 2.B270i ~ 
~ 

0.4021 -1.OBI3 - 2.78bli Q 
0.6553 3.4869 + 1.94B5i = tv 0.9700 3.0352 + 1.3B5Si 

C -0.0380 3.2099 + 2.3564i 
.... 

a 0.0900 -1.9511 - 0.7714i = 
C 0.2560 I.B755 + 0.28b7i 

t!> 
tll 



::.... 
;,: 

~ 
't;j 

~ 
~ 
;,: 
S 
~. 
;,: 

~ 
~ 
,:""3 

\:) 
(j 
,:""3 
I:> 
;,: 
""-
a 
So 
~ .., 
~ 
!:l ;,: 
~ 

<::> 

~ 
Co 

<::> 
;,: 

So 
~ 

~ 
~ 
N 
0 

Cl 
0 

>-' 
W 
W 

-1.5474 
1.87SS - 0.2Ilb7i 

-I. 9511 + O. nl4i 
3.2099 - 2.3504i 
3.0352 - 1.3855i 
3.4&9 - 1.9485i 

-1.0013 + 2.7S61i 
-0.2553 - 2.8270i 
-0.7823 - 1.0607i 
0.3218 + 1.3316i 

-0.7163 - 1.:ib82i 
-0.0063 + 0.388Si 
-2.7719 + 0.4802i 
-0.6415 + 1.1I44i 
0.1233 + 2.3915i 

-I. 7473 + 1.0213i 
-0.2104 - 0.4897i 
-0.2180 + 0.4726i 
-1.7338 - 0.0738i 
-2.4837 + 0.5842i 
2.2902 - 1.5549i 

-0. b3bb + 0.1I76i 
-1.5479 - 1.6298i 
0.2879 - 1.1lb7li 
2.1b22 + 1.6863i 

-2.7096 - 1.2841i 
-3.8171 + 0.205Oi 
-1.5228 + 0.7527i 
0.6594 - 2.3639i 

-1.0123 - 2.4889i 
-1.0376 + 2.3999i 
1.7780 + 2.5584i 



.... > W . float -0.555570 
~ .f1od -0.634393 :g APPENDIX F2 

.flo.t -0.707107 

FILE TO BE LINKED WITH TIE SWlCf COlE All A M-1'OINT. RADIX-4 m. .flo.t -o.n30IO rD 
.11 .. t -0.831470 = .globl SII£ .flod -0.881921 ~ .gl.bl N .11 .. t -0.923880 

.globl . float -0.956940 

~ .float -0.980785 

N .set M .flo.t -0.995185 

::to. " .set I> .float -1.000000 
;:s .float -0.995185 ~~ 
~ .dota .float -0.980785 

"G 
.float -0.956940 ~: 

~ 
SII£ .float -0.923880 

.Hoat 0.000000 .float -0.881921 I 0 

'" .flool 0.098017 .float -0.831470 01:00= ;:s .fl .. t 0.195090 .float -O.moiO 
is' .fl •• t 0.290285 .float -0.707107 ~~ §' .flo.t 0.38U83 .fl.oI -0.634393 

.flo.t 0.471397 .float -0.555570 ~ .... 
.:;, .float 0.555570 .floit -0.471397 . = 

.float 0.1>34393 .float -o.38U83 r: 
.~ .fl .. t 0.707107 .fl •• t -0.290285 Q. 

.fl •• t O.moIO .float -0.195090 

.fl .. t 0.831470 .float -0.098017 :r; 
tl .fl •• t 0.881921 . fl .. t 0.000000 .... 
(J .fl .. t 0.923880 .float 0.098017 ~ 
."'l .flo.t 0.956940 .fl .. t 0.195090 

.fl .. t 0.980785 .float 0.290285 -§ =-.float 0.995185 .float 0.3821>83 rD 
l:l.. aJSII£ .float 0.471397 

0 .fl .. t 1.000000 . float 0.555570 rI.l 
S- .flod 0.995185 • float 0.634393 8 
'" .fl .. t 0.980785 • float 0.707107 ... .float 0.956940 .floit O.moIO ~ ~ . float 0.923880 .float 0.831470 
I:i .float 0.881921 .float 0.881921 
;:s • .float 0.831470 .float 0.923880 n 
~ <:l . float 0.773010 .float 0.956940 0 

~ .float 0.707107 .float 0.980785 Ii" 
'" 

.flo.t 0.1>34393 .flo.t 0.995185 

§ 
.float 0.555570 a' .float 0.471397 

S-
.fl .. t 0.38U83 

., 
.float 0.290285 ~ '" .fl .. t 0.195090 

~ • float 0.098017 0\ 
.fl .. t 0.000000 01:00 

~ 
I 

.flOit -0.098017 ~ tv .11 .. t -0.195090 
C • float -0.290285 Q 

.... 
.fl .. t -0.382683 it C .f10i.t -0.471397 



Appendix F3. Link Command File 

* * ApPEND! X f:3 

* 
l!-

I!- LINK COMMAND FILE 
,~ 

I!- DO NOT TYPE IN THESE FIRST SEVEN LINES 
-0 12opt64. out 
12fopt.obj 
sin64.obj 

SECTIONS 
{ 

} 

• text: {} 
.data : {} 
IN 809800h : { 12fopt.obj(IN) } 
.bss 809COOh: {} 
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In the past, extended-precision arithmetic has been implemented only on fixed-point 
processors. The introduction of the TMS320C30 Digital Signal Processor (DSP), a floating­
point 33-MFLOP device, enables us to represent multilengthfloating-point math in terms 
of singlelength floating-point math. Extended-precision arithmetic allows designers to have 
more accuracy in their applications. Some of these applications include digital filtering, 
FFTs, image processing, control, etc. 

This application report describes how to extend the available precision of floating­
point arithmetic on the TMS320C30. Our emphasis is on implementing an efficient exten­
sion of the available precision while minimizing both the execution time and the memory 
usage. 

The structure of this report is'as follows: The first section describes the TMS320C30 
DSP floating-point number representation. The second section discusses doublelength 
arithmetic and some basic definitions. The third section discusses the algorithms used along 
with the TMS320C30 implementation. An analysis of the error introduced by the algorithm 
is presented in the fourth section. The last section provides an insight into generating C­
callable functions from assembly language routines. Finally, the appendix provides the 
source listings for the extended-precision arithmetic. 

Floating Point Format 

The TMS320C30 supports three floating-point formats [1]. 

• Short floating-point format, used to represent immediate operands, con­
sisting of a 4-bit exponent and a 12-bit mantissa. 

• Single-precision format, used for regular floating-point value representa­
tion, consisting of an 8-bit exponent and a 24-bit mantissa. 

• The extended-precision format, used with the extended-precision registers, 
consisting of an 8-bit exponent and a 32-bit mantissa. 

For the extended-precision algorithms to work properly on the DSP, it is important 
to start from the highest-precision floating-point format available in the system that is 
used for basic floating-point operations. The single-precision format is of particular in­
terest in developing the TMS320C30 code for extended-precision floating-point opera­
tions. Therefore, a working knowledge of the properties of this format is essential for 
the concepts presented in this application report. 
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In the single-precision format, the floating-point number is represented by an 8-bit 
exponent field (e) in two's complement notation, and a two's complement 24-bit mantissa 
field (j) with an implied most-significant nonsign bit. Bit 23 of the mantissa indicates the 
sign (s), as shown in Figure 1. 

f 

Figure 1. Single-Precision Floating-Point Format of the TMS320C30 

Operations are performed with an implied binary point between bits 23 and 22. When 
the implied most-significant nonsign bit is made explicit, it is located to the immediate 
left of the binary point after the sign bit. We show the implied bit explicitly throughout 
this application report for clarity. The floating-point number x is expressed as follows: 

x = if s = 0; 
if s = 1; 
if e = -128, s = 0, andf= 0 

The range and precision available with the TMS320C30 single-precision floating-
point format are illustrated by the following values: 

Most Positive: x = +3.4028234 x 10+38 

Least Positive: x = +5.8774717 X 10-39 

Least Negative: x = -5.8774724 X 10-39 

Most Negative: x = -3.4028236 X 10+38 

Doublelength Floating-Point - The Basics 

The techniques used to develop doublelength results in this application report re­
quire a singlelength floating-point system and arithmetic that satisfy certain conditions. 
The TMS320C30 implementation takes the singlelength system as the highest floating­
point precision system available. The algorithms'presented do not require a doublelength 
accumulator with respect to the singlelength system used. The extended-precision formats 
available are used to control the truncation or rounding of the single-precision results. 

The doublelength arithmetic presented here increases precision of a given floating­
point operation without the need for a doublelength accumulator. ,Using this method, the 
result of the floating-point operations on two single-precision numbers can be determined 
exactly. If x and yare two such numbers and the desired operation is addition, the result 
can be represented as a pair of floating-point numbers z and zz. The z value represents 
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the most significant portion of the floating-point operation, while zz represents the least 
significant portion of the floating-point operation. 

As an example, consider the result of the exact addition of two floating-point numbers 
x and y that are expressed in the single-precision format of the TMS320C30: 

x = 217FFFFFh 
Y = OC7FFFFFh 

(decimal: 1.71798682 x 1010) 

(decimal: 8.19199951 x 103) 

The values are represented in the TMS320C30 binary equivalent as follows: 

x = 233 x 01.111 1111 1111 1111 1111 11l1b 
y = 212 X 01.111 1111 1111 1111 1111 11l1b 

Addition of two floating-point numbers requires aligning the two variables x and y [1]: 

x = 233 X 01.111 1111 1111 1111 1111 11l1b 
y = 233 X 00.000 0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1000b 

As can be seen in this example, most of the precision available for y will not be 
available to carry out the addition. Maintaining full precision for floating-point addition 
requires extra mantissa bits beyond the 24 bits available on the DSP. Since the need for 
such precision is rare, software methods are used to represent the result of the operation 
as a floating-point number pair (z,zz). In our example, the exact result is represented as 
follows: 

z = 234 X 01.000 0000 0000 0000 0000 00l1b 
zz = 209 X 01.111 1111 1111 1111 1111 1000b 

The corresponding hexadecimal representation of (z,zz) is shown below: 

z = 22000003h 
zz = 097FFFF8h 

(decimal: 1.71798753 X 1010) 

(decimal: 1.0239995 X 103) 

Some definitions are basic to the development of concepts in this report. First is 
the definition of the floating-point operations over a system R. The system contains all 
the possible floating-point numbers that the single-precision format of the TMS320C30 
can represent. All the floating-point arithmetic is carried out in base 2. Therefore, R can 
be represented as follows on the TMS320C30: 

R = [xix = m(x)2e(x), Im(x) I <224, -128<e(x)<127} 

A floating-point operation is faithfitl if the result of the operation flex *y) equals either: 

The largest element of R that is smaller than or equal to (x * y) or 

The smallest element of R that is larger than or equal to (x * y) 

where * represents one of the following floating-point operations: +, -, x, +. In other 
words, faithful refers to truncating the floating-point operation result. The floating-point 
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multiplier on the TMS32OC30 saves the upper 40 bits of the mantissa in one of the extended­
precision registers [1] and drops the least significant byte of the result. By this definition, 
the floating-point multiplication on the TMS320C30 is faithful. Since the algorithms re­
quire the floating-point result to be in single-precision format, the floating-pointmultiplica­
tion on the DSP must therefore be followed by a second truncation step. Saving the contents 
of the extended-precision register to a memory location or masking off the low 8 bits results 
in truncation. 

A floating-point operation is optimal if for all x and y, the result of fl(x * y) is an element 
of R nearest to (x * y). In other words, the round-off error should not exceed one-half 
of the last remaining bit position. This is commonly referred to as rounding. 

The results of floating-point operations on the TMS320C30 are stored in the extended­
precision registers [1]. The extended-precision register adds 8 bits of precision to the 
floating-point arithmetic result. Execution of the RND (round) instruction forces the result 
of the floating-point arithmetic to be optimal. When you round the result of the addition 
or subtraction operations on the TMS320C30, these floating-point operations become 
optimal. 

Implementing Doublelength Floating-Point Arithmetic 

This section presents the algorithms used in implementing doublelength arithmetic . 
in pseudo-code for a number of fundamental floating-point operations. The basic idea of 
doublelength arithmetic can be extended to multiplelength precision, given· that the start 
of the implementation is based on the highest precision available on the system. Therefore, 
to achieve quadruplelength results, the same algorithm can be applied to doublelength 
values, and so on. The implementation is based on the theoretical results presented in 
Reference [2]. 

Exact Singlelength Addition 

In this discussion of the algorithm used to carry out exact addition and its implemen­
tation on the TMS320C30 DSP, the term exact refers to performing an operation on two 
floating-point numbers, x and y, and obtaining a doublelength floating-point number pair 
(z,zz) to represent the result. In this implementation, we have not accounted for floating­
point exponent overflow or underflow. For this algorithm to produce a correct result, the 
floating-point addition and subtraction must be optimal. 
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The purpose of exact addition is to find a term, ZZ, that satisfies Equation (2). 

Z+zz=x+y 

Equation (2) can be rewritten as 

zz = y - (z - x) 

(2) 

(3) 
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Equation (3) can be expanded into Equation (4). 

w = z - x 
zz=y-w 

(4) 

In particular, Ixl > Iyl must be valid for Equation (4) to be valid. Implementation 
of Equation (4) on the TMS320C30 always generates the exact correction term zz if the 
result of floating-point addition operation is made optimal. This requirement guarantees 
that the result of single-precision floating-point add and subtract belongs to system R. By 
swapping the x and y values 'when Ixl < IYI, the condition for obtaining an exact result 
is met. 

The algorithm requires that x and y be normalized. Normalization guarantees that 
the floating-point number has only one sign bit, and that sign bit is followed by nonsign 
bits [1]. Floating-point addition on the TMS320C30 assumes that the operands are nor­
malized. 

The TMS320C30 assembly code for obtaining the doublelength sum of two 
singlelength floating-point numbers x and y is shown in Appendix A. First, the values 
for x and yare interchanged when Ixl < Iyl. When you add x and y values, the number 
with the smaller exponent, y, is shifted repeatedly until the exponents of x and yare equal 
and their mantissas are aligned. We have now calculated the singlelength number,z, that 
satisfies Equation (2). Since the floating-point addition on the TMS320C30 is made op­
timal by rounding, the extra precision is, in effect, dropped. The extra precision value, 
zz, is obtained by implementing Equation (4). Figure 2 is a graphical representation of 
the implemented algorithm. The figure also shows the relationship between doublelength 
number pair (z,zz) and singlelength floating-point numbers and their representation on 
the TMS320C30. 
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z 

zz f2(normalized) 

Figure 2. Exact Singlelength Addition 

The same algorithm can be used to implement exact floating-point subtraction on 
the DSP. This is accomplished by negating the second operand and performing an exact 
addition. 

Doublelength Addition . 

A natural extension of exact singlelength addition and subtraction is its application 
to doublelength arithmetic. Figure 3 shows an algorithm for implementing doublelength 
addition on the DSP. Using this algorithm, you can add two doublelength numbers (x,xx) 
and (y ,yy) and represent the result as a doublelength number (z,zz). 

The algorithm requires forming a doublelength number (r,rr) that represents an ex­
act addition of x and y. Generating a second number, s = «rr + yy) + xx), results in 
a number pair (r,s) that approximates the addition of (x,xx) and (y,yy). Finally, an exact 
addition of rand s generates a doublelength number (z,zz) that has the same value as (x,xx) 
+ (y,yy). 

To obtain exact results for addition and subtraction, subtraction and addition must 
be optimal; this is guaranteed by following each subtraction or addition instruction on 
the DSP with a round instruction. . 
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; Calculate the doublelength sum of (x,xx) and (y,yy), 
; the result being (z,zz) 

r = x + y; 
if (abs(x) >abs(y» 

s = x - r + y + yy + xx; 
else 

s = y - r + x + xx + yy; 
z = r + s; 

. zz = r - z + s; 

Figure 3. Doublelength Addition 

Exact Singlelength Multiplication 

The exact singlelength multiplication is shown in Figure4. The algorithm requires 
breaking the x and y mantissas into half-length numbers, referred to as head (hx,hy) and 
tail (tx,ty) sections [2]. This algorithm requires addition and subtraction to be optimal 
and multiplication faithful. The TMS320C30 DSP multiplication result is faithful if the 
contents of the extended-precision register are truncated. 

To split x and y into two half-length numbers, a constant value is needed that is 
dependent on the number of available digits. The TMS320C30 device has t = 24 bits 
of mantissa in the single-precision format. Equation (5) shows that head section hx is chosen 
to be as near to the value of x as possible. 

hx = round(m(x)2 -tl )2e(x) +tl (5) 

Also, t1 is chosen to be approximately one-half of the available precision, or 12, 
on the processor. This effectively breaks the mantissa into half-length ·values. Equation 
(5) shows that hx is obtained by rounding and is defined to be an element of R[tl). The 
tail section tx is easily obtained by subtracting hx from x. Since floating-point subtraction 
can be made optimal on the TMS320C30, it follows that tx is an element ofR[tl - 1). 
Setting the constant equal to 212 does not always satisfy Equation (5) when t is even. When 
the constant is set to 212 + 1, the definition of Equation (5) is satisfied. The proof for 
the above is given in Reference [2]. 
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; Calculate the exact product of x and y, the result being 
; a doublelength number (z,zz). This algorithm uses the 
; following syntax when called from a user program as shown 
; mult12 (x,y,z,zz); 

p = x X constant; 
hx = x - p + p; 
tx = x - hx; 

p = y X constant; 
hy = Y - P + p; 
ty = y - hy; 

p = hx X hy; 
q = hx X ty + tx X hy; 
z = P + q; 
zz = p - z + q + tx X ty; 

Figure 4. Exact Singlelength Product 

Doublelength Multiplication 

The doublelength multiplication algorithm, shown in Figure 5, relies on the 
singlelength algorithm discussed earlier. The algorithm generates a nearly doublelength 
approximation of the output result (c,cc). Note that the exact singlelength mUltiplication 
routine is used for this approximation. Exact addition is used to generate a doublelength 
floating-point number that is the closest approximation to the actual result. 

The doublelength product program implementation uses the TMS320C30 stack 
capabilities to save some intermediate variables. These programs are written to be used 
as callable functions or macros in your program. In either case, the stack pointer must 
be set to a valid memory segment for proper code execution. 
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; Calculate the doublelength product of (x,xx) and (y,yy) 
; the result being a nearly doublelength number (z,zz). 
; Program uses exact singlelength multiplication, mult12 (.). 

mult12 (x, y, c, cc); 
cc = x X yy + xx X Y + cc; 
z = c + cc; 
zz = c - z + cc; 

Figure 5. Exact Doublelength Product 

Doublelength Floating-Point Arithmetic on the TMS320C30 



Doublelength Quotient and Square Root 

Figures 6 and 7 show the algorithm used in calculating the doublelength quotient 
and doublelength square root routines. Singlelength multiplication is used to generate a 
doublelength approximation of the quotient or square root values. As with doublelength 
multiplication, exact addition is used to generate a doublelength floating-point result. 

; Calculates the doublelength quotient of (x,xx) and (y,yy) 
; the result being (z,zz) 

c = x / y; 
mult12(c, y, u, uu); 
cc = (x - u - uu + xx - c X yy) / y; 
z = c + cc; 
zz = c - z + cc; 

Figure 6. Doublelength Quotient 

; Calculate the doublelength square root of (x,xx), the 
; result being (z,zz) 

if (x>O) [ 

else [ 

c = sqrt (x); 
mult12 (c, c, u, uu); 
cc = (x - u - uu + xx) x 0.5 / c; 
z = c + cc; 
zz = c - z + cc;] 

z = zz = 0.]; 

Figure 7. Doublelength Square Root 
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Error Analysis 

This section discusses and determines an upper bound for the error generated in 
forming a doublelength result. The value of the doublelength number (z,zz) is equal to 
z + zz. Singlelength addition, subtraction, and multiplication results are always exact. 
In doublelength addition, any error introduced in the end result is generated by calculating 
the zz term. An upper bound error magnitude has been calculated in Reference [2] and 
is shown in Equation (6) as follows: 

IE+ 1 ::5 [Ix +xxl + Iy +yyll x 22 - 2t = IZI x 22-2t (6) 

where t = 24 for this system. This gives an upper bound of Izi X 2-46, or approximate­
ly Izl x 1.42 x 10-14. This translates to a theorical accuracy greater than 13 decimal 
places. Table 1 shows an example of doublelength addition using the exact addition 
algorithm previously described. The numbers in the left column represent TMS320C30 
hexadecimal notation for the floating-point results, and (z,zz) is the decimal equivalent 
of the doublelength output result. Appendix B shows a listing of C programs (exact) that 
convert from TMS320C30 hexadecimal notation to decimal notation. 

Table 1. Exact Singlelength Arithmetic Examples 

Singlelength Addition 

x = 217FFFFFh 

y = OC7FFFFFh 

z = 22000003h (z,zz) = 17179876351.9995117 (Exact) 

zz = 097FFFF8h 17179876351.9995117 (DSP) 

x = FC7C8923h 

y = OA29A7E5h 

z = OA29ABD8h (z,zz) = 1357.37010409682989 (Exact) 

zz = EFA46000h 1357.37010409682989 (DSP) 

Singlelength Multiplication 

x = OF7FFFFFh 

y = 21FFFFFFh 

z = 30800000h (z,zz) = -_562949986975740 (Exact) 

zz = 18800002h -562949986975740 (DS~ 

x = FC7CB923h 

y = OA29A7E5h 

z = 07277BF7h (z,zz) = 167.484236862815123 (Exact) 

zz = EBA714FOh 167.484236862815123 (DSP) 
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The doublelength product, quotient, and square-root algorithms all have a small 
relative error. The upperbound error magnitude for each is given in Equations (7) through 
(9). 

IExl=(lx+xxl x Iy+yyl) x 11 x 2-48 

IE + I =(Ix +xxl Iy xyyl) x 21.1 x 2 -48 

IE'" I = sqrt(lx + xxi) x 12.7 x 2 -48 

(7) 

(8) 

(9) 

Equation (7) establishes an upperbound of Izl x 3.9 x 10- 14, or approximately 
13 decimal digits of accuracy for doublelength multiplication. Similarly, an upperbound 
of Izl x 7.5 x 10- 14, or greater than 13 decimal digits for the doublelength square­
root algorithm, is established. Table 2 shows examples for each algorithm discussed, along 
with the algorithm output and expected theorical output. 
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Table 2. Exact Doublelength Arithmetic Examples 

Doublelength Multiplication 

x = 22000000h 

xx = 097FFFFEh 

y = 21000001h 

yy = 097FFFFEh 

Z = 43000002h (Z,ZZ) = 1.47573996570139475 x 1020 (Exact) 

zz = 2A7FFFFCh 1.47573996570139427 x 1020 (DSP) 

x = 22000003h 

xx = 097FFFF8h 

y = OA29ABD8h 

yy = EFA46000h 

Z = 2C29ABDDh (z,zz) = 23319450552284.2434 (Exact) 

zz = 13907DC2h 23319450552284.1250 (DSP) 

Doublelength Quotient 

x = 43000002h 

xx = 2A7FFFFCh 

y = 2C29ABDDh 

yy = 13907DC2h 

z = 1641205Ah (Z,ZZ) = 6328365.08044074177 (Exact) 

zz = FC24BE20h 6328365.08044075966 (DSP) 

x = 22000000h 

xx = 097FFFFEh 

y = 21000001h 

yy = 097FFFFEh 

Z = 007FFFFDh (z,zz) = 1.99999964237223082 (Exact) 

zz = D3400000h 1.99999964237217398 (DSP) 

Doublelength Square Root 

x = 2C2BDDOOh 

xx = 3907DC2h 

Z = 61451A4h (Z,ZZ) = 4860114.04539400958 (Exact) 

zz = FB39EF11h 4860114.04539400712 (DSP) 

x = 21000001h 

xx = 097FFFFEh 

Z = 103504F5h (Z,ZZ) = 92681.9110722252960 (Exact) 

zz = F7BC0784h 92681.9110722253099 (DSP) 
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Note that the results were obtained using the programs shown in Appendix B. The 
C programs were created and compiled on a 80386-based microcomputer running under 
MS-DOS 3.3. 

How to Generate C-Callable Functions 

The source listings for the extended-precision arithmetic presented in Appendix A 
are optimized for execution speed and code size. These routines are designed to be used 
as macros in a user program environment or, with a few adjustments, as a C function. 

This section provides an overview of TMS320C30 C compiler calling conventions 
necessary to create functions that can be added to the C compiler library. You need a 
working knowledge ofC language to understand the terminology in this section [4, 5, 6]. 

The C compiler uses the processor stack to pass arguments to functions, store local 
variables, and save temporary values. The C compiler uses two registers of the TMS32OC30 
to manage the stack pointer (SP) and the frame pointer (AR3). 

When a C program calls a function, it must 

1.· Push the arguments onto the stack, 
2. Call the function, and 
3. Pop the arguments off the stack, 

in that order. 

On the other hand, the called C function must perform the following tasks: 

1. Set up a local frame by saving the old frame pointer on the stack. 
2. Assign the new frame pointer to the current value of stack pointer. 
3. Allocate the frame. 
4. Save any dedicated registers that the function modifies. 
5. Execute function code. 
6. Store a scalar value in RO. 
7. Deallocate the frame. 
8. Lastly, restore the old frame pointer [4]. 

The following code segment shows the singlelength addition routine modified to be 
in C-callable form. Note that registers R4 through R7 and AR4 through AR7 are dedicated 
registers used by the compiler. These registers must be saved as floating-point values. 

single .set OFFh 
fp .set ar3 
x .set rO 
y .set r1 
z .set r2 
zz .set r3 
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w .set 
x1 .set 
y1 .set 

.global 

.width 

. text 
_add12: 

push 
pushf 
push 
Idi 
Idi 
Idi 
absf 
absf 
cmpf 
Idflt 
Idflt 
dflt 

addf3 
rnd 
subf3 
rnd 
subf3 
rnd 
pop 
popf 
pop 
retsu 
.end 

r4 
r2 
r3 
_add12: 
96 

fp 
r4 
r4 
sp,fp 
* -fp[2],rO 
* - fp[3],r1 
x,x1 
y,y1 
y1,x1 
x,x1 
y,x 
x1,y 

x,y,z 
z 
x,z,w 
w 
w,y,zz 
zz 
r4 
r4 
fp 

; Save old fp 

; Point to top of stack 
; Load x into rO 
; Load y into r1 

Ixl > Iyl 

;z=x+y 

; Form w = z - x 

; zz = y - [y - w] 

; Restore fp 

Conclusion 

This report presented an implementation of extended-precision arithmetic routines 
for the TMS320C30 DSP. The programs presented include singlelength floating-point ad­
dition, subtraction, and multiplication, which produce exact doublelength results. 
Doublelength floating-point addition, subtraction, multiplication, division, and square root 
were also presented. The doublelength floating-point routines all had a small relative er­
ror that appeared in the correction term zz. However, it has been shown that the accuracy 
of the doublelength floating-point result is at least 13 decimal digits. Table 3 is a summary 
of information about the routines contained in Appendices A and B. Execution times shown 
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in the table are given only for the routines in Appendix A. These times do not include 
the call and return if the routine is implemented as a called function. They also do not 
include any context saves and restores that may be required. 

Table 3. Summary Information 

Routine Mnemonic Appendix 
Code Size Execution 

(Words) (Cycles) 

Singlelength Add _add12 A1 12 12 

Doublelength Add _dbladd A2 25 25 

Singlelength Multiply -"1ult12 A3 35 35 

Doublelength Multiply _mult2 A4 51 51 

Doublelength Divide _div2 A5 115 115 

Doublelength Square Root _sqrt2 A6 163 163 

Change Two Single-Precision 

TMS320C30 Numbers to One 

Double-Precision Result C30DBL B1 

Change Two Double-Precision 

TMS320C30 Numbers to a 

Double-Precision Result C30DBL2 B2 
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Texi.S InstruHnts, Inc. 

· Entry Conditions: 

• Upon entry (rO,1'1l contains Ix,y) 

• Exit Conditionsl 

• Upon exit 11'2,1'31 conti-ins Iz,zz), 

• Registers Affected: 

• rO, 1'1, r2, 1'3, 1'4 

· Revision: Original 

• Execution n.t: 12 cycles 
H*tHHHH+HHHJ:HfHfffHfHfHHffHffHfHfHff 

single .set Offh 
.9101>01 ..iddl2 
.set ,0 
.set ,I 
.set ,2 

zz .set ,3 

• .set ,4 
xl .Sit ,2 
yl .set ,3 

. text 
_iddI2. 

absf x,xl 
ibsf y,yl 
capl yl,xl ; :xl ) 1'1: ? 
Idflt x,xl ; if not, exchuge x " y 
1df1t y,' 
Idllt xl,y 

iddl3 x,y,z Iz=x+y 
rod z 
5ubf3 X,Z,III ;fol'."=z-x 
,od 

5ubf3 III,Y,ll ;zz=y-~ 

,od zz 
retsu 
.end 

> 
"= "= ~ 
= e: 
~ 

> 
~ . 
rLJ. ... 
= (JQ -~ 
t"" 
~ 

= (JQ -=-
> =-Q. 
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Appendix A2. Double Length Add 

* * * * * * * ** * * * * * ** * * ** * ** * ** * * * * * * * * * * * * * ** * * * * * * * * * * * * * * I'UNCI·ION DEF: cit, I a(l(t 

* AUHIOIl: AI Lovrici1 2/21/89 
rexa~; In~;trumenls, Inc. 

* Entry Concli-l ions: 
Upon entry (rN,rt) contains (x,xx) and 
(r?, r3) cont"i n (y, yy). 

* r::xi t Condi-l ion:,: 
Upon exit (r4,r!:;;) contains (l,Zl). 

* neqi~;ter5 AffeGtecl: 
rN, r 1, r2, r3, r4, rh, rf}, r7 

* Hev i s ion: Or i ~J i na I 
* ~::xecu1ion time: 2~) Gycles 

* *** * * * 'Ie * ** * * * * * * '" * * * * * * * * ** * * ** * ** * * ** * * ** * *** * ** * * ** 
.~ll obal 

· set 
xx · set 
y · set 
yy · set 
z · set 
lZ · set 
x1 · set 
yl · set 

· set 
· se t 

.Iexl 
clbI a(ld: 

absl 
absf 
011p"t 
I (If I I 
I elf! t 
I clf I I 
I ell I t 
I (If 11 
I elf It 

adell3 
rnc1 

subf3 
rncl 
adell3 
!""ncJ 
adelt 
rnd 
aelelf 
rnd 

adelf'3 
I"nd 

subf3 
I"nd 
acldf3 
rnd 
retsu 

.end 

(lhl,,,ld 
rN 
rl 
r2 
1<3 
r4 
15 
rG 
(! 

r6 
r7 

><,x'l 
y, y1 
y1, x1 
x,x1 
xx, y1 
y,x 
vy. xx 
x1, y 
y1, yy 

x, y, r 
r 

r ,x.:; 

y, s, s 

yy, s 

xx, s 

s, r ,1 

7. r, lZ 

"l..l. 

S, 17,7'1 

zz 

dWGk for txt) tyt 
if not, exdl ... ).rl~le (x,xx) 
ancl (y,yy) 

x + y 

r + 

r + y .f yy 

r.f I YY I· xx 

r + s 

77 

2/ Z + S 

Doublelength Floating-Point Arithmetic on the TMS320C30 
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:!J 
~ 
~. 

~ 
~. 

::... 
::!. 
;:;. 
~ 

~. 
§ 
;:;. 
~ 

~ 
~ 
N 
C o 
C 

-Ul 
.....:J 

f Al.JTt('R: AI Lovrich 2/21189 
Tens InstruHnts, Inc. 

Entry Conditions: 
Upon entry (rO,rlJ contains (x,y) 

f Exit Conditions: 
Upon exit (rO,rH contains (Z,IZ), 

t Registers Affected: 
rO, rl, r2, r3, r4, r5, NI, r7 

f Revision: Original 
f Execution TiH: 3S Cycles 
HfHHfHftHHHHHfHfHHHHffHfHHHffH+tHf 

,gl.bal .... 1112 
single ... 1 om 

• set rO 
. set rl 
, .. I r2 

x • set r3 
Ix .set r4 
q .5et ,5 
by .set r5 
Iy • set r6 

.set rO 
zz .set rl 
.Ieop .set r7 

.text 
.... 1112' 

Idl 'constant, teap 
.pyl3 I."p,x,p ; p = x • cons tint 
andn single,p ; f1(.) is fiithful 

subf3 PIX, hx Ihx=x-p 
rnd hx 

addl3 "",p,"" ;hx=x-p+p 
rnd hx 

s.bl3 hx,x, tx I tx =x-bx 
rnd Ix 

"py13 te.p,y,p ; p = Y I constant 
indn single,p ; fHI) is faithful 

subf3 p,y,hy ,hy=y-p 
rnd hy 
addl3 hy,p,hy ;hy=y-p+p 
rnd hy 

conshntl 

subf3 hy,y,ly ,Iy=y-hy 
rnd Iy 

"py13 "",hy,p ;p=hXfhy 
ando singJe,p ; fJl.> is faithful 

.pyl3 hx, ty, tellP ;telp=hxfty 
andn single, te.p ; f1(*) is fi.ithful 
"py13 tx,hy,q ;q=txfhy 
andn single,q ; f1 (f) is faithful 
addl3 q, te.p,q ; q=hXfty+txfhy 
rnd q 

addl3 p,q,z ;z=p+q > 
~ 

rnd z ~ 
I'D 

subl3 l,p,ZZ ;zz=p-z = rnd zz Q.. •. 
addl q,zz ;zz=p-z+q ~ 
rnd zz 

~ .pyl3 txt ty, te.p ;telp=txfty 
andn single, hap ; flit) is faithful 
addl3 ZZ, hiP, zz ; zz=P-Z+q+tXfty 
rnd zz 'J.l .. 

= rttsu (JCl 
,data -I'D 

~ 
.11.al 4097 ; constant = 2"'124-2412)+1 I'D 

= .end (JCl -=-
~ = --.. ~ -""d 



u; HHffHHIHtfHfHffHHfHffHflfHHfffHffHUHf Idl Iconstant, tnp addl tup,cc 1 CC=X*YY+XX*Y+CC 

00 • FlKTlOOIEF , -"ult2 apyl3 teap,X, p ; p = X f constant rod " ando single,p 

• AI.JTtI(fi: Al LOYl"'ich 212118'1 IZ=C+CC 
Texas InstruHots, Inc. subf3 p,x,hx ,hx=x-p 

• Entry Conditions: rnd hx addl3 CC,C,1 ;z=c+cc 
Upon entry (1'0,1'1> conhins (x,y), addl3 hx,p,hx ;hx=x-p+p rnd z 
and (1"2,1'3) contains (xx,yy). rnd hx 

• Exit Conditions: .. zz=c-z+cc 
Upon exit (1'0,1'1) contiins (z,zz), subf3 hX,x,tx ;tx=x-hx 

• Registers Affected: rnd tx subl3 Z,C,tZ ;zz=c-z 
rO, 1'1, 1'2, 1"3, 1'4, 1'5, 1'6, 1'7 rnd zz 

opyl3 tup,y,p ; p = Y f constant addl3 zl,ee,zz ;zz=c-z+cc > • Algorithl used: andn singlt,p rnd zz 
lult12tx, y, c, cel; "C 

"C cc=x*yy+xx.y+cq subl3 p,y,hy ,hy=y-p 
retsu (t> z = c ... ee; rnd hy • data = zz=c-z+cq addl3 hY,p,hy ;hy=y-p+p constant: e: rnd hy .float 4097 ; conshnt = 2"(24-2412)+1 ~ 

~ • Revision; Original 
.end · Execution TiIH': 51 cycles subf3 hy,y,ty ,tY'y-hy > ;;: HHHfHfffHflllllllll.llllllllllllffHHHffHffHf rnd ty ~ <:l" ,global .... 1t2 

~ 

!f 
single .set Offh apyf3 hx,hy,p ;p=hxfny ~ .set rO andn singie,p 0 ~ y .set r1 

6-So p .set r2 lIjIyl3 hx, ty, teap ;tttp=hXfty 
hx .Stt r3 -~ indn single. teap (t> 

2 Ix • set r~ Ipyl3 tX,hy,q ;q=txlhy 
q .set r5 ando single,q t"'4 ::l'. r5 (t> ;:. hy .set addl3 q, teap,q ;q=hxlty+txlhy 

= ~ ty .set r' rnd 

~ .set rO 
q (JCI -zz .set r1 apyl3 tx, ty, teiP ; ttlp = tx I ty =-~. xx .set r2 andn single, teap 

~ yy .set r3 addl3 p,q,e ;e=p+q ~ .set r~ 
rnd c = :I. cc .set r' -So -t .. pO .set r' ... 

~ subf3 e, p,ee ;ee=p-e "C tellP .set r7 -'" rnd cc « ::l'. .ttxt addl ;ee=p-c+q 
'"' 

q,ee 
... ult20 rnd cc c:> apyl3 x,yy, teapO ; teapO = ~yy addl teap,ee ; ec=p-c+q+txfty ;:. 

udn single, teapO rnd cc So lIPyl3 y,xx, teap ; teap = ylxx 

'" andn single,teap 

~ 
addl te.pO. teap ; tHP = xfyy + ylxx I restore variables 

rnd leap • 
~ pushl telp ; (xiyy + y1xx) breik: 

N popl teap ; XI¥y + ytxx 

C 
I ault12(x, y, e, cd a I cc=xlyt+xxfy+ec 

C 



~ HHIIIIIIIIIIIIIIIIIIIIIUII"IUllllfHHfHffHffH 

;: I FlKTIIW IEF • _div2 

~ 
~ 1iJTIKll' AI Lmich 2121m 

§" Texas InstrUiltnts, Inc. 

0<> Entry Conditions: S-
I Upon entry 11'0,1'0 contains Ix,y), 

~ and (r2,r3) contains Cxx,yy), 

15 Exi t Conditions: 

g. I Upon exit (1'0,1'11 contains (Z,lZ), 

I Regist.rs Affected: 
0<> I 1'0, 1'1, 1'2. 1'3, 1'4, 1'5, r6, 1'7 

~ 
S· I AlgoritM used: ... c=x/y; 

~ I IlUltl2(c, Y. u, uu); 
::I. I cc = I,x- u- uu +xx-c f yy) I y; 

S- I Z = C + ee; 
;:s I %z=c-z+cq 

'" ~. Rtvision: Original <) 

§ 
I Execution TiM: 115 Cycles 
tHffHtHftfHHHHffHfHHflllllllllllllllllffHU 

S- • globol _div2 

'" single .5tt Offh 

~ 
.s.t rO 

y .s.t rl 

~ 
p .5It r2 
hx .5.t r3 

N Ix .Stt r4 C a yl .stt r4 
q .5et r5 

C hy ,set r5 
ty .5et r6 

.5.t rO 
zz • set rl 
xx ... t r2 
yy • set r3 
tt.p .s.t r7 
ttopl ... t r3 
teap2 .s.t rl 

.5.t r2 
cc .5tt r3 
u • set 
uu .5.t zz 

• tfxt 
I 

_div2' 
pushf yy save yy - pushf xx Sivt xx 

VI pushf Sive x 
1.0 

pushl ; SlY' Y 

Ic·x/y; 

Tht floating-point nUliber- v is stored in Rl. Rfttr th. coaputation is 
(oepltted, IJv is also stor.d in R4. 

I R.gist.t' us.d i.5 input! R1 
to R'gisters lodifitd: RO, RI. R2, R3 
f Register containing t'flulta R4 . 
inv_f: ldf 

.. bsf 
1"1,1"3 
rl 

.. Extrict the exponent of v. 

pushf 
pop 
iSh 

rl 
rO 
-24,rO 

; v is s .. ved for liter. 
I The ilgorittw us.s V : lvl. 

; The 8 Ws of Rl contiin thf expol'ltnt 
, of v. 

A ftw-cOMents on boundary conditions. If e I: -128, then v = O. 1bt 
.. following x(OJ calculation yields Rl-: -128 - 1 = 127 and tht llgorit. 
.. overflow lhd $l.turlte since x[OJ is llrg •• This SHIS rtlsoM.ble. If 127 • 
• the RI = -127 - I = -128. Thus x[Ol = 0 ond this _ill (iuse tho olgoritha 
.. to yield zero. Since the MnUSH. of v is illlllys~betWHn 1 this is also 
f reasonible. As I result. boundlry conditions ire hUdled iutOlllticilly in 
I i rnsoRible fuhion. 

f x[O] forMtion given tbt exportfnt of v. 

rtfgi 
subi 
uh 
push 
popf 

rO 
1,rO 
24,rO 
rO 
rO 

f Now the iteritions bfgin • 

opyf3 rO,r1,r2 
.. dn singlf,r2 
subrf 2.0,r2 
rnd r2 
lIIIyf r2.rO 
andn lin91e,rO 

opyf rO.rl,r2 
udn sing1t,r2 
subr; 2.0,r2 
rnd r2 
opyf r2,rO 
indn singl •• rO 

; NOIII W MYe -.-1. the exporttnt of x[O]. 

; Now Rl :I x[O] :I 1.0" 2H(;-1). 

; R2 I: Y f x[OJ 

; R2 = 2.0 - V f x[O] 

; Rl I: x[1] I: x[OJ f (2.0 - v f x[O]) 

; R2 = V f x[tJ 

; R2 = 2.0 - V f x[1] 

; RI = x[2l • x[l] • (2.0 - v • x[l]) 

f 
Q.. 
~. 

~ 
~ 
6--~ 
~ 
~ 
~ ... . 
< 
~ 



- 1"0,1'1,1'2 ;R2=vlx[21 8l "pyf ldl leonstant, tap 
lAdn li0911,1'2 opyl3 t ..... x.P I P • x • constant 
subr 2.0,,2 ; -R2 =.2.0 .. Y • x[2] 

udn singl", 
,nd ,2 
lI'yf 1'2,1'0 ;- Rl = x[3] = x[2] • (2~O - v • x[2]) 
iOdo singl.,rO .. bf3 p.x,hx I hx-x"p_ 

rnd hx 
o,yf 1"0,1'1,1'2 ;R2:cv 1 x[31 oddf3 hx.p."" I hx=x-p.p 
iOcin Sillglt,rO ,nd hx 
subrf 2.0.,2 ; R2 = 2.0 -- v • x[31 
.nd .2 •• bI3 hx,x, tx ;tx=x-hx 

lI'yl 1'2,1'0 ; RI • x[41 = x[31 • 12.0 - v • x[311 .nd Ix 

iOdn singl.,tO ; This liniliz.s '1'1'01' in the LS8 •• opyl3 top,y,p ; P •. y I eGnstlRt 
lndn singt." 

• For the tut itlr&tion w -us, the for-lIVldion: •• bI3 p.y.hy Ihy'y-p 
x[51' Ix[41 • 11.0 - Iv' x[4]))1 + x[4] ,nd hy 

oddl3 hy.p.hy Ihy'y-p+p 

~ 
lI'yl 1'0,1'1,1'2 ; R2 = v • x[41 = 1.0 .. 01 .. =) I .nd hy 
iOdo singll,r2 

I:: Jubrf 1.0 •• 2 ; R2 - 1.0 - vsx[4] - 0.0 .. 01 ... =) 0 •• bI3 hy.y.ty IIY'y-hy 1:3-
~ .nd .2 .nd ty 

~ 
lI'yl 1'0,1'2 ; R2 = x[41 • 11.0 - v • x[411 

iO'" lingll,1'2 opyl3 !\x,hy,p I p-""'hy 

S-
addf .2 •• 0 I R2 .•• [51 = Ix[41'1I.0-Iy",[4]I))+x[4] lndn singl." 

~ .nd rO •• 1 ; Round sinct this is fol10111 by I fiFYF. lI'yl3 hx. ty. I .... ;I .... ·hx.ty 

2 Indn lingl., ttlp 
• Noll tho CUt .1 v < 0 i. hlndl,d. lI'yf3 lx.hY,q ;q-·tx'hy 

~. .. dn singl',q .. ,I 1'1,1'2 Iddl3 q, t ..... q lqahxtty+txfhy 

~ Idl .3 •• 3 r This 5th condition flllS. rod q 
ldln 1'2,1'1 ; If y < 0, lhoo RI = -ill 

~. ~rfor. tx f ty operation Ind stort tht rtJult in tHp. This is to 

~ 
Idl rl,t. ; MVt lly optilizt USf of rtgisttrs on tl\t cltvict. 

::I. I rtstort vlritb1ts lI'y13 tx, ty,ttlp .t..,-tx.ty S-
;: III'" singlt, ttIP 

~. 
popl ; rtstor. y Iddl3 P.,q,u ;u·p+q 
popl ; rtstort x rod 

"l pu.hl ; SlY. x 
g .vbl3 U,p,UU tUU·p-u 

o,yl yl,x Ie;,; x I ( tty) rod VI 

S- tncin singlt,x oddl q,uu I uu·p-u+q 
'1> .nd v. 

~ • stv. vt.rilblts 

~ puohl x ; SlY' e 
N p •• hl yl ; SlY' lly 
C 
Q 
C 

I IUlU2le, y, u, uu) 



~ popl yl restore lIy 
popl c res tOte , 

S- popl t •• p testort x 
i\' subl3 U, tNP,CC (c=x-u 
i\' end cc 
JJ subf UU,CC ;cc=x-u-uu 

S. rnd cc 
popl hap ; restore xx 

~ oddl ttllP,CC ; cc =x - u - YU + xx 

2 rnd cc 

~. 
popl ttlp ; restore yy 
.pyl c, ttlp ; c • yy 

~ 
indo single, tMP 
subf tUp, ec ; cc=x-u-uu+xx-c*Y) 

S· rod cc ... opyf yl,ec ; cc = ( x - u - uu t xx - C f yy ) I Y 

• indn single,cc 
:::So 
S. IZ=C+CC 

;: 
~ oddl3 (,Ce,l IZ=C+C' 

ri' rod 

§ f zz=c-z+cc 

S. subf l,C,ZZ. ;zz=c-z '" 
~ 

rnd zz 
aW ce,ll ; ZI = C - Z + CC 

~ 
rnd zz 

~ rehu C 

Q • dati. 
cOIls-h.ot; 

C .floit 4091 ; conshnt- = 2"(24-24121+1 
.end 

-0'1 -



.... 11'1111 •• 1'11111.1111111111111111 •• 1111111111111.1.111 pu.hf X ;- SlVI Ie 

~ I flll:TllII IEF I .sqrt2 ",yf 2.0.rO , add .. rounding bi t in the exponent 
.. d. singl.lrQ 

I li/liiii. Al ltYricb 2121189 pushf rO 
lou Insu.ents, lac. pop rl 

uh -25,1'1 I The 8 LSB. of RI conloi. 112 lho expo. 
• EAtry Conditio.s • 

Upon •• try (rO,rU cooloi •• (x, xx). t x[O] for.tion giwn tbt exponent of v. 
Exi t Conditiensl 

Upon txit (rO,rJ) contains (ztu), nogi rl 
• Rlglsl.r. Afftcl.d' •• h 24,rl > rOt 1'1, .1'2, ,.3, r4, rS, 1'6, 1'7 push rl 

"= popf rl I Noll rl • x[O] = 1.0 • 2HI ... /2). 

"= Algorilla u .. d' 
~ c ill 541"tex), • Gent"t. v/2. 1:1 IUtt12ec, c, u. UII), =-cc • ( x - u - uu + xx ) 10.:11 I CI ",yf O.25,rO ; vl2 and tlke rounding bit out. .... 
~ z .e+ce, .. d. singl.,rQ 

~ 
zz·c-z+cc, 

~ 
• Now the iterdions begin. 

I Revisionl Drigi .... 1 
;: I Extculio. n ... 163 Cycl •• "pyf rl,rl,r2 I r2 = x[O] I .[0] ~ ~ IHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHH &odn single,r2 = ~ .globtl _.qrt2 lIIyf .o,r2 I r2 • (v/2) • • [0] I .[01 & ~ sinlle ... t Offb .. d • 5ing1.,r2 ;: -OQ .Ht rO 5ubrf 1.5,r2 ; r2 = I.S - (v/2) •• [01 • x[O] 

~ S- y •• tt rl rnd r2 
t"" ~ 

p •• ot r2 
lIIyf .. 2,1'1 I rl •• 111 •• [01 • U.5 - (v/2) .. [01 .. 

~ 
8 

hx .Ht r3 
andn singl',r1 

~ Ix .Ht r4 

~. q .Ht r5 
lIIyf ,.1,rl,r2 I r2 •• 111 I .1Il -by .Ht r5 
Indn lingl.,r2 1:1" 

I If ... t r6 
IIIYf .o,r2 I r2 • (v/2) •• tIl I .1Il (;I.l cl' .HI rO 
Indn singlt,r2 i! a" zz ... t rl 
sub"f 1.5,r2 ; r2' 1.5 - (v/2) •• 1Il •• 1Il xx .Nt rl 
rnd r2 ~ ~ t.., .Nt r7 
IIIYf r2,rl I rl •• [21 = .[n • U.5 - (v/2) .. IIl .. ::I. ... t r2 
Indn singl',rl S- cc ... t r3 

~ ;: .HI 
lIIyf rl,rl,r2 I ,,2 • x(2] .. x[2] "' = ::to .. .Nt zz· indn sin'gl.,r2 -'"' cI .Ht .0 
lIIyf .o,r2 ; r2 = (v/2) •• [2] I .[2] g .to.t .. d • singl.,r2 

.sqrt2t subrf 1.5,r2 ; r2 = 1.5 - (v/2) •• [21 •• [2] S- r.d r2 

"' C :II sqrtlx) 
IIIYf r2,rl ; rl = x[31 •• [21 • U.5 - (v/2) .. [21 •• 

~ Inda singl.,r! 
I £letr.ct tH .. p .... t of v. 

~ IIIYf rl,rl,r2 ; r2 • x[3] f x(3] 
tv ldf rO,r3 ; Slye y. Indn singl.,r2 C retslt I rtturn if n_tr non-politivI lIIyf rO,r2 I r2 = (v/2) •• [3] I x[31 Q pu.hf xx I Slyt xx .. d. lingl.,r2 
C 



tl subl'f 1.5,r'2 , ,2 = 1.5 - (vJ2) 1 x[3] 1 x[3J opyf3 hx, ty, ttlJ) ;ttlp=hx+ty 
<::> rod ,2 

andn single, teap :::: opyf 1'2,1'1 , ,1 = x[4] = x[3J 1 11.5 - (vl2llx[3J" opyf3 tx,hy,q ;q=tx*hy <:l- andn single,r1 
~ indo singl',q 

~ oddf I"p,q 1 q=hxfty+txfhy 
;: opyf ,..1,1'1,1'2 ; ,.2 .. x[4] .. x[4] rod q 

<><> andn single,r2 
S- "I'yf rO,r2 ; 1'2 = (v/2) f x(4] f x(4) 

~ 
andn 5iogle,I'2 f perh". tx .. ty optrltion i.nd store the result jn hap. 

<::> 
subrf 1.5,,2 , ,2 = 1,5 - (v121 1 x[4J 1 x[4J ... This is to optiaize. use of registers on the device. 

i::l rod ,2 

S" apyf 1'2,1'1 ; 1'1 = x(5] I" x[4] f 11.5 - (vl2l*d41tx .pyf3 tX,ty,ttap ;telp=tx+ty 

<><> Indo single, teap 

;0 andn single, 1'1 .ddf3 p,q,u lu=p+q 
Idf rl,rO rod u 

g" 
apyf 1'3,rO ; sqrt(vl froD sqrttvn(-U) subf3 u,p,Uu ;uu=p-u 

~ andn 5i091e,1'0 rod uu 
:::So oddf q,uu ;uu=p-u+q 
S- f Slve variables rod uu 
S! oddf telp,-tltI , uu=p-u+q+txfty 

~. pushf ; save c = sqrtlxl ,nd uu 

'" Idf x,y ; get ready for lultiplication 

~ .. cc =.! X - U - Uti + xx I f 0.5 / c 
... ault12(c, c, u, uul 

S- popf c ; r.storf C 

'" Jdf It:onstant, hip popf hip ; rutorf x 

~ 
.pyf3 hlp,x,p ; p = x * constant subf3 u, hap,cc ;cc=x-u 
.. dn single,p 'nd cc 

~ subf uU,ce ;cc=x-u-uu 
tv 5ubf3 p,x,hx ;hx=x-p 'nd cc 
C ,nd hx popf telp ; restore xx 
[3 oddf p,hx ;hx=x-p+p addf teap,cc ;cc=x-u-uu+xx 
C ,nd hx ,nd cc 

subf3 hx,x,tx ;tx=x-hx push! cc ; sa~e cc 
,nd Ix pushf ; save c 

lIflyf3 tup,y,p ; p = y " constant " The floating-point oueber v is stored in Rl. After tl'lt cOllputation is 
andn single,p " coapleted, 1/~ is also stored in R4. 

subf3 p,y,hy ,hy=y-p * Register used as input: R2 
,nd hy " Registers lodified: RO, Rl, R2, R3 
oddf3 hY,p,hy ,hy=y-p+p f Register containing result: R2 
,nd hy 

Jdf r2,r3 ; v is saved for later. 
subf3 hy,y,ly ,Iy=y-hy .bsf ,2 ; The algoritt. uses v = :~:. 
,nd Iy 

lPyf3 hx,hy,p ,p=hx1hy 
andn single,p -0'1 

W 



-~ 

i 
l;;" 

~ 
So 
~ 

1-
~ 
~. 

~ 
::!. 
So 

I· 
g 
So 
<1> 

~ 
~ 
N 
C 
Q 
c 

* Ext .. ct the .. p .... t .f v. 

pushf 
pop 
uh 

.2 

.1 
-24,.1 ; The 8 LS8s of RO contlin tltt exponent 

I of y 

• >dO] Foroati •• gi ... the oxp .... t .f v. 

negi 
Jlbi 
iSh 
posh 
popf 

.1 
1,.1 
24,.1 
.1 
.1 

·li0ii the it.ratio .. begin. 

opyf3 rl,r2,rO 
.. d. iinglt,rO 
sub.f 2.0,rO 
•• d rO 
opyl rO,.1 
Indo single,r' 

opyf rl.,2,"0 
.. do singl.,rO 
subrf 2.0,rO 
•• d rO 
opyl rO,.1 
.. do single,rt 

opyf rl,r2,rO 
.. d. Jingl.,tO 
slIbrf 2.0,rO 
•• d rO 
opyf to,r! 
.. d. siftJ1t,rl 

opyl rl,r2,rO 
.. d. s11l91.,rO 
sllb.f 2.0,.0 
•• d rO 
.,yl rO,.1 

.. d. liD.I.,rt 

; Nolil • hlve -.-1, the exponent of x[O] 

; lioii RO •• [0] • 1.0 I 2H(-e-Il. 

; Rl-v*x[Ol 

; RI • 2.0 - v I .[0] 

; RO • x[IJ = x[O] I (2.0 - v I x[Oll 

,RI=.lx[IJ 

; Rl·: 2.0 - V t xU] 

, RO •• [2] •• Ul I (2.0 - v I .[Ill 

,RI=v l .[2] 

; RI = 2.0 - v I .[2] 

, RO •• [3] = .[2] I (2.0 - v I .[2ll 

,RI =vo.[3] 

; RI-2.0-vI.[3] 

I RO •• [41 •• [3] I (2.0 - • * .[3ll 

For the lut it.ration WI UI' tH ferlMltationl 
.[5] • (.[4] I (J.O - (v I .[4]))) + .[41 

.pyf rl,r2,rO ; Rl -= y .. x[4] I: 1.0 •• 01 •• -> 1 
tndo single,rO 
subrf 1.0,rO ; RI • 1.0 - v * .[4] • 0.0 .. 01 .... ) 0 
•• d rO 
opy! rl,rO ; RI •• [4] * (1.0·- v * .[4ll 
Indn singlt,rO 
add! rO,.1 ; RO •• [5] • (.[4]*(I.o-(VOX[4llU+>[4] 

•• d rl,r2 ; Round since this is follolftd by I. IFYF 

NOIiI the cue of y < 0 is hlndltd. 

ntgf r2,rO 
Idl r3,r3 , This uts condition flags. 
Idln rO,r2 ; Ifv(O, thtnR2a-R2 

.. restore YII'ilblu 

popf t •• p ; restore c 
popf cc ; restore cc 
opyf 0.5,ce ; cc • ( x - u - au + )0( ) I 0.5 
indo singl.,cc 
opyl r2,tc ; cc = ( x - u - uu + xx ) .. 0.5 I c 
indo singl',ee 

I=C+C( 

oddl3 t.I"ce,l ; z=c+cc 
.nd 

zz·c-z+cc 

5ubf I, tap,ll I ZZ·C-Z 

.nd zz 
oddl CC,IZ ; zz·c-z+cc 
.nd zz 

!'thu 
.ellto 

constant: 
• float 4'm , const .. t • 2"(24-24/2)+1 
••• d 



Appendix B 

Doublelength Floating-Point Arithmetic on the TMS320C30 165 



166 Doublelength Floating-Point Arithmetic on the TMS320C30 



r 
~ 

! 
So 
~ 
~ 
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~ 
S· ... 
::to. 

~ 
;: 
~ 
r;' 

~ 
So 
'" 
~ 
f.::i 
N 
<::> a 
<::> 

3/. C30DBL - ProgrD to operi.te on hlo single-precision AU_bel'S 

in 13) for ... t ud produce a double-precision result 1/ 
linclude <Mth.h> 
'include (stdio.h) 

MinD 
I 

) 

long double x, Y. z, 
long int xl, yl; 
int i, operation; 
long int c30toe(1ong inU; 

i=l; 
dol 
printfC-Type h.o C30 hex nuab.r5:\n-)1 
printfl -x = .); 
sClAH-XX·,b1); 
printfC·y = .); 
scanf('XX','YIl; 
xl = c30tot(xl); 
x = (long doublelilln .. t fltlxlll; 
yl = c3Otoelyll, 
y = (long double)(flfloat f)('Y1l I; 
dol 
p,;ntft'Addlll, SUbl21, lIpyl31, D;v141, Sq,t1511 "I; 
scuf(·Xd-, '.ptrdion); 

) wIli It (operation" :: operation)Sh 

if (operation = 1) z = x + Y; 
if (operation ZIi: 2) z = x - y; 
if (operation lIZ 3) z = x I YI 
if (operation = 4) z = x / YI 
if (opetltion = 5) z II sqrt(x); 
printfC-\nz II 1.1Slg·, z), 

priatft-\n\nTypt in C30 hex result1\n-); 
pr-intH·z := ·1; 
scufr-XX·,bl)1 
printfC·zz = -I, 
SCIJlf( 'U' ,'YIl; 
xl z c30toeCxlJ, 
x = nong doubleH.Ulnt .)(Iotl)); 
yl = c30t .. lyll; 
y • (long doubloltllfl .. t IIt'Yl)), 
z=x+Y; 
printff-'nz := 1.18L1-~ z); 

printfC-\n\nTypt 0 to txU, ehe continue: -It 
scanf ,-lit·, .ill 

) IIIAn. (i != O}I 

t-oo' /f C30TOE - routine to convert fro. a. c30 f)oding point nuaber to a. 
~ nUlbtr in itee forMt. 80th input and output in hex. f/ . 

long int caotoellong int xl 
I 
long int MntiSSi., sign; 
long int exp; 

sign = x II 0x00800000; 
exp = x » 24; 

/f fxp=-l28 corresponds to O. txp=-127 is dtnorlK' hed in iHtl 
represent it lS O •• / 

if (exp (= -127) return(O); 

/f add i.phtd bit iftd sign-extend MntisSi */ 

HntisSi. = x " 0x007fHff; 
if Isignl 
Hntissl 1= OxffOOOOOO; 

else 
IM.ntissa. 1= 0x00800000; 

/f convert MntisSl to signllgnitud. f/ 

if Csignl .antiSSl II -...ntisH; 

/f adjust Kntissa if it Ml.5 -2.0.1/ 

if (Mntiua. = OxOl000000H 
exp++; 
HntiS5I = 0x00900000, 

) 

if (exp ) 127> return(O); /. too large nuaber; return error 1/ 

/1 Hke exponent 127-txcess and return ieet nulbtr ./ 

exp += 127; 
Mntissa = <M.ntissl "0x007fffff) I (Sign «8) : (exp « 23)1 

return(Rntissa); 
} 

~ 
"CI 
I'D = a 
~ 

t:= 
"""" 
9 
~ 

t::'= 
OIJQ = I'D 
="~ 
;-~ 
I 0 
~OO 
I'D .. ' 
0, = tIllJQ .. , -o I'D = I 

~~ 
I'D (') 
til .. , = l!3, 
~§ 

Z 

~ 
~ 
S­
O ; 
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l!' 
::... 
::I. 
S. 

§. 
g 
s. 
" 
~ 
~ 
~ 
Q 
c 

/. C3OIB.2 - P,., .... to o,.nt, on till dlubl • ..,reciliOil ntlHrl 
i. C30 f .... t udpttd .... do.~I.., .. ci.lo ..... It ./ 

Iinciudo <ath.~ 
Iloclll4o (stdio;b) 

... i.n 
I 
long doubl. x, Y. I, 
I ... int Xl, yl, xxi. yyl, 
ilt it ope .... ti .. n; 
10., i.t c30t .. n.., I.tl, 
j-l, 
dol 
,.I.tfl 'Typo boo C30 .... n ..... l\o·I, 
print"'x· '}, 
.cutfl'U·,bll, 
prhUC'xx· '1; 
IcUf(-U;' ,bxU, 
prittfC'y • I), 

.... fI·U·.'YII, 
priAtfC' " • II, 
.clllfI·U· .,"11, 
xl • c30tHlxll, 
xxi • c30tHlxxll, 
yl • c30tHlyll, 
yyl • c30tHlyyll, 
X' non, doubl.II'UI .. t '11 .. 111 • 

no., d .... I.II.lfl .. t 111 ... 111, 
y' non, doubl.II.lfl .. t 'II'YIII • 

non, _1.II'lfl .. t '11,"111, 
dol 
p.i.tfl·MelIII. MI2I • ..,,131. 010141. Sq.tISII '1, 
1ClIf1'1d' ....... U .. I, ) "il, (optrltio.<1 n optNtion)5); 

if I ..... ti .... II Z = x • )'l 

if C ..... ti •• -21 z'x-YI 
if C ..... ti .... 31 z· x "YI 
if I ..... U .... 4' I • x / YI 
If lo .... ti .... 51 Z • Iq.tlxl, 
ptintfll\u II. Lla.,I, z), 

priatfl".'nTypo in C30 ........ It''n·I, 
prilltf(IZ • ·)1 
scufC I U·,lrxl), 
printfClu • III 
.cull'U' .'YII, 
xl • c30tMlxll, 
x • non, d .... I.II.lfl .. t '11"111; 
yl • c30tHlyll, 
y' non, ..... I.II.UI .. t 'II'YIIII 
Z&x+Y1 

) 

printfC"nz ~ X.IL,', zl, 

printfC'\n\nTypt.O to IXit, .1.1 continue I '), 
scuF "Id' , .il; 

} lihUe (i !- 0), 

/. C30TOE - routint to convlrt frOll I c30 flOiting point nuMtr to I 
nUllbet in itte F .... t. Both input In' output in hex •• / 

long int c30tHn",g int x, 
I 
long int .ntilsl, sign; 
long int bp; 

sign. x • 0x0Q800000. 

exp-x»241 I 

/1 txpa"l28 corr •• pon's to O. • .... 127 is dtGoI'Ml il.d in ieul 
rtpresent it u O. -, 

if I.xp (. -1271 .. t •• nIOI, 

/. odd i.,U.d bit IRd li, .... xt.nd .. ntis ... / 

.. ntill'. x • 0x007fffff, 
if Ili,n' 
IlIItisn Ie OxffOOOOOO, 

.IM 
antiss, Ia: 0x00800000; 

,- convert MIItin, to Jign1lgnitudt " 

if hign) Mntissa I: .... ntissil 

/. ,dj •• t ... ti .. , if It III -2.0 ./ 

if I ... ti ... = 0.0100000011 
exp++1 
antiss. s 0x008000001 

) 

if (exp > 127) Hturn(O); /_ too Ivg. n"r, rtturn error. _/ 

, .. me exponent 127-tXC.ss Ind return ieee nnller 1/ 

ox, ... 127, 
... tis ... I .. ntis ... 0x007fffffl ; Isign «81 ; 1 ... « 231, 

return(RAtisH); 
) 

> 
~ 
= ~ 
~ 

e , 

n ; 
!'~ 
g.~ 
;':19 ,= 
l~ 
Fil' g. 
g' 7' 
~.~ 
t'I) ~ 
III .' E. ~, ... = 

= 
~ 
51 
[ 
g­
O ; 
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Introduction 

In the general class of orthogonal transforms, there exists one in particular, the 
discrete cosine transform (DCT), that has recently gained wide popularity in signal pro­
cessing. The DCT has found applications in such areas as data compression, pattern recogni­
tion, and Weiner fIltering, primarily because·ofits close comparison to the Karhunen-Loeve 
Transform (KLT) with respect to rate distortion criteria [1]. Although the KLT is con­
sidered to be optimal, there is no fast algorithm to compute it. Since there is no fast KLT 
algorithm, the DCT is an attractive alternative. 

For image coding, the DCT works well because of the high correlation among adja­
cent data samples (pixel values). Because of this correlation, the DCT provides near op­
timal reduction while retaining high image quality. In a comparative study [2], the DCT 
was shown to outperform the Fourier, Hartley, and cas-cas transforms for image com~ 
pression, providing even more motivation for finding fast implementations. 

A number of algorithms have been developed, most notably those of HOll [3] and 
Lee [4], which generate higher-order DCTs from lower-order ones. This paper presents 
two 8 X 8 DCT routines, one for the TMS320C25 and another for the TMS320C30, based 
upon the routine in [3]. 
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The neT Algorithm 

For a given real data sequence xO,xl, .. . ,xN-l, the discrete cosine transform is 
given in [I] as 

Zk = - ex(k) E Xn cos k = 0, I, . . . ,N - I ~ N-I (7r (2n+ I)k) 

N n=O 2N 
(Ia) 

and its inverse is 

~ N.-I (7r (2n+ I)k) xn = - E ex(k)Zk cos k = 0, I, ... ,N - I 
N k=O 2N 

(Ib) 

I 
where ex (k) = {2 for k = 0; otherwise, the transform is unitary. If Zo is scaled up 

by 2, the DCT can also be written in matrix form as 

z = ~T(N)X' (2) 

where x and z are column vectors denoting the input and output data sequences, and T(N) 
is the DCT matrix of order N. Actually, expanding the matrix (neglecting the factor of 

.J J for the moment), a 4-point DCT appears as 

Zo 

Z2 

172 

I I I Xo 
ex -ex ex -ex X2 

(3 -(j -(3 
(3) 

(3 -(j -(3 
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1 
where 0( = .fl' (3 = cos (ID, and 0 = sin (~). Similarly, the 8-pt OCT can be 

expressed as 

Zo 1 1 1 1 1 1 1 1 Xo 

Z4 0( -0( 0( -0( 0( -0( 0( -0( x2 

Z2 (3 -0 -(3 0 (3 -0 -(3 0 x4 

Z6 0 (3 -0 -(3 0 (3 -0 -(3 x6 

Zl ).. P. -p -'Y -}.. -p. p 'Y x7 
(4) 

Z5 P. p -'Y }.. -p. -p 'Y -}.. X5 

Z3 'Y -}.. P. p -'Y }.. -p. -p X3 

Z7 p 'Y }.. P. -p -'Y -}.. -p. Xl 

where}.. = cos (~), 'Y = cos (iID, p. = sin (iID, and p = sin (~). Note that 

the input is no longer in natural order but has been rearranged according to the permutation 
matrix P and the relation 

x = Px, 

where 

1 0 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 0 
P 

0 0 0 0 

0 0 0 0 

0 0 0 1 

0 1 0 0 

An 8x 8 Discrete Cosine Transform Implementation 
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0 0 0 0 

0 0 0 0 

1 0 0 0 

0 0 1 0 

0 0 0 1 

0 1 0 0 

0 0 0 0 

0 0 0 0 
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Upon examination, the matrix T(N) in (4), which is the matrix T(N) with the rows and 
columns rearranged, can be described more compactly as 

T(N; [
. T (~) 

15 (~) 
(6) 

since the upper half of the 8-point DCT is exactly the 4-point DCT matrix previously 

generated. Using the results obtained in [3], the relationship between 15 (~) and 

T (~) is a given as 

(7) 

where 

K = RLRt, 

R being the matrix that performs a bit reversal on the input data; L is the lower triangular 
matrix 

1 0 0 0 0 0 0 0 

-1 2 0 0 0 0 0 0 

1 -2 2 0 1 0 0 0 

-1 2 -2 2 0 0 0 0 
L 

1 -2 2 -2 2 0 0 0 

-1 2 -2 2 -2 2 0 0 

1 -2 2 -2 2 -2 2 0 

-1 2 -2 2 -2 2 -2 2 

and Q = diag [ cos (n + :)(;)L for n = 0,1, ., 7. The output vector z 

is now in bit-reversed order. Signal flow graphs for 2-point, 4-point, and 8-point DCTs 
are shown in Figure 1, with the multipliers defined as in (4). 
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Xo Zo Zo " Xo Zo 
Z2 " X, Z2 
Z, " X2 -1 

Z, 

Za 2 " a X3 2-ptDCT Za 
X, Z, 

2:1 MUX 1:2DEMUX 

(a) 2-Point (b) 4--Point 

Zo " Xo Zo 
.z, " X, Z, 

- Z2 " X2 Z2 

Zo " Xa Zo 
.. " X. Z, 

I' " X. Z. 

-tJ " X. Z3 
-y 4-ptDCT " X7 Z7 

2:1 MUX 1:2DEMUX 

(e) 8-Point 

Figure 1. Signal Flow Graphs for 2-Point, 4-Point, and 8-Point DCTs 

The structure of the algorithm looks very much like that of a Fast Fourier Transform 
(FFT). since the most fundamental computation is a 2-point butterfly. This routine is actua1ly 
a generalized case of the Cooley-Tukey FFT algorithm with the addition of the recursion 
at the end. If the equations for the signal flow graph are written explicitly. the recursive 
nature of the DCT becomes clear; for a 4-point DCT. we have 

Zo = Zoo 
Z2 = Z2. 
Z1 = z], 

Z3 = 2Z3 - Z], 
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and for the 8-point OCT, 

Zo = ZO, 

Z4 = Z4, 

Z2 = Z2, 

Z6 = Z6, 

Z1 = Z], 

Z3 = 2Z3 - Z], 
zs = 2zs - Z3, 
Z7 = 2Z7 - zs· 

To create a unitary transform, each element in the vector should be multiplied by 

the scaling factor # for both the forward and inverse transforms. The inverse 

transform is obtained by completely reversing the direction of the signal flow graph; i.e., 
performing the bit-reversal first, then the recursions and the butterflies, and finally, the 
data permutation. 

For the two-dimensional case of interest, the OCT can be described in the form 

z(k,I) = - a{k) a{l) E ~ x,m,n cos cos a 2 N-l N~ 1 (,) (11" (2m+ l)k) (11" {2n+ 1)0 (8 ) 
N m=O n=O 2N 2N 

x(m,n) = 1- NEI NEI a{k) a (l)z(k,I) cos (11" (2m+ l)k) cos (11" (2n+ 1)~ (8b) 
N k=O 1=0 2N 2N ) 

1 
where a (k) = ~ for k = 0, unity otherwise. Like the FFT, the OCT kernel is 

separable, allowing the transform to be performed in two steps, first along the rows and 
thenthe columns. 
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Implementation on the TMS320C25 

The DCT algorithm may be carried out in one of two ways, either using 

1. A matrix formulation, where the DCT coefficients are simply multiplied by 
the data, or 

2. The signal flow graph. 

This routine uses a matrix formulation, which requires the sixty-four cosine 
coefficients to be stored in an array in memory. The matrix formulation is based on the 
following equation: 

zo 1 1 1 1 1 1 1 Xo 

Zl A- 'Y P, p -p -p, -'Y -A- Xl 

Z2 fj 0 -0 -fj -fj -0 0 fj X2 

Z3 'Y -p -A- -p, p, A- p -'Y X3 

Z4 a -a -a a a -a -a a X4 
(7) 

Z5 p, -A- p 'Y -'Y -p A- -p, x5 

Z6 0 -fj fj -0 -0 fj -fj 0 X6 

Z7 p -p, 'Y -A- A- -'Y p, -p X7 

where A- = cos (~), 'Y = cos (R)' p, = sin (~~, and p = sin (~) 16 . 

The algorithm described above has been shown to be numerically stable for fixed­
point processors; however, to prevent serious data errors, truncation and roundoff must 
be accounted for. A roundoff technique similar to the one in [6], is used to prescale the 
matrix coefficients by (2 15 - 1). This product is then loaded into the accumulator with 
a one-bit left shift, effectively dividing it by 215. After a mUltiplication is performed, the 
32-bit value in the accumulator must be rounded to sixteen bits, where bits 13,14, and 
15 are used to determine the value of the sixteenth bit. The TMS320C25 performs this 
operation in a single instruction by adding 3000h to the accumulator product with a one­
bit left shift, as outlined in the code shown in Figure 2. 
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* 
* 

* 
DCTINI 

* 
* 
* 

T2 

* 

178 

INITIALIZE MATRIX COEFFICIENTS AND ROUNDOFF VALUES INTO 
INTERNAL BLOCK 0 

LDPK RNDOFF 
RSXM SIGN-EXTENSION MODE 
SPM 1 LEFT SHIFT 1 BIT 
LRLK AR1,COEFF COEFFICIENTS 
RPTK EDATA-IDATA 
BLKP IDATA,* + 
LRLK AR1,RNDOFF VARIABLES 
RPTK 10 
BLKP EDATA,*+ 

SECOND SET OF COEFFICIENTS 

LAR AR1,DST AR1 IS NOW DESTINATION 
POINTER 

MAR *+,AR2 WORK ON SECOND COLUMN 
LAR AR2,SRC 
LARK AR3,7 
LT * + ,AR2 
MPY C10 
ZAC 
RPTK 6 
MAC C11, * + 

LTA * + ,AR1 
MPY C10 
ADD RNDOFF 
SACH *0+,AR3 
BANZ t2,*-,AR2 

Figure 2. TMS320C25 Code for Roundoff Routine 
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After the multiplications are computed, the results are stored in another array area 
in transposed order; thus, a separate routine for transposing the matrix is not needed. Once 
the rows are transformed, the pointers for the input and output matrices are exchanged. 
When the procedure is repeated, the output is stored as rows, completing the transform. 
Appendix A contains a complete program listing for the forward transform on the 
TMS320C25. To perform an inverse nCT, the table of cosine coefficients should be 
replaced with those used for an inverse transform. 

Implementation on the TMS320C30 

The TMS320C30's increased speed and flexible addressing modes can reduce 
execution time substantially. In using the FFT -like structure, extraneous multiplications 
are removed, and because of the TMS320C30's ability to perform parallel 
multiplication/additions, two butterflies can be computed at once. After an initial subtraction 
is done, the coefficient multiplication can be executed in parallel with the addition of the 
data. The TMS320C30's floating-point capability eliminates not only the problems of 
roundoff error associated with fixed point processors but also the need for any truncation 
routines. 

Because the DCT size is fixed to eight points, there are only four locations that need 
exchanging; this allows for a fast bit-reversal of the data. When using the TMS320C30's 
extended-precision registers for temporary storage, the transfers can be done in-place. 
These data transfers are also done in parallel, since two load or store operations can be 
performed simultaneously. The code for performing the bit reversal is shown in Figure 
3 below. 

* 
* 
BITREV 

II 

II 

II 

II 

CORRECT ORDER FROM BIT REVERSED TO NATURAL 

LDF 
LDF 
STF 
STF 
LDF 
LDF 
STF 
STF 

*ARO,RO 
*-AR2,R1 
R1,*ARO 
RO,*-AR2 
*AR1,RO 
*-AR3,R1 
R1, *AR1 
RO,*-AR3 

ONLY FOUR LOCATIONS ARE 
ACTUALLY SWITCHED 

Figure 3. TMS320C30 Code for Bit Reversal 
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Because of the amount of data shuffling that occurs, an eight-word scratch-pad vector 
has been created with four permanent pointers set up at every other memory location. 
This allows access to each element in the vector (by predecrement or pre increment 
addressing) without requiring constant alteration of one or two pointer locations. Although 
there is no overhead for looping on the TMS320C30, straight-line coding is used as much 
as possible to increase performance. 

You can transpose the DCT matrix in the same way as in the TMS320C25 
implementation: namely, store the transformed row vector as a column vector in another 
matrix and interchange the input and output pointers. 

The complete routines for the forward and inverse transforms are given in Appen­
dix B. 

Results 

The execution times and memory requirements for the two routines are given in 
Table 1. For the TMS320C30 implementation, the forward transform contains the scale 
factor of 1, so the transform is not unitary. When the signal flow is reversed, 

instructions accumulate and thetime required to perform the inverse transform actually 
increases (see Table 1). This increase occurs because certain multiplications cannot be 
performed in parallel with another instruction. The two times are identical on a TMS32OC25 
because it uses a matrix routine to compute the transform. 

Table 1. Execution Times and Memory Requirements 

Device Memory Required Time Required 
Program 

TMS320C25 232 words* 

232 words 

TMS320C30 148 words** 

155 words 

* TMS320C25 wordlengths are 16 bits 

* * TMS320C30 word lengths are 32 bits 
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'Data (f'S) 

203 words 257.3 (forward) 

203 words 257.3 (inverse) 

136 words 99.4 (forward) 

136 words 107.9 (inverse) 
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Summary 
Two routines for a two-dimensional Discrete Cosine Transform are presented: one 

for the TMS320C25 and one for the TMS320C30, with a development of the algorithm 
given for clarification. This report also discussed the similarities of the DCT to the Cooley­
Tukey FFT algorithm and arithmetic shortcuts which can reduce the DCT's execution 
time. Although these implementations use the most recent formulation, there is still room 
for investigation into more efficient methods. Another approach that might prove fruitful 
is to deal with the entire 8 x 8 array all at once, as suggested by Haque [7], rather than 
transforming the array by rows and columns. However, both routines given in the 
appendices provide fast, numerically stable solutions for applications requiring the DCT. 
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- fff*IHfHlltfffHfHHfHffHHfHHtftHHffHHfHitffHfHfffHIHHHHff* 
00 MAC COl,++ ; ACe = 0 ,PREG= XO • COO 
IV 

S X S 2D-OCT ALGORITHI1 FOR TI£ TI1S32OC25 LTA t+,AR2 ; INClUDE LAST PROru:T AND LOAD PREG 
I1PY C_OO 

THIS PROGRAM WILL PERFORM A TWO-DltlENSl(J.IAL OCT (}I EIGHT-BIT IMAGE DATA ADD RNIIOFF 
AND NORI1ALllE T/£ DATA TO MIMIMIZE TRWCATION AND ROI.l'lOOFF. SACH <O+,1il3 ; STORE RESULT AND TRANSPOSE 

BANZ n,<-,ARI 

**fHHHffHIHfHHffHHHfHHlffHfHfHHtH-IH*HHHHUHHHffHHH SECOND SET OF COEFFICIENTS 

. title 'SxS OCT' LAR ARl,DST ; ARI IS tI1W OESTlNATlON POINTER > 'CI MAR H,AR2 ; WOOl( ON SECOND COLUMN 'CI lAR AR2,SAC (D 
RESET: lIRANCH TO OCT, AND SET ARP TO 0 , LARK 1il3,7 = LT ft,AR2 ~ .sect "RESET" I1PY UO ~ 

B OCTINI, ',ARI 12 ZAC 
~ . text RPTK 

INITIALIZE MATRIX COEFFICIENTS AND ROUNDOFF VALlES INTO INTERNAL BLOCK SO 
MAC Cll, .. 

I::' n • LTAS H,AR! 
OCTlNI LDPK RNDOFF MPY UO 1-3 

RSXM ; SIGN-EXTENSI(}I MODE 
ADD RNDOFF > $PM 1 ; LEFT SHIFT 1 BIT SACH 10+, AR3 -~ LRLK ARl,COEFF ; COEFFICIENTS BANZ T2, +-,AR2 IJCl 

0 ;:s RPTK EDATA-IDATA 
""I BLKP IDATA,*< .... 00 THIRD SET OF COEFFICIENTS .... 

X LRLK ARl,RNDOFF ; VARIABLES =-00 RPTK 10 LAR ARI,SRC ; ARI NOW SOURCE POINTER a 
tl BLKP EDATA,H 

lAR AR2,DST 
8" ADAK 2 ; THIRD COLUIIII 1;;' I£RE IS THE OCT FUNCTION lARP 1 ; ACTIVATE ARI ""I C () 

;:s ~ + 
lARK AR3,7 ;. 

s.~ OCT lARK AR7,1 AR7: DIMENSI(}I-l 
LT H (D 

"' (') 
LARK MO,S POINTER INCREI1ENT FOR DATA TRANSPOSITION 

I1PY UO 
1-3 CNFP "MAC" NEEDS 1 OPERAND IN PROGRAtI MEMORY 

T3 ZAC ~ ~. RPTK ~ LOOP FOR DltlENSl(}IS 
C21,ft 'JJ ~~ MAC 

(M • LTA H,AR2 N ~~ DIMS .fqU I1PY UO Q 

Q~ ADD RNDOFF n FIRST SET OF COEFFICIENTS SACH '0+,M3 N v,'i+, 
BANZ T3,+-,ARI U1 C C ... ~ LARK M3,7 COUNT FOR 8 I-D OCT, 

LAR ARl,SRC SOlIlCE ADORESS 
FOURTH SET OF COEFFICIENTS 1t ~' lAR AR2,DST DESTINATION ADDRESS (FIRST COLUIIN) 

LT H !REG = XO lAR ARl,DST 

~~ I1PY C_OO ACe = 0 , PREG= xC • cOO 
AOOK 3 

~;:! T1 ZAC 
lARP 2 

1.A.i"' RPTK 
lAR AR2,SAC N;:S 
lARK 1il3,7 ciS a 15· LT H 
I1PY c..30 C;:S 

14 ZAC 



RPTK RPTJ( 

g 5t rIAC C31,1+ rIAC Cbl,ft 

LTA H,ARt LTA ".AR2 s.00 If'y UO If'Y UO 
!II X ADD RNDOFF ADD RNDOFF 

~~ 
SACH '0+.AR3 SACH to+.AR3 
BANI T4, .... ,AR2 BANI T7.".ARI 

\.\l'" EIGHTH SET ~ ClEFFICIENTS 
~~ FIFTH SET OF COEFFICIENTS 

Q~ LAR ARI.SRC LAR ARI.DST 
1.1,("') LAR AR2.DST AlJlI( 7 

C 1; AlJRI( 4 LARP 2 ., -. LARP I LAR AR2.SRC 

s.~ LARK AR3.7 LARK AR3.7 
!II LT LT .. 
~~ If'y C.40 If'y C.70 

T5 lAC TO lAC 

~~ RPTK RPTK b 

~<:i rIAC C41,H rIAC C71.* 

C~ LTA ".AR2 LTA H,ARI 

Q~ If'y C.40 If'Y C.70 

C.§ ADD RNDOFF ADD RNDOFF 
SACH to+.AR3 SACH to+.AR3 

!f BANI T5.".ARI BANI T8,f-,AR2 

~ SIXTH SET OF COEFFICIENTS LOOP Foo NEXT DII1ENSIOII 

S 
LAR ARI.DST LAC DST CHANGE SOORCE AAlI DESTlNATlOll POINTERS. ::to 

g AlJRI( 5 lII10V SRC SO RESli. T ~ FIRST PASS BECOIES CffAAND 
LARP 2 SACL SRC OF SECOIID PASS. FINIIL RESULT WILL BE IN 
LAR AR2.SRC PICT 
LARK AR3,7 LARP AR7 AR7 : DIIENSIOII CWlTER 
LT It BANI DI/IS ..... ARI LOOP FOR NEXT DlIENSIOII 
I'I'Y C.SO • 

Tb lAC STOP: CNFD 
RPTK B , STOP t£RE 
rIAC C51." • page 
LTA H,ARI 
If'Y C.SO DATAS • TABLES AND DECLARATlOllS 
ADD RNDOFF 
SACH fO.,AR3 .i.Sfct 'RC!lEF' .OFFOOh , THIS IS TO SET 1I' THE LABELS FOR A CNFP 
BANI T6,f-,AR2 .labt1 IDATA • lICT COEFFICIENTS 

COO .lIIord 5792 , FIRST ROW OF C((FFICIENTS 
SEVENTH SET ~ COEFFICIENTS COl .word 5792 , 5792 = (114) • 2**('112) IN QI5 FORI1AT 

CO2 .lIIord 5792 
LAR ARI.SRC C03 .word 5792 
LAR AR2.DST C04 ,word 5792 
ADRK b COS .word 5792 
LARP I COb •• ord 5792 
LARK AR3.7 C07 ,IIUIrd 5792 
LT * CIO .!liord B034 • SEcaGl ROW ~ COEFFICIENTS - If'Y C.bO Cll ,lIIord 6811 

00 T7 lAC CI2 .word 4551 
W 



- CI3 .word 1598 .word 12288 ; RWOlfF FACTOR 

~ CI4 • word -1598 1598 = (1/4) • SIN(Pl/lb) IN QI5 FORI1AT .word PICT ; AIDlESS IF PICT\H: 

CIS .word -4551 4551 • (1/4) • SIN(3P1/1bl IN QI5 FORI1AT .lfOrd RESULT ; ADIIlE5S IF 1lESlX. T 

Clb .word -0811 ball = (1/4) • COS(3P1116) IN QI5 FORI1AT ,lItOI'd 5792 ; COO ctEFFlCIEHT 

CI7 ,lIIOrd -0034 0034 = (1/4) • COS(Pl/lb) IN QI5 FORI1AT ,word 0034 ; CIO ClEFFICIEHT 

C20 .word 75b8 third row of coefficients ,lIIor6 7Sba ; C20 ctEFFICIEHT 

C21 .1II01"d 3134 3134 = (1/4) • SIN(PIIS) IN QI5 FORItAT . ,word ball ; C30 ctEFFlCIEHT 

C22 .word -3134 75b8 = (1/4) • COS(PI/S) IN QI5 FORI1AT . .,ord 5792 ; C40 ctEFFlCIEHT 

cn .word -7Sba .lfOrd 4551 ; C50 ClEFFiCIEHT 

C24 ,word -75b8 • .,ord 3134 ; C60 ctEFFlCIEHT 

C25 ,word -3134 .lfOrd 1598 ; C70 ctEFFlCIEHT 

C2b .tlord 3134 
C27 ,lftIrd 7Sba DATA rfFlNITIONS 

C30 oword ball ; FOURTH ROW [f CrfFFlCIENTS 
C31 .word -1598 CrfFF .usect "COEFFS' ,b4 ; OCT COEFFICIEHTS (GOES INTO 00) 

C32 ,lIIord -0034 ,BSS PICT,b4 ; PICTlIIE 

C33 ,1II0rd -4551 ,BSS IlESlX.T,b4 ; 1lESlX. T, AFTER OCT 

C34 ,lIford 4551 ,BSS RHIKFF,I ; RCUti)[ff FACTIJ! 

C35 .1II0rd 9034 ,BSS SAC,I ; SIllIlCE ADDRESS FOR CURRENT OCT LOOP 

C3b .lIIord 1598 ,BSS OST,I ; DESTlNATlOO AQ(J!ESS 

C37 ,1II0rd -ball ,ass c..OO,1 ; COO ClEFFICIEHT 

C40 ,1liioI'd 5792 ; FIFTH ROW [f COEFFICIENTS ,ass UO,I ; CIO ctEFFlCIEHT 

C41 .word -5792 ,ass C-20,1 ; C20 ClEFFICIEHT 

C42 .lIIord -5792 ,BSS C_lO,1 ; C30 CrfFFICIEHT 

~ C43 ,lIIord 5792 ,ass C_40,1 ; C40 ClEFFICIEHT 

C44 .word 5792 ,ass UO,I ; C50 CrfFFICIENT 

00 C45 .word -5792 ,BSS c..bO,1 ; C60 COEFFICIEHT 

X C46 ,word -5792 ,BSS C_70, I ; C70 ctEFFlCIENT 

00 C47 .lIIord 5792 

tl C50 .word 4551 ; SIXTH ROW OF COEFFICIENTS .end 

1;;' CSI ,word -S034 

C t') C52 ,lIIord 159S 
:I ~ CS3 ,lIIord ball 

s.f\ C54 ,word -ball 

" n C55 ,lIIIord -1598 
C56 ,\ford 0034 

~ ~, C57 .1II0rd -4551 

~~ C60 o!llord 3134 ; SEVENTH ROW OF ClEFFICIEHTS 
COl ,lIIord -7Sba 

~~ CO2 .word 75b8 

9! C03 ,lIIord -3134 
Cb4 .1II0rd -3134 
CbS ,word 7Sba 

C C COb ,lIIord -75b8 ., ~ 
COl ,lIIord 3134 

lr~ ClO .1II0rd 1598 ; EIGHTH ROW [f CrfFFICIENTS 
C71 ,lIIord -4551 

~'" 
en • 1liiOI'd ball 

~~ 
C73 ,lIIord -9034 
C74 .lIIord 0034 

tv:l C75 .word -ball cS cn .word 4551 Q g, C77 ,lIIord -1598 
C:I .libel £DATA ; END OF COEFFICIENTS TABLE 



fHHHffflfffffffffHffffltHHffffHffHttHffHtfflfHHtHfHnHHHfHH TRlillSlI LDF <AR4++lllX, Rl , TRANSPOSE TIE ROWS 
0 ~ STF R 1 , <ARb++ IlR II , INTO COLIffiS 
;:s TITLE; 2-D DISCRETE COSH£ TRANSFORl!, IBx81 VERSION 1,0 LDF <AR4++lllX,Rl s.00 STF Rl, <ARb++ 1 IRll 
<II X AUTHOR; WIlLIAII I«H. LDF <AR4++IlIX,Rl 

~~ 
STF Rl, <ARb++ 1 IRII 
LDF <AR4++IlIX,Rl 

THIS PROORA/1 IS BASED ON A RECENT ALGORITIII PROPOS£JI BY HoSo I()IJ STF Rl,<ARb++IIRll 
td~ ITRIiIISACTlONS CfI ASSP, VIII., ASSP-35, 1-lI, 10, OCTOBER 1987, PP. 1455- LDF <AR4++IIIX,RI 
C~ 14011. STF Rl,<ARb++IIRll 

n~ LDF <AR4++IllX,Rl > v,C"l 
INPUT I1ATRIX IS STORED IN RAIl, lIND THE RESUJS MI: STORED IN TIE SAllE STF Rl,<ARb++IlRll 'CI lOCATlCfI. LDF <AR4++IllX,Rl 1 o ~ STF Rl, <ARb++IlRll ... -. tffftfttttHfHlHtHfUtHlHffHttHtHtHHHfHffHHtttHtftHtHtHHHI 

LDF <AR4++lllX,Rl = s.~ " Q. 
<II STF Rl, <ARb++IlRll 

~. 

~~ 
.BSS M,64 II LDF <AR5++1 IRll, RS 
.BSS INF,64 

CI::' ~~ .BSS SCR.8 , SCRATCHPAD I£IIORY BLKl SUBI OJ, ARb . 
tdc .global COSTAS 

0 
C~ 

.global START LDI !SCRATCH,AR4 ("') .di.ta LDI lOUTPUT, ARS ; DO OCT ON COLIiI'/j 0-3 a~ LDI @INPUT,ARb , I'ECTMS 
C~ _COS .Mord COSTAS LDI 7,Re ~ ~ INPUT .word INP 

IJQ 
~ OUTPUT .lIIord M LDI !RTN2,R4 , RETURN ADORESS OF SUBROUTI HE Q 

SCRATCH .word 5CR RPTB BLK3 "'! ~ SCRlAST .Mord 5CR+7 BRD IICT =: is RTNI .word TRIVlSl LDI ARS,ARO , POINTS TO INPUT S-:=:o RTN2 .liord TRANS2 LDI ARS,ARI 0 
[IJ ;:s . text ADDI I,ARl 

8" 4 4 
START LDI 7,Re TRANS2; LDF <AR4++IlIX,Rl "'! 

LDI 2,IRO STF Rl,<ARb++IIRll e;. LDI S,IRI 
" LDF 4AR4++IIIX,RI 

~ LDI S,B!( , SET BUFFER lOOTH=8 STF Rl,<ARb++IIRll 
LDP !!SCRATCH I: LDF <AR4++IlIX,Rl 0-3 LDI !SCRATCH, AR4 STF Rl,tMb++IlRlI a= lDI @ooTPUT,ARb , VARIABLE lOCATIONS II LDF <AR4++IllX,Rl C'I'.l LDI @INPUT,ARS , 00.05 IN'UT I1ATRIX STF Rl,<ARb++IIRII ~ lDF Q, 25, Rb ; CONSTANT 0.25 

" LDF <AR4++IlIX,Rl N 
LDF 2.0,R7 ; CONSTANT 200 STF Rl,<ARb++IlRll = ("') II LDF <AR4++IlIX,Rl 

~ LDI !RTNl,R4 , RETURN ADDRESS OF SUBROUT I HE STF Rl,4ARb++IIRll = RPTB BU<1 
" LDF <AR4++IlIX,Rl 

BRD OCT STF Rl,<AR6++IlRll 
LDI ARS,ARO , POINTS TO IN'UT 

" LDF <AR4++IlIX,Rl 
LDI ARS,ARI STF Rl,<ARb++IlRlI 
ADDI I,ARl 

" LDF <AR5++IlRll,RS 

BU<3 SUBI OJ,ARb ; IICREIIENT POINTERS 

- EHD IIR EHD ,END 
00 
VI 



- SHUFFLE THE DATA ACroIDING TO PERMUTATION MATRIX P STF RI,+-M3 
00 f " STF R2,<-ARI 
0'\ OCT LDI AR4,AR2 ; POINTS TO OUTPUT STF RO,fAR3 

LOI @SCRLAST,AR3 " STF R3,fARI 
LOI !..COS,AR7 ; TABLE POINTER 

SECOND GROUP OF BUTTERFLIES 
LDF fAROHI IROI ,RO 

:: LDF fARI++IlROI,RI LOF f-ARI,R2 ; THIS IS THE SAllE AS AIIOIIE EXCEPT THE 
STF RO, fAR2HIlI ; GOING ~ " LDF fARI,R3 PO INTERS CllANGE 

:: STF RI, fAR3--1l1 ; GOING UP SUBF3 <-ARI, f-MO,RI 
LDF fAAOH( IROl,RO SUBF3 fARl, fARO,RO 
LDF fARI++IIROI,RI i'PYF3 RI,fAR7++111 ,RI 
STF RO, fAR2++ 111 

" ADDF3 R3, fARO,R3 
STF RI,fAR3-1l1 i'PYF3 RO,fAR7--111 ,RO 
LDF fARO++1 lROI ,RO 

" ADDF3 R2, f-ARO, R2 
LDF fAR1++(IRO),Rl STF Rl,f-Ml 
STF RO. fAR2+t( 1) 

" STF R2, f-ARO 
STF RI, fAR3--11i STF RO,fARI 
LOF fARO++1 lROI ,RO 

" STF R3,fARO 
LDF fARI++1 IROI ,RI LOF f-AR3,R2 
STF RO, fAR2HIIi I: LDF fAR3,R3 
STF RI, fAR3-111 SUBF3 f-AR3,f-AR2,RI 

SUBF3 fAR3, fAR2, RO 
IIlDIFIED FFT ALGClllTH1 i'PYF3 Rl.*AR7++(1l,Rl 

~ " ADDF3 R3, >AR2,R3 
tDI AR4,ARO ; POINT TO OUTPUT i'PYF3 RO,fAR7t+{1l,RO 

00 ADDI I,ARO 
" ADDF3 R2, f-AR2,R2 

X LOI ARO,ARI STF Rl, f-AR3 
00 ADDI 2,ARI ; SET UP POINTERS " STF R2,f-AR2 

t;, 
LOI ARI,AR2 STF RO, fAR3 
ADDI 2,AR2 

" STF R3,fAR2 !:;' LDI AR2,AR3 C <"') 
;:s ~ ADDI 2,AR3 LAST SET OF BUTTERFLIES 

s.~ LOF f-AR2,R2 ; THESE SECTIONS PERFORM LOF fARO,R2 ~ ('j 
" LDF '>AR2,R3 ; TWO BUTTERFLIES AT ONCE 

" LDF fARI,R3 

~ ~, SUBF3 >-AR2, f-ARO, RI SUBF3 fARO,*"ARO,RI 

~~ 
SUBF3 fAR2,fARO,RO ; POINTERS ARE SET AS FIllOWS: SUBF3 fARt, I-ARl, RO 
i'PYF3 Rl,fAR7++(1),Rl ; i'PYF3 RI, fAR7,RI 

~~ " ADOF3 R3,*ARO,R3 ; XIOI " ADDF3 R3, f-ARI,R3 

Q~ 
MPYF3 RO,fAR7H III,RO ; XIII ARO MPYF3 RO,fIlR7,RO 

" ADDF3 R2,f-ARO,R2 1121 
" ADDF3 R2,f-ARO,R2 

v.~ STF RI,f-AR2 XI31 ARI STF RI, fARO 
C <::i 

" STF R2, '-ARO XI41 II STF R2,f-ARQ ., ~ STF RO,fAR2 XI51 AR2 STF R3, <-ARI 

~~ " STF R3,fARO 1161 
" STF RO,fARI 

"i5 
LDF f-AR3,R2 XI71 AR3 LDF fAR2,R2 

~~ " LDF fAR3,R3 
" UF fAR3,R3 

SUBF3 f-AR3,f-ARI,RI SUBF3 fAR2, f-AR2, RI 
~~ SUBF3 fAR3,fARl,RO SUBF3 fAR3, f-AR3,RO 
r-v;:S i'PYF3 RI,fAR7++111 ,RI i'PYF3 RI,fAR7,RI oS " ADDF3 R3,fARI,R3 

" ADDF3 R3, +-M3,R3 a 6' i'PYF3 ROt fAR7++( 1) IRO i'PYF3 RO,fAR7,RO 
O;:S " ADDF3 R2,f-ARI,R2 

" ADDF3 R2, f-AR2, R2 



g :A. ;:s 

s.00 
!II X 

~~ 
~ ~. 
t-.)<') 
ci;l 
Q~ 
~g 
.... to 
So s· 
!II !II 

~~ 
~~ 
t-.)c:i 

?5~ 
~1i' 

'G 
~ 

§ 
is 
g" 
;:s 

-00 
~ 

STF RI,*1IR2 
STF R2, *-AR2 
STF R3,HIR3 
STF RD,*AR3 

CORRECT IlUIER FROM BIT -REYERSED TO NATURAL 

8ITREY LDF tARO,RO ; ONLY TWO LOCATlCfflllRE ACTUAlLY SWITCHED 

" LDF f-AR2,Rl 
STF RI.*IIRO 
STF RO, *-AR2 
LDF *ARI,RO 

:: LDF *-1IR3,RI 
STF RI.*IIRI 
STF RO, .... AR3 

CONTINUE WITH RECURSIVE ALGORITHM 

RECURSE MPYF3 R7,*-1IR3,R2 
I1PYF3 R7,*1IR3,RI 
SUBF3 il-ARI.R2,R2 ; 2XI7l-X(3) 
SUBF3 *ARI,RI,RI , 2XI8l-X(4) 
STF RI, *AR3 
STF R2, f-AR3 

LASTLOOP MPYF3 R7, *ARI ,RO ; X(4)=2*XI4) 
I1PYF3 R7, *AR2,RI , X(6)=2*XI6) 
SUBF3 *AR0,RO,R2 , R2=2XI4l-X(2) 
MPYF3 R7, 1M3, R3 ; R3=2*X(3) 
STF R2,IARl 
SUBF3 *ARI,RI,RI ; RI=2X(6)-x14) 
SUBF3 RI,R3,R3 , R3=2XIBl-X(6) 
STF RI,IM2 
STF R3,*M3 

SCALE FACTOR OF 121N)=D.25 

MPYF3 R6, *1IR3,RO 
STF RD, *AR3--(I ) 
I1PYF3 R6,*-AR3,RI 
STF RI,*1IR3--(l) 
I1PYF3 R6,*-AR3,RO 
STF RO,tAR3--111 
I1PYF3 R6,*-AR3,RI 
STF RI, tAR3-- 1 II 
MPYF3 R6, *-AR3,RO 
STF RO, *AR3--(I ) ; OK TO NOYE AR3 
MPYF3 R6,*-AR3,RI 
STF RI,*AR3--1II 
MPYF3 R6, *-AR3, RD 
STF RO, *AR3--11 ) 
I1PYF3 Rb, *-AR3,RI 
STF RI, tAR3 

CORRECT X!O) IF NOOZERO 

* 
EXIT BUD R4 ; RETURN 

LDF HIRO,RD 
I1PYF3 *AR7,RO,RO ; MLU BY IIS1lRT(2) 
STF RO,*-ARO ; STORE THE RESLI. T 
.end 

COSTAS .float 0.980785280403 LAMBDA 
.float 0.555570233019 I1U 
.float -0.195090322016 -NU 
.float -0.831469612303 -GMIIA 
.fT oat 0.923879532511 BETA 
.float -0. 382683432365 -DELTA 
. float 0.707106781188 ALPHA 
.end 



- HH**fHHI***HH**************HfU*ffHHH**fUfHffHIHffHHHHHfD4 
" IJlF fAR4++( 1II, Rl 

00 • STF Rl,fAR6++(lRlI 00 
TITLE: 2-D INVERSE DISCRETE CDSlNE TRANSFORM, (8xS) VERSION 1.0 tl IJlF fAR4++(IlX,Rl 

STF Rl,fAR6++(lRlI 
AUTHOR: ~ILLIAM HOHL 

" LDF IAR4++(lJX,Rl 
STF Rl, <AR6++!IRli 

" lOF *AR4 t ·t(llX,Rl 
THIS PROCllAM IS BASED ON A RECENT ALGORITHI1 PROPOSED BY H.S. IW STF Rl, fAR6++( lRlI 
(TRANSACTIONS ON ASSP, VOL. ASSP-35, NO. 10, OCTOIieR 1987, PP. 1455- :: IJlF *AR4++(1II,Rl 
146I). STF Rl,*AR6++(IRli 

:1 lOF <AR4++(1II,RI 
INPUT MATRIX IS STORED. IN RAM, AND THE RESULTS ME STORED IN THE SAME STF RI,<AR6++(lRI} 
LOCATION. 

" LDF fAR4tt(l)X,Rl 
STF Rl, <AR6++ (lRll 

H********II*******HH***************II**I************I**IHIIH*lIHHI*++* 
" LDF IAR5+t(lRU,RS 

.BSS OOT,64 BLKI SUBI 63, ARb 
• ass INP,64 
. ass SCR,S LOI @INPUT,AR6 , REALIGN POINTERS 
.global COS-IAB lOI ~OUTPUT, M5 
.global START lOI &RATCH,AR4 
.d~ta lOI 7,RC · _COS ,\I!ord COS_TAB LOI @RTN2.R4 , RETURN ADDRESS (f SUBROUTINE 

~ INPUT .'ilord INP RPTB BlJ(6 
;:s OUTPUT .lIIor-d OOT Il!lD IDCT 
00 SCRATCH .lIIord SCR lOI AR5,MO , POINT TO INPllT 
X RTNI .lIIord TRANSI lOI ~_COS,AR7 , TABLE POINTER 
00 RTN2 .lIlol'd TRANS2 ADOI I,ARO 

. text 
\:l • TRANS2: LOF IAR4++(11'l.,Rl 0;' START LOI 7,Re STF RI, *AR6++( lRlI (") C 
~ lOI 2,IRO 

" LDF *AR4tt ll)'/.,Rl ;:s 

s.~ 
lOI S,IRI STF Rl,*AR6++IIRU 
LOF 2.0,R7 , MULTIPLIER :: LOF *AR4tt( lJX,R1 

'" \:l lOI 8,BK , SH ruFFER L£NGTH=64 STF RI, <AR6++(JRI) 

~ ~. lOP @OUTPUT :: IJlF tM4++(U'l.,Rl 
lOi MTPUT,AR6 , VARIABLE LOCATIONS STF RI,<AR6++«Rli 

~'" LOI ~SCRATCH,AR4 
" lOF .AR4++(IlX,Rl 

~~ LOI @INPUT,AR5 , HOLDS INPUT MATRIX STF Rl,'AR6++(IRli 

Q§ " IJlF fAR4++(U'l.,Rl 
LDl @RTNl,R4 , RETURN ADDRESS OF SUBROOTI NE STF Rl,<AR6++(IRli 

...,,~ RPTB BLKI 
" LOF fAR4+t(UX,Rl C C BRO IOCT STF Rl,'AR6++(1R1l ..., ~ LDI AR5,ARO , POINT TO INPUT 
" IJlF <AR4++(1II,Rl 

1r~ LOI ~_COS,AR7 , TABLE POINTER STF Rl, <AR6++( 1R1l 
ADDI I,ARO :: LDF <AR5++(IRllRS '15 

~~ TRANS!: lOF 'AR4++ (111., Rl BLK6 SUBI 63,M6 

~'" STF Rl, 'AR6++( IRll 
tv;:S END BR END , END cS 
~ g' CORRECT X(O) IF NONZERO 



IOCT LDI ARO,ARl If'YF3 4AR7++lll,R3,R3 , SKIP TO NEXT COEFF 

§l ~ ADD! 2,ARt STF Rt,'ARt 
LDI ARt , AJl2 " STF RO, fARO 

S-Oo ADDI 2,AR2 STF R2,4AR2 
<b X LDI AJl2,AR3 " STF R3,4AR3 

~~ 
ADDI 2,AR3 LDF fARO,R2 , THESE SECTIONS PERFORM 

" UF fARI,R3 , Till BUTTERFLI ES AT ONCE 

1..1.>'" LDF '-ARO,RO SUBF3 tARO, 4-ARO, RO 
Nq rlPYF3 fAR7,RO,RO , MLU BY t/SOOT(2) SUBF3 4ARt,'-ARt,Rt 
C<b STF RO, '-flRO , STORE THE RESULT STF RO, 'ARO 
Q~ MPYF3 Rl,*+AR7,Rl , -DELTA 
1.1,0 BEGIN wITH RECURSION ADDF3 R3, 4-ARt ,RO 

C 1; MPYF3 RO, .AR7,RO , BETA ... -. SUBF3 tAR3, *AR2,R2 , XI6HIS) 
" ADDF3 R2, *-flRO,R2 

S-~ SUBF3 R2, tARt,R3 , X14H16) STF R2, HRO 
<b MPYF3 *AR3,R7,RO , 2XI8)-)RO 

" STF RO, HRt 
~~ :1 STF R2,*AR2 STF Rt,*ARt 

~~ SUBF3 R3,*ARO,R2 , X12H14) 
MPYF3 fAR2,R7,Rt , 2'XI6)-)Rt LDF *AR2, R2 I..I.>'§-> 

" STF R3,*ARl 
" LDF *AR3,R3 

~~ STF RO, *AR3 SUBF3 *AR2, *-AR2, RO 

a~ " STF Rt,'AR2 SUBF3 *AR3, *-AR3,Rl 

C.§ 
MPYF3 tARt,R7,RO STF RO,*AR2 
STF RO, fARt MPYF3 Rt, ftAR7,Rt , -DELTA ON NEXT GROUP 

~ " STF R2, fARO ADDF3 R3,HR3,RD 
SECLOOP SUBF3 4-AR3,f-AAt,R2 , X13H17) MPYF3 RO,fAR7++IIRO),RO ,BETA ON NEXT GROUP 

~ SUeF) 'AR3, 'ARt,R) , XI4HI81 
" ADDF3 R2. *-AR2, R2 

!:i MPYF3 R7, '-AA3, RO , 2'XI7) STF R2, *-AR2 
::to " STF R2, I-ARt :1 STF RO,HR3 
§l MPYF3 R7,.AR3,Rt , 2*X181 STF Rt, *AR3 

" STF R3, *ARt 
STF RO, '-AA3 SECOND GROUP OF BUTTERFLIES 
STF Rt,*AR3 

LDF f-ARt,R2 , THIS IS THE SA/1E AS ABOVE, EXCEPT THE 
CORRECT ORDER FROM NATURAL TO BIT-REVERSED 

" LDF *AIU,R3 , POINTERS CHANGE 
f SUeF3 *-ARt,*-ARO,Rt 
BITREV LDF *ARO,RO , ONLY TOO LOCATIONS ARE ACTUALLY SWITCHED SUeF3 *ARt, *ARO, RO 

" LIlF *-AR2,Rl ADDF3 R3, 'ARO,R3 
STF Rt;fARO ADDF3 R2,HRD,R2 
STF RO, .-AJl2 STF Rt,'-ARt 
LDF tARt,RO 

" STF R2, '-ARO 
LDF '-AR3,Rt STF RO,*ARl 
STF Rt,'ARt 

" STF R3, 'ARQ 
STF RO, .-AR3 

LDF '-AR3,R2 
FIRST SET DF BUTTERFLIES 

" UF fAR3,R3 
SUeF3 '-AR3, ,-AR2, Rt 

LDF IARO,RO SUeF3 'AR3, 'AR2,RO 
LDF *ARt,Rt MPYF3 1AR7++11I,Rt,Rt , -NU 
LOF I-AR2,R2 

" ADDf3 R3, *AR2,R3 
LDF fAR3,R3 MPVF3 1AR7++11l,RO,RO ,-IiAI1MA 
MPYF3 1AR7,Rt,Rt , PERFORM TI£ ALPHA Mll T 's 

" ADDF) R2, '-AR2,R2 - MPYFl *AR7,RO,RO MPYF3 R2,fM7++(U,R2 ; LAMBDA 
00 MPYF3 tAR7,R2,R2 MPYF3 R3,*AR7,R3 ,MU \0 



- STF Rl,'-AR3 .global COUAB 

8 :: STF R2,'-AR2 .data. 
STF RO,4AR3 COS_TAB .float 0.707106781188 ALPHA 

" STF R3, +AR2 . float 0.923879532511 BETA 
.float -0.382683432365 -DELTA 

LAST SET OF BUTTERFLIES . float -0. 19509032L"Q16 -NU 

.float -0.831469612303 -GAIi1A 

LDF +-AR2,R2 .float 0.980785280403 LAMBDA 
:: LDF 'AR2,R3 .float 0.555570233019 MU 

SUEr3 *-AR2,f-ARO,Rl .end 
SUEr3 'AR2, 4ARO, RO , . POINTERS ARE BET AS FIllOWS: 
ADDF3 R3,'ARO,R3 , XIOI 
ADDF3 R2,+-ARO,R2 ,XllI ARO 
STF Rl,4-AR2 , XI21 

:: STF R2,'-ARO ,Xl31 ARI 
STF RO. 'AR2 , XI41 
STF R3, 'ARO ,XISI AR2 
LOF '-AR3,R2 ; XI61 
LDF 'AR3,R3 ; XI71 AR3 
SUBF3 lI-AR3,'-AR1,Rl 
SUEF3 fAR3, fARl,RO 
ADDF3 R3,4AR1,R3 
ADDF3 R2,4-ARI,R2 
STF RI,4-AR3 

~ " STF R2, '-ARI 
;:: STF RO,4AR3 

00 " STF R3,fARl 

X 
00 SHUFFLE THE DATA ACCORDING TO PERMUTATION MATRIX P 

~ LDI AR4,ARO , POINTS TO SCRJITCH 

<:) ~ LDI AR4,ARI 
;:: ~ ADD! I,ARI 

s.~ LDI AR5,AR2 , POINTS TO HI'UT 

~ <"'l LD! 7,AR3 , VECTOR 
ADD! AR2,AR3,AR3 

~ §, LDF +AR2++III,RO , GOING UP 

~~ " LDF +AR3--11l ,RI , GOING DOWN 
STF RO, +ARO++lIROI 

~~ " STF RI, 4ARI ++IIROI 

fJ§ LDF +AR2++I1I,RO 

" LDr +AR3-11I,RI 
v,~ STF RO, +ARO++IIROI 
<:) <::) 

" STF Rl, *AR1++( IRO) .., ~ LDF fAR2++( 1) ,RO 

~~ " LDF 4AR3--11l ,RI 

"I:i EUD R4 ; RETURN HOlE 

~~ STF RO, .AAO++( IRO) 

~:! " STF Rl, *ARl++<IRO) 

~~ 
LDF fAR2++{ l",RO 

" LDF 4AR3--11I,RI 
ciS STF RO, 'ARO++IIRO) a 6' " STF RI,+ARI++IIROI 
c;:: .~nd 
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Introduction 

A filter selects or controls the characteristics of the signal it produces by condition­
ing the incoming signal. The coefficients of the filter determine its characteristics and output 
a priori in many cases. Often, a specific output is desired, but the coefficients of the filter 
cannot be determined at the outset. An example is an echo canceller; the desired output 
cancels the echo signal (an output result of zero when there is no other input signal). In 
this case, the coefficients cannot be determined initially since they depend on changing 
line or transmission conditions. For applications such as this, it is necessary to rely on 
adaptive filtering techniques. 

An adaptive filter is a filter containing coefficients that are updated by an adaptive 
algorithm to optimize the filter's response to a desired performance criterion. In general, 
adaptive filters consist of two distinct parts: a filter, whose structure is designed to per­
form a desired processing function; and an adaptive algorithm, for adjusting the coeffi­
cients of that filter to improve its performance, as illustrated in Figure 1. The incoming 
signal, x(n), is weighted in a digital filter to produce an output, yen). The adaptive algorithm 
adjusts the weights in the filter to minimize the error, e(n), between the filter output, yen), 
and the desired response of the filter, den). Because of their robust performance in the 
unknown and time-variant environment, adaptive filters have been widely used from 
telecommunications to control. 

din) ---------------, 

1-.... __ .In) 

FILTER 
STRUCTURE 

I----.... -~ ......... ·yln) 

ADAPTIVE 
FILTER 

Figure 1. General Form of an Adaptive Filter 
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Adaptive filters can be used in various applications with different input and output 
configurations. In many applications requiring real-time operation, such as adaptive predic­
tion, channel equalization, echo cancellation, and noise cancellation, an adaptive filter 
implementation based on a programmable digital signal processor (DSP) has many ad­
vantages over other approaches such as a hard-wired adaptive filter. Not only are power, 
space, and manufacturing requirements greatly reduced, but also programmability pro­
vides flexibility for system upgrade and software improvement. 

The early research on adaptive filters was concerned with adaptive antennas [1] and 
adaptive equalization of digital transmission systems [2]. Much of the reported research 
on the adaptive filter has been based on Widrow's well-known Least Mean Square (LMS) 
algorithm, because the LMS algorithm is relatively simple to design and implement, and 
it is well-understood and well-suited for many applications. All the filter structures and 
update algorithms discussed in this application report are Finite Impulse Response (FIR) 
filter structures and LMS-type algorithms. However, for a particular application, adap­
tive filters can be implemented in a variety of structures and adaptation algorithms [1, 
3 through 9]. These structures and algorithms generally trade increased complexity for 
improved performance. An interactive software package to evaluate the performance of 
adaptive filters has also been developed [10]. 

The complexity of an adaptive filter implementation is usually measured in terms 
of its multiplication rate and storage requirement. However, the data flow and data 
manipulation capabilities of a DSP are also major factors in implementing adaptive filter 
systems. Parallel hardware multiplier, pipeline architecture, and fast on-chip memory size 
are major features of most DSPs [11, 12] and can make filter implementation more efficient. 

Two such devices, the TMS320C25 and TMS320C30 from Texas Instruments [13, 
14], have been chosen as the processors for fixed-point and floating-point arithmetic. They 
combine the power, high speed, flexibility, and an architecture optimized for adaptive 
signal processing. The instruction execution time is 80 ns for the TMS320C25 and only 
60 ns for the TMS320C30. Most instructions execute in a single cycle, and the architec­
tures of both processors make it possible to execute more than one operation per instruc­
tion. For example, in one instruction, the TMS320C25 processor can generate an instruction 
address and fetch that instruction, decode the instruction, perform one or two data moves 
(if the second data is from program memory), update one address pointe~, and perform 
one or two computations (multiplication and accumulation). These processors are 
designed for real-time tasks in telecommunications, speech processing, image process­
ing, and high-speed control, etc. 
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To direct the present research toward realistic real-time applications, three adaptive 
structures were implemented: 

1. Transversal 
2. Symmetric transversal 
3. Lattice 

Each structure utilizes five different update algorithms: 

1. LMS 
2. Normalized LMS 
3. Leaky LMS 
4. Sign-error LMS 
5. Sign-sign LMS 

Each structure with its adaptation algorithms is implemented using the TMS320C25 
with fixed-point arithmetic and the TMS320C30 with floating-point arithmetic. The pro­
cessor assembly code is included in the Appendix for each implementation. The assembly 
code for each .structure and adaptation strategy can be readily modified by the reader to 
fit his/her applications and could be incorporated into a C function library as callable 
routines. 

In this application report, the applications of adaptive ftlters, such as adaptive predic­
tion, adaptive eqUalization, adaptive echo cancellation, and adaptive noise cancellation 
are presented first. Next, the implementation of the three filter structures and five adap-, 
tive algorithms with the TMS320C25 and TMS320C30 is described. This is followed by 
the practical considerations on the implementation of these adaptive ftlters. The remainder 
of the application report covers coding options, such as the routine libraries that support 
both assembly and C languages. 

Applications of Adaptive Filters 

The most important feature of an adaptive filter is the ability to operate effectively 
in an unknown environment and track time-varying characteristics of the input signal. The 
adaptive ftlter has been successfully applied to communications, radar, sonar, control, 
and image processing. Figure 1 illustrates a general form of an adaptive filter with input 
signals, x(n) and d(n), output signal, y(n), and error signal, e(n), which is the difference 
between the desired signal, d(n), and output signal, y(n). The adaptive ftlter can be used 
in different applications with different input/output configurations. In this section we briefly 
discuss several potential applications for the adaptive ftlters [15]. 

Adaptive Prediction 

Adaptive prediction [16 through 18] is illustrated in Figure 2. In the general ap­
plication of adaptive prediction, the signals are x(n) - delayed version of original signal, 
d(n) - original input signal, y(n) - predicted signal, and e(n) - prediction error or 
residual. 
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dln)--...... ------------, 

DELAY 

xln) 
ADAPTIVE 

FILTER yIn) 

1--.......... eln) 

Figure 2. Block Diagram of an Adaptive Predictor 

A major application of the adaptive prediction is the waveform coding of a speech 
signal. The adaptive filter is designed to exploit the correlation between adjacent samples 
of the speech signal so that the prediction error is much smaller than the input signal on 
the average. This prediction error signal is quantized and sent to the receiver in order 
to reduce the number of bits required for the transmission. This type of waveform coding 
is called Adaptive Differential Pulse-Code Modulation (ADPCM) [17] and provides data 
rate compression of the speech at 32 kb/s with toll quality. More recently, in certain on­
line applications, time recursive modeling algorithms have been proposed to facilitate speech 
modeling and analysis. 

The coefficients of the adaptive predictor can be used as the autoregressive (AR) 
parameters of the non stationary model. The equation of the AR process is 

u(n) = al* u(n-l) + a2* u(n-2) + ...... + am* u(n-m) + v(n) 

where at. a2, .... , am are the AR parameters. Thus, the present value of the process u(n) 
equals a finite linear combination of past values of the process plus an error term v(n). 
This adaptive AR model provides a practical means to measure the instantaneous frequen­
cy of input signal. The adaptive predictor can also be used to detect and enhance a narrow 
band signal embedded in broad band noise. This Adaptive Line Enhancer (ALE) provides 
at its output yen) a sinusoid with an enhanced signal-to-noise ratio, while the sinusoidal 
components are reduced at the error output e(n). 

Adaptive Equalization 

Figure 3 shows another model known as adaptive equalization [2, 9, 15]. The signals 
in the adaptive equalization model are defined as x(n) - received signal (filtered version 
of transmitted signal) plus channel noise, den) - detected data signal (data mode) or pseudo 
random number (training mode), yen) - equalized signal used to detect received data, 
and e(n) - residual intersymbol interference plus noise. 
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xln) ADAPTIVE 
FILTER 

yIn) 

DATA TRAINING 
,..------, MODE MODE ,-------, 

~ 
SLICER 

+ 

dIn) 

PSEUDO 
RANDOM 
NUMBER 

GENERATOR 

Figure 3. Block Diagram of an Adaptive Equalizer 

The use of adaptive equalization to eliminate the amplitude and phase distortion in­
troduced by the communication channel was one of the first applications of adaptive fIltering 
in telecommunications [19]. The effect of each symbol transmitted over a time-dispersive 
channel extends beyond the time interval used to represent that symbol, resulting in an 
overlay of received symbols. Since most channels are time-varying and unknown in ad­
vance, the adaptive channel equalizer is designed to deal with this intersymbol interference 
and is widely used for bandwidth-efficient transmission over telephone and radio channels. 

Adaptive Echo Cancellation 

Another application, known as adaptive echo cancellation [20, 21] is shown in Figure 
4. In this application, the signals are identified as x(n) - far-end signal, d(n) - echo 
of far-end signal plus near-end signal, y(n) - estimated echo of far-end signal, and e(n) 
- near-end signal plus residual echo. 

FAR-END 
SIGNAL r---------I HYBRID I 

xln) ----~~----+---9---__1Ir--­, 

ADAPTIVE 
FILTER 

yIn) 

ECHO 
PATH 

+ 

, 
I , , , , , , , , 

eln) .... -41---4 ,.. __ '1--_ NEAR-END 
, SIGNAL 

I ' 
I ' L.. _________ I 

Figure 4. Block Diagram of an Echo Canceller 
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The adaptive echo cancellers are used in practical applications of cancelling echoes 
for long-distance telephone voice communication, full-duplex voiceband data modems, 
and high-performance audio-conferencing systems. To overcome the echo problem, echo 
cancellers are installed at both ends of the network. The cancellation is achieved by 
estimating the echo and subtracting it from the return signal. 

Adaptive Noise Cancellation 

One of the simplest and most effective adaptive signal processing techniques is adap­
tive noise cancelling [1, 22]. As shown in Figure 5, the primary input den) contains both 
signal and noise, where x(n) is the noise reference input. An adaptive filter is used to 
estimate the noise in den) and the noise estimate yen) is then subtracted from the primary 
channel. The noise cancellation output is then the error signal e(n). 

The applications of noise cancellation include the cancellation of various forms of 
interference in electrocardiography, noise in speech signals, noise in fighter cockpit en­
vironments, antennas sidelobe interference, and the elimination of 60-Hz hum. In the ma- . 
jority of these noise cancellation applications, the LMS algorithm has been utilized. 

SIGNAL 
SOURCE 

xln) 

NOISE SOURCE 

den) 

ADAPTIVE 
FILTER 

"'-..---1" e(n) 

yIn) 

Figure 5. General Form of a Noise Canceller 

Application Summary 

The above list of applications is not exhaustive and is limited primarily to applica­
tions within the field of telecommunications. Adaptive filtering has been used extensively 
in the context of many other fields including, but not limited to, instantaneous frequency 
tracking, intrusion detection, acoustic Doppler extraction, on-line system identification, 
geophysical signal processing, biomedical sign~ processing, the elimination of radar clutter, 
beamforming, sonar processing, active sound cancellation, and adaptive control. 
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Implementation of Adaptive Structures and Algorithms 

Several types of filter structures can be implemented in the design of the adaptive 
. filters such as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). An adap­
tive IIR filter [1, 5], with poles as well as zeros, makes it possible to offer the same filter 
characteristics as the FIR filter with lower filter complexity. However, the major pro­
blem with adaptive IIR filter is the possible instability of the filter if the poles move out­
side the unit circle during the adaptive process. In this application report, only FIR structure 
is implemented to guarantee filter stability. 

An adaptive FIR filter can be realized using transversal, symmetric transversal, and 
lattice structures. In this section, the adaptive transversal filter with the LMS algorithm 
is introduced and implemented first to provide a working knowledge of adaptive filters. 

Transversal Structure with LMS Algorithm 

Transversal Structure Filter 

The most common implementation of the adaptive filter is the transversal structure 
(tapped delay line) illustrated in Figure 6. The filter output signal y(n) is 

N-l 

y(n) = ~T(n)~(n) = E wi(n) x(n -i) 
i=O 

(1) 

where ~(n)=[x(n) x(n-l) ... x(n-N+l)]T is the input vector, ~(n)=[wo(n) wl(n) ... 
wN-l(n)]T is the weight vector, T denotes transpose, n is the time index, and N is the 
order of filter. This example is in the form of a finite impulse response filter as well as 
the convolution (inner product) of two vectors ~(n) and ~(n). The implementation of Equa­
tion (1) is illustrated using the following C program: 

y[n] = 0.; 
for (i = 0; i < N; i + +) [ 

y[n] + = wn[i]*xn[i]; 
[ 

where wn [i] denotes wi(n) and xn[i] represents x(n -i). 
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x(n) xln -1) xln-2) 
Z-1 Z-1 

Figure 6. Transversal Filter Structure 

TMS320C25 Implementation 

xln-N+ 1) 
Z-1 

The architecture of TMS320C25 [13] is optimized to implement the FIR fIlter. After 
execution of the CNFP (Configure Block BO as Program Memory) instruction, the fIlter 
coefficients wj(n) from RAM block BO (via program bus) and data x(n-i) from RAM 
block Bl (via data bus) are available simultaneously for the parallel multiplier (see Figure 7). 

PFC 
Weights Data Buffer 

80 B1 ARn 

Program 
• Data Bus 

Bus T(16) 

• 
MULTIPLER 

P(32) 

• 
ACC(32) 

Figure 7. TMS32OC25 Arithmetic Unit (aftllr execute CNFP instruction) 
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The MACD instruction enables complete multiply/accumulate, data move, and pointer 
update operations to be completed in a single instruction cycle (80 ns) if fIlter coefficients 
are stored in on-chip RAM or ROM or in off-chip program memory with zero wait states. 
Since the adaptive weights wj(n) need to be updated in every iteration, the fIlter coeffi­
cients must be stored in RAM. The implementation of the inner product in Equation (1) 
can be made even more efficient with a repeat instruction, RPTK. An N-weight transver­
sal fIlter can be implemented as follows [23]: 

LARP 
. LRLK 

RPTK 
MACD 

ARn 
ARn,LASTAP 
N-l 
COEFFP,*- (A) 

Where ARn is an auxiliary address register that points to x(n - N + 1), and the Prefetch 
Counter (PFC) points to the last weight wN -1 (n) indicated by COEFFP. When the MACD 
instruction is repeated, the coefficient address is transferred to the PFC and is incremented 
by_ one during its operation. Therefore, the components of weight vector 'y!::(n) are stored 
in BO as 

Low Address 

PFC ----

•••• 

w1(n) 

HIgh Address 

The MACD in repeat mode will also copy data pointed to by ARn, to the next higher 
on-chip RAM location. The buffer memories of transversal fIlter are therefore stored as 

Low Address 

x(n) 

x(n-1) 

.... 
x(n-N+2) 

ARn ____ x(n-N+1) 

HIgh Address 
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In general, roundoff noise occurs after each multiplication. However, the 
TMS320C25 has a 16 x 16-bit multiplier and a 32~bit accumulator, so there is no roundoff 
during the summing of a set of product terms in Program (A). All multiplication products 
are represented in full precision, and rounding is performed after they are summed. Thus 
y(n) is obtained from the accumulator with only one roundoff, which minimizes the round­
off noise in the output y(n). Since both the tapped delay line and the adaptive weights 
are stored in data RAM to achieve the fastest throughput, the highest transversal filter 
order for efficient implementation on the TMS320C25 is 256. However, if necessary, 
higher order filters can be implemented by using external data RAM. 

TMS320C30 Implementation 

The architecture ofTMS320C30 [14] is quite different from TI's second generation 
processors. Instead of using program/data memory, it provides two data address buses 
to do the data memory manipulations. This feature allows two .data memory addresses 
to be generated at the same time. Hence, parallel data store, load, or one data store with 
one data load can be done simultaneously. Such capabilities make the programming much 
easier and more flexible. Since the hardware multiplier and arithmetic logic unit (ALU) 
of TMS320C30 are separated, with proper operand arrangement, the processor can do 
one multiplication and one addition or subtraction at the same time. With these two com­
bined features, the TMS320C30 can execute several other parallel instructions. These 
parallel instructions can be found in Section 11 of the Third-Generation TMS320 User's 
Guide [14]. Associating with single repeat instruction RPTS, an inner product in Equa­
tion (1) can be implemented as follows: 

MPYF3 
RPTS 
MPYF3 

II ADDF3 
ADDF3 

*ARO+ +(1)%,*ARl+ +(1)%,Rl 
N-2 
*ARO+ +(1)%, *ARI + +(I)%,Rl 
Rl,R2,R2 
Rl,R2,R2 

; w[O].x[O] 
; Repeat N -1 times 
; y[] = w[].x[] 

; Include last product 

where auxiliary registers ARO and ARI point to x and w arrays. The addition in the parallel 
instruction sums the previous values of Rl and R2. Therefore, Rl is initialized with the 
first product prior to the repeat instruction RPTS. 

Note that the implementation above does not move the data in the x array like MACD 
does in TMS320C25. For filter delay taps, the TMS320C30 uses a circular buffer method 
to implement the delay line. This method reserves a certain size of memory for the buffer 
and uses a pointer to indicate the beginning of the buffer. Instead of moving data to next 
memory location, the pointer is updated to point to the previous memory location. 
Therefore, from the new beginning of the buffer, it has the effect of the tapped delay line. 
When the value of the pointer exceeds the end of the buffer, it will be circled around 
to the other end of the buffer. It works just like joining two ends of the buffer together 
as a necklace. Thus, new data is within the circular queue, pointed to by ARO, replacing 
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the oldest value. However, from an adaptive filter point of view, data doesn't have to 
be moved at this point yet. 

TMS320C30 has a 32-bit floating point multiplier and the result from the multiplier is 
put and accumulated into a 40-bit extended precision register. If the input from AID con­
verter is equal to or less than 16 bits, there is no roundoff noise after multiplication. 
Theoretically, the TMS320C30 can implement a very high order of adaptive filter. 
However, for the most efficient implementation, the limitation of filter order is 2K because 
the TMS320C30 external data write requires at least two cycles. If the filter coefficients 
are put in somewhere other than internal data RAM, the instruction cycles will be increased. 

LMS Adaptation Algorithm 

The adaptation algorithm uses the error signal 

e(n) = den) -yen), (2) 

where den) is the desired signal and yen) is the filter output. The input vector ~(n) and 
e(n) are used to update the adaptive filter coefficients according to a criterion that is to 
be minimized. The criterion employed in this section is the mean-square error (MSE)E: 

E = E[e2(n)] (3) 

where E [.] denotes the expectation operator. Ify(n) from Equation (1) is substituted into 
Equation (2), then Equation (3) can be expressed as 

E = E[d2(n)] + ~T(n)R~(n) - 2 ~T(n)£ (4) 

where R = E[x(n)x T(n)] is the N x N autocorrelation matrix, which indicates the sample­
to-sample correlation within a signal, and ~ = E [den) ~(n)] is the N x 1 cross-correlation 
vector, which indicates the correlation between the desired signal d(n)and the input signal 
vector ~(n). 

The optimum solution w* = [wo* Wl* ... WN-l*]T, which minimizes MSE, is de­
rived by solving the equation 

OE 
----= 0 

o~(n) 

This leads to the normal equation 

R w* = £ 
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If the R matrix has full rank (i.e., R-1 exists), the optimum weights are obtained by 

~* = R-1 ~ (7) 

In Linear Predictive Coding (LPC) of a speech signal, the input speech is divided 
into short segments, the quantities of Rand .Q are estimated, and the optimal weights cor­
responding to each segment are computed. This procedure is called a block-by-block data­
adaptive algorithm [24]. 

A widely used LMS algorithm is an alternative algorithm that adapts the weights 
on a sample-by-sample basis. Since.this method can avoid the complicated computation 
of R -1 and .Q, this algorithm is a practical method for finding close approximate solutions 
to Equation (7) in real time. The LMS algorithm is the steepest descent method in which 
the next weight vector w(n + 1) is increased by a change proportional to the negative gra­
dient of mean-square-error performance surface in Equation (7) 

~(n+ 1) = ~(n) - u'V (n) (8) 

where u is the adaptation step size that controls the stability and the convergence rate. 
For the LMS algorithm, the gradient at the nth iteration, 'V (n), is estimated by assuming 
squared error e2(n) as an estimate of the MSE in Equation (3). Thus, the expression for 
the gradient estimate can be simplified to 

o[e2(n)] 

o~(n) 
- 2 e(n) ~(n) (9) 

Substitution of this instantaneous gradient estimate into Equation (8) yields the 
Widrow-Hoff LMS algorithm 

, ~(n + 1) = ~(n) + 2 u e(n) ~(n) (10) 

where 2 u in Equation (10) is usually replaced by u in practical implementation. 

Starting with an arbitrary initial weight vector ~(O), the weight vector ~(n) will 
converge to its optimal solution ~*, provided u is selected such that [1] 
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0< u< ---­

Amax 
(11) 
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where Amax is the largest eigenvalue of the matrix R. Amax can be bounded by 

N-l 
Arnax < Tr [R] = E r (0) = N r(O) 

i=O 
(12) 

. where Tr [.] denotes the trace of a matrix and r(O) = E [x2(n)] is average input power. 

For adaptive signal processing applications, the most important practical considera­
tion is the speed of convergence, which determines the ability of the filter to track nonsta­
tionary signals. Generally speaking, weight vector convergence is attained only when the 
slowest weight has converged. The time constant of the slowest mode is [1] 

1 
t =----

UAmin 
(13) 

This indicates that the time constant for weight convergence is inversely propor­
tional to u and also depends on the eigenvalues of the autocorrelation matrix of the input. 
With the disparate eigenvalues, i.e., Amax> > Amin, the setting time is limited by the 
slowest mode, Amin. Figure 8 shows the relaxation of the mean square error from its in­
itial value EO toward the optimal value Emin. 

Adaptation based on a gradient estimate results in noise in the weight vector, therefore 
a loss in performance. This noise in the adaptive process causes the steady state weight 
vector to vary randomly about the optimum weight vector. The accuracy of weight vector 
in steady state is measured by excess mean square error (excess'MSE = E [E - Emin])' 
The excess MSE in the LMS algorithm [1] is 

excess MSE = u Tr[R] Emin (14) 

where Emin is minimum MSE in the steady state. 

Equations (13) and (14) yield the basic trade-off of the LMS algorithm: to obtain 
high accuracy (low excess MSE) in the steady state, a small value of u is required, but 
this will slow down the convergence rate. Further discussions of the charac1;eristics and 
properties of the LMS algorithm are presented in [1,3 through 9]. The implementations 
of LMS algorithm with the TMS32OC25 and TMS320C30 are presented next. 
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Figure 8. Learning Curve of an Adaptive Transversal Filter and an LMS 
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Since u*e(n) is constant for N weights update, the error signal e(n) is first multiplied 
by u to get ue(n). This constant can be computed first and then multiplied by x(n) to up­
date w(n). An implementation method of the LMS algorithm in Equation (10) is illustrated 
as 

ue(n) = u*e[n]; 
for (i=O; i<N; i++) [ 

wn[i] + = uen * xn[i]; 

TMS320C25 Implementation 

The TMS320C25 provides two powerful instructions (ZALR and MPY A) to per­
form the update example in Equation (10). 

• ZALR loads a data memory value into the high-order half of the ac­
cumulator while rounding the value by setting bit 15 of the accumulator 
to one and setting bits 0-14 of the accumulator to zero. The rounding is 
necessary because it can reduce the roundoff noise from multiplication. 

• MPY A accumulates the previous product in the P register and multiplies 
the operand with the data in T register. 

Assuming that ue(n) is stored in T and the address pointer is pointing to AR3, the 
adaptation of each weight is shown in the following instruction sequence: 

LRLK ARl,N -1 
LRLK AR2,COEFFD 
LRLK AR3,LAST AP+ 1 

MPY *-,AR2 
. ADAP ZALR * ,AR3 

MPYA *-,AR2 
SACH *+,O,ARI 
BANZ ADAP,*-,AR2 

; Initialize loop counter 
; Point to wN -1 (n) 
; Point to x(n - N + 1), since MACD in (A) 
; Already moved elements of current 
; x(n) to the next higher location 
; P=ue(n) * x(n-N+l) 
; Load wj(n) and round 
; ACC=P+wj(n) and P=ue(n) * x(n-i) 
; Store wj(n+ 1) 
; Test loop counter, if counter not 
; Equal to 0, decrement counter, 
; Branch to ADAP and select AR2 as 
; Next pointer. 

For each iteration, N instruction cycles are needed to perform Equation (1), 6N in­
struction cycles are needed to perform weight updates in Equation (10), and the total number 
of instruction cycles needed is 7N + 28. An example of a TMS32OC25 program implement­
ing a LMS transversal fIlter is presented in Appendix AI. Note that BANZ needs three 
instruction cycles to execute. This can be avoided by using straight line code, which re­
quires 4N + 33 instruction cycles [25]. 
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TMS320C30 Implementation 

Although the TMS32OC30 doesn't provide any specific instruction for adaptive filter 
coefficients up<iate, it still can achieve the weight updating in two instructions because 
of its powerful architecture. The TMS320C30 has a repeat block instruction RPTB, which 
allows a block of instructions to be repeated a number ·of times without any penalty for 
looping. A single repeat mode, RM, in the status register, ST, and three registers - repeat 
start address (RS), repeat end address (RE), and repeat counter (RC) - control the block 
repeat. When RM is set, the PC repeats the instructions between RS and RE a number 
of times, which is determined by the value of RC. The repeat modes repeat a block of 
code at least once in a typical operation. The repeat counter should be loaded with one 
less than the desired number of repetitions. Assuming the error signal e(n) in Equation 
(10) is stored in R7, the adaptation of filter coefficients is shown as follows: 

MPYF3 *ARO+ +(1)%,R7,Rl ; Rl = u*e(n)*x(n) 
LDI order-3,RC ; Initialize repeat counter 
RPTB LMS ; Do i = 0, N-3 
MPYF3 *ARO+ +(1)%,R7,Rl ; Compute u*e(n)*x(n -i -1) 

IIADDF3 *ARl,Rl,R2 ; Compute wi(n) + u*e(n)*x(n -i) 
LMS STF R2, *ARI + +(1)% ; Store wi(n+l) 

MPYF3 *ARO,R7,Rl ; For i = N-2 
IIADDF3 *ARl,RI,R2 

STF R2, *ARI + +(1)% ; Store wN-2(n+l) 
ADDF3 *ARl,Rl,R2 ; Include last w 
STF R2, *ARI + +(1)% ; Store wN-l(n+l) 

where auxiliary register ARO and ARI point to x and w arrays. Rl is updated before loop 
since the accumulation in the parallel instruction uses the previous value in Rl. In order 
to update x array pointer to the new beginning of the data buffer for next iteration (i.e., 
perform the data move), one of the loop instruction set has been taken out of loop and 
modified by eliminating the incrementation of ARO. 

To perform an N -weight adaptive LMS transversal filter on TMS320C30 requires 
3N + 15 instruction cycles. There are N and 2N instruction cycles to perform Equations 
(1) and (10), respectively. The TMS32OC30 example program is given in Appendix A2. 

The LMS algorithm considerably reduces the computational requirements by using 
a simplified mean square error estimator (an estimate of the gradient). This algorithm has 
proved useful and effective in many applications. However, it has several limitations in 
performance such as the slow initial convergence, the undesirable dependence of its con­
vergence rate on input signal statistics, and an excess mean square error still in existence 
after convergence. 
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Symmetric Transversal Structure [5] 

A transversal filter with symmetric impulse response (weight values) about the center 
weight has a linear phase response. In applications such as speech processing, linear phase 
filters are preferred since they avoid phase distortion by causing all the components in 
the filter input to be delayed by the same amount. The adaptive symmetric transversal 
structure is shown in Figure 9. 

xln)-.......... Z-1 
Z-1 ______ _ 

Z-1 

___ --- z-1 

I-------<~ yIn) 

Figure 9. Symmetric Transversal Structure (even order) 

This filter is actually an FIR filter with an impulse response that is symmetric about 
the center tap. The output of the filter is obtained as 

NI2-1 

y(n) E Wj(n) [x(n-i) + x(n-N+i+l)] (ISa) 
i=O 

where N is an even number. Note that, for fixed-point processors, the addition in the 
brackets may introduce overflow because the input signals x(n -i) and x(n - N +i + 1) are 
in the range of -1 and 1 - 2 -15. This problem can be solved by shifting x(n) to the right 
one bit. The update of the weight vector is 

wj(n+I) = wj(n) + ue(n)[x(n-l) + x(n-N+i+I)] (ISb) 
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for i=O,I, ... ,(NI2-1), which requires N/2 multiplications and N additions. Theoretical­
ly, this symmetric structure can also reduce computational complexity since such filters 
require only half the multiplications of the general transversal filter. However, it is true 
only for the TMS320C30 processor. When a filter is implemented on the TMS320C25, 
the transversal structure is more efficient than the symmetric transversal structure due 
to the pipeline multiplication and accumulation instruction MACD, which is optimized 
to implement convolution in Equation (1). 

TMS320C25 Implementation 

For TMS320C25, in order to implement the instructions MAC, ZALR, and MPY A, 
we can trade memory requirements for computation saving by defining 

SYM 

z(n-i) = x(n-i) + x(n-N+i+l) , i=O,I, ... ,N/2- 1 

Now, Equation (15) can be expressed as 

N/2-1 
y(n) = E wj(n) z(n-i) 

i=O 

Wj(n+ 1) = wj(n) + u e(n) z(n-i) , i=O,I, ... ,N/2-1 

Equation (16a) can be implemented using the TMS320C25 as 

LARK 
LRLK 
LRLK 
LRLK 
LARP 
LAC 
ADD 
SACL 
BANZ 

AR1, N/2-1 
AR2,LAST-X 
AR3,FIRST-X 
AR4,FIRST-Z 
AR3 
*+,O,AR2 
*-,O,AR4 
*+,O,ARI 
SYM,*-,AR3 

; Counter = N/2 -1 

; Point to x(n-N+l) 
; Point to x(n) 
; Point to z(n) 

(16a) 

(16b) 

(16c) 

The instruction sequence to implement the LMS algorithm in Equations (1) and(lO) 
can be used to implement Equations (16b) and (16c), except using MAC instead ofMACD 
in Program (A). Therefore, N instruction cycles are needed to shift data in x(n), 3N in­
struction cycles are needed to implement Equation (16a), N/2 for Equation (16b), and 
3N for Equation (16c). The total number of instruction cycles required to implement the 
symmetric transversal filter with the LMS algorithm is 7 .5N + 38. Where 7.5N is an in­
teger because N is chosen as an even number. The O.5N instruction cycles come from 
Equation (15a) since symmetric transversal structure folds the filter taps into half of the 
order N (see Figure 9). The maximum filter length for most efficient code, 256, is the 
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same as for the FIR filter. The use of the additional data memory can be obtained from 
the reduced data memory requirement for weights of the symmetric transversal filter. The 
complete TMS320C2S program is given in Appendix Bl. 

Note that instead of storing buffer locations x(n) contiguously, then using DMOV 
to shift data in the buffer memory (requiring N cycles) at the end of each iteration, we 
can use a circular buffer with pointers pointing to x(n) and x(n - N + 1). Since pointer up­
dating requires several instruction cycles, compared with N cycles using DMOV to up­
date the buffer memory contents, the circular buffer technique is more efficient ifN is large. 

TMS320C30 Implementation 

As mentioned above, the TMS320C30 uses a circular buffer instead of data move 
technique. Therefore, it does not have to implement tapped delay line separately as 
TMS320C2S. Equations (I) and (16a) can be combined and implemented in the same loop. 
The advantage of this is that a parallel instruction reduces the number of the instruction 
cycles. The implementation is shown as follows: 

LDF 
LDI 
RPTB 
ADDF3 
MPYF3 

II STF 
INNER ADDF3 

ADDF3 
MPYF3 

II STF 
ADDF3 

0.0,R2 ; Clear R2 
order/2-2,RC ; Set up loop counter 
INNER ; Do i = 0, N/2 -2 

*AR4++(1)%,*ARS--(I)%,Rl; z(i) = x(n-i) + x(n+N-i) 
Rl,*ARI+ +(I),R3 ; R3 = w[] * z[] 
Rl, *AR2+ +(1) ; Store z(i) 
R3,R2,R2 ; Accumulate the result for y 

*AR4++(I)%,*ARS--(1)%,Rl; For i = NI2 -1 

Rl, *ARl- -(IRO),R3 
Rl, *AR2- -(IRO) 
R3,R2,R2 ; Include last product 

where AR4 and ARS point to x[O] and x[N-l]. ARI and AR2 point to wand z array, 
respectively. IRO contains value of N/2 -1. The same instruction codes of weight update 
of transversal filter can be used in symmetric transversal structure by changing the x ar­
ray pointer to the z array pointer. Appendix B2 presents an example program. The total 
number of instructions needed is 2.SN + IS, which is less than that of the transversal 
structure. 

Lattice Structure [6] 

An alternative FIR filter realization is the lattice structure [26]. A discussion of the 
transversal filter with the LMS algorithm shows that the convergence rate of the transver­
sal structure is restricted by the correlation of signal components; i.e., the eigenvalue spread, 
Amaxl Amin. The lattice structure is a decorrelating transform based on a family ofpredic­
tion error filters as illustrated in Figure 10. The recursive equations that describe the lat­
tice predictor are 
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fo(n) = bo(n) = x(n) (17a) 

(17b) 

(17c) 

where fm(n) represents the forward prediction error, bm(n) represents the backward predic­
tion error, km(n) is the reflection coefficients, m is the stage index, and M is the number 
of cascaded stages. The lattice structure has the advantage of being order-recursive. This 
property allows adding or deleting of stages from the lattice without affecting the existing 
stages. 

xln) 
Stage 

1 

Stage 

2 

Stage m 

.---------------, 
I 
I 

fm-1 In) -i------.,--___t ... 

Z-1 

Figure 10. Lattice Structure 

r--~-., fm(n) 

Stage 

m 

----.... bmln) 

To implement the lattice filter for processing actual data, the reflection coefficients 
km(n) are required. These coefficients can be computed according to estimates of the 
autocorrelation coefficients using Durbin's algorithm. However, it would be more effi­
cient if these reflection coefficients could be estimated directly from the data and updated 
on a sample-by-sample basis, such as LMS algorithm [6]. The reflection coefficient 
km(n + 1) can be recursively computed [7]: 
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For applications such as noise cancellation, channel equalization, line enhancement, 
etc., the joint-process estimation [3] illustrated in Figure 11 is required. This device per­
forms two optimum estimations: the lattice predictor and the multiple regression filter. 
The following equations define the implementation of the regression filter 

eo(n) = den) - bo(n)go(n) (19a) 

(19b) 

O<=m<=M (20) 

where the LMS algorithm is used to update the coefficients of the regression filter. For 
noise cancellation application, em(n) corresponds to the output e(n) in Figure 5. For ap­
plications such as adaptive line enhancer and channel equalizer, filter output yen) is ob­
tained as 

M 

yen) E gm(n) bm(n) (21) 
m=O 

fo(n) f,(n) fm(n) 

Stage Stage Stage 
xln) 

boln) 1 b,ln) 2 m bm(n) 

: 9,(n) 
dIn) )-1--'----- ..... -----fIIIf 

yIn) 

Figure 11. Lattice Structure with Joint Process Estimation 
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TMS320C2SITMS32OC30 Implementation 

There are five memory locations-fm(n), bm(n) , bm(n-l), km(n) , and gm(n)­
required for each stage. The limitation of on-chip data RAM is 544 words for the 
TMS320C25 and 2K words for the TMS320C30. A maximum of 102 stages can therefore 
be implemented on a single TMS320C25 for the highest throughput. Here, another ad­
. vantage of TMS32OC30 architecture design is shown. Since the operands of the mathematic 
operations can be either memory or register on the TMS320C30, and there is no need 
·to preserve the values of fm array for the next iteration (refer to Equations (17) and (18», 
the fm array can be replaced by an extended precision register. Thus, for the most effi­
cient codes, the stage limitation of lattice structure for TMS320C30 is 512, or one-fourth 
of the 2K on-chip RAM. 

Lattice structures have superior convergence properties relative to transversal struc­
tures and good stability properties; e.g., low sensitivity to coefficient quantization, low 
roundoff noise, and the ability to check stability by inspection. The disadvantages of lat­
tice filter algorithms are that they are numerically complex and require mathematical 
sophistication to thoroughly understand their derivations. Furthermore, as shown in Ap­
pendixes Cl and C2, lattice structures cannot take advantage of the TMS320C25 and 
TMS320C30's pipeline architecture to achieve high throughput. The total number of in­
struction cycles needed is 33M +32 for TMS320C25 and 14M +4 for TMS320C30. 

Modified LMS Algorithms [5] 

The LMS algorithm described in previous sections is the most widely used algorithm 
in practical applications today. In this section, a set of LMS-type algorithms (all direct 
variants of the LMS algorithm) are presented and implemented. The motivation for each 
is some practical consideration, such as faster convergence, simplicity in implementation, 
or robustness in operation. The description of these algorithms is based on the transversal 
str:ucture. However, these algorithms can be applied to the symmetric transversal struc­
ture and the lattice structure as well. 

Normalized LMS Algorithm 

The stability, convergence time, and fluctuation of the adaptation process is governed 
by the step size u and the input power to the adaptive filter. In some practical applica­
tions, you may need an automatic gain control (AGC) on the input to the adaptive filter. 
The normalized LMS algorithm is one important technique used to improve the speed of 
convergence. This is accomplished while maintaining the steady-state performance indepen­
dent of the input signal power. This algorithm uses a variable convergence factor u(n), 
which represents a u that is a function of the time index, 

u(n) = a I var(n) (22) 
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and 

~(n + 1) = ~(n) + u(n)e(n)~(n) (23) 

where a is a convergence parameter, and var(n) is an estimate of the input average power 
at time n using the recursive equation 

var(n) =(1 - b) var(n -1) + b x2 (n) (24) 

where 0 < b < < 1 is a smoothing parameter. In practice, a is chosen equal to b. 

For fixed-point processors, there is a way to reduce the computation of power estima­
tion. Since b in Equation (24) doesn't have to be an exact number, it is computationally 
convenient to make b a power of2. If b = 2-m, the multiplication of b can be implemented 
by shifting right m bits. Therefore, the var(n) in Equation (24) is computed by 

var(n) = var(n-I) - b var(n-I) + b x2(n) 
= var(n-I) - var(n-I) * 2-m + x2(n) * 2-m 

Then, assuming the variance var(n) of input signal is stored in the data memory 
V AR and its initial value is 0.99997 (= 1- 2 -15), The implementation of this equation 
using TMS320C25 assembly code is 

LARP 
LRLK 
SQRA 
SPH 
ZALH 
SUB 
ADD 
SACH 

AR3 
AR3,FRSTAP 

* 
ERRF 
VAR 
VAR,SHIFT 
ERRF , SHIFT 
VAR 

; Point to input signal x 
; Square input signal 

; ACC = var(n-I) 
; ACC = (I-b) var(n -1) 
; ACC = (I-b) var(n -1) + b x2(n) 
; Store var(n) 

The normalized LMS algorithm can be implemented as 

var = bi * var + b * xn[O] * xn[O]; 
unen = ern] * a / var; 
for (i = 0; i< N; i++) 
wn[i] + = unen * xn[i]; 

where bi = (I-b), xn[O] = x(n), and unen = u(n)*e(n). This normalized technique 
reduces the dependency of convergence speed on input signal power at the cost of in­
creased computational complexity, especially the division in Equation (22). The algorithms 
of implementing the fixed-point and floating-point division on the TMS320C25 and 
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TMS320C30 can be found in the user's guide for each device [13, 14]. Since the power 
of input signal is always positive, those codes can be simplified to save computation time. 

Since the power estimation in Equation (24) and step size normalization in Equation (22) 
are performed once for each sample x(n), the computation increase can be ignored when 
N is large. As shown in Appendixes Dl and D2, the total number of instruction cycles 
needed for the normalized LMS algorithm (7N +57 for the TMS320C25 and 3N +47 for 
the TMS32OC30) is slightly higher than for the LMS algorithm (7N + 34 and 3N + 15) 
when N is large. 

Sign LMS Algorithms 

The LMS algorithm requires 2N multiplications and additions for each iteration; 
this amount is much lower than the requirements for many other complicated adaptive 
algorithms, such as Kalman and Recursive Least Square (RLS) [3]. However, there are 
three simplified versions of the LMS algorithm (sign-error LMS, sign-data LMS, and sign­
sign LMS) that save the number of multiplications required and extend the real-time band­
width for some applications [5, 27]. 

First, the sign-error LMS algorithm can be expressed as 

~(n + 1) = ~(n) + u sign[e(n)] ~(n) 

where sign[e(n)] 1 , if e(n) ;;::: 0 
- 1 , if e(n) < 0 

The C program implementation of sign-error LMS algorithm is 

tu = u; 
if (e[n] < 0.) ( 

tu = -u; ) 
for (i=O; i<N; i++) ( 

wn[i] + = tu * xn[i]; 

(25) 

As shown in Appendixes El and E2, the instruction sequence to implement weight 
update with the sign-error LMS algorithm is identical to that with the LMS algorithm. 
The difference is that the sign-error LMS algorithm uses the sign [e(n)]*u instead of e(n)*u 
before the update loop. Note that, for fixed-point processors, ifu is chosen to be a power 
of two, the u x(n) can be accomplished by shifting right the elements in x(n). This algorithm 
keeps the same convergence direction as the LMS algorithm. Thus, the sign-error LMS 
algorithm should remain efficient, provided the variable gain u(n) is matched to this change. 
However, the use of constant step size u to reduce computation comes at the expense of 
a slow convergence rate since smaller u is normally used for stability reasons. 
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The programs in Appendixes El and E2 implement a transversal filter with sign­
error LMS algorithm in looped code. The total number of instruction cycles needed for 
this algorithm using the TMS320C25 is 7N +26, which is slightly less than for the LMS 
algorithm's 7N +28. Computing u*e(n) takes 5 instruction cycles. The sign-error LMS 
algorithm determines the sign of the u by checking the sign of e(n), which takes only 3 
instruction cycles. The total number of instruction cycles needed for the sign-error LMS 
algorithm using the TMS320C30 is 3N + 16, which is slightly higher than for the LMS 
algorithm. This occurs because the TMS320C30 takes only one instruction cycle to com­
pute u*e(n) and two instruction cycles to determine the sign of the u. 

Secondly, the sign-data LMS algorithm is 

~(n + 1) = ~(n) + u e(n) sign[~ (n)] 

This equation can be implemented as 

wj(n+ 1) = wj(n) + ue(n) , if x(n-i) > = 0 
= wj(n) - ue(n) , if x(n-i) <0 

(26) 

for i = 0, 1 , ... ,N - 1. Since the sign determination is required inside the adaptation loop 
to determine the sign of x(n - i), slower throughput is expected. The total number of in­
struction cycles needed is lIN +26 for the TMS320C25 and 5N + 16 for the TMS320C30. 

Finally, the sign-sign LMS algorithm is 

~(n+ 1) "= ~(n) + u sign[e(n)] sign[~(n)] (27) 

which requires no multiplications at all and is used in the CCITT standard for ADPCM 
transmission. As we can see from the above equations, the number of mUltiplications is . 
reduced. This simplified LMS algorithm looks promising and is designed for VLSI or 
discrete IC implementation to save multiplications. 

The sign-sign LMS algorithm can be implemented as 

for (i=0; i<N; H+) [ 
if (e[n] > = 0.) [ 

if (xn[i] >= 0.) 
wn[i] + = u; 

else 
wn[i] - = u; J 

else [ 
if (xn[i] > = 0.) 

wn[i]-= u; 
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else 
wn[i] + = u; J J 

When this algorithm is implemented on TMS320C25 and TMS320C30 with pipeline 
architecture and a parallel multiplier, the performance of sign-sign LMS algorithm is poor 
compared to standard LMS algorithm due to the determination of sign of data, which can 
break the instruction pipeline and can severely reduce the execution speed of the processors. 

In order to avoid double branches inside the loop, the XOR instruction is utilized 
to check the sign bit of e(n) and x(n -i). The sign-sign LMS algorithm can be implemented 
as 

wi(n + 1) = wi(n) + u , if sign[e(n)] = sign[x(n -i)] 
= wi(n) - u , otherwise 

The following TMS320C25 instruction sequence implements this algorithm without 
branching (assuming that the current address register used is AR3): 

LRLK ARl,N-l ; Set up counter 
LRLK AR2,COEFFD ; Point to wi(n) 
LRLK AR3,LASTAP+l ; Point to x(n-i) 

ADAP LAC *-,O,AR2 ; Load x(n-i) 
XOR ERR ; XOR with e(n) 
SACL ERRF ; Save sign bit, sign = 0 if same signs 

; Sign = 1 if different signs 
LAC ERRF ; Sign extension to ACCH, 

; ACCH = 0 If ERRF > = 0 
; ACCH = OFFFFh if ERRF < 0 

XORK MU,15 ; Take one's complement of m 
; If sign = 1 

ADD *,15 ; Weight update 
SACH *+,l,AR1 ; Save new weight 
BANZ ADAP,*-,AR3 

The one's complement of u is used instead of -u, because they are only slightly 
different and the step size does not require the exact number. The weight update with 
this technique requires lON instruction cycles and FIR filtering requires Ninstruction cycles 
so that the total number of instruction cycles needed is lIN + 21. The complete TMS32OC25 
assembly program is given in Appendix Fl. 

To determine whether a positive or negative u should be used without branching 
is trickier in the TMS320C30. Fortunately, the extended precision registers ofTMS320C30 
interpret the 32 most-significant bits of the 40-bit data as the floating-point number and 
the 32 least -significant bits of the 40-bit data as an integer. When a floating-point number 
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changes its sign, its exponent remains the same. Therefore, the sign of step size u can 
be determined by using XOR logic on its mantissa. The following code shows how the 
sign-sign LMS algorithm is implemented on the TMS320C30. 

ASH -31,R7 ; R7 = Sign[e(n)] 
XOR3 RO,R7,R5 ; R5 = Sign[e(n)] * u 
LDF *ARO+ +(1)%,R6 ; R6 = x(n) 
ASH -31,R6 ; R6 = Sign[x(n -i)] 
XOR3 R5,R6,R4 ; R4 = Sign[x(n -i)]*Sign[e(n)] * u 
ADDF3 *AR1,R4,R3 ; R3 = wi(n) + R4 

LDI order-3,RC ; Initialize repeat counter 
RPTB SSLMS ; Do i = 0, N-3 
LDF *ARO+ +(1)%,R6 ; Get next data 

I I STF R3, *AR1 + +(1)% ; Update wi(n+ 1) 
ASH -31,R6 ; Get the sign of data 
XOR3 R5,R6,R4 ; Decide the sign of u 

SSLMS ADDF3 *ARl,R4,R3 ; R3 = wi(n) + R4 

LDF *ARO,R6 ; Get last data 

I I STF R3,*AR1++(1)% ; Update WN -2(n + 1) 
ASH -31,R6 ; Get the sign of data 
XOR3 R5,R6,R4 ; Decide the sign of u 
ADDF3 *AR1,R4,R3 ; Compute wN -1 (n + 1) 
STF R3, *AR1 + +(1)% ; Store last wen + 1) 

Here, RO, R4, and R5 contain the value of u before updating. ARO and ARl point 
to x array and w array, respectively. R7 contains the value of error signal e(n). The com­
plete program is given in Appendix F2. The total number of instruction cycles is 5N + 16, 
which is much higher than LMS algorithm. 

The sign-sign LMS algorithm is developed to reduce the multiplication requirement 
of the LMS algorithm. Since DSPs provide the hardware multiplier as a standard feature, 
this modification does not provide any advantage when implementing this algorithm on 
the DSPs. On the contrary, it causes some disadvantages since decision instructions will 
destroy the instruction pipeline. If you use the XOR logic operation in order to avoid us­
ing the decision instructions, the complexity of the program will be increased and the total 
number of instruction cycles will be greater than the regular LMS algorithm. 

Leaky LMS Algorithm 

When adaptive ftlters are implemented on signal processors with fixed word lengths, 
roundoff noise is fed back to adaptive weights and accumulates in time without bound. 
This leads to an overflow that is unacceptable for real-time applications. One solution is 
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based upon adding a small forcing function, which tends to bias each filter weight toward 
zero. The leaky LMS algorithm has the form 

~(n + 1) = r ~(n) + u e(n) ~(n) (28a) 

where r is slightly less than 1. 

Since r can be expressed as 1 - c and c < < 1, the TMS320C25 can take advantage 
of the built-in shifters to implement this algorithm. Therefore, Equation (28a) can be 
changed to 

~(n + 1) = ~(n) - c ~(n) + u e(n) ~(n) (28b) 

In order to achieve the highest throughput by using ZALR and MPY A, cw(n) can 
be implemented by shifting wj(n) right by m bits where 2-m is close to c. Since the length 
of the accumulator is 32 bits and the high word (bits 16 to 31) is used for updating w(n), 
shifting right m bits of wj(n) can be implemented by loading wj(n) and shifting left 
16 - m bits. The sequence of TMS320C25 instructions to implement Equation (28b) is 
shown as 

LRLK 
LRLK 
LRLK 
LT 
MPY 

ADAPT ZALR 
MPYA 
SUB 
SACH 
BANZ 

ARl,N-l 
AR2,COEFFD 
AR3,LASTAP+ 1 
ERRF 
*-,AR2 
*,AR3 
*-,AR2 
*,LEAKY 
*+,O,ARI 
ADAPT,*-,AR2 

; Set up counter 
; Point to wj(n) 
; Point to x(n - i) 
; T = ERRF =u*e(n) 

; LEAKY=16-m 

For each iteration, 7N instruction cycles are needed to perform the adaptation pro­
cess (6N for the LMS algorithm). The total number of instruction cycles needed is 8N +28 
(see Appendix Gl for the complete program). The leaky factor r has the same effect as 
adding a white noise to the input. This technique not only can solve adaptive weights 
overflow problem, but also can be beneficial in an insufficient spectral excitation and stalling 
situation [5]. 

The method used above is especially for the TMS320C25, which has a free shift 
feature. Since TMS320C30 is a floating-point processor, r can simply multiply to filter 
coefficient. However, in order to reduce the instruction cycles, this mUltiplication can 
combine with another instruction to be a parallel instruction inside the loop. The follow­
ing code shows how to rearrange the instructions from the LMS algorithm to include this 
multiplication without an extra instruction cycle. 

220 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 



MPYF @u_r,R7 ; R7 = e(n)*u/r 
MPYF3 *ARO+ +(I)%,R7,Rl ; Rl = e(n)*u*x(n)/r 
MPYF3 *ARO+ +(1)%,R7,Rl ; Rl = e(n)*u*x(n-l)/r 

II ADDF3 *ARl,Rl,R2 ; R2 = wa(n) + e(n)*u*x(n)/r 
LDI order-4,RC ; Initialize repeat counter 
RPTB LLMS ; do i = 0, N-4 
MPYF3 *AR2,R2,RO ; RO = r*wj(n) + e(n)*u*x(n-i) 

II ADDF3 *+ARl(I),Rl,R2 ; R2 = Wj+l(n) + e(n)*u*x(nz-i-l)/r 
LLMS MPYF3 *ARO++(1)%,R7,Rl ; Rl= e(n)*u*x(n-i-2)/r 

II STF RO, *ARI + +(1)% ; Store wj(n + 1) 

MPYF3 *AR2,R2,RO ; RO = r*wN-3(n) + e(n)*u*x(n-N+3) 
II ADDF3 * + ARl(I),Rl,R2 ; R2 = wN-2(n) + e(n)*u*x(n-N+2)/r 

MPYF3 *ARO,R7,Rl ; Rl = e(n)*u*x(n - N + 1)/r 
II STF RO,*ARl++(I)% ; Store wN-3(n+l) 

MPYF3 *AR2,R2,RO ; RO = r*wj(n) + e(n)*u*x(n-N+2) 
II ADDF3 *+ARl(1),Rl,R2 ; R2 = wN-l(n) + 

* e(n)*u*x(n - N + 1)/r 
MPYF3 *AR2,R2,RO ; RO = r*wj(n) + e(n)*u*x(n - N + 1) 

II STF RO,*ARI + +(1)% ; Store wN-2(n+l) 
STF RO,*ARI + +(1)% ; Update last W 

Auxiliary registers ARO and ARI point to x and W arrays. AR2 points to the memory 
location that contains value r. R7 contains the value of error signal e(n). Rl and R2 are 
updated before the loop because the parallel instructions inside the loop use the previous 
values in Rl and R2. Note that Rl is updated twice before the loop because the updating 
of R2 requires the previous value of Rl. In order to update x array pointer to the new 
beginning of the data buffer for next iteration, two of the loop instruction sets have been 
taken out ofloop and modified by eliminating the incrementation of ARO. The TMS320C30 
assembly program of an adaptive transversal fIlter with the leakage LMS algorithm is listed 
in Appendix G2 as an example. The total number of instruction cycles for this algorithm 
is 3N + 15, which is the same as the LMS algorithm. This example shows the power and 
flexibility of the TMS320C30. 
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Implementation Considerations 

The adaptive filter structures and algorithms discussed previously were derived on 
the basis of infinite precision arithmetic. When implementing these structures and algorithms 
on a fixed integer machine, there is a limitation on the accuracy of these filters due to 
the fact that the DSP operates with a finite number of bits. Thus, designers must pay at­
tention to the effects of finite word length. In general, these effects are input quantization, 
roundoff in the arithmetic operation, dynamic range constraints, and quantization of filter 
coefficients. These effects can either cause deviations from the original design criteria 
or create an effective noise at the filter output. These problems have been investigated 
extensively, and techniques to solve these problems have been developed [28, 29]. 

The effects of finite precision in adaptive filters is an active research area, and some 
significant results have been reported [30 through 32]. There are three categories of finite 
word length effects in adaptive filters: 

• Dynamic Range Constraint (scaling to avoid overflow). Since this is not 
applicable for a floating-point processor, the TMS320C30 is not mentioned 
in this portion. 

• Finite Precision Errors (errors introduced by roundoff in the arithmetic). 

• Design Issues (design of the optimum step size u that minimizes system 
noise). 

Dynamic Range Constraint 

As shown in Figure 1, the most widely used LMS transversal filter is specified by 
the difference equations 

and 

N-l 

y(n) E wj(n) x(n -i) 
i=O 

wj(n + 1) = wj(n) + u*e(n)*x(n -i), for i = 0, 1, ... , N-l 

(29) 

(30) 

where x(n -i) is the input sequence and wj(n) are the filter coefficients. 

If the input sequence and filter coefficients are properly normalized so that their 
values lie between -1 and 1 using Q15 format, no error is introduced into the addition. 
However, the sum of two numbers may become larger than one. This is known as overflow. 
The TMS320C25 provides four features that can be applied to handle overflow manage­
ment [13]: 
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A. Branch on overflow conditions. 
B. Overflow mode (saturation arithmetic). 
C. Product register right shift. 
D. Accumulator right shift. 

One technique to inhibit the probability of overflow is scaling, i.e., constraining 
each node within an adaptive fIlter to maintain a magnitude less than unity. In Equation 
(29), the condition for Iy(n) I < 1 is 

N-l 

Xmax < 1 / E Iwj{n) I 
i=O 

(31) 

where Xmax denotes the maximum of the absolute value of the input. The right shifter 
of the TMS320C25, which operates with no cycle overhead, can be applied to implement 
scaling to prevent overflow of multiply-accumulate operations in Equation (29). By set­
ting the PM bits of status register STl to 11 using the SPM or LSTl instructions, the 
P register output is right-shifted 6 places. This allows up to 128 accumulations without 
the possibility of an overflow. SFR instruction can also be used to right shift one bit of 
the accumulator when it is near overflow. 

Another effective technique to prevent overflow in the computation of Equation (29) 
is using saturation arithmetic. As illustrated in Figure 12, if the result of an addition 
overflows, the output is clamped at the maximum value. If saturation arithmetic is used, 
it is common practice [28] to permit the amplitude of x(n -i) to be larger than the upper 
bound given in Equation (31). Saturation of the filter represents a distortion, and the choice 
of scaling on the input depends on how often such distortion is permissible. The satura­
tion arithmetic on the TMS320C25 is controlled by the OVM bit of status register STO 
and can be changed by the SOVM (set overflow mode), ROVM (reset overflow mode), 
or LST (load status register). 

output 

1-2-15 

-1 : 1-2-15 --------1-------...... input 

Figure 12. Saturation Arithmetic 
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Filter coefficients are updated using Equation (30). As illustrated in Figure 13, a 
new technique presented in reference 31 uses the scaling factor a to prevent filter's coeffi­
cients overflow during the weight updating operation. Suppose you use a = 2-ffi. A right 
shift by m bits implements multiplication by a, while a left shift by m bits implements 
the scaling factor 1Ia. Usually, the required value of a is not expected to be very small 
and depends on the application. Since a scales the desired signal, it does not affect the 
rate of convergence. 

dIn) --...,....----...... 8 

xln)---t_ ..... FILTER 
STRUCTURE 

ADAPTIVE 
ALGORITHM 

J----.~ eln) 

1/8 yIn) 

Figure 13. Fixed-Point Arithmetic Model of the Adaptive Filter 

Finite Precision Errors 

The TMS32OC25 is a 16/32-bit fixed point processor. Each data sample is represented 
by a fractional number that uses 15 magnitude bits and one sign bit. The quantization interval 

o = 2-b, (32) 

(b = 15), is called the width of quantization since the numbers are quantized in steps of o. 
The products of the multiplications of data by coefficients within the filter must be 

rounded or truncated to store in memory or a CPU register. lAs shown in Figure 14, the 
roundoff error can be modeled as the white noise injected into the filter by each rounding 
operation. This white noise has a uniform distribution over a quantization interval and 
for rounding 

- 112 0 < e ~112 0 (33a) 
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and 

(33b) 

where oe2 is the variance of the white noise. 

In general, roundoff noise occurs after each multiplication. However, the 
TMS320C25 has a full precision accumulator, i.e., a 16 X 16-bit multiplier with a 32-bit 
accumulator, so there is no roundoff when you implement a set of summations and 
multiplications as in Equation (29). Rounding is performed when the result is stored back 
to memory location y(n), so that only one noise source is presented in a given summation 
node. 

8 

x----t ..... [:»----t4.., E t---........... y 

y = Rounding Ix • 8] = x • 8 + 8 

Figure 14. Fixed-Point Roundoff Noise Model 

For floating-point arithmetic, the variance of the roundoff noise [31] is slightly dif­
ferent from Equation (33b), 

(33c) 

Since TMS32OC30 has a 40/32-bitfloating-point multiplier and ALU, the result from 
arithmetic operation has the mantissa of [31] bits plus one sign bit. Therefore,the 0 in 
Equation (33c) is equal to 2-31 • Another roundoff noise is introduced when you restore 
the result back to memory. This noise has the power of 2-23 because the mantissa of 
TMS320C30 floating-point data is 23 bits plus one sign bit. Therefore, unless the filter 
order is high, the roundoff noise from arithmetic operation is relatively small. 

The steady-state output error of the LMS algorithm due to· the finite precision 
arithmetic of a digital processor was analyzed in reference [31]. It was found that the power 
of arithmetic errors is inversely proportional to the adaptation step size u. The significance 
of this result in the adaptive filter design is discussed next. Furthermore, roundoff noise 
is found to accumulate in time without bound, leading to an eventual overflow [32]. The 
leaky LMS algorithm presented in the previous section can be used to prevent the algorithm 
overflow. 
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Design Issues 

The performance of digital adaptive algorithms differs from infinite precision adap­
tive algorithms. The finite precision LMS algorithm is given as 

~(n + 1) = ~(n) + Q[u*e(n)*~(n)] (34) 

where Q [.] denotes the operation of fixed point quantization. Whenever any correction 
term u*e(n)*x(n -i) in the update of the weight vector in Equation (34) is too small, the 
quantized value of that term is zero, and the corresponding weight wj(n) remains unchang­
ed. The condition for the ith component of the vector w(n) not to be updated when the 
algorithm is implemented with the TMS320C25 is 

I u e(n) x(n-i) I <012 (35a) 

where 0 = 2 -15. The condition for TMS320C30 is 

I u e(n) x(n-i) I < 2exp * 0/2 (35b) 

where exp is the exponent of wj(n) and 0= 2-23 . 

Since the adaptive algorithms are designed to minimize the mean squared value of 
the error signal, e(n) decreases with time. Ifu is small enough, most of the time the weights 
are not updated. This early termination of the adaptation may not allow the weight values 
to converge to the optimum set, resulting in a mean square error larger than its minimum 
value. The conditions for the adaptation to converge completely [30] is u > Umin where 

for the TMS320C25 and the TMS320C30 

02*2exp 
U2min = ---'-""""''----

4ax2Emin 

(36a) 

(36b) 

where ax 2is the power of input signal x(n) and fmin is the minimum mean squared error 
at steady state. 

In the Leaky LMS Algorithm section, it was mentioned that the exce.ss MSE given 
in Equation (14) is minimized by using small u. However, this may result in a large quan­
tization error since the most significant term in the total output quantization error is [31] 
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No 2 e 

2 a2 u 
(37) 

The optimum step size uo reflects a compromise between these conflicting goals. 
The value of uo is shown to be too small to allow the adaptive algorithm to converge com­
pletely and also to give a slow convergence. In practice, u > uo is used for faster con­
vergence. Hence, the excess MSE becomes larger, and the roundoff noise can typically 
be neglected when compared with the excess mean square error. 

Finally, recall Equations (11) and (12). The step size u has an upper limit to guarantee 
the stability and convergence. Therefore, the adaptive algorithm requires 

1 
O<u<---­

No 2 x 
(38) 

On the other hand, the step size u also has a lower limit. The optimum uo, which 
minimizes the sum of the excess MSE and roundoff noise, is smaller than Umin, i.e., too 
small to allow the adaptive weight to converge. For an algorithm implemented on the 
TMS320C25, the word-length of 16 bits is fixed, and the minimum step-size that can be 
used is given in Equation (36). The most important design issue is to find .the best u to satisfy 

1 
Umin < u < ----

Nol 
(39) 

Therefore, in order to make the condition in Equation (39) valid, the initial values 
of filter coefficients are better close to zero for the floating-point processor if the situation 
in unknown. 

Software Development 

The TMS320C25 and TMS320C30 combine the high performance and the special 
features needed in adaptive signal processing applications. The processors are supported 
by a full set of software and hardware development tools. The software development tools 
include an assembler, a linker, a simulator, and a C compiler. The most universal soft­
ware development tool available is a macro assembler. However, the assembly language 
programming for nsp can be tedious and costly. For adaptive filter applications, an 
assembly language programmer must have knowledge of adaptive signal processing. The 
challenge lies in compressing a great deal of complex code into the fairly small space and 
most efficient code dictated by the real-time applications typical of adaptive signal pro­
cessing. 
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Recently, C compilers for the processors were developed to make DSP program­
ming easier, quicker, and less costly compared with the work associated with program­
ming in assembly language. Due to the general characteristics of a compiler, the code 
it generates is not the most efficient. Since the program efficiency consideration is impor­
tant for adaptive filter implementation, the code generated from the C compiler has to 

. be modified before implementing. Thus, two alternative ways, besides writing an assembly 
program, to implement adaptive signal processing on DSP are presented. First is the 
automatic adaptive filter code generator [12], which can be found on Texas Instruments 
TMS320 Bulletin Board Service (BBS), and second are the adaptive filter function libraries 
that support assembly and C programming languages. 

In this report, two adaptive filter libraries have been developed: one can be called 
from an assembly main program; the other can be called from the C main program. Note 
that, for the TMS320C25 only, certain data memory locations have been reserved for storing 
the ne.cessary filter coefficients, previous delayed signal, etc. In other words, these data 
memories are used as global variables. 

Assembly Function Libraries 

The basic concept of creating an assembly subroutine for an adaptive filter is to modify 
in module the assembly programs discussed above. Then, the user can implement the adap­
tive filter by writing his own assembly main program that calls the subroutine. 

TMS320C25 Assembly Subroutine 

The TMS320C25 has an eight-level deep hardware stack. The CALL and CALA 
subroutine calls store the current contents of the program counter (PC) on the top of the 
stack. The RET (return from subroutine) instruction pops the top of the stack back to the 
PC. For computational convenience, the processor needs to be set as follows before call­
ing the assembly callable subroutine. 

1. PM status bits equal to 01. 
2. SXM status bit set to 1. 
3. The current DP (data memory page pointer) is O. 

The foilowing example is the TMS320C25 assembly main routine, which performs 
an adaptive line enhancement by calling the LMS algorithm subroutine. The filter order 
is 64, delay is equal to one, and the convergence factor u is 0.01. 

* DEFINE AND REFER SYMBOLS 

* 
. global ORDER,U,ONE,D,Y,ERR,XN,WN,LMS 

* 
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DEFINE SAMPLING RATE, ORDER, AND MU 

* 
ORDER: .equ 
MU: .equ 
PAGEO: .equ 

* 

20 
327 
o 

; mu = 0.01 in Q15 format 

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS 

* 
XO: 
XN: 
WN: 

* 

.usect 

.usect 

.usect 

"buffer" ,ORDER-l 
"buffer" ,1 
"coeffs" ,ORDER 

* RESERVE ADDRESSES FOR PARAMETERS 

* ONE: 
U: 
ERR: 
Y: 
D: 
ERRF: 

* 

.usect 

.usect 

.usect 

.usect 

.usect 

.usect 

, 'parameters' , , 1 
, 'parameters' , , 1 
, 'parameters' , , 1 
, 'parameters' , , 1 
, 'parameters' , , 1 
"parameters" , 1 

* INITIALIZATION 

* 
START LDPK PAGEO 

SPM 1 
SSXM 
LRLK AR7,XO 
LACK 1 
SACL ONE 
LALK MU 
SACL U 

; Set DP = 0 
; Set PM equal to 1 
; Set sign extension mode 
; AR7 point to > 300 
; Initialize ONE = 1 

; Initialize U ;", MU = 0.01 

************************************************************************ 
* PERFORM THE PREDICTOR 
************************************************************************ 
INPUT: IN D,PA2 ; Get the input 
* 

CALL LMS ; Call subroutine 
* 
OUTPUT: OUT Y,PA2 ; Output the signal 
* 

LAC D ; Insert the newest sample 
LARP AR7 
SACL * 
B INPUT 
.end 
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The symbols, such as ORDER, U, ONE, D, LMS, Y, and ERR, are defined and 
referred to for the purpose of modular programming. The uninitialized sections specified 
by the directive . usect can be placed in any location of memory according to the linker 
command file. Note that MACD instruction requires the sources of the operands on pro­
gram memory and data memory separately, and CNFP instruction configures RAM block 
o as program memory. Therefore, the coeffs section has to be in data RAM block 0, and 
the buffer has to be in RAM block 1. Appendix HI contains the adaptive transversal filter 
with LMS algorithm subroutine using the TMS320C2S, and Appendix H2 contains an 
example of a linker command file. 

TMS320C30 Assembly Subroutine 

Instead of a hardware stack, TMS320C30 uses a software stack, which is more flex­
ible and convenient for a high-level language compiler. The stack memory location is 
pointed to by the stack pointer SP. In order to maintain the proper program sequence, 
the programmer must make certain that no data is lost and that the stack pointer always 
points to proper location. The PUSH, PUSHF, POP, POPF, CALL, CALLcond, RETI­
cond, and RETScond instructions will change the value of the stack pointer; in addition, 
writing data into it and using the interrupt will also change that value. It is the program­
mer's responsibility to initialize the stack pointer in the beginning of the program. The 
same adaptive line enhancer example above using TMS320C30 is listed below. The 
adapfltr .int program that initializes the stack pointer and the data RAM is given in Appen­
dix H3. 

* 
* DEFINE GLOBAL VARIABLES AND CONSTANTS 

* 

N 
mu 

* 

. copy 

. global 

.set 

.set 

, 'adapfltr .int' ' 
LMS30,order ,u,d,y ,e 
20 
0.01 

* INITIALIZE POINTERS AND ARRAYS 

* 
.text 

begin .set $ 
LDI N,BK ; Set up circular buffer 
LDP @xIL-addr ; Set data page 
LDI @xIL-addr,ARO ; Set pointer for x[] 
LDI @wIL-addr,ARI ; Set pointer for w[] 
LDF O.O,RO ; RO = 0.0 
RPTS N-1 
STF RO,*ARO+ +(1)% ; x[] = O. 
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* 

IlsTF 
LDI 
LDI 

RO, *ARI + +(1)% ; w[] = O. 
@iIL-addr,AR6 ; Set pointer for input ports 
@out_addr,AR7 ; Set pointer for output ports 

* PERFORM ADAPTIVE LINE ENHANCER 

* 
nput: 

* 

LDF 
IILDF 

STF 
STF 

*AR6,R7 
*+AR6(1),R6 
R7,@d 
R6,*ARO 

; Input d(n) 
; Input x(n) 
; Insert d(n) 
; Insert x(n) to buffer 

* CALL ASSEMBLY SUBROUTINE 

* 
CALL LMS30 * 

* 
* 

OUTPUT y(n) AND e(n) SIGNALS 

LDF @y,R6 ; Get y(n) 
BD input ; Delay branch 
LDF @e,R7 ; Get e(n) 
STF R6,*AR7 ; Send out y(n) 
STF R7,*+AR7(1) ; Send out e(n) 

* 
* DEFINE CONSTANTS 
* 
n .usect "buffer" ,N 
wn .usect "coeffs" ,N 
iIL-addr .usect "vars",1 
out_addr .usect "vars",1 
xIL-addr .usect "vars",1 
wIL-addr .usect "vars",1 
u .usect "vars" ,1 
order .usect "vars",1 
d .usect "vars",1 
y .usect "vars",1 
e .usect "vars" ,1 
cinit . sect " .cinit" 

. word 6,iIL-addr 

.word 0804000h 

. word 0804002h 

. word xn 

. word wn 
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. float mu 

. word N-2 

. end 

In the above example, data memory order is initialized to N - 2 for computation conve­
nience. The linker command files and the subroutine that implements the LMS transver­
sal filter can be found in Appendixes H4 and H5. 

C Function Libraries 

The TMS32OC25 and TMS32OC30 C language compilers provide bigh-Ievellanguage 
support for these processors. The compilers allow application developers without an ex­
tensive knowledge of the device's architecture and instruction set to generate assembly 
code for the device. Also, since C programs are not device-specific, it is a relatively 
straightforward task to port existing C programs from other systems. 

To allow fast development of efficient programs for adaptive signal processing ap­
plications, C function libraries have been developed. These libraries include functions for 
adaptive transversal, symmetric transversal, and lattice structures. 

TMS32OC25 C-Callable Subroutines 

In a C program, the memory assignments are chosen by the compiler. There are 
two ways to use the most efficient instruction MACD: 

A. Use inline assembly code to assign memory locations for filter coefficients and 
buffers. 

B. Reserve the desired memory locations for them and do the assignment in the 
linker command file. 

The latter method is used in this report. 

For a C main program, the parameters passed to and returned from the subroutines 
are all within the parentheses following the subroutine name, as shown below: 

n - Filter order 
mu - Convergence factor 
d - Desired signal 
x - Input signal 
y - Address of output signal 
e - Address of error signal 

Since the TMS320C25 C compiler pushes the parameters from right to left into soft­
ware stack pointed by ARt, the subroutine gets the parameters in reverse order, as shown 
below: 

232 

MAR 
LAC 

*­
*-

; Set pointer for getting parameters 
; ACC = N 
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SUBK 1 
SACL ORDER ; ORDER = N - 1 
LAC *- ; Getting and storing the mu 
SACL U 
LAC *- ; Getting and storing the D 
SACL D 
LAC *-,O,A-R3 ; Insert the newest sample 
LRLK AR3,FRSTAP 
SACL * 

The assembly subroutine returns the parameters y and e as follows: 

LARP ARl 
LAR AR2,*-,AR2 ; Get the address of y in main 
LAC y 
SACL *,O,ARl ; Store y 
LAR AR2,*,AR2 ; Get the address of e in main 
LAC ERR 
SACL *,O,ARI ; Store e 

Therefore, the parameters should be entered in the order given above. If there are 
other parameters, they should be inserted right after the convergence factor mu. The leaky 
LMS algorithm subroutine is given as an example. 

llms(n,mu,r ,d,x,&y ,&e} 

the r is defined in Equation (28a). Note that the values of the AR registers, which will 
be used in subroutine, and the status registers must be saved at the beginning of the 
subroutine and restored right before returning to calling routine. An example of a C-callable 
program is given in Appendix 11. Memory locations 0200h to 0200h + N -1 and 0300h 
to 0300h + N -1 are reserved for filter coefficients and buffers, respectively. N denotes 
the filter order. 

TMS320C30 C Subroutine 

As previously mentioned, the TMS320C30 architecture has features designed for 
a high-level language compiler. Note that the callable word is dropped in this section title 
because the TMS320C30 is so flexible that the restrictions for the TMS320C25 no longer 
exist. Since the memory locations of filter buffers and coefficients are determined by the 
parameters that pass from the calling routine, the same subroutine can be used in different 
places. However, the only restriction is that the memory locations of filter buffers must 
align to the circular addressing boundary [14]. The features of TMS320C30 architecture 
that make a major contribution toward these improvements are dual data address buses, 
software stack, and flexible addressing mode. The parameters passed to subroutine are 
pushed into the stack. Therefore, after returning from the subroutine, the stack pointer, 
SP, must be updated to point to the location where SP pointed before pushing the parameters 

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 233 



into the stack. "However, this will be done by the C compiler. The usage example of the 
C function subroutine is given as follows: 

tlms(n,u,d,&w,&x,&y,&e) where n - Filter order 
u - Step size 
d - Desired signal 
&w - Filter coefficients 
&x - Input signal buffers 
&y - Addr of output signal 
&e - Addr of error signal 

The example below shows how the C subroutine receives and manipulates the 
parameters passed from the caller program and how the result is returned to the caller 
routine. 

* 
* SET FRAME POINTER FP 

* 
FP 

* 

. set 
PUSH 
LDI 

AR3 
FP" 
SP,FP 

* GET FILTER PARAMETERS 

* 

* 
* 
* 

LDI *-FP(2),R4 ; Get filter order 
LDI "*-FP(6),ARO ; Get pointer for x(] 
LDI *--FP(5),ARl ; Get pointer for w(] 

COMPUTE ERROR SIGNAL e(n) AND STORE y(n) AND e(n) 

LDI 
SUBF3 

IlsTF 
LDI 
STF 
MPYF 
POP 

*-FP(2),AR2 ; Get y(n) address 
R2, * + FP(1),R7 ; e(n) = d(n) - y(n) 
R2, * AR2 ; Send out y(n) 
*-FP(3),AR2 ; Get e(n) address 
R7, * AR2 ; Send out. e(n) 
* + FP(2),R7 ; R7 = e(n) * u 
FP 

Note that AR3 is used as the frame pointer in TMS320C30 C compiler. Appendix 
12 contains the complete LMS transversal filter example subroutine program. 

Development Process and Environment 

Following a four stage procedure [33] to minimize the amount offuiite word length 
effect analysis and real~time debugging, adaptive structures and algorithms are implemented 
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on the TMS320C25. Figure 15 illustrates the flowchart of this procedure. Since the im­
plementation on TMS320C30 is done only by the simulator, the last stage, real-time testing, 
is not implemented. 

Algorithm Analysis 
and C Program 
Implementation 

J 
.~ 

Re-write C Program 
to Emulate 

DSP Sequence 

J 

~ 
Implement in DSP 

Program and Testing 
by DSP Simulator 

I 

•• 
Real-Time 

Testing 

J 

+ 
Figure 15. Adaptive Filter Implementation Procedure 

In the first stage, algorithm design and study is performed on a personal computer. 
Once the algorithm is understood, the filter is implemented using a high-level C program 
with double precision coefficients and arithmetic. This filter is considered an ideal filter. 

In the second stage, the C program is rewritten in a way that emulates the same 
sequence of operations with the same parameters and state variables that will be implemented 
in the processors. This program then serves as a detailed outline for the DSP assembly 
language program or can be compiled using TMS320C25 or TMS320C30 C compiler. 
The effects of numerical errors can be measured directly by means of the technique shown 
in Figure 16, where H(z) is the ideal filter implemented in the first stage and H'(z) is 
a real filter. Optimization is performed to minimize the quantization error and produce 
stable implementation. 
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H(z) 

+ 
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x(n) 10(n)12 1 

ME e2 ln) 

n=1 

H(z) 

Figure 16. A Commutational Technique for Evaluating Quantization Effects 

In the third stage, the TMS320C25 and TMS320C30 assembly programs are 
developed; then they are tested using the simulators with test data from a disk file. Note 
that the simulation of TMS320C25 can also be implemented on the SWDS with the data 
logging option. This test data is a short version of the data used in stage 2 that can be 
internally generated from a program or data digitized from a real application environ­
ment. Output from the simulation is compared against the equivalent output of the C pro­
gram in the second stage. Since the simulation requires data files to be in Ql5 format, 
certain precision is lost during data conversion. When a one-to-one agreement within 
tolerable range is obtained between these two outputs, the processor software is assured 
to be essentially correct. 

The final stage is applied only to the TMS320C25. First, you download this assembled 
program into the target TMS320C25 system (SWDS) to initiate real-time operation. Thus, 
the real-time debugging process is constrained primarily to debugging the 110 timing struc­
ture of the algorithm and testing the long-term stability of the algorithm. Figure 17 shows 
an experimental setup for verification, in which the adaptive filter is configured for a one­
step adaptive predictor illustrated in Figure 18. The data used for real-time testing is a 
sinusoid generated by a Tektronix FG504 Function Generator embedded in white noise 
generated by an HP Precision Noise Generator. The DSP gets a quantized signal from 
the Analog Interface Board (AlB), performs adaptive prediction routines, and outputs an 
enhanced sinusoid to the analog interface board. The corrupted input and predicted (en­
hanced) output waveforms are compared on the oscilloscope or on the HP 4361 Dynamic 
Signal Analyzer. The corresponding spectra of input and output can be compared on the 
signal analyzer. The signal-to-noise ratio (SNR) improvement can be measured from the 
analyzer, which is connected to an HP plotter. 

236 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 



PERSONAL DSP DEVELOPMENT SYSTEM 

COMPUTER (SWDS and AlB) 
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FUNCTION 

GENERATOR 
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1: DYNAMIC .......-
SIGNAL 
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PRECISION 
NOISE 

GENERATOR 

HP PLOTTER 

Figure 17. Real-Time Experiment Setup 

x(n)........,-.------------, 

d(n) 
+ 

~-~~e(n) 

Adaptive 
Filter 

1---0----_ Enhanced 
Output x(n-1) yIn) 

Figure 18. Block Diagram of a One-Step Adaptive Predictor 

To illustrate the operation in a nonstationary environment, the adaptive predictor 
is implemented using a TMS320C25, and the following experiment is performed. The 
input signal is swept from 1287 Hz to 4025 Hz, then jumps back to 1287 Hz. The time 
for each sweep is one second. The input spectra at every second are shown in Figure 19a; 
the corresponding output spectra are shown in Figure 19b. From the observations on the 
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oscilloscope and signal analyzer, the significant SNR improvement, convergence speed, 
ability to track nonstationary signals, and long-term stability of the adaptive predictor are 
observed. 

1/15 A:MAG 
115dBV 

Amplitude 

6dB/DIV 

-33 
START: 0 Hz 

,238 

RANGE: 17 dBV STATUS: PAUSED 

BW: 47.742 Hz STOP: 5,000 Hz 

Figure 19(a). Spectrum of Input Signal 
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1/15 

15 dBV 
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Amplitude 

6 dB/DIV 

-33 
START: 0 Hz 

Time 

BW: 47.742 Hz STOP: 5.000 Hz Frequency 

Figure 19(b). Spectrum of Enhanced Output Signal 

Summary 

Three adaptive structures and six update algorithms are implemented with the 
TMS320C25 and TMS320C30. Applications of adaptive filters and implementation con­
siderations have been discussed. Two subroutine libraries that support both C language 
and assembly language for two processors were developed. These routines can be readily 
incorporated into TMS320C25 or TMS320C30 users' application programs. 

The advancements in the TMS320C25 and TMS320C30 devices have made the im­
plementation of sophisticated adaptive algorithms oriented toward performing real-time 
processing tasks feasible. Many adaptive signal processing algorithms are readily available 
and capable of solving real-time problems when implemented on the DSP. These pro­
grams provide an efficient way to implement the widely used structures and algorithms 
on the TMS320C25 and TMS320C30, based on assembly-language programming. They 
are also extremely useful for choosing an algorithm for a given application. The perfor­
mances of adaptive structures and algorithms that have been implemented using the 
TMS320C25 and TMS320C30 have been summarized in Tables 1 and 2. 
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Table 1. The Performance of Adaptive Structures and Algorithms of TMS320C25 

TMS320C25 

LMS 
Instruction Cycles 7N+28 

Program Memory (Word) 33 

Leaky Instruction Cycles 8N+28 

LMS Program Memory (Word) 34 

Sign-Data Instruction Cycles 11N +26 

Transversal LMS Program Memory (Word) 41 

Structure Sign-Error Instruction Cycles 7N+26 

LMS Program Memory (Word) 30 

Sign-Sign Instruction Cycles 11 N + 21 

LMS Program Memory (Word) 30 

Normalized Instruction Cycles 7N+S7 

LMS Program Memory (Word) 47 

LMS 
Instruction Cycles 7.SN+38 

I Program Memory (Word) 50 

Leaky Instruction Cycles 8N+38 

LMS Program Memory (Word) 51 

Symmetric 
Sign-Data Instruction Cycles 9.SN+36 

Transversal 
LMS Program Memory (Word) 58 

Structure 
Sign-Error Instruction Cycles 7.5N+36 

LMS Program Memory (Word) 47 

Sign-Sign Instruction Cycles 9.5N+31 

LMS Program Memory (Word) 47 

Normalized Instruction "Cycles 7.5N +69 

LMS Program Memory (Word) 66 

LMS 
Instruction Cycles 33N+32 

Program Memory (Word) 63 

Leaky Instruction Cycles 35N+32 

Lattice LMS Program Memory (Word) 65 

Structure Sign-Error Instruction" Cycles 36N+32 

LMS Program Memory (Word) 65 

Normalized Instruction Cycles 90N+34 

LMS Program Memory (Word) 92 
" 

Note: N represents filter order. 
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Table 2. The Performance of Adaptive Structures and Algorithms of TMS320C30 

TMS320C30 

Instruction Cycles, 3N+ 15 
LMS 

Program Memory (Word) 17 

Leaky Instruction Cycles 3N+ 15 

LMS Program Memory (Word) 19 

Sign-Data Instruction Cycles 5N+ 16 

Transversal LMS Program Memory (Word) 24 

Structure Sign-Error Instruction Cycles 3N+ 16 

LMS Program Memory (Word) 18 

Sign-Sign Instruction Cycles 5N+ 16 

LMS Program Memory (Word) 24 

Normalized Instruction Cycles 3N+47 

LMS Program Memory (Word) 49 

Instruction Cycles 2.5N+15 
LMS 

Program Memory (Word) 23 

Leaky Instruction Cycles 2.5N + 19 

LMS Program Memory (Word) 26 

Sign-Data Instruction Cycles 3.5N+ 18 
Symmetric 

LMS Program Memory (Word) 30 
Transversal 

Structure 
Sign-Error Instruction Cycles 2.5N + 18 

LMS Program Memory (Word) 24 

Sign-Sign Instruction Cycles 3.5N + 17 

LMS Program Memory (Word) 30 

Normalized Instruction Cycles 2.5N+50 

LMS Program Memory (Word) 56 

Instruction Cycles 14N+9 
LMS 

Program Memory (Word) 20 

Leaky Instruction Cycles 16N+9 

Lattice LMS Program Memory (Word) 22 

Structure Sign-Error Instruction Cycles 16N+9 

LMS Program Memory (Word) 22 

Normalized Instruction Cycles 67N+9 

LMS Program Memory (Word) 73 

Note: N represents filter order. 
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List of Appendices for Implementation of Adaptive. Filters with the 

TMS320C25 and TMS320C30 

Appendix 
Al 
A2 
Bl 

B2 

CI 
C2 
DI 

D2 

EI 

E2 

Title 
Transversal Structure with LMS Algorithm Using the TMS320C25 
Transversal Structure with LMS Algorithm Using the TMS320C30 
Symmetric Transversal Structure with LMS Algorithm Using the 
TMS320C25 
Symmetric Transversal Structure with LMS Algorithm Using the 
TMS320C30 
Lattice Structure with LMS Algorithm Using the TMS320C25 
Lattice Structure with LMS Algorithm Using the TMS320C30 
Transversal Structure with Normalized LMS Algorithm Using the 
TMS320C25 
Transversal Structure with Normalized LMS Algorithm Using the 
TMS320C30 
Transversal Structure with Sign-Error LMS Algorithm Using the 
TMS320C25 
Transversal Structure with Sign-Error LMS Algorithm Using the 
TMS320C30 

FI Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C25 
F2 Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C30 
GI Transversal Structure with Leaky LMS Algorithm Using the TMS320C25 
G2 Transversal Structure with Leaky LMS Algorithm Using the TMS320C30 
H I Assembly Subroutine of Transversal Structure with LMS Algorithm Using 

the TMS320C25 
H2 Linker Command File for Assembly Main Program Calling a TMS320C25 

Adaptive LMS Transversal Filter Subroutine 
H3 TMS320C30 Adaptive Filter Initialization Program 
H4 Assembly Subroutine of Transversal Structure with LMS Algorithm Using 

the TMS320C30 
H5 Linker Command/file for Assembly Main Program Calling the TMS320C30 

Adaptive LMS Transversal Filter Subroutine 
Ii C Subroutine of Transversal Structure with LMS Algorithm Using the 

TMS320C25 
12. C Subroutine of Transversal Structure with LMS Algorithm Using the 

TMS320C30 
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TlMS: Adaptive Filter Using Transversal Structure 
and U1S Algoritoll, Looped Code 

d (n) ----..:---------------------: 

:+ 
(SUl"Il--) t(n) 

x(n) ---------: Pf :-------:-------) yIn) 

Algorith .. : 

63 
yin) = $IJ1w(klfxln-k) k=O,1,2, ••• ,b3 

ko() 

eln) = din) - yin) 

w(U = w(k) + ufe(n)fx(n-kl k=0,1,2, •• b3 

Whete II/(! use fi Iter order = 64 ilnd IIU = 0.01. 

Note: This source progrill is the genetic version; 1/0 configuration hiS 
not been set up. User has to Dodify the aain routine for specific 
ipplic"ation. 

Initial condition: 
1) PI1 status bit should be equal to 01. 
2) SXtl status bit should be set to 1 • 
3) The current [p (datil leaory page pointer) should be page O. 
41 Dita lIe.ory ('j£ should be 1. 
5) Data IIIe.ory U should be 327. 
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HfffHffff+****+fff++HH*fHU+HUHHHff+HHfHfHHfHf*HHffff 

~FINE PARArlETERS 

reDER: 
PAGEO: 

.equ 

.equ 
64 

~FINE ADDRESSES OF IlIFFER AHII aEFFlCIElHS 

XO: .usect "buffer U ,OODER-l 
XN: • used ·buffer", 1 
loIN: • usect ·coeffs· ,ORDER 

IlESfRI'E ADDRESSES Fffi PllRAtETERS 

D: • us@ct ·paraaeters· ,1 
V: .used ·paraathrsN ,1 
ERR: .used AparaHters",1 
OOE: • used "paraaeters· ,I 
U: • usect "paraaeters·, 1 
ERRf: .usect "parilH!ters·,1 
UfH*HIH*HHfHffffffHHHffH 

PERFOOl1 TI£ ADAPTIVE FlLTER 
fHffIHIHI***lfHfHffftfHHfHI 

• text 

ESTII'IITE TI£ SIGNAl.. Y 

LARP AR3 
un 
11'1'1( 

lAC !HO,lS 
LRlJ( AR3,XN 

FIR RPTK ffiDER-l 
NACD OII+OfdOOh, .-
CNFD 
API£ 
SACH 

CDMPUTE THE ERRffi 

NEG 
ADI»! D 
SACH ERR 

Ll'DATE THE fEIGHTS 

LT ERR 
ItPY U 
PI£ 
ADD Ot£,IS 
SACH ERRF 

LARK ARl,ORiER-l 
LRLK AR2,WN 
LRLK AR3,XN+l 
LT ERRF 
ItPY f-,AR2 

ADAPT ZIIlR f,AR3 
tl'YA f-,M2 

SACH It,O,AR! 
BANZ ADAPT, f- , AR2 

FINISH .end 

Configure BO as progra" anory 
Clear the P register 
Using rounding 
point to the oldest sillple 
Repeat N tius 
Estilli.te YIn) 
Configure DO as data aelory 

; Store the fi I ter output 

; ACe = - Yin) 

; ERRln) = D(n) - Yin) 

; T = ERRln) 
; P = U • ERRln) 

; Round the result 
; ERRF = U f EffHnl 

; Set up counter 
; Point to the coefficients 
; Point to the data sample 
; T register = U f ERR(nl 
; P = U * ERR(n) f X(n-kl 
; Load ACCH with Alk,n) " round 
; W(k,n+ll = WO::,n) + P 
; P = U • ERRln) f Xln-k) 
; Store W(k,n+ll 
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fffHfHHHHHUHHHH+HH+HtHtHfHHIIIIIIIIIIIIIIIIIII 

f T30 - Adaptive transversal filter "ith U1S algoritha 
using the ntS32OC3O 

110 configuration: 

dlnl -------------: 

:+ 
(SlIt)--) t(n) 

:-

xln) -----: ~ :-----:-----) yIn) 

Al goritha= 

63 
ylnl = SLI1 olkl.xln-kl k=O,1,2, •• ,,63 

k=O 

,In) = dlnl - yIn) 

IIIlkJ = .. (kl + u*flnl*x(n-kl k=O,l,2, .• 63 

Whtre we use filttr ordtr = bot and au = 0.01. 
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fffHHHf-HtHHHUHHHHffftHfHUtHHfffffffffffHffHtHf-+H+H 

,copy "adapfltr.int" 
HfffHffHffHfHHfHfHHIHIHHfftHHfHftfHHHffff 

* PERFffilI ADAPTIVE FILTER 
*HffHltHfHfffHfffffHffHffftHHffHfHfffHftffHHf 

order . set b4 
• u .Stt 01 

INITIALIZE POINTERS AND ARRAYS 

. text 
btgin . set 

LOI 
LIP 
LOI 
LOI 
LIF 
RPTS 
STF 

:: STF 
LOI 
LOI 

. $ 

order,BK 
txn_addr 
txo.-a.ddr,MO 
hn_iddr,ARI 
O.O,RO 
order-1 
RO,_I1IX 
RO,>AR1++llIX 
@in_addr,AR6 
@ouLaddr Jifl 

Set up drculu buffer 
Set data page 
Set pointer for xU 
Set pointer for If[] 

RO = 0.0 

xC] = 0 
0[1 = 0 
Set pointer for input ports 
Set pointer for output ports 

input: 
LIF 

:: LIF 
STF 

tARb,R7 
.+M6UI,Rb 
R6,+MO 

Input din} 
Input xln) 
Insert xln) to buffer 

CMUTE FILTER OOTPUT ylnl 

LIF 
I'I'YF3 
RPTS 
1'I'YF3 

:: ADDF3 
ADIF 

0.0,R2 , R2 = 0.0 
_IIIX,>AR1++11lX,Rl 
ordtr-2 
fARO++(lll, fMl++(11l,Rl 
Rl,R2,R2 , ylnl = oU.xU 
Rl,R2 ; Include last result 

COI1PUTE ERRal SIGNAL olnl AND OUTPUT ylnl AND .Inl SIGNALS 

SUBF 
STF 

" STF 

R2,R7 
R2,'AR7 
R7, ttAR711l 

,In) = dlnl - yin) 
Send out yIn) 
Send out tlnl 

LPDATE ~IGHTS oln I 

I'I'YF @u,R7 ; R7 = tin) f u 
If'YF3 t-ARO++<1IX"R7,Rl ; Rl = t(n) f u .. xln) 
LOI order-3,Rt ; Initialize repeat counter 
RPTB utS , Do i = 0, N-3 
If'YF3 lARO++lm,R7,Rl ; RI = tin) oJ u • x(n-i-ll 

" ADIF3 >ARl,Rl,R2 ; R2 = lIIilnl + tin) I u .. xln-il 
LIIS STF R2,>AR1++lm ; ~i(n+1) = "Hnl + e(n) -I u -I x(n-i) 

I'I'YF3 +MO,R7,Rl ; For i = N - 2 
" ADDF3 >ARl,Rl,R2 

BD input ; De 1 ay branch 
STF R2,*AR1++11IX ; wi<n+1l = ~i<n) + e(n) -I u -I x(n-i) 
ADIF3 >ARl,Rl,R2 
STF R2,>AR1++I1IX ; Update h,st III 

IEFH£ COOSTANTS 

xn .usect 'buffer" ,order 
.n .usect "coeffs·,order 
in_addr .used ·vars·,l 
ouLaddr .usect "'lars·, 1 
xLaddr .used ·vars·,l 
IiIn_addr .usect ·vars·,l 
u .UStct "'lars' ,1 
cinit .Stct •. cinit" 

.lIIord S, in_addr 

.lIIord II8OOlOOh 

.word 0804002h 
• 1liioI'd xn 
.word .n 
.float au 
.end 

Cj 
[IJ Jj. 
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• title 'Y25' 
tHtHtffHl-ff •• HtftHHfHfHH+*HHH ... tH"HHHtHHffHofHffHf 

Y25: Adaptive Fi 1 ter Using SyMetry Transversd Structure 
ind U1S AI gorithlA, Looped Code 

dlnl ------------------------: 

---- yin) +:t 
: A. F. :---)ISltII--) .Inl 

zUnI zlln-k) 
:---------1 :------: 

:-: :---: 

:--: :-: 
x(nl ------:---: Z :--:--: z : ••• :--: z :--:---: 

:-: :--: :--: 
:t 

ISltII 
:t 

ISltII 
:t 

ISlI11 
:t :--­

ISltII : Z 
:-

\ :-: \ :-: \ :-: \ 
:-: Z :--:-: Z : ••• -:-: Z :---:--: 

:--: :-: :--: 

Algorith •• 

zl!n-tl = xlnckl t xln-63tkl k=O.I ••••• 31 

31 
ylnl = SltI .Ikifxln-kl k=O.1.2 ••••• 31 

k=O 

e(n) = den) - yen) 

.Ikl = .Ikl t ""Inifzl!n-Ic) 1<=0.1.2 ••• 31 

Where 11ft use filter order = 64 and au = 0.01. 

Note: This source progru is tbe generic version; I/O configuration bas 
not bun set up. User has to lodify the Rin routine for specific 
application. 

Initial condition: 
1) At status bit should be equal to 01. 
21 Sit status bit should be set to logic 1. 
31 Tbe current If (u.ta IItllOry page pointer should be page O. 
41 Di.ta •• ory Cf£ should be 1. 
SI Dita .. aory U should be 327. 
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"fftHfHlIIIIIIIII ••• I ••• IIIIIIIIII ••• IIIIIIIIII • 

lEFII£ PMAlETERS 

!IlDER' 
00El2' 

.tqu 

.equ 
b4 
32 

lEFII£ ADIIRESSES OF IlfFER ANI ClEFFICIEllTS 

FRSBlf. .useet -buffer" ,Il[£R2-1 

L.A5IIlf' .used "buffer" ,I 
Ill' .useet ·coeHs" ,0RDER2 
FRSlIAT: .usect ·coeffs· ,1lU£R-I 
LASlIAT: .used ·coeffs",l 

IlESER'IE ADDRESSES FOO PARAI£TERS 

D: .used ·puaJltters",1 
Y: .useet ·para.aetersM ,I 
ERR: .useet ·pa.rueters·, 1 
(1£: .used ·paraaehrs·,l 
U: . useet ·piruehrs" ,I 
[RRF: .useet ·~rllfters·,1 

HtffHfHtHHHHffffffflfHHHf 

PfRF(IItt TI£ AlIAPTlIE FILTER 
HlffHHHHHlfHfHffHfHHffH 

• text 

SYllltETRIC IlfFER ADD1T1ON 

LARP AR3 
LARK ARl.0RlER2-1 
LJ1U( AR2.l.I\SMT 
LRLK AR3.FRSlIAT 
LJ1U( AR4. FRSIIlF 

SYI1 LAC H,O,M2 
ADD ..... Il.AR4 
SACL *+,O,AlU 
BAN! S'm ..... AR3 

ESTHIATE TI£ SIONN. Y 

Cll'P 
If'VI( Il 
LAC 01£.15 
LJ1U( AR3.L.A5IIlf 

FIR RPTK 00El2-1 
I1AC1I IIltOfdOOh.'-
CII'II 
APIV:: 
SACH 

COI1PIJTE TI£ EftR(II 

Sft up the counter 
Point to oldest data 
Point to nfWst dda 
Point to first buffer 

• Bufferlkl = lIATintkl t lIATin-Ntkl 

Configure 9J as progru ... ory 
Clear tbe P register 
Using rounding 
Point to the oldest buffer 
Repeat Nl2 tillt 
EstiRte Yin) 
Confi gUl'e BO is dita Maory 

; Store tht filter output 
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lEG 
ADD 
SACH 

D,I~ 

ERR 

lfDATE TIE !EIGHTS 

LT ERR 
ilPY U 
PAC 
ADD II£,I~ 

SACH ERIIf 

lJIRt( ARI,0RDER2-1 
LRI.J( AR2,1oW 
LRLK M3,LASBlf 
IT ERIIf 
II'Y .-,AR2 

AIJIIPT lllLR 1,M3 
II'VA 1-,M2 

SACH ",O,AR1 
BAIIl ADAPT, t- ,AR2 

; ACe = -- yen) 

; ERRI •• = 01 •• - Yin' 

; T = EM(n) 

; P = U I ERRI •• 

1 Round the result 
; ERRF = U I ERRI •• 

; Stt up counter 
; Point to the coefficients 
t Point to tht liSt buffer 
; T register = U. ERRln) 
; P = U • ERRln) " Xln-kl 
; LOid ACOiwith A(k,n) &: round 
; WH:,n+U = W(k,n) ... P 
; p = U .. ERIUn) • Xin-In 
; Stot. Wlk.n+1I 

lfDATE DATA POSTION FOO I£XT ITERATION 

FINISH 
DATmY 

LRI.J( 

RPTK 
DIMlY 

.tnd 

AR2,lASDAT-I 
OODEN 
1-

Set point.r· 
R'put N-l tilNS 

Shift data. for next iteration' 



~ 
HHHHIIIIIIIIIIIIIIIIIIIIIIII •••• III1IIIIIIIIIIIIIIIHf.IHHIH l.lF 0.0,R2 t R2 = 0.0 

'i:l LDI 1IRO,1IR5 ; Set bickwrd point.r for x[] 

~ 
Y30 - Adaptive 5)'IMtrit: trlhlversil filttt lIIith LDI orderJ2-2,RC 

UIS 11goritllo using tllt 1ItS32OC3O RPTB life > ~ Algoritha= A1111F3 ·_1111,1IIR5-(1)1,RI "C is zln-k) = xln-k-l) t xtn-63+k) k=O,l, •• o,31 ; zln) = x[n-il + x[n+N-il "C 
g" 31 til 

yen) = SltIIII(k)fz(n-k) k=O,l,2, ••• ,31 IfYF3 RI,tMI+<I1l,RJ , yll = .[].,Il = Q,. .sa, k=O :: SlF Rl,"M2++C1) ; Store zln) .... 
~ 

IltER AIIIIF3 RJ,R2,R2 ; Accunlate tht result ~ 

~ 
.In) = dIn) - yIn) 

.t:= AIIIIF3 tM4+<1 111, IIIR5-11l1,RI 
~ 1II1(k) .I: MCk) + ute(n)l-zln-k) k=O,.,2, •• 31 ; zln) = x[n-il + x[n+N-il >~ ~. 

"'Mr • ., Ult, filttr order = 64 and IU = 0.01 II'YF3 RI,tMI-URO),RJ , y[] = .II.,[] -00 
:!l :: SlF RI,tAR2-URO) ; Store zln} ag« 
~ 

tfHHHHflfHl.llllllllllllllltHHfHffHfHHH AIIIF RJ,R2 ; Include lut rnult ::::!. 9 _ ADAPTII£ FILTER 
o::! HHHHHHtHlHIHfHHHHfllllllllllllll.11111 COII'UTE ERROl SIGHIII. .In) AND 001PUI yIn) and .In) SIGHIILS -9 

="tIl s. .copy ·adlpfltr.int- 9 ::;-;:;. ordtr .Stt 64 , Fi I ttl' order SUIIF R2,R7 ; tIn) = dIn) - yIn) 
IU .set 0.01 ; Step sizt STF R2,tM7 ; Send out yIn) d r;. ;:;. :1 STF R7,t+M711l ; Send out eCn) rn 

'" • IMITIIUZE POINTERS AND MRAVS .... ~ 
~ 

.ttxt II'DATE I€IG/IlS .In) = ""I begin .Stt (JQ ~ 

~ LDI otdtt,1I< ; Stt up cil'cull.l' buf"1' II'YF tU,R7 ; R7 = tin) , U P'fo= N UP tx .... dd' ; Set data pt.ge /PYFJ IAR2++I1l,R7,RI ; Rl = e~n) , u , zln) ="rn 
C LDI Ixn-lddl',1IRO ; Set pointtr for xU LDI ordet/2-3,RC ; Initializt rt(tMt counter til ~ 
Q LDI ...... dd',ARI ; Set poioter for III[] RPTB UIS ,00;=0,N-3 ~Oi V, LDI Izn..acldr,M2 ; Set pointtr for zU II'YF3 IAR2++ 11 ) ,R7. RI ; Rl = tin) I u I zln-i-l) 

~rs <::> 
LDI orcltr/2-1,IRO ; Set indtx pointtr :: AIIIIF3 tMI,Rl,R2 ; R2 = IIIUn) + tin) I u I zln-i) ... l.lF O.O,RO , SO ;. 0.0 UIS SlF R2,tMI+<(1) ; llllien+!) = llllien) + tin) I u I z(n-i) 00-

;:;. RPTS or6t1'-1 IfYFJ tAR2-IIRO),R7,RI ; Fo, ; = N - 2 ~OO 

'" STF fiO,_11l1 ,xl]=O :: ADDF3 tMl,RI,R2 N-

~ 
RPTS 0,,,,,/2-2 BD input ; DeilY brlnch C""l 
STF RO,tMI+<1I) ,.1]=0 SlF R2,tMI+<11l ; lIIiCn+1) II: lIIIiCn) + tin) I U·' zln-i) n~ 

~ 
:: SlF RO, 1AR2++(1) , ,II • 0 AIIIIF3 tMI,RI.R2 ; Include lISt III 

~-STF RO, tMl--IlRO) ; III[] II: 0 SlF R2, tMl-IlRO) , l!pdot. lut • C= N 
C n SlF RO,tAR2-lIRO) , ,I] = 0 ""I 

a LDI lin-lidr i M6 ; Set pointtr for iDput porb • !£FINE CQlSTIINlS til 
LDI tout ... dd',AR7 ; Set pOinter for output ports • ~ C input: xn • used 'buffet' ,OI'Mr .... 
l.lF _,R7 , Input ~In) .n .ustd 'coeffs' ,ordtrl2 e-:: l.lF t+M611l,R6 ; Input xln) zn .used 'coeffs',order/2 
LDI 1IRO,1R4 ; Set for.rd pointer for xU iruddr • used 'vau',l 

~ STF R6,tMG-Ul1 I Insert xln) to buffer ouLlddr .uJtct 'VlI'S',t 

~ xn-l.ddr .usect 'vt.rs',. 
toII'IIlE FILTER 001PUI yIn). WL&ddr .Ultet ·YV'J-,l 00 zn_lddr .useet 'v..,.s',1 

$ • .UJtct 'Vlrs',t 
cinit • Stet '.cinit' 

.... rd 6,i .... dd' 
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.title 'us' 
•• fHH.fH ..... ..ufHfHf-HH.HHtH.H •• HffHHfHHHf ...... ffH 

L2S: Adaptive Filter Using Lattice Structure 
and U1S Algorithll. Looped Code 

10lni IlInl IHlnl 
-i-)ISlMI----} •••• ---i-)ISlMI--}filnl 

i- i-
:---1--: i--:--: .,0 fki-l 

* xln)-: 
.leO : fki-J : 
:-: :---: 

:-: :-: -i 
-iZi-i-}ISlMI--} ••.• ----iZi-i-}ISlMJ--)bilnJ 

bOtn) :-: bUn) bi-Hnl :-: 

Algorithl: 

fUn) = fi-lInl - Kiln) I- bi-l!n:-l) i=1,2, ... ,b4 

bilnl = bi-1(n-l) - Kiln) * fi-Hnl i=l,2, ••• ,64 
i-I 

tiln) = din) - Sltt yldnl = ei-1 - bi-1(nltGi-1(nl i=1.2 ••••• 64 
k=O 

64 64 
yin) = SIJ'I yUn) = SU1 bUnHGiln) 

i=O i=O 

Kiln+U = Kiln) + ItU f [ fitnlfbi-lIn-li + biln)lfi-ttnl ] 

Giln+!) = Giln) + IU f eiCn) f bUn) i=1,2, •• 64 

Where filter order = 64 i.nd IV = 0.01. 

Note: This source progru is the generic version; I/O configuration has 
not betn set up. User has to .odify the !Nin routine for specific 
application. 

Initial condition: 
!) ptf status bit should be equi.l to 01. 
2) sxn stitus bit should be set to logic 1. 
3) Tt.. current (P Ida.ta IItllOry page pointer) should bt pige O. 
4) Data lIt.ory U should be "]27. 
5) The 81 " BD1 pointer 1M3 " M4) should be exchanged every 

iteration. For enap1e, 
For odd iteration: AR3 -) 81 

AR4 -} 001 
For even iteration: M3 -) BDl 

AR4 -} 81 

ehtn, Clltin~hung Ftbruuy, 1989 
fHHUHfl,III •• IIIIIII.fHH+HfHHHHHHHHUHHtHHHfl4ff'HHH 

IEFII£ PARAIETERS 

• 
1lIIlER: .equ 64 

!(FII£ ADDRESSES CI" IAFFERS AND CW'FIClOOS 

61: .uSlet ·eoeffs· ,au:ER 
1(1: .usect 'coeffs"~CER 
n: .usect ·coeffs· .~+1 
Bl= .used "buffer- ,mIER+1 
8Dl: .uslet 'buffer"~+l 

II£SER'lE ADDRESSES F(lll'ARAIETERS 

D: .useet 'parileters M ,I 
x: .useet lIj)i.rueters·,l 
y: • useet ·parueters· ,I 
E: .uslet -paruehrs· ,1 
U: • useet 'paraaeters",1 
TEJI>: .uslet "parueters·,l 
HfffHffffffffffHfffffffHfffffH 

PERFIRt TI£ AIIt1PTJ\£ FILTER 
fffffHfHHfffffHHHfHHHHfH 

• text 

INITIAlIZE TI£ POINTERS 

l.IIRf' AR3 
l.AAI( ARI.IlIIlER-I 
lRlK M2,FI 
l.RI.J( AR3.BI 
l.RI.J( AR4.BDI 
l.RI.J( ARS,GI 
l.RI.J( AR6.KI 

INITIAlIZE TI£ BI AlII Fl 

lAC 
SACL -.O,M2 
SOlCL I,O,AR3 

INITIIIlIZATJI* 

LT ',ARS 
II'Y 1.M2 
PAC 
SACH 
I£G 
ADIII D 
SACH E, 

T = BI 
P=BIIGI 
ACe = 81 f Gl 
Initialize YIOI = B1 f 01 
ra = -181 I Gil 
ra = Dlnl - 81 • GI 
Initialize EIOI = Din) - 81 _ G1 
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~ 
111' •• IIIIIIIIIIIIHHHffllllllllllllllll •• IIIIIIIIIIIII •••• n .. rfYF3 RS,tAR2,R6 BI f 01 

L30 I Adaptive lattice Structure Filter IIIith"UIS Algorithl 
" STF RS,tllRl Insert Bl 

~ . using the 1l1S32OC3O SUBF R6,R7 E=D-BItGI 1;;"' 
::l Algorithll un ordtr-l,RC "" ;os Rl'TB lattice > is fHn) = fi-1(n) - Ki(nl t bi-1(n-l) i=1.2, ... ,64 Pl'YF3 tARO,RS,R3 ; R3 = kFi-l 

5' 1I'YF3 R7, tllRltt( m,RO ,RO = Ei-l f Bi-l "C 
;OS biln} = bi-lIn-li - KHnl .. ii-lin) i=I,2, ••• ,64 " SUBF3 R3,tllR4,R3 ; R3 = Bi = BDi-l - kFi-I "C 

~ 

~ 
i-I II'YF I.,RO ; RO = U f Ei-l t Bi-l = tilnl = din) - SlIt yk(nl = ei-l - bi-lInJtGi-1(n) i=l,2, ...• 64 ADDF3 RO,tAR2,RO ; RO = Gi-I + u * Ei-l f Bi-l Q. ~ k=O I I STF R3,.ARl ; Store Hi .... 

~ 64 64 Pl'YF3 R5,tllRl,Rl , RI = Fi-l f Bi ~ 
yin) = SlJI yiCn) = ilIt biCn)fG;iCn) II STF RO, tAR2tt( II ; Store Gi 

~ :;;. i=l i=l II'YF3 tARO, tM4,RO ; RO = kBDi-l 

"" SUBF RO,RS ; R5 = Fi N . 
~ 

kHn+l) = Kilnl + IU I [ filnlfbi-Hn-l) + bUnlffi-Hnl ] rfYF3 RS,fllR4tt(IlX,RO ,RI = Fi f BDi-l 

~ 
ADIF RI,RO ; RO = FifBDi-l + Fi-ifBi ~~ GHn+1) = Giln) + IU I tiln) * biln) i=I,2, •• 64 II'YF lu,RO ; RO = U f (FifBDi-l + Fi-l'Bil 

~ ADIF3 RO,tIIRO,RO ; ki = ki-l + RO [Il a. ......... 
S. wnere fi I ter- order = 64 and au = 0.04. Pl'YF3 R3,tAR2,R4 , R4 = Yi = .... II STF RO, fAROtt1l1 ; Stor. ki (JQ t") 
S- Ch.n, Cb.in-Cbung Kirch, 1989 ADIF R4,R6 ; COlput. yin) ~ 

S- lattice SUBF R4,R7 ; Co.pute .(n) ;'00 
"" 

fHffHHHffftfHHHHHfHHtlllllllllllllllllllllHHHffHfl ~ ..... 
• copy idipfltr.int l OOTPUT y(nl ~ .(nl SIGNALS ""I 

~ fHffHlfHffHHfHffffllllllllllllllll ••• tHH 1-3= 
PERF<RI ADAPT!"" FILTER BD input DeIlY bl'lnch ~~ ~ fHffHfllfffHfffHHffHHHfffHHHffHtHH SUBF R4,R6 Tik. out liSt tel'll 00E; N ord.r .5.t 64 ; Filter ord.r STF R6,tAR7 Stnd out ylnl c:> 

Q .. .s.t 0.04 ; St.p siz • :I STF R7,ttllR7<l1 Send out e(n) ~~ 
LDI fARO-UROI,RS Upditt k[] pointer ~~ VI 

INITIALIZE POINTERS AND ARRAYS II LDI tAR2-UROI, R7 Updit. g[] pointer 
<:l ~=: .... 

~=-S- .t.xt DEFIIf: cmsTANTS 

"" 
begin .5.t f =~ LDI 01'<ierf 2,BK ; Set up Circular buff.r kn .UStct ·cotffs",ord.r 

~ UP f:kn-iddr , Stt d.ti page gn .usect ·coeffs· ,order ~ LDI Ikruddr,MO ; Set pointtr for Ul bn .usect ·buffer".2i'order 
~ LDI Ibn_iddr,lIRl ; Set pointer for b[] in_iddr- .usect ·vin-,i 00 
N LDI f! ..... ddr,AR2 ; Set pointer for gEl ouLaddr .usect ·vars·.l > c:> a LDI order-,IRO kn-iddr .usect ·vats-,i -LDF O.O,RO , RO = 0.0 bn...ddr • used -val's·, 1 (JQ 
c:> Rl'TS ordtr*2-1 gO-lddr .usect ·wrs-,1 = 

STF RO, tIIROttl lIX , kll = 0.0 .nd gIl = 0.0 .usect ·vars l ,l ""I .... 
Ii STF RO,tllRltt(!lX , bll = 0.0 ODd bd[] = 0.0 cinit .Stct ·.cinit l ..... 

ADDI IIRI,IRO,1IR4 .lIIord 6.irLaddr =-
LDI liruddr, AR6 ; Set pointtr for input ports • ItOI'd O804OOOh e 
LDI f:out-l.ddr,M1 ; Set pointtr for output ports .lIIord 080400211 

input: .word kn 
LDF tIIR6,R7 ; Input dIn) .lIIOl'd bn 

N II LlIF ft/IR6ll ) ,R5 I Input xln} .lIIord gn 
UI .fl .. t ou W 

.tnd 
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;;. 
'" 
~ 
~ 
N 
I:> 

Q 
I:> 

,htl. '1JQ5' 
tH-tHHH+ftfHHIHHtH-IfH+H++fHfHffHHHHffHH*HtHffHH 

TN2S: Adaptive Filter Using Transversal Structure 
ind NorHlized u.s Algorith8 ,Looped Code 

Algorithll: 

63 
yIn) = SIJ1 .,(ldfx(n-k) k=O.1.2 .... ,b3 

ko() 

eln) = din) - yin) • 

yarU) = (1.-r) f vu(K-l) + r f x(nl f x(nl 

,,(kl = .0:,) + ufe(n)-tx(n-kl/vat(kl k=O,l,2, •• 63 

Where lilt use filter order = 04 and IU = 0.01. 

Note: This source progru is the generic version; 110 configuration has 
not been set up. User has to .odify the Rin routine for specific 
app 1 ication. 

Initial condition: 
1> PI1 status bit should be equal to 01. 
2) SI~ status bit should be set to 1. 
3) The (urr-ent IF (data Itlory page pointer) should be page O. 
4) Data .ellory M should be 1. 
S) Data Ittllory U should be '$27. 
0) Dilta .ellory VAR should be initialized to 07fffh. 

Chen, Chein-Chung February. 1989 

fHf*******fIHfHUfHIHfffHfHfffHfHffHfHH 

DEFIlE PARAl£TERS 

~ER: 

SHIFT: 
PAGEO: 

.equ 

.equ 

.equ 

b4 
7 
o 

DEFIlE ADIIlESSES IF IlFFER AND ctU"FICIENTS 
t 

10: • USfct "buFfu" ,M[£R-l 
IN: .used "buffer- ,I 
lit: .usect "coeffs.,flU£R .. 

RESERVE ADIR:SSES F~ PIlRAlETERS 

D: .ustct ·par-utters·,1 

Y: .used ·pariHters.,l 
ERR: .usect Mparaehrs·,1 
OOE: .usect ·pa.rueters· ,1 
u: .used ·parueters·,1 
ERRF: .used "parueters·, 1 
VAA: • usect ·parueters",! 
HffffttHfffHH"tH""' ..... HHf 

PERF~M 11£ ADAPTl"" FILTER 
ffffflffffffffHHHffffflHfHHH 

. text 

FIR 

ESTlMTE THE POIER IF SIGNAl. 

lJIRP M3 
LRLK M3,XO 
SQRA 

SPH ERIIF 
ZIUi VM 
SUB VM,SHIFT 
ADD ERIIF,SHIFT 

SACH VM 

ESTlMTE THE SIGNAl. V 

CNFP 
If'YK 
LAC 
LRlJ( 

IIPTK 
I1ACIJ 
CNFD 
APr;; 
SACH 

o 
1JE,15 
M3,XN 
~-1 

lIItOfdOOh, t-

CllIIPUTE 11£ ERROO 

lEG 
ADm D 
SACH ERR 

lPDATE 11£ IoEIGHTS 

LT ERR 
rt'Y 
pr;; 
ADD 1JE,15 

IUllli.I!E COOERGE FACT~ 

ABS 
RPTK 14 
SUBC VM 
BIT ERR, 0 

; Point to input signal .X 
; Squi1re input signal 

ACe = VMln-li 
ACe = (1-r) f VM(n-ll 
oct = (1-1') f VM(n-i) ... r * X(n) 

f X(n) 

Stort W~Hn) 

Configure 80 as progru ... ory 
C1ei.r the P register 
Using rounding 
Point to the oldest suple 
Repeat N tiHs 
EstiNte Yen) 
Configure 90 as dda Hllory 

; Store the fi 1 hI' output 

; ACe = - Vln) 

; ERRln) = Din) - Vln) 

; T = ERRln) 
; P ::: U f ERR(n) 

; Round the result 

I1ake dividend positive 
Repeat 15 tiHS 
Pedorl U f :ERRlnJ: I VM 
Check sign of ERR(n) 

~ 
~ 
= =­~. 
~ 

>~ 
rjQ~ 
o "'1 
"'1 ~ 
~;; =--< = ~ "'1 
d\ll 
[IJ e. :r rJ1 

IJ'Q ::t ..... = =-~ 
~ ..... 
~e; 
s=~ 
rJ1~ 
~ .... 
N ..... Q=­
(lZ 
NO Vie 

e. 
N' 
~ 

=-
~ 
rJ1 
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'i5 

~ 
~ 
§' 
.s;, 
::... 
~ 
'i5 
:::to 
~ 
:::J 
~ 
;:; 
;t 
§: 
So 
~ 

~ 
~ 
N 
C 

Q 
v, 
c .... 
So 
~ 

~ 
~ 
N 
C a c 

N 
Ul 
Ul 

BBZ 
lEG 

IEXT SAel 

LARl< 
LRIJ( 
LRLK 
LT 
~Y 

ADAPT IALR 
MPYA 

SACH 
BANI 

FINISH .end 

NEXT 
; ERRF = - U .. :ERR(rd: I VAR 

ERRF ; Store ERRF 

ARt,ORDER-t Set up counter 
AR2,~ Point to the coefficients 
AA3, IN+1 Pviot to tt,e data sa.ples 
Em T register = U f ERR(ol 
"-,M2 P = U * ERR(n) .. X(n-k) 
',M3 lQad ACCH !!11th A(k,nl &- round 
1-,M2 W(k,n+ll = W(k,n) + P 

p = U f ERRfnl .. X(n-k) 
H,O,ARI Store W(k,o+1) 
ADAPT, +-, AR2 



tv ItfftHftHffHltHflHHHttHftHfffffHffHtfHftffotflfffHfl I ESTIMTE Tl£ PtIER IF Tl£ HFUl SItHt. 
VI 
0\ t TN30 - Adaptive transversal filter fIIith NorMlized UtS ilgoritha If'YF R6,-R6 ; R6 = x2 

using tht TI1S320C30 If'YF "'_I.Rb , Rb = IH) • xl > 
~ ~~ ~ 

Algor-ittll: I'PYF lvat ,R3 ; R3 = t • vuln-lI "C 

b3 • rot'UTE FILTER OOTPUT yin) ~ 
yin) = SltI .Ik)>xln-k) k=O.1.2 ..... b3 Q.. 

k=O ~ O.O.Rl , Rl = 0.0 .... 
~ ~ 
~ Vitln) = rlvarln-l) + l1-rlfXln)fx(n) PFYF3 tARO++(Ul,tMl++(1)l,Rl 1--4 
~ :: ADIF R6,R3 "'-' 
~ tin) = dIn) - yin) STF R3,tvu ; Rutore varin) ""r-:.... ~ 
~ RPTS ordtr"2 II""""" 
::t wlk) = !IIlk) + u~(n)tx(n-k)/var(n) k=O,I,2, •• 63 ~ ~ 
!; If'YF3 >MO++II)I.tflRl++IIII.RI 0 ., c· Where we use filter order = 64 ind -au = 0.01. :: ADIf3 Rl,R2.R2 ; yin) = fII[].X[] -s ~ 
;:s ADtf Rl,R2 ; Include liSt result =: = .s;, Ch.n. Ch.in-'Chung llirch. 1989 . =- ::a 

• calPUTE ERROR SIGHAl .Inl ~ ~ it. HfftHffHfHHHfHfffHHHfHffHHfHftHftHf - ""1 
I::. • copy 'odoplltr.int' SUBF Rl.R7 , .In) = din) - yin) ...-4 rn 
~ tfffffHfHffHfHIfHffHfHHHHfIHHHtH ~ Qj 
::;. PERfI»1l1 ADAPTI .... FILTER • IlITPUT ylnl AND .In) SIGNot.S ~. -
~ HfiffffHHHfHHtHlftHHfUHHMftHHH = r.I'J. 
~ order .set 64 ; Filhr,ordtr STF R2,tM7 ; Send out yin) (JQ =1 
:::;-.u .set 0.01 ; Step 5Ut .. STF R7,ttM7(1) ; Sud out elnl ~ = 
~ pollltr .Stt 1.0 ; Input signil powr ~ n 
'" olph. .5Ot 0.996 lfDATE !EIGHTS .Inl ~ = .... 
;t alphol .5.t 0.004 , 1.0 - olp" ......J 
§: PIJSW ~ ,Cooput. IIvarlnl '"'"":I ~ 

INITIAlIZE POINTERS AND ARRAYS ~ Rl ; min) = 0 • 2. a: 
So ASIi -24,Rl 00 ::.a 
... • t.xt IEGI Rl W .... 
~ btgin ... t SUBI 1.R2 , Now .. hove 2-<-1 N ~ 
~ LDI "dtr.II( Sft up circular buff.r ASIi 24,Rl Q 
~ LIf' ","_oddr Sft doti pig. PUSH Rl (1 Z 
~ LDI fxruddr.MO Sft poinhr lor x[l POPF Rl , Nolo Rl = x[0] = 1.0. 2-.-1. W 0 
C LDI ... _oddr,ARI Sft point.r lor .[1 Q ., 
Q LIF O.O.RO RO = 0.0 II'YF Rl,~.RO , RO = v • x[0] ~ 
\.It Rl'TS order-! SUIIIF 2.0.RO , RO = 2.0 - v • x[OI .. 
(;) STF RO,tfIROt+llII x[l = 0 If'YF RO.Rl , Rl = x[l] = x[O] • 12.0 - v • x[OII !. 
., I I STF RO.tflRl++1III .[1 = 0 .... 
~ LDJ lin~4dr 1Mb Stt pointtr for iftput ports I'fYF R2,Rl.RO ; RO = V f xU] ~ 
... LDI loul_oddr;AR7 Sft poinhr lor output ports SUIIIF 2.0,RO , RO = 2.0 - v • x[l] Q.. 
~ II'YF RO,Rl , R2 " x[2] = x[1l • 12.0 - v • x[l]) 

~ ~ ~ 
~ ~ _,R7 Input din) II'YF Rl.~.RO , RO = v • X[2] !;;ioI 
v..> II ~ _Ml),Rb Inpul xln) SUIIIF 2.0.RO , RO = 2.0 - v' x[2] ~ 
~ STF Rb,<ARO Inmt xlnl to buff.. If'YF RO.Rl , R2 = x[3] = x[2] • 12.0 - v • x[21) 00 
n 
~ If'YF Rl.~,RO , RO = v • x[31 
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.title 1TSE25' 
HHtHHftHHllllllllllllllllHHfIHIHHtHHfflHfHHfHtHlfH 

I 

TSE25; Adaptive Fi Ittr Using Transversal Structure 
.. d Sign-tr ••• U1S. Alg •• ithl ,L •• ped C.de 

Algorithll 

63 
ylnl • 5lII.lkltxln-lc1 k=O,1,2, ••• ,63 

k=O 

elnl • dlnl - ylnl 

F.r k • 0,1,2, ... ,63 
lII(k) = M(k} + utxtn-k} if e(n) >= 0 
.Ikl •• Ikl - ... In-lcl if elnl < 0 

Where .. use filter order = 64 Ind au = 0.01. 

Note: This source progr. is the generic version; 110 configuration hu 
not been set up. User hu to .odif), the Kin routine for specific 
application. 

Initial condition: 
U PII stdus bit should be equal to 01. 
21 SX" st.tus bit sh.uld be Stt t. I. 
3} The current IF (dda •• ory ~ge pointer) should be page O. 
4} Dlta ... ry CIE should be 1. 
51 llit • .... ry U should be m. 
01 llit. _.y /£GIll sh.uld be -m. 

Chen, Chein-thung February. 1989 

HtHHff+lfHHHHtffllllllllllllllllllllllHHH 

• lEFllE PiIRAI£TERS 
f 

!JURI •• qu 64 
PAlEO' •• qu 0 

I lEFllE AIDl£SSES [f IIlfFfR AND aEFFICIENTS 
I 

10= .usect -buffer- ,Ml£R-l 
INI .IStct -buffer-, 1 
"U .usect -coeffs- ,(Ji[£R 

I RESERIIE AIlIIlESSES FtJl PARAIETfRS 
I 

I); .USlct -parueters\1 
VI • usect -paI'ueters -.1 

ERR: .useet ·parueters",l 
(1£: .useet Rpal"ueters·,1 
U: .useet ·parueters".1 
ERRF: .useet "paruettrs·,1 
NEGMU: .ustet ·paruetersR,I 
*ff.l"HHHffHHHH~ 

FERFlIlM 11£ ADAPTlIE FILTB! 
IflflftfllfHIHit*HHHHfHHHH 

. text 

FIR 

ESTlMTE TI£ SIGNN. Y 

LARP 
CNFP 
II'YK 
LAC 
LRU< 
RPTK 
MCD 
CNFD 
APAC 
SACH 

AR3 

° ONE, 15 
AR3,XN 
tJlIEl-1 
Ifj+OfdOOh, .... 

Cl£CK Tl£ SIGN [f ERROR 

LT 
NEG 
ADDH D 
BGEI NEXT 
LT /£GIll 

1I'IIATE TI£ !.EIGHTS 

NEXT lARK ARI,ORDER-I 
LRU< AR2,1fj 
l.Rl.K AR3,XN+1 
II'Y .... ,AR2 

ADAPT IALR 1,M3 
II'YA .... ,AR2 

SACH t+,O,ARI 
BANI ADAPT, .... , AR2 

• 
FINISH .end 

Configure eo is progr ... lHIIory 
Clear the P register 
Using rounding 
Point to the oldest saple 
Repeat N tiMS 
Estiaate YCn) 
Configure eo a5 data IBOry 

; Store the fi I tel' output 

T register = U 
ACe • - Ylnl 
ACe • Dlnl - Ylnl 

; T register = -U 

; Set up counter 
; Point to the coefficients 
; Point to the data salple 
; P • U I Xln-kl 
; load ACCH lIIith W(k,n) II round 
; Wlk,n+1I • Wlk,nl + P 
; P • U I Xln-kl 
; Store "(k,o+1) 

> "CI 

~ 
= ~ 
tfj 
~ >. 

rIQ~ 
Q ., 

:1. ~ 
~tIl 
="~ e ~ ., 
~; til _ .... = 00 (JCI~ ., 
~= ="n 
tD ~ 

~E; 
=::tD 
00 ~. 
~~ N=" 
=00 n .... 
N(JCI UI= 
~ 

~ 
~ 
00 
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<::> 
Q 
v, 
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So 
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~ 
~ 
tv 
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~ 
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f TSE30 - Adaptive trlnsytrnl filtfr .itb Sign-£rror UIS 
algoritht using tho TIIS32OC3O 

A)gorilh," 

63 
yIn) = SUI olk)lXln-k) koO.I.2 ••••• 63 

koO 

oln) • dIn) - yIn) 

for k=O.l,2, •• 63 
olkl • olk) + ulxln-k) if tl,) )= 0.0 
olk) • olk) - Ulxln-k) if 01,) ( 0.0 

Where WI' USf filter order = 64 and au -= 0.01. 

Chen, ct.ein-cbung fIIreb, 1989 

tHHfHfHffHfHfffHHHtHHfHlHHHHHfffH 

.copy ·ildilpfltr.int l 

HfHHlfHHffHfffHHHfHHHHfHflKlHf 

PfRFIRI ADAPTIVE FILTER 
fllfHfltHHHfffffHHflfHHfIHHHfIHHf 

order .set b4 
tU •• et 0.01 

INITIIIl.IZE POINTERS AND MRAVS 

• text 
begin .Sft 

LDI order , 8K Set up circuliI' buffer 
UI' txn..oddr Set dlta pilg. 
LDI lxn..lddr.ARO Set pOinter for x(] 
LDI lIon ... ddr.MI Set pointer for at£] 

UF O.O.RO RO • 0.0 
RPTS order-t 
STF RO. tMO++lllI ,xll'O .. STF RO.1M1++11l1 ; .11 ·0 
LDI liruddr,AR6 ; Set .pointer for input ports 
LDI lout..a.ddr ,Nfl ; Set pointer for output ports 
UF ".R4 ;R4=.u 
UF ".R5 ,R5'" 

• 
input: 

UF _.R7 ; bput dCn) 
II UF t+ARl>lll • R6 ; Input xCn) 

STF R6.1MO = Insert xl,,) to buffer 

• CIIf'U1£ FILTER OOTPUT yIn) 

UF 0.0.R2 II ; R2 = 0.0 
I _3 tMO++IIlI.1M1++IIlI.RI > 

RPTS ord,,-2 "C 
II'YF3 tMO++lIll.1M1++1Il%.RI "C 

~ 
;; ADW3 Rl.R2.R211U ; yIn) = oll.xll = 

ADIF Rl,R2 f IRelucit last fesult ~ 

I CIIf'U1£ ERROR SIGNAL tIn) ~ 
tfj 

SUBf R2.R7 ; tIn) • dIn) - yIn) N >. 
OOTPUT yIn) AND eln) SIGNALS ~ 1-3 

STF R2. tAR7 , Send out yIn) Q rJ 
:: STF R7,t+M7U) ; Send out ,en) :I. = 

.... tIl 
• If'DATE IlEIIlHTS oln) r ;:g 

ASH -31.R7 , Get Signltln)] ~ 
IORJ R4.R7.R5 , R5 = S[tln)] • U ~ ~ 
tFtF3 offtRQ++CUJ.,R5,Rl; Rl = S[e(n)) " U .. xCn) til ~ 
LOt order-3,Re ; Initialize reptit counter 53- t/.} 
RPTB SEUtS , 00 i • O. N-3 (lei .... 
1f'YF3 tMO++I1lI.R5.Rl; Rl • S[tln)] • U I xln-i-[) .., 

•• AOOF3 IMI.RI.R2 ; R2 • oHn) + S[tln)] • U I xln-j) ;. == 
SEUtS STF R2.1M1++11l% , oHn+[) • oiln) + S[eln)]lulxln-j) ~ ~ 

If'VF3 1MO.R5.RI , For i = N - 2 == 
.. ADW3 IMI.RI.R2 1-3 .., 

BD input ; Delay brancb ~ tc> 
STF R2,tAR1++(1)1 ; lIIiln+U = .itn} + S[.Cn)]tut')(Cn-i) ~ ~ 
ADIF3 IMI.RI.R2 00 ~ 
STF R2.1M1++11l% , Update ) .. t 0 ~ =: N=-

I IEFIIE COISTANTS (is 00 

xn .usect "bufftr-,order (".N ~. 
Mn .useet ·cotffs"lordfr = = 
iLaddr .useet ·yus",1 I 
out-ddr . used "vars'''. tr1 
xJ\_addr .used ·vars·,' ., 
Im_addr .used ·vlrs·,. a 
u ,used ·virs",l ., 
cinit . sect ",cinit" 

.lIIord 5, iru.ddr ~ 
• word 08040(l()h ~ 
• word 0804002h ~ 

- ~ 00 .lIIord l1li1 

.float .u 

.end 
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.titl. 'TSS25' 
IHHHfHtlllllllllllllllllHHHffHlftHHfHHlfHHlHtHfflfHf 

• 
TSS: Adi.ptiVt Filter Using Transversal Structul'f 

and Sign-Sign UIS Algol'ithl ,Looped Code 

Algorith.' 

63 
yIn I = 5U1 .lkl",ln-kl k=O.1.2 ••••• 63 

k=O 

tIn I = dIn) - yIn) • 

For k = 0.1.2 ••••• 63 
lII(k) = w(k) + u if e(nlfx(n-kl )= 0 
wlk) = 1110:1 - u iF e{n)~(n-Ic) < 0 

Where we use filter order = 64 and IU = 0.01. 

Note: This source progru is the generic version; 110 configuration hiS 
not been set up. User has to aodify the Hin routine for specific 
,pplication. 

Initial condition: 
U PIt status bit should be equal to 01. 
2) SI" status bit sbould be 5.t to I. 
31 Tb. curt.nt If (data .... ory page pointer) should be page O. 
4) Dill lfI"y !X£ 5bould be I. 
5) Dih, anory U should be 'n7. 

eMn, Chein-thung Februity, 1989 

HfIIHIHflIHfHfHHIHflHIHHIIHIHfIHIHH 

IEFIIE PARAI£TERS 

OOJERI 
PAGEO' 

.equ. 

.equ 
64 
o 

IEFIIE ImlESSES IF IlFFER AND ClEFFICIENTS 

XO: .usect ·buffer· .0U£R-1 
IN: .usect ·buffer· ,1 
.,.: .usect ·coeffs".(JUER 

RESER'IE ADIHSSES FOR PARAlETERS 

D: .usect api.rueters· 11 
YI .useet ·pitueters· ,1 
ERR: .ustd -"rueters·,1 

1)£: .useet ·pvueters·.l 
U: • ustet ·paruetfrs· ,1 
ERRF: • useet ·,aruettl's- ,I 
ffUHfIfHUHfHfffflffHffHlHf 

PERFOOII 11£ ADIIPTI\£ FILTER 
ft.,fHfHfIIH.tHtHHfHHHHH 

· • text 

FIR 

ESTiIlATE 11£ SIGNAl. Y 

UIIIP 
CN'P 
If>\')( 

LAC 
l.RI.K 
RPTK 
I!ACIl 
CN'D 
API£ 
SACH 

ARJ 

o 
!x£.15 
ARJ.XN 
ORDER-I 
IoN+OfdOOb .... 

SET !P 11£ POINTERS 

lARK ARI.ORIEl-! 
l.RI.K AR2.111 
lRlK ARJ.XN+I 

Cl£CK T/£ SIGN IF ERROR 

/£G 
ADI»I D 
SACII ERR 

• !PIlATE 11£ IoEIGHTS 
• 
ADAPT 

• 

LAC 
lOR 
SACL 
LAC 
IORK 
ADD 
SACH 
BANZ 

FINISH .tnd 

1-,O,M2 
ERR 
ERRF 
ERRF 
111.15 
1,15 
".I.ARI 
ADIIPT ..... ARJ 

Configure SO 1.5 progru ... ory 
Clnr the P register 
Using rounding 
Point to the oldest SUlple 
Repeat N tiMs 
Estiu.te yen) 
Configure BO as data ... ory 

; Store the fi Iter output 

Set up counter 
Point to the coefficients 
Point to the dila supJe 

, ACe· Dlnl - YIn) 

ACe = Xln-k) 
Get the sign of ERfUn} .. X(n-k) 
Store the sign 
Get the sign with its sign extension 
Get the convergent factor tlJ Dr -til 
Upd.te Wlkl 

> :g 
~ 

= Q. .... 
~ 

~ 
>~ 
~1-3 
S; "1 .... ~ ..... = ="tIl 
= ~ ~~ 
til ~ .... -= 00 CICI ..... 

~~ 
= 1-3"1 

~~ 
OO::;;! 
~ .... N .... ==­(100 
N .... 
fJlCICI 

= I 
00 .... 

CICI 

= 
~ 
00 



~ 

t 
is 
g" 
~ 
~ 

~ 
~. 

~ 
~ 
;;"! 

s. 
So 
So 
"' 
~ 
~ 
N 

9 
c ... 
So 
"' 
~ 
~ 
N 
C 
Q 
c 

~ -

fHHHfHlIHffHIHHHtHIHHHftHfflHHffHffHHfHtHH 

I TSS30 - Adaptive tr&h5vtr5~1 filter IiIith Sign-5ign US 
.. Igoritt. using the lltS32OC3O 

Algor-jth.: 

63 
y(n) z StII .. (U~ln-k) PO,1,2, ••• ,63 

PO 

.(nl = den) - yen) 

I, for k=O,1,2., ••• 63 
o(tl = oCt) + ., if x(n-(cllt(n) >= 0.0 
1iI(k) ;; .. Ck} - u, if xCriJftCn) < 0.0 

...,,.. 11ft use fi1ter order = M and .u = 0.01. 

Chen. CbeiD-Chuag llareh, 1989 

.lHllHfHHHlIIIIIIIIII •• I.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH 

• copy ai.ckpf1tr. iDt' 
order ,Sft 64 
.. ,set 0.01 

• INITIIILIZE POINTERS AND _'IS 

• text 
begin .s.t 

input: 

LUI 
LII' 
LUI 
LUI 
UIF 
UIF 
UIF 
UIF 
IIPTS 
STF 

Ii STF 
LDI 
LDI 

UIF 
Ii UIF 

STF 

order,. 
l>auddr 
I>auddr,lIRO 
""'-oddr,MI 
I.,RO 
",R4 
",RS 
O.O,RO 
order-l 
RO,IAAQ++(lJX 
RO,IMI++(lJX 
lin_ldclr,M6 
h.t ... ddr,M7 

_,R7 
_U),R6 
R6,eIIRO 

CIItPUTE FILlER OOTPUT y(nl 

UIF O.O,R2 

; Set u, circulir buffer 
; s.t dAti pige 
; stt p.inter for x(] 

; Set pointer for !f(] 
;RO=IIU 
; R4=1U 
;RS=.u 
; RO = 0.0 

xll = 0 
oil = 0 
s.t pointer for input ports 
Set pointer for oatput ports 

Input d(nl 
Input xC D) 

Insert xen) to buffer 

; R2 = 0.0· 

II'Yf3 IAAQ++UlX,IMI++(lJX,RI 

ordtr-2 R1'TS 
II'Yf3 

II ADIF.l 
ADIIF 

1AAQ++(Il1, IMI++( IIX,RI 
RI,R2,R2 ; y(nl = oll,x[] 
Al,R2 1 Include lISt result 

COtPUTE ERROR SIGfW. .(nl AND IlJTPUT y(nl AND .(nl SIGfW.S 

SUBF 
STF 

II STF 

R2,R7 
R2,<M7 
R7,_7(l) 

lPDATE II:IGHTS o(nl 

ASH 
XORJ 
UIF 
ASH 
XOR3 
ADIF.l 

LUI 
Ii'TB 
UIF 

Ii STF 
ASH 
XORJ 

-3I,R7 
RO,R7,RS 
IAAQ++(l)X,R6 
-3I,R6 
RS,R6,R4 
IMI,R4,R3 

SSUtS ADIIF3 

order-3,RC 
SSUIS 
IAAQ++U IX, R6 
R3,IMI++(l)X 
-31,R6 
RS,R6,R4 
IMI,R4,R3 

LIIF 
II STF 

ASH 
lID 
XORJ 
AIlDF3 
STF 

IEFIIoE caeTANTS 

eIIRO,R6 
R3,IMI++UIX 
-3I,R6 

input 
RS,R6,R4 
IMI,R4,R3 
R3, eARI++( 111 

xn .useet 'buffer',ordtr 
IiII'I .usect 'eotHs' ,order 
irt..addr .useet ·vats.,1 
ouLaddr .useet 'vars',l 
xl'I-i.ddr .useet 'Yl.rs·,1 
Ial-i.ddr • used ·vars.,1 
u .usect -Yf.rs-,1 
cinit • sect -.cinU-

• !ford S,iruddr 
• lIIord O804OOOh 
... rd OS04OO2h 
•• 01'4 xn 
.lford IIIn 
.float .u 

.tnd 

.(nl = d(nl - yen) 
Send out yen) 
Send oat e(n) 

R7 = Signle(nll 
RS = Sign[e(n)l I- a 
R6 = x(nl 
R6 = Sign[x(n-Ul 
R4 = Signlx(n-illeSignl.(nll •• 
R3 = IIIHn) + R4 

Initialize repeat counter 
Do i = 0, N-3 
Get next dati 
Updde lIIi (0+1) 

Get the sign of dltl 
Decide the sign of u 
R3 = IIIHn) + R4 

Get I.st dot. 
Update oN-2(n+1I 
Get the sign of dati 
Delay brinch 
Decide the sign of u 
Coop.t. oN-l(n+1I 
Store list ,,(n+l) 

:g 
~ 
~ 
~ 

~ 
>~ 
riQ~ 
~ ., 
.... 11:1 -= ="t'I.l e ~ ('t) 

O~ t'I.l 11:1 .... -
Ji~ 
~~ -~= 
a::~ 
'J).~ 
~ .... 
N­
==" 
r':l'J). 
~ .... 
=~ 

'J). t§ . 

~ 



~ 

~ 
'"G 

ff 
~ 
is 
§' 
~ 
::.... 
~ 
~ 
~. 

:31 
1? 
~ 
~ 
§: 
S-o:. 

~ 
~ 
tv 
C o 
..." 
<:l ... 

• title ~Tl25~ 

fH*H+f.H+tHH+ffHHHHtfffHf ..... fHHHHHHHHftHtffHHHf 

• 
TL25; Ad.a.ptive Filter Using Tn.nsversal Structure 

tnd Leaky-LMS Algorithl, Looped Code 

Algorithl: 

b3 
yin) = SltI .Ikilxln-k) k=O.1.2 ..... b3 

k=O 

eel'll = dlnl - yin) 

!IIlk) = v-w(kl + u_eln)fx(n-k) k~.1.2 ••• 63 

"'hue Iff use filter order = b4 and au = 0.01, 

Note: nis source progl'u is tl'tt generic version; JlO configurltion has 
not been set up. User hu to lodify the Rio routine for sped fie 
a.pplication. 

Initial condition: 
U Pft status bit should be equil to 01. 
21 SXI'! status bit should be set to 1. 
3) The current If (data Iflory pige pointer) should be pige O. 
41 Dih. It.ory (1£ should be 1. 
S) Data Ifaory U should be 'n7. 

Chen, Chein-Chung February, 1989 

HfffHfHffHHHfftHHHHHfHHHftfHfHHfH 

DEFII£ PIlRAl£TERS 

• 
IlIDER: ,equ b4 
LEAKY: .equ 7 
PAGEO: .equ 

DEFII£ AllDRESS£S I:f' 9..fFER AND ClHFICIEHTS 

XO: .used -buffer\au£R-l 
IN: .unct -buffer· ,I 
WN: .uud ·coeffs",ORlER 

it RESERVE AlIMESSES FDR PllRAl£TtRS 

~ 
~ 
tv 
C a c 

D: 
V: 
ERR: 
()£: 

.usect ·pi.raeters· ,I 

.used ·puHfters· ,I 

.usect • puUtttrs· ,I 

.used "pt,rilltters· ,I 

u: .USfct ·pirueters·, 1 
ERRF: .used Rpuuehrs·,1 >-
fffffHlHHHIffflflHffHff+ff+H -c 

PERFOOIt TI£ AlW'T1IlO FIllER "'CI 
"'-tfHffHfIHffflfHlfHHHHHf ("t) 

.- = Q.. 
ESTlMTE THE SIGNAl.. V ~. 

~ ~ ~ 
CHFP Configure eo a.s progru If.ory ...... 
I'PYK 0 Clea.r the P register • 
lAC CfE,15 Using rounding 
L.RI..J( AR3,XN Point to the oldest suple ~ 

FIR RPTK ~-1 Repeat N tiltS ~ 
I1IICll IIMfdOOh.... Es Ii .. t. Yin) = 
CWD Configure eo as data llellory ~ 
~ ~ 
SACH ; Store the fi J ter output e ro 

til '"l 
~TI£~ ~~ 

'-EG • ACe = - Vln) (JQ -
AD()l D' .... ~ 
SACH ERR , ERRln) = Din) - Yin) ;- '"l 

= lPDATE TI£ IEIGHTS ~ II 
LT ERR , T = ERRln) ~ S; 
I'I'Y U , p = U • ERRln) rJJ. ~ 
POC ~ 
ADD OPE, IS ; Round the result N ~ 
SACH ERIIF , ERIIF = U I ERRln) = :=; 

Cl=-
lARK MI,ORDER-l ; Set up counter N 
LRLK AA2.~ ; Point to the coefficients tJI ~ 
LRLK AR3, XN+l ; Point to the da.ta sup 1@ to 
LT ERRF ; T register = U f ERR(n) ~ 
I'I'V .... AR2 , P = U • ERRln) I Xln-k) ~ 

AMOT ZALR I,M3 ; Load ~ lIIith A<k,n) &: round ~ 
rFYA +-,M2 : WO::,n+1) = "'(k,n} + P ~ 

: p = U • ERfHn) f X(n-kl ~ 

SUB f,~ : ACe = R I W(I::,n) + P ~ 

SAO-! I+,O,ARI ; Store W(k,n t 1) 00 
BAN! AlW'T ..... AR2 

> FINISH • end riQ' 
C 
'"l 

~ 
:; 



:? 
UIIHfffHf .... H .. HHH ..... UHHHf ...... IHHHHH**HH+" I I ADIF3 RI,R2,R2 , ylnl = w[J.x[] 
• TL30 - Ada.ptive tra.nsversa.l ·filhr !!lith Ltiky LHS algorithl ADDF RI,R2 : include list result > 'i::j using the ntS320C30 

"'0 ~ 
;: COMPUTE ERROO SIGNI<. .Inl AND OOTPUT ylnl AND .Inl SIGNI<.S '0 AlgorithD: 

~ ~ SUBF R2,R7 ; fin) = dirt> - yin) = is b3 STF R2, 'AR7 ; Send out yin) ~ ... 
ylnl = SUI1 wlkl'xln-kl k=0,1,2, ... ,63 II STF R7,t+AR7111 ; Send out fin) ..... -. 

~ § k=O 

<Q., lI'DATE I£IGHTS .Inl C".l fin) = din) - yin) 
N :.... tl'YF @u_r,R7 ; R7 = tlnllu/r !} lillie) = r*wlkl + ufe(n)tx(n-kl k=O,I,2, ... ,63 tl'YF3 _IlIX,R7,RI ; Rl = e{n)tulx(nl/r 

--3 1a tl'YF3 .1IROt+l1lX,R7,Rl ; Rt = e(nlfu*xln-ll/r 
~. Where we use filter order' = 64, r = 0.995 and IU = 0.01. 

" ADIF3 tARl,Rl,R2 ; R2 = -.0(0) t eln)fulx(nl!t ""l 
LOI order-4,RC ; Initialize repeat counter ~ 

~ 
Chen, Chein-Chung I1irch, 1989 RPTB LUIS ; Do i = 0, N-4 = tl'YF3 'AR2,R2,RO ; RO = rfwi(n) t e(nJtufx(n-i) CIl ;:;:-

d~ '" 
IHHHHHlfHIHfffffffHIHIHHflHHlffHHIH I I AOIF3 t+AR1I11,RI,R2 ; R2 = wi+1(n) .. elnlfulxln-i-1)/r 

2l .copy "a.dapfltr.int" LUIS tl'YF3 tAROt+! 114, R7, Rl ; Rt = eln)fulxln-i-2)/r CIl '"l fffHHlfHffHfflffHlffffHHfHf,*Hfflfflf 
" STF RO, fARt ++( lIX ; store .i In+l) .... CIl <S = ~ §: PERFIHI ADAPTIVE FILTER tl'VF3 'AR2,R2,RO ; RO = rftM-3(n) + eln)fufx(n-N+3) 

(JQ -fHfHHHlllfffHHHfHffllfflfHlfflfllHlf 
" ADIF3 HM1(U,Rl,R2 ; R2 = ... 2In) + e(n)fufx(n-H+2)/r 

s.. order . set 64 tl'YF3 tARO,R7,RI ; RI = fln)fulx(n--H+UIr ..... rJ1 
lIIu_leaky .Sft 0.01005 ; au I leaky STF RO,'AR1++11II ; Store ~3{n+J) ::r ..... '" " ~ ""l 

~ 
leaky .set 0.995 iO input ; Delay branch = tl'VF3 tAR2,R2,RO ; RO = rltili(n) + e(n)t-ufxln-N+2) --3~ 

~ 
INITIIUZE POINTERS AND ARRAYS 

" ADDF3 <+AR11l1,Rl,R2 ; R2 = IIIN-Un) + e(n)lufx(n--N+lI/r 

~= tl'VF3 'AR2,R2,RO ; RO = rf"i(n) + e(n)lufx(n-N+1l N .hxt STF RO,tARl++1l1% ; Stort ,,*"2(n+1) rJ1~ 0 " Q begin .set STF RO,fARl++(l)X ; Update last ., 

id~ LOI ordfr,BK ; Sff up cil'cular buffer 
V, LIP bn_addrl ; Set data page 

1l:F1J£ COOSTANTS = .... <;) LOI txn-iddr, ARO ; Set pointer for x[] n ..... ... 
LOI hln_addr, ARt ; Set pointer for 'II[) (.H::r s.. xn .usect ·buffer",ordu LOI ir _addr ,M2 ; Set pointer for I' 

'" .usect ·coeffs",order =~ '" LDF O.O,RO , RO = 0.0 
in_addr .usect ·vars",l ~ 

~ RPTS order-l 
ouLaddr .used N vars ',l = STF RO, 'ARO++llIX ,x[J=O 
xn_addr .used ·vars·,1 ~ ~ " STF RO,tARlHllll , .u = 0 
IIIn_addr . used ·virs",l ~ N LOI t!:in_addr ,ARb ; Set pointer for input ports 
'-' .usect ·vars",l 

~ 0 LOI @ouLaddr,M7 ; Set pointer for output ports 
r .lJsect ·virs·,1 0 input: 
r_addr .used 'vars",1 ~ 0 LIF 'ARb,R7 ; Input din) 
cinit .sect •. cinit" 

rJ1 I I LDF .+ARbill ,Rb ; Input x(n) 
.word 7,in_addr STF Rb, tARO ; Insert x(n) to buffer 
.• ord II8II4OOOh > .• ord 0S040II2h -COIlPUTE FILTER OOTPUT ylnl 
.• ord xn (JQ 
.word .n 0 

LIF 0.0,R2 ; R2 = 0.0 
.float au_leaky ""I .... 
. float leaky ..... ::r N tl'VF3 <1IROt+ll ll., tARIHllll.,Rl .word 

9 0\ RPTS order-2 .end W tl'YF3 tAROt+llll., tAR1Hllll.,RI 



N .titl. 'w.s' • text 

~ tHHfffIHIHffHfffHUnHHIHtflttHHH.u ... nftffUtHUffffH UIS lARP M3 ; Sft current register > 
I SAA ARI.SAIIOI ; Slve register ARt "'CI 

1JtS: ARptiYt Filter subroutine using Tn.nsytrnl Structure SAA AR2.SA'1f2 ; Stve register AR2 "'CI 
inG U1S Algorithl, Looped Cod. SAA M3.SAllC:3 ; Save register M3 ~ 

CNFP ; Configure 90 is progru .. lory = Algorithl: /tPYI( 0 ; Clut the P register Q.. 
LAC OlE, 15 ; Using rounding .... 

11-1 LRlJ( M3.IN ; Point to the oldest sup!. 
~ 

~ 
yin} = SU1 .lk}IXln-k} kOO.I,2,oo.,N-I FIR RPTK (lUEl-I ; Reput N tiltS 

== kOO MCD ~fdOOh.l- ; Estiaate Yin) 
~ 

'G af'D ; Configure SO u aita, •• ory 
~ tin) = din) ~ y(n)~ Pl'ri:: 

t"'I. 
::! SACH ; Store the fi I ttl' output ~~ ~ IIIlkJ = wlkJ t ijft(n)txln-kl k=O,l,2, •• o ,N-I 

is COIIPUTE Tl£ ERRIll 00[11 
~ g. Where we us. fi 1 ttl' order = N >9 ;:s 1£6 , ACe = - Yin} -C'" 

~ 
Note: This subroutine perforls Adaptive Fi lter using the utS Algoritha. ADIIl D IJQ-

There ire SOM initial conditions to Htt before cilling it. SACH ERR , ERRln} = Din} - Yin} ~« ::... 

~ 
Initial conditions: Ll'DATE Tl£ IoEIGHTS ~OO 

1) Ottl. Hlory M should be equi) to 1. =-= 
~. 

21 Diti It.ort U should bt equa.l to ttJ (QIS forlNtl. LT ERR , T =ERRln) 9 ~ 
3) Pt1 status bit should be equal to 01. /tPY , P = U < ERRln} 

~ 
41 SIt'I sh,tu5 bit should be set to logic 1. Pri:: 0 0 
5) 0'hI stitus bit shourd be set to 1. ADD OlE, IS ; round the resu It [11 S. 

~ 6) Tht current DP (dlta ItRiory pig'. pointer) should bt plge O. SACtI ERRf , ERRf = U < ERRln} ........ 
~ = = p.s. 1) Tht return current auxiliuy register lIIill be AR2. l.ARI( ARt,ORIEl-! ; Set up counter IJQ ~ 

~ 2) ARt AR3 have been used in this subroutine. LRI.J( AR2,1oN ; Point to the coefficients ..... 0 
LRlJ( M3.IN+I ; Point to tht dih slIp!e =-~ 

S- Chen, Chein-Chung Februuy. 1989 LT ERRf ; T register = U .. ERRln) ~ ~ 
~ 

II'Y f~,AR2 , P = U < ERRln} < Xln-k} ~""I 
'HfHfffHfttttH+'HunIHftHfHHHHfHftHH ADAPT ZILR <,M3 ; LOid ACCH .itt. Alk,n) &: round 

~ I II'YA ... ,AR2 ; Wlk,n+1) = W!k,nl + P ~= 
lEFII£ AND !<£FER SYIIOOLS ; p = U • ERFHn) , Xln-kl OO~ 

~ SACtI n,O,ARl ; Store Wlk,n+lI ~-< 
N .gl.bol UIS,IlRlER,U.D.M. Y.ERR.IN.1oN BANZ ADAPT ..... AR2 N~ 
C Q""I 
Q RESERVE IIDlIlESS Foo PARAIETER LAR ARI.SA\£I Restore register ARt n~ v, LAR AR2,SA'1f2 Rutore register AR2 N-
<::> SAVEl: .UStct ·Plruttus·,l LAR M3.SAVE3 Restore register AR3 til 00 ., 

SA\'f2: .usect ·~rueters·, I I ..... 
S- SAVE3: .USfct • plrUtters· , 1 FINISH RET "'I 
~ 

ERRf' .usect Rptrueters· , 1 = 
~ fHtfHttHtfHfHHf+HHHtHfHf .end !") ..... 

Fm'1l'II Tl£ ADAPTlIlO FILTER = ~ H'UHffHf'U'tHtfHHHHHf++I ""I 
N • ~ 
C ESTl11ATE Tl£ SI~ Y a ~ 
c 

.... ..... =-



Appendix H2. Linker Command File for Assembly Main Program 
Calling a TMS320C25 Adaptive LMS Transversal Filter Subroutine 

.. 
> ~ 
L 

is 

~ ..... ..... 

; ~ ~~ h~ 
- ~'< ~-
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~ 

~ 
';;l 

! a 
g' 
~ 
~ 

! 
~' 

~ 
;;:; 
;; 
§: 
So 
~ 

~ 
~ 
N 
c:> 
Q 
v. 
<:> .... 
So 
~ 

~ 
~ 
N 
c:> a 
c:> 

,.idth 132 
fH-IfHffHI-H++HHfffftHHfHffHHfHfHHIHHH+HHHtff 

* This is the ini ti~1 boot routine for ntS32OC3O idiptive 
filter Progrus. 

f This BOduTe perforls the foll~ing actions: 
1) Allocates ind initializes the systea sh,ck. 
2) Per-for-Is Iluto-initializdion, IiIhich copies section 

... const- data frol R()I to DATA RAtI. 
31 Prepare to sti.tt the user's ~sHbly progru. 

H**HfffHff*f+HHHftHffHHHffflofHHHHflfHfHHHHH 

STAClCSIZE .set 40h ; Size of systN stack 
FP .set M3 ; Frue pointer 

RESET 
• 

• sect 
.word 

·vectors· 
adip_ini t 

• ALLOCATE SPlICE Fill Tl£ SYSTElI STACK, INITIALIZE TIE FIRST IOIDS IN 
• ,text TO POINT TO TIE STACK AND INITIALIZATlIJI TAlLES, 

• 
stack .useet ". stiCk., STAO<-SIZE 

,text 

• 
stacLaddr .word 
ini Laddr .liIord 

stack 
cinit 

; Address of stack 
; Address of init tables 

tHffH4f+UtHHHI •••• IIII •••••••• JHfHfl+HtHHHHH.KH 

• ADAPTIVE FILTER INITIALIZATlIJI ENTRY POINT FOCTlIJI 

• 
• SET LP TI£ INITIAL STACK POINTER 

• 

LJIP 
LDI 
LDI 

stacLa.ddr 
@sh.cLiddr,SP 
SI',FP 

• IIO AUTOINITJALIZATJIJI 

UP iniLi.ddr 
LDI tin; Laddr ,ARO 
Cll'1 -I,ARO 
BEQ done 
LDI _,RI 
BZD done 
LDI _,ARI 
LDI _,RO 
SUBI I,RI 

• 
do_init: 

RPTS Rl 

Get page of stored address 
LOid the i.ddress into SP 
And into FP too 

Gtt pige of stored address 
Get address of init hbles 
IF RAPt aodtl, skip init 

; Get first count 
I IF 0, nothing to do 
; Get dest address 
; Get first lIord 
; Count - 1 

; Block copy 

done: 

STI 
:: LDI 

LDI 
BNZD 
LDI 
LDI 
SUBI 

BR begin 
.end 

RO,tARI++ 
_,RO 
RO,RI 
do_init 
_,AR 
_,RO 
I,RI 

Move next count into Rl 
IF there is lIore, reptit 
Get next dtst address 
Get next first lIord 
Count - 1 
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f BT30 - T1'IS320C30 adaptive transversal filter lIIith 
U'tS algorithm assub1y subroutine. 

Algorith.: 

N-l 
yIn) = SUI1wlkltx(n-kl k=O,l,2, •.. ,N-l 

k=O 

tIn) = din) - yin) 

111(1;:) = .. 00:) + ufflnlfxln-kl k=O,1,2 .... ,N-l 

Where IH: use filter order = Nand IIU = 0.01. 

Initial condition: 

1) ARO and Ml should point to x[Ol and 111[0], 
2) Data. lIIIulory U should contain step size. 
3) Da.ta IJIellory order should contain N-2, where N is filter order. 
4) Data lelDories d, y, and e should be defined in ciller routine. 

Chen, Chein-Chung ~rctl, 1989 

UfffHfHfffHffHfnffHfffffHfffHlfffffHHHf 

.global L/'tS30,u,d,y,e,order 
U*lfffffffUUUfflfffl**IIHfHHI**flfHfHtffff 

PfRFffiI1 ADAPTl\l: FILTER 
fHHHflHfflffffffl**HffffHfHHfHffHffffHff 

. text 
UlS30 .set $ 

PUSH Rl 
PUSI'£ Rl 
PUSIF R2 
PUSH R3 
PUSI'£ R3 

• OO1I'UTE FILTER OUTPUT yin I 

1.DF 

If'VF3 
RPTS 
If'VF3 

" AD1F3 
ADDF 

O.O,RJ , RJ = 0.0 

_Ill!, tARl++llIX,RI 
@Order 
'ARO++IIIX, tARl++IIIX,RI 
RI,R3,RJ , y(nl = o[J.x[J 
RI,R3 ; Include list result 

• COf'UTE ERROR SIINlL .Inl AND STOR£ ylnl AND .Inl 

STF RJ,@y 
SUIIRF @d,R3 
STF RJ,@< 

• ll'DATE WEIGHTS o[J AND SHIFT x[J 

If'VF IU,R3 
If'VF3 _(IIX,RJ,RI 
!.DI lorder ,Re 
SUBI I,Re 
RPTB UIS 
If'VF3 1ARO++IIIX,R3,RI 

" ADlIF3 'ARI,RI,R2 
UIS STF R2,fARl++(1J~ 

If'VF3 IARO;RJ,RI 
:: AD1F3 tARl,RI,R2 

STF R2, 1AR1++(IIX 
AD1F3 tARl,RI,R2 
STF R2,tARl++CIIX 

POPF RJ 
PIP RJ 
PlPF R2 
POPF Rl 
POP Rl 

RETS 
.end 

Store- yin) 
.Inl = dlnl - ylnl 
Store tin) 

R3 = fin) f u 
Rl = tin) f u f xln) 
Initialize repeat counter 

; Do i = 0, N-3 
; Rl = tIn) f U f xln-i-li 
; R2 = ~i(nl + tin) I u * xln-il 
; ~i(nt1) = IIIHn) + tin) I U f xln-il 
; for i = N - 2 

; lIIi(n+1) = SjilnJ + eln) f u .. xln-i) 

; Update last til 
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Transversal Filter Subroutine 

i 
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. ti tIe ~ctJ1S' 

UHH ..... HHtfI-H' .. UHHHHHHltf.""HHH ... ttHH ... ffltffffHf 

CU1S: Adap:tive Filter C subroutine using Transversal Str'ucture 
and lJtS Algorithll, Looped Code 

Algotith.: 

N-I 
yin) = SLI1 wlk)f><ln-k) k=O, 1,2, ••• ,N-I 

k=O 

tIn) :; dIn) - y{n) 

!ilk) :; ~(k) + ufe(nJ*x(n-k) k=O,1.2 •••• ,N-l 

Where we use filter ordu :; N 

Usage: IIks(n,.u,d,x,f.:y.I!el 
n - order of fi 1 tel' 
.u - convergence factol' 
d - desired signal 
x - input signal 
Ly - addr of output signal 
lte - add!' of error signal 

Note: Data llelory 0200h 0200h+N-l &: 0300h O3OOh+N-l are reserved. 

Chen, Chein-Chung February, 1989 

+HHHUHfffUHfffffffffHHf+HHHfffffHfffff 

.def _las 

RESERVE ADORESSES Fill PARAMETERS 

OSTO: .usect ·puaaeters", 1 
OS11: .usect ·puiJM!ters·,l 
SAVE!: .usect ·puueters",l 
SA\£2: .used ·puueters·, t 
SAVE3: .usect ·puoueters·,1 
SAVE4: .used ·pariattersN,l 
ORDER: .usect ·pariHters",l 
X: • usect ·pariaeters· ,1 
D: .usect "paraaetersN ,I 
U: .usect "parueters·,l 
y: .usect ·pualleters",l 
ERR: .used ·para.eters· ,1 
ERRF: • usect ·paraJleters·,l 
ADRLST: .usect "parueters· ,1 

DEFIlE ADDRESSES OF W'FER UID aEFFiCIENTSS 

CO£FFP: .tqu 
.equ 
.equ 

OffOO~ 

0200~ 

030Qh 
COEFFD: 
FRSTAP: 
HHffHHHfHff**fffHfflftHf .... 

PERFORM TI£ AllAPTI\£ FILTER 
HHf***ffHHHHHHHHHHHHf 

_1 lIS 

FIR 

SAVE TII£ VALlES (F TI£ REGISTERS 

. text 
SAIl 
SAIl 
SAIl 
SAIl 
SST 
SST! 

ARI,SAVEI 
AR2,SA1£2 
AR3,SA\£3 
AR4,SAVE4 
OSTO 
OST! 

GET THE ADAPTIVE FILTER PARAI£TERS 

SPI1 
SSXM 
SIJVI1 
L.lJ'I( 

MIVl 
LAC f-

SUBK I 
SACL ORDER 
ADLK FRSTAP 
SACL ADRlST 
LAC 
SACL 
LAC 
SACL 
LAC f-,O,M3 
LRLK AR3,FRSTAP 
SACL 

ESTIMATE THE SIGNAL Y 

CNFP 
MPYK 0 
LALK 1,15 
LAA AR3,AmLST 
RPT ORDER 
I1ACD aEFFP,'" 
Ctf'D 
APAC 
SACH 

COI1PUTE TI£ ERROO 

lEG 
ADI»i 

Set P register shi ft Mde 
Set sign extension .ode 
Set overflolll aode 
Set data. page = 0 
Set pointer for getting papaaeter 
ACe = N 

,ORDER=N-I 

; Store address of last tap 

; Get and store the I1J 

; Get and store the D 

; Insert nelHst sup Ie 

Configure 00 as prograa ataory 
Cl ear the P register 
Using rounding 
Point to the oldest suple 
Repeat N tiatS 

Esti.a.te YIn) 
Configure 9;) as data lIt.ory 

; Store the fi 1 ter output 

; ACe = - YIn) 

> 
"Cl 
"Cl 
!'tI 

= Q.. .... 
~ 

~ 
i-' 

>(1 
-00 

IJQ C 
o 0" 
::!. '"S 
..... 0 
=-C 
53 ::to 

= Cj!'tl 
f!J. 0 = ...., 
IJQI-3 
..... '"S 
=-~ 
!'tI = [IJ 

1-3-< 
~~ 
OO[IJ 

~a 
Noo = ..... (1'"S 
NC 
tI1~ ..... 

C 
'"S 
!'tI 

~ .... 
~ 

.~ 
00 



270 

i . 

> 

• 
" 

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 



~ 
"t;j 

[ 
~ 
i=i 
~. 

~ 
~ 

! 
~. 

~ 
~ 
~ 
~ 
§: 
So 
'" 
~ 
tz 
tv 

9 
c .... 
So 
'" 
~ 
tz 
tv 
C a c 

!j -

HtftHflHlfHfHHfftfHfHtHfI4tff'fHfffUfHfHfff+lfHUf 

f CT30 - Tt1S32OC3O C subroutine adaptive transversal filttr with 
~ olgorit"". 

Algorith.: 

N-l 
ylnl = SlIt .lkl*Xln-kl k=Q.l.2 ••••• N-l 

k=Q 

.Inl = din I - ylnl 

wlkl = wlkl + ufe(n)fxln-kl k~,1.2, ••• ,N-l 

Whet. lilt use filter order = Nand IU = 0.01. 

Usage~ tllsln,MI,d,'-,b,&y,&el 
n - order of fi 1 tel' 
1M! - convergenct factor 
d - desired signal '* -fi 1 tel' coefficients 
lex - input signal buffer 
Ity - addr of output signal 
lie - addr of error signal 

Chen, Chein-chung Karch, 1989 

IHflHffHIHHHHHHlHtfHtfHH.ttfHffHtfH 

.globil _tlas 
FP • set AR3 
HH.ffHfHfffHffHlfHHHHfllffHHfffHHffH 

PERFOR/I AIlAPTIIE FILTER 
IfHffHHHftfHffHflHHHfHffffffHffHHfffff 

. text 
_tl .. .set S 

PUSH FP 
LDI sp.FP 
PUSH ARO 
PUSH ARI 
PUSH AR2 
PUSH Rl 
PUSIF Rl 
PUSH R2 
PUSIF R2 
PUSH RI 
PUSIF Ab 
PUSIF R7 

* GET FILTER PIlRAlETERS 

LDI 
LDI 
LDI 
SUBI 

~121.RI 
~lbl.ARO 

t-FPISI.ARI 
2.R! 

Get fi 1 ttl' order 
Get pointer for x[] 
Get pointer for w[] 
Set loop counter 

* ClllPUTE FILTER OUTPUT ylnl 

LDF 

If>Yf3 
RPTS 
If>Yf3 

:: ADIF3 
ADDF 

0.0.R2 , R2 = 0.0 

<ARO+tl1 I. <ARl"l1 I .Rl 
RI 
*ARO+tll I. <ARl"l 1 I .Rl 
Rl.R2.R2 , ylnl = oll.x[] 
Rl,R2 ; Include hst result 

* ClllPUTE ERROR SIIHIL .W AND STOOE yin I AND tlnl 

LDI 
SUIF3 

" STF 
LDI 
STF 

~121.AR2 

R2. ttFP(I) .R7 
R2.<AR2 
~131.AR2 
R7.<AR2 

* lI'DATE WEIOOS oil AND SHIFT x[1 

II'YF ttFP121.R7 
If>YF3 t-ARO(I). R7.Rl 
LDI RI.RC 
RPTB ~ 

If'YF3 t-AROI1I.R7.RI 

" ADIF3 t-AR1W.Rl.R2 
LDF tARO.Rb 

" STF R2.tARl 
LIIS STF Ab._tAROW 

ADIF3 t-AR1UI.Rl.R2 
STF R2.tARl 

POPF R7 
POPF Ab 
POP RI 
POPF R2 
POP R2 
POPF Rl 
POP Rl 
POP AR2 
POP ARI 
POP ARO 
POP FP 
RETS 

.end 

Ott ylnl address 
tin) = din) - yin) 
Stond out yin I 
Get ten) address 
Send out t(n) 

; R7 = tin) .. U 

; Rl = tin) • u f xln-N+l1 
; Initialize repeat counter 
, Do i = 1. N-l 
; Rl = t(nl • u I xCn-i+-lI 
; R2 = lIIi(n) +- eCnl I u I xCn-i) 
, Get x((nti-N+ll 
; .. iCn+lI = !!lien) +- eCn) I u I x(n-il 
, Shift x[] 
; R2 = !!IiCn) +- e(n) I u f x(n) 
; U,ditt liSt III 
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Introduction 

This report presents a collection of efficient machine language programs for advanced 
applications with the TMS320C30. These programs provide basic math and transcenden­
tal functions. Other routines include vector functions, FFTs and linear algebra. 

Library Overview 

The set of programs fall into six categories: 

I. Normal precision floating point math functions, 
II. Extended precision floating point math functions, 
III. Integer arithmetic routines, 
IV. Vector utility routines, 
V. Radix 2 FFT routines, and 
VI. Linear algebra routines. 

Categories I and II are programs which implement a minimal set of elementary 
mathematical functions for advanced applications. In these categories, the functions FPINV 
and SQRT are improved versions of the programs in the TMS320C3x User's Guide [1]. 
In category III, IMULT and IDIV are improved versions of the programs EXTMPY and 
DIVI in [1]. In category IV, *FMIEEE and *TOIEE are array versions of the TOIEEE 
and FMIEEE scalar programs from the User's Guide. 

The names and short descriptions of these routines use some special notation: 

Categories I and II: 

Categories IV and VI: 

Categories II and VI: 

xd - indicates that the relative accuracy of the im­
plemented function is x decimal digits. 

* - program name prefix stands for M or R. 
M - selects the memory based parameter entry point. 
R - select§the register based parameter entry point. 
X - indicates the extended precision program 

version. 
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Consult the program source listings for more details. 

276 

The following are brief descriptions of the programs by category: 

I. Normal floating-point (32-bit) math functions ($MATH.ASM): 

A. SIN -computes a 7d sine(x) for all x in radians. 
B. COS -computes a 7d cosine(x) for all x in radians. 
C. EXP -computes a 7d exp(x) for all Ixl ~ 88. 
D. LN -computes a 7d In(x) for all x > O. 
E. ATAN -computes a 7d atan(x) in radians for all x. 
F. SQRT -computes an 8d sqrt(x) for all x ~ O. 
G. FPINV -computes an 8d 1/x for all x *- O. 
H. FDIV -computes an 8d x/y for all x and all y *- O. 

II. Extended-precision, floating-point (40-bit) math functions ($MATHX.ASM): 

A. SINX -computes a 9d sine(x) for all x in radians. 
B. COSX -computes a 9d cosine(x) for all x in radians. 
C. EXPX -computes a 9d exp(x) for all Ixl ~ 88. 
D. LNX -computes an 8d In(x) for all x > O. 
E. ATANX -computes an 8d atan(x) in radians for all x. 
F. SQRTX -computes a lOd sqrt(x) for all x ~ O. 
G. FPINVX -computes a lOd 1/x for all x *- O. 
H. FDlVX -computes a lOd x/y for all x and all y *- O. 
I. FMULTX -computes a lOd x*y for all x and y. 

III. Integer (32-bit) math routines ($MATHI.ASM): 

A. 

B. 
C. 

ILOG2 

IMULT 
IDiV 

-computes m = log2(n), n ~ 2m for use with radix 
2 FFT programs. 

-computes 64-bit product of two 32-bit numbers. 
-computes quotient and remainder of two 32-bit 

numbers. 

IV. Vector utilities ($VECTOR.ASM): 

A. *CORMULT -in-place computation of the complex vector pro-
duct of two complex arrays using the complex con­
jugate of the second array. 

B. *CONMULT -in-place computation of the complex vector pro-
duct of two complex arrays. 

C. *CBITREV -in-place bit reverse permutation on a complex ar-
ray with separate real and imaginary arrays. 

D. *FMIEEE -in-place fast conversion of an IEEE array to a 
TMS320C30 array. 
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E. 

F. 
G. 
H. 

*TOIEEE 

*VECMULT 
*CONMOV 
*VECMOV 

-in-place fast conversion of a TMS320C30 array to 
an IEEE array. 

-in-place multiplies a constant times an array. 
-moves (fills) a constant into an array. 
-moves (copies) an array into another array. 

V. Radix 2 FFT routines ($FFT2.ASM): 

A. 

B. 

CFFFT2 

CIFFT2 

-Complex DIF forward radix 2 FFT using separate 
real and imaginary arrays and 3/4 cycle sine table. 

-Complex DIT inverse radix 2 FFT using separate 
real and imaginary arrays and 3/4 cycle sine table 
(does not include the liN scale factor). 

VI. Linear algebra routines ($LINALG.ASM): 

A. 

B. 

*SOLUTN 

*SOLUTNX 

-Solves a well conditioned system of linear equa­
tions with any number of dependent variable sets. 
Uses no (diagonal) pivoting with normal-precision 
floating-point math. 

-Solves a well conditioned system of linear equa­
tions with any number of dependent variable sets. 
Uses no (diagonal) pivoting with extended­
precision floating-point math. 

Extended vs. Normal Precision 

Categories I, II, and VI represent a dual collection of programs implemented with 
32-bit single- or normal-precision TMS320C30 floating-point arithmetic, and with 40-bit 
extended-precision TMS320C30 floating-point arithmetic. Some of the normal-precision 
programs (category I, for example) have been written using the TMS320C30 RND in­
struction for rounding to obtain the optimal precision from the standard floating point 
TMS320C30 instruction set. This has been done with a slight loss of speed. Such round­
ing can be carefully eliminated by the user if the additional speed is necessary at the ex­
pense of some accuracy. 

Extended-precision was implemented on the TMS320C30 by the simple implemen­
tation of the 40-by-40 floating-point multiply routine, FMVLTX. This was necessary since 
the TMS320C30 has 40-bit addition and subtraction instructions, but the multiply operates 
only on 32-bit inputs. By using the native add and subtract FMULTX and the extended­
precision registers RO to R7, 40-bit floating-point math was effecte~. Al140-bit constants 
are stored in two consecutive words in memory. The first word is the normal truncated 
32-bit floating-point number. The least significant byte of the second word contains the 
remaining bottom 8 bits of the extended mantissa. The programs are coded to properly 
load extended-precision registers with these double-word constants. 
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The extended-precision versions of the programs in this report may be slower than 
their normal precision counterparts. When using extended-precision results in RO from 
category II programs, note that the results may be stored in memory with or without round­
ing. A more accurate normal-precision result will generally be obtained by rounding. You 
should never round before using an extended-precision result as input to another extended­
precision program unless special circumstances exist. Note that truncation, not rounding, 
will occur if an extended-precision register is moved to any 32-bit register or any memory 
location. This will generally cause loss of accuracy in the amount of the value of the least 
significant bit of the mantissa. 

Program Utilization 

Since all programs in this collection are intended to be invoked by a CALL instruc­
tion, you must have the stack pointer (SP register) appropriately set to an available memory 
area, preferably in internal RAM. Programs in categories I and II save and restore the 
data page register DP by using the stack area pointed to by SP. Programs in category 
III do not alter or use the DP register at all. The programs in categories IV through VI 
alter but do not restore the DP register. 

All ofthe programs in categories I through III, except for ILOG2, are implemented 
as straight line code. You may wish to disable the instruction cache while these programs 
are being executing. This will cause no loss .of execution speed and will avoid flushing 
out potentially reusable instructions in the cache. It is beneficial to have the cache enabled 
when using most of the remaining programs (categories IV through VI) as they generally 
contain multi-instruction loops. 

Programs in categories IV through VI allow input through externally defined variables 
addresses. The .global references indicate these addresses, where the input variable values 
and/or addresses are located. The starting address of these memory locations is given by 
the external variable $PARAMS. All of the addresses are assumed to be in the same 
TMS320C30 memory page as $PARAMS. If this is not the case, the addresses or the 
programs should be changed assure that the DP register gets set properly. 

Programs in categories IV and VI also allow the use of registers to hold input 
parameters. The exact registers to be used are found in the program source listings. When 
using the register input entry point, refer to the program using the R prefix on the pro­
gram name, e.g. RSOLUTN. The memory based parameter input entry uses the M prefix, 
e.g. MSOLUTN. The .global references to the R prefix entry points may be deleted if 
they are not needed. 
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Function Approximation Techniques 

Categories I and II are made up of a collection of elementary mathematical func­
tions numerically approximated using two basic methods. The functions SIN, COS, EXP, 
LN, and AT AN are approximated by using polynomials fitted to the various functions 
over a limited range of the independent variable. The functions SQRT and FPINV are 
approximated by iteratively solving a particular non-linear equation. The extended preci­
sion versions of these programs (category II) use the same approach with extended-precision 
arithmetic and resort to more accurate polynomials or more iterations to achieve the desired 
precision. 

Polynomial Approximations 

The polynomial approximation method is fundamentally very simple. A limited part 
of a function is approximated by a polynomial of some order sufficient to obtain the desired 
accuracy. The polynomial is generally a series of the form: 

n 
Pen, x) = E [a[i]xiJ, 

i=O 
(1) 

where x is the independent variable, n the polynomial order (a fixed integer), and a[i] 
is a set of n + I fixed coefficients. 

The desired function, say f(x), is then approximated by a particular Pen, x) such that: 

f(x) = Pen, x) + e(x), xl < x < xu, (2) 

where xl and xu are the limits of the domain of x, and e(x) or e(x)/f(x) is the error func­
tion which has been usually minimized in the min-max (equi-ripple) sense. This is done 
by selecting an appropriate means of calculating the coefficients a[i]. 

Various techniques and schemes are used in the selection of: 

o the approximation interval, 

• transformations on the function, 

• selection of the polynomial form, 

• error minimization criteria, and 

• calculation of the coefficients. 

See Hastings [2] for an excellenttutorial on this numerical methodology. All of the 
polynomial approximations used in here were obtained from the National Bureau of Stan­
dards reference edited by Abramowitz and Stegun [3]. 
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Non-Linear Equation Approximation 

The second method of approximation, using the solution of non-linear equations, 
is easier to understand. This method requires that a solution for the equation g(x) = 0 
be found. One means for solving this equation is by Newton-Raphson iteration. This can 
be understood by considering the Taylor series expansion for g(x): 

g(x + h) = g(x) + hg'(x) + rex, h), (3) 

where rex, h) is the remainder of the series (which can be assumed to be small), and g'(x) 
is the derivative of the function g(x). Leaving off the remainder in (3) we get, in terms 
of incremental values of x, the approximation: 

g(x[i+ 1]) = g(x[i]) + [x[i+ 1] -x[ijJg'(x[i]). 

Solving for x[i + 1] in (4) with g(x[i + 1]) = 0 yields the approximation: 

x[i + 1] = x[i] - g(x[i])/g'(x[i]). 

(4) 

(5) 

Thus, x[i + 1] will converge to a solution of g(x) = O. Convergence can be shown 
to be quadratic, i.e. the error in the approximation at each iteration is proportional to the 
square of the error in the previous iteration. Minimally, this requires a sufficiently close 
starting value for x[O] and the condition that ig'(x)i > 0 for all iterated values of x. 

Math Functions Details 

The approximation techniques can be applied to each of the classes of functions. 
The following sections describe the approximations as they are applied to each function. 

Inverse and Square Root Functions 

For the problem of computing good approximations to sqrt(c) (SQRT and SQRTX 
routines) and lIc (FPINV and FPINVX routines), both g(x) and g'(x) must be derived 
and then use the iteration of equation (5). This is complicated by the restriction that divi­
sion should be avoided since the TMS320C30 has no divide instructions. For the iteration 
to find the inverse of c, you can write: 

g(x[i]) = lIx[i] - c = 0, (6) 

which is solved when lIx = c or x = lIc. Taking the derivative of (6) and substituting 
into (5) and simplifying gives us: 

x[i + 1] = x[i][2 - cx[iD, (7) 

which needs no division. 

Thus, (7) will converge to lIc with the accuracy (in digits) for each iteration equal 
to twice that of the preceding one. Thus, if x[O] approximates lIc to 3 bits of precision, 
only three iterations of (7) will yield about 24 = 3(23) bits of accuracy. 
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A similar iteration from f(x) = x2 for sqrt(c) can be derived from the formulation: 

g(x[iD = x[ij2 - c = 0, (8) 

which is solved when x2 = c or x = sqrt(c). The solution for (8) leads to the classic square 
root formula: 

x[i+l] = 0.5[c/x[i] + x[iJ}, (9) 

but this equation uses division. However, the iteration from f(x) = 1/x2 for 1/sqrt(c) can 
be shown to be: 

x[i + 1] = x[iJ[1.5 - c'x[ij2}, (10) 

where c' = c/2 = 0.5c. Though (10) needs no division, the final desired result must be 
transformed by an extra multiplication by the input c because: 

sqrt(c) = c[1/sqrt(c)J. (11) 

Formula (10) will also converge, in the precision doubling fashion of the Newton­
Raphson iteration, given a suitable close starting value for x[O] and the use of sufficiently 
accurate arithmetic. Note that the extended-precision version routines FPINVX and SQRTX 
both use an extra iteration (for a total of 4) to achieve the needed 32-bit accuracy for the 
40-bit format. 

The initial guess x[O], for the iterations of l!sqrt(c) and 1/c, may be obtained using 
an interesting approximation. A TMS320C30 floating-point number c = (1 + m)2e, where 
o ~ m < 1 and -127 ~ e ~ 127. The extra 1, added to the fractional mantissa m, 
is the implied bit. Then we can write the inverse of cas: 

1/c = 1/(1 + m)2-e. 

An excellent approximation for the inverse of the mantissa is: 

1/(1 + m) = 1 - m/2, 

(12) 

(13) 

which is exact at the end points: m = 0 and m = 1. Then the approximation for the 
reciprocal would be: 

lIc = (1 - ml2)2-e. (14) 
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It turns out that this approximation can be achieved in a single logical operation. 
If you compute the unlikely value of c' = c XOR OFF7FFFFFFFh, you would comple­
ment all bits in c except the sign bit. Including the implied bit and taking the effect of 
one's complement arithmetic into account results in a final value of: 

c' = [1 + (1 - m)]2-(e + 1), (15) 

or the desired approximation: 

c' = (1 -mI)2-e = lIc. (16) 

c' gives about 3 bits of precision, which is an excellent seed x[O] for the lIc iteration. 
Using e/2, you have a start for the lIsqrt(c) iteration as well. 

Sine and Cosine Functions 

The SIN, COS, SINX, and COSX (sine and cosine) routines all use the same basic 
approximation (section 4.3.98, p. 76 in [3]). The series is for sin(x)/x but is obviously 
transformed by mUltiplying by x. The polynomial of even terms then is of the form: 

5 
sin(x) = x 1: [a[2i]x2i] + xe(x) , 

i=O 
(16) 

where Ixl ~ Pi/2 and Ixe(x)I ~ 2(10-9). Instead of using another power series for cos(x), 
you can use the fact that: 

cos(x) = sin(x + Pi/2). (17) 

The series given by (16) is only accurate in the 1st and 4th quadrants, i.e. Ixl ~ 
Pi/2. Sin(x) in the other two quadrants is found from: 

sin(x) = sin(Pi - x). (18) 

The case for x < 0 is expediently handled by using I x I for all calculations except 
for the final multiply by x in (16). 

Exponential Functions 

The EXP and EXPX (exponential) routines use an approximation (see Section 4.2.45, 
p. 71, in [3]). The expansion is of the form 

7 
exp(x) = 1: [a[i]xi] + e(x), 

i=O 
(19) 

where 0 ~ x ~ In(2) and le(x)1 ~ 2(10- 10). The series for 2Y is found by substituting 
y = x/ln(2) since: 

exp(x) = exp(ln(2)y) = 2Y. (20) 
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The new expansion then becomes: 

7 
2y = E [b[i]yiJ + e(x) , 

i=O 

where b[i] = a[i](ln(2)i). See the coefficients in the EXP routine. 

(21) 

Values of exp(x) for x outside the convergent range are found by two means. First 
for x < 0, note the relationship: 

exp( -x) = lIexp(x), (22) 

which does require an inverse (see the FPINV and FPINVX routines). For y > 1, let 
y = n + f where n = 1, 2, ... and ° S f < 1. By substituting y in (20), you get 

exp(x) = 2n+f = (2i)(2n). (23) 

Natural Log Functions 

The LN and LNX (natural or base e logarithm) routines use the approximation from 
[3] (section 4.1.44, p. 69). The expansion comes in the form: 

8 
In(1 + x) = E [a[i]xiJ + e(x) , 

i=1 
(24) 

where ° S x S 1 and ie(x)i s 3(10-8). The expansion for In(y) can be used if the 
transformation y = x-I is applied. 

Values ofln(x) for x outside the convergent range are found in the following way. 
First, make the substitution x = f(2n) for 1 S f < 2 and n = 0, 1, ... ,and then write: 

log2(x) = log2(f2n) = n + log2(f), (25) 

where log2(x) is the log base 2 of x. Using the relationship that log2(x) = hi(x)/ln(2), 
you get the equation 

In(x) = In(f) + nln(2). (26) 

Arctangent Functions 

The ATAN and ATANX (arc or inverse tangent) routines use the approximation 
from section 4.4.49, p. 81 in [3]. The series with only even terms for atan(x)/x is trans­
formed to 

8 
atan(x) = x E [a[2i]x2iJ + xe(x) , 

i=O 
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where -1 ~ x ~ 1 and Ixe(x)I ~ 2(10- 8). Values for atan(x) for x outside the con­
vergent range are obtained by noting the following identity: 

atan(x) = atan«x - l)/(x + 1)) + Pi/4. (28) 

Using the bilinear transformation y = (x - l)/(x + 1) assures, at the expense of 
a divide operation, that y ~ 1 for x ~ 1. The case for x < 0 is expediently handled 
by using Ixl for all calculations except for the final multiply by x in (27). 

Divide and Multiply Functions 

The last group of routines in category I and II are those for the additional arithmetic 
functions FDIV and FDIVX (floating-point divides), and FMULTX (extended-precision 
floating-point multiply). The divide operation for the TMS320C30, a = blc is done by 
calculating the reciprocal or inverse of the divisor c. Then you compute 

a = b(l/c). (29) 

For a normal-precision divide, FDIV finds lIc by a call to FPINV. A subsequent 
normal TMS320C30 floating-point multiply of the rounded inverse provides a suitable 
quotient. For an extended-precision divide, FDIVX finds lIc by a call to FPINVX. The 
inverse is then extended-precision multiplied by the dividend using FMULTX. 

The extended-precision floating-point multiply simulated by FMULTX is the key 
to the implementation of virtually all of the extended-precision functions. The extended 
multiply is achieved using the normal floating-point multiply of the TMS320C30. For two 
extended-precision numbers xa and xb, you can represent each as the sum of two floating­
point numbers: xa = a + ea(2-24) and xb = b + eb(2-24). The quantities ea and eb 
are the one-byte extensions of xa and xb respectively. 

Thus the complete product xc = (xa)(xb) can be expanded and written as 

xc = (a)(b) + [(a)(eb) + (b)(ea)]2 -24 + (ea)(eb)2 -48. (30) 

The last term in (30) is always less than the 32-bit precision in the mantissa of the 
final result. Therefore, you need only to compute the first two terms in the product xc. 
Also, note that all the indicated products in (30) may be computed using a normal-precision 
native TMS320C30 multiply as long as the terms are collected in extended-precision 
registers. The additions are also done using the native TMS320C30 add as it is implemented 
in extended-precision. 
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Integer Arithmetic Program Details 

Integer routines differ from the floating-point versions because they produce only 
integer results. If the computation can produce fractional values, then the fraction must 
be truncated to leave only the integer result. 

Integer Result Log Base 2 

The routine ILOG2 is a useful utility for computing integer value m of the log base 
2 of the integer D. The result is computed by successive multiplies by 2 (implemented 
as shifts by 1). The resulting relationship is n ~. 2m, such that if log2(n) is not an exact 
integer, m is rounded up to the next largest integer. This is useful as it allows the deter­
mination of m from any value n > 0 (e.g. not a power of two) which might require the 
padding of additional values (zeros) for a radix 2 FFT. This program is very fast because 
of a delayed branch loop and internally requires only 4(m + 1) cycles (cached) to do the 
calculation. 

Extended Precision Integer Multiply 

The IMULT routine is a modified version of the program EXTMPY in the 
TMS320C3x User's Guide [1]. It has been modified and slightly speeded up. The negation 
of the final 64-bit product is done in two instructions by direct two's complement nega­
tion rather than by using one's complement to simulate the same result. The product is 
computed by breaking the multiplier and multiplicand up into two 16 bit integers each. 
Thus the full product c of the numbers a = au(216) + aI, and b = au(216) + bl is 

c = (au)(bu)232 + [(au)(bl) + (bu)(al)]216 + (al)(bl), (31) 

where the powers of two indicated are accomplished by shifts. Note that each product 
in (31) must be represented as a 32-bit integer. The adds in the sum must be done with 
care to facilitate the carry between the two final 32-bit components of the product. 

Integer Divide 

The IDIV routine is a modified version of the program DIVI in the TMS320C3x 
User's Guide [1]. It has been modified to return the absolute value of the remainder of 
the integer division. The remainder was originally computed, but was discarded during 
the extraction process for the quotient. A few more instructions allow the extraction of 
both the quotient and remainder from the result of the SUBC process. The program IDIV 
may be used for the computation of the modulo function. The output of IDIV is the pair 
[q, Irll = alb, with the property: 

o ~ r = (a modulo b) < a, (32) 

for a > 0 and b > O. The complete relationship is, by definition, a = bq + r, for positive 
a and b. 
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Vector Utility Routines 

Vector utilities are functions which operate on arrays of numbers. Some utilities, 
. like dot products and convolutions, are simple. Other utilities, like those presented here, 
are more involved. 

Complex and Complex Conjugate Array Multiplies 

The array routine *CORMULT computes the point-by-point complex conjugate 
multiply of two complex arrays. If the arrays are cl and c2, and are of length n, then: 

cl[k] +- c1[k]conj(c2[k]), k = 1, ... , n, (33) 

where +- means replaces. Each complex array is assumed to be stored as two separate 
arrays, i.e. (c1] = (xl, yl] and (c2] = (x2, y2]. In cartesian complex representation, (33) 
becom~s 

(xl + iyl) +- (xl + iyl)(x2 - iy2) , (34) 

where i represents the imaginary constant sqrt( - 1). Separating the real and imaginary 
parts, we have: 

xl +- xlx2 + yly2, yl +- ylx2 - y2xl (35) 

This operation can be used for the frequency domain correlation of two FFTs to imple­
ment time domain correlation. 

On the other hand, the array routine *CONMULT computes the point-by-point com­
plex multiply oftwo complex arrays. If the arrays are cl and c2, and are each oflength 
n, then 

c1[k] +- cl[k](c2[k]), k = 1, ... ,n, 

In cartesian complex representation, (36) becomes 

(xl + iyl) +- (xl + iyl)(x2 + iy2). 

Separating the real and imaginary parts results in 

xl +- xlx2 - yly2, yl +- ylx2 + y2xl. 

(36) 

(37) 

(38) 

This operation can be useq for the frequency domain convolution of two FFTs to imple­
ment digital filtering. 
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Complex Array Bit Reversal 

The array routine *CBITREV executes an in-place bit reverse permutation on two 
arrays simultaneously. This operation is generally used for index scrambling before a DIT 
FFT (decimation in time, see CIFFT2), or after a DIF FFT (decimation in frequency, 
see CFFFT2) for index unscrambling. Therefore, *CBITREV is useful in permuting com­
plex arrays stored as two separate arrays which are associated with radix 2 FFTs. The 
program uses the bit reverse indexing feature of the TMS320C30 to achieve this function. 
The loop in *CBITREV is nearly as efficient in permuting two arrays together as per­
muting one array alone. This is due to the use of parallel load and store instructions and 
a delayed (single cycle) conditional branch. 

Floating Point Conversions 

The array routines *FMIEEE and *TOIEEE are vectorized versions of their original 
scalar counterparts FMIEEE and TOIEEE. Both routines do fast conversions from or 
to IEEE format by avoiding dealing with special rare cases. Also, both programs convert 
the numbers in the arrays in-place which destroys the original data. These array versions 
of the format conversion routines are much faster than calling the scalar version routines 
in a special loop. These routines also have their own internal, shared constant table for 
conversions. 

Vector Primitives 

The array routines *VECMULT, *CONMOV, and *VECMOVare a useful suite 
of efficient programs for simple array operations. The first routine, *VECMULT, per­
forms the simple operation x[k] ~ x[k]c which is a scalar-vector multiply useful in uniform­
ly scaling an array by a constant c. You can use this for scaling arrays after an inverse 
FFT by choosing c = lin. The next routine, *CONMOV, performs the operation 
x[k] ~ c which is useful in filling or initializing any portion of an array to a single cons­
tant c. The last routine, *VECMOV performs the simple operation x[k] ~ y[k] , an array 
move, and is, therefore, generally useful. 

FFT Routines 

This category contains the two complementary radix 2 complex FFT programs 
CFFFT2 and CIFFI'2. These programs differ from previously available TMS320C30 FFT 
programs in that they operate on complex arrays which are stored as two separate and 
independent real arrays. Both routines do the FFTs in-place and do no index permutations 
or constant scaling (multiplication). Also these programs require only a 3/4 cycle exter­
nal, pre-computed sine table. As with previous FFT programs, these, too, have a special 
multiply-less butterfly loop for the occurrence of unity twiddle or complex rotation factors. 
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The routine CFFFr2 is a DIF radix 2 complex forward FFT program and thus 
assumes a normally indexed pair of input arrays. The output array is bit-reverse permuted 
and normally must be unscrambled to be of any use (see *CBITREV). The routine CIFFT2 
is a DIT radix 2 inverse FFT program and thus assumes a bit-reverse indexed pair of 
input arrays. A normally indexed complex frequency spectrum must be bit-reverse scrambl­
ed before using CIFFT2 (again, see *CBITREV). On the other hand, the output from 
this inverse FFT is in normal indexed order, but lacks the traditional scaling by the factor 
of lin. Therefore, back-to-back calls of CFFFT2 and CIFFT2 will return the original 
complex array (in proper order) but multiplied by a factor of n. Consult the handbook 
by Burrus and Parks [4] for additional FFT algorithm details. 

Linear Algebra Routines 

The routines *SOLUTN and *SOLUTNX are the normal- and extended-precision 
implementations of the algorithm for solving simultaneous linear equations. This algorithm 
is the modified Gauss-Jordan elimination without (off diagonal) pivoting. This is a simple 
algorithm which is intended for use with well-conditioned systems of dense linear equa­
tions of moderate size. Well conditioned means that the system oflinear equations is linearly 
independent or non-singular. This subject and further algorithm details are to be found 
in chapter 2 of [5] by Press et al, or any other book on the numerical techniques of linear 
algebra. This algorithm is suitable for a wide range of problems requiring the solution 
of a system of linear equations, e.g. exact or least squares polynomial fitting. 

A simple system of linear equations has the form: 

A[l, l]x[l] + A[l, 2]x[2] + ... + A[1, n]x[n] = y[1], (39) 
A[2, l]x[l] + A[2, 2]x[2] + ... + A[2, n]x[n] = y[2], 

A[n, l]x[l] + A[n, 2]x[2] + ... + A[n, n]x[n] = y[n]. 

Symbolically, you may write A = A[i, j] as the n x n matrix of coefficients, and 
x = xli] as the unknown independent variable (column) vector, and y = y[j] as the depen­
dent variable (row) vector. Thus (39) can be written in short hand form as Ax = y or 
Ax - y = 0, where the multiplication indicated is a matrix-vector multiply. The fun­
damental problem in linear algebra, then, is to find the solution vector x. In fact, you 
may desire to find the m different solutions to m sets of linear equations which share the 
same coefficient matrix A, i.e. Ax[k] = y[k], for k = 1, ... , m. 
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You can solve the general problem just stated by using *SOLUTN, or with more 
accuracy with *SOLUTNX. This is done by constructing a tableau B (table of coefficients) 
which is simply the coefficient matrix A (in row major storage format) with the negative 
of the y vector(s) appended (:) as m extra columns to A. Thus you would have B = A 
: -y, as your problem, where B is a n by n+m matrix and typically m = 1. Thus, for 
the common case of m = 1, the input array B can be written as: 

A[1, 1], A[1, 2], ... , A[1, n], -y[I], (40) 
A[2, 1], A[2, 2], ... , A[2, n], -y[2], 

A[n, 1], A[n, 2], ... , A[n, n], -y[n]. 

After the *SOLUTN routine is executed, the matrix C = A' : x appears, where 
the co1umn(s) beyond the original coefficients A (the y[k] vectors) have been replaced 
by the solution vector(s) x[k]. The new matrix A' is a partially computed version of the 
inverse of the matrix A. The complete inverse of A, which is normally computed by the 
standard Gauss-Jordan scheme, is rarely needed. Therefore, a faster modified algorithm 
has been used which does about half the work. 

This simple method used for solvi~g systems of linear equations has two restrictions. 

1. As the pivoting operation (exchange of x and y variables) always starts with 
A[I, 1] and proceeds down the diagonal, A[I, 1] must be non-zero. This is 
because, in the exchange process, you must divide by the pivot element. A zero 
coefficient at A[ 1, 1] may be moved by reordering the variable indices by ap­
propriately swapping rows and columns in A and in y. 

2. The maximum absolute value of the elements in A must be approximately uni­
ty. This is necessary to assure that no pivot element is encountered which is 
smaller in magnitude than 10-8 for *SOLUTN, and 10-10 for *SOLUTNX. 
This restriction monitors the system condition and assures an adequately ac­
curate solution, but the fmal solution should always be verified by substitu­
tion. This is done by inspecting the elements of the error vector e = Ax -
Y computed by using the solution x, and the original A and y. 
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Summary 

This report presented a set of routines that can be used in digital signal processing 
applications. The appendix contains the source code of these routines. This source code 
can also be obtained from the Texas Instruments Electronic Bulletin Board (713) 274-2323. 
If there are comments or corrections, please contact the author of this report: 

Mr. Gary Sitton 
Gas Light Software 
5211 Yarwell 
Houston, TX 77096 
Tel (713) 729-1257 
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Appendix 

Program Librar'y 

1. $MATH. ASM 
II. $MATHX.ASM 
II 1. $MATH I. ASM 
IV. $VECTOR.ASM 
V. $FFT2.ASM 
VI. $LINALG.ASM 

tHlfHHffffHlfHHHHfHttfHffHHHHfHHtHIHffHffHtHfffHI-H+fHf 

PROGRAI" $/lATH. ASIt 

NORIW. FLOATING-POINT (32-BITl ItATH FLN:Tlcm 

$/IATH.ASIt COIISISTS OF TI£ FIUOilING ROUTINES. 

SIN - COItPUTES A 70 SINEW FOR AlL I IN RADIANS. 

cas - COIIPUTES A 70 casUE(XI FOR AlL I IN RADIANS. 

EIP - COMPUTES A 70 EIPIXl FOR" AlL a: =< 88. 

LN - COMPUTES A 7D LNm FDR ALL I ) o. 

ATAN - COIi'UTES A 7D ATANm Fill IU. I IN RADIANS. 

SrilT - CWUTES AN so SQRTlXI Fill ALL I >= O. 

FPI~ - COIIPUTES AN so III FDR ALL X /< o. 

FOIV - COII'UTES AN so x/v FOR ALL X AND ALL Y /< O. 

f tHlftHHffHlflHfHHfHHfHflffffftHtfflfHUffHftfHfHfffff**fffffftf 

~ 
> 



~ 
Hf4HUtfffHIHHlHHfffHtflflHltffHfHHHlfHffff RND RO ; ROUND X 
• _:SIN LDF RO,R4 ; R4 {= X N 

* loIlimN BY: GARY A. SITTOO COSI/£ ENTRY POINT 
GAS LIGHT SOFTWARE 
HOUSTON, TEXAS ECOS: 
MIlCH 1989. 

SCALE AND Mill' VARIABlE X 
* SINE FUNCTION: RO (= SIN(ROI. 

ABSF RO ; RO {= :x: 
• III'PROXlMTE ACCURACY: 7 IECIrIAL DIGITS. LDF RO,RI ; RI {= RND IX: 

INPUT RESTRICTIOOS: NOOE. rf'YF !NORM.RI ; RI {= Xt2lPI 
• REGISTERS FOR INPUT: RO (IIROUMENT IN RADIANSI. FIX RI,IRO ; IRO <= INTEGER GUADRANt Q 
< REGISTERS USED AND RESTOOEIll If' AND SP. FLOAT IRO,R2 ; R2 {= FLOATING IlUADRANT Q 
< REGISTERS ALTERED: RRO, lRO. AND RO-4. SUBF R2,RI,RO ; RO <= X, -I ( X < I 
< REGISTERS Fal OUTPUT: RO. NEGF RO,R3 ; R3 <= -X • ROUTINES NEEIEl: NONE. ADDI I,IRO ; lRO <= Q + I 
< EIECUTlOO CYCLES (HIN, tlAX); 44 , 44. AND 3,IRO ; IRO <= TADLE INDEX 
fffffHfHUHHHHHfHHffHfHffHffHfHffHffHfHf TSTB 2,IRO ; LOOK AT 2ND LSS 

LDFNZ R3,RO ; IF I THEN RO (= -X 
EXTERNAL PROGRAM NIllES LDI @ACON,ARO ; ARI -) CONST. TABLE 

ADDF HRRO(IROI,RO ; FINAL IlAPPING, RO <= 1 + C 
.GLOBL SIN NEGF RO,R3 ; R3 <= -I 
.GLOBL ECOS LDI @ACOF,ARO ; RRO -} CCfFF. T ADLE 

INTERNAL CONSTANTS 
POP DP ; UNSAVE DP 

::t. .DATA 
EVALUATE TRUNCATED !ODD I SERIES 

~ rlPYF RO,RO,R2 ; R2 (= X .... 2 
NORM .FLOAT 0.636619n2 ; 2/PI RND R2 ; ROUND X .. 2 

~ PlLYNONI/i.. CCfFFS. Fal SIN(I'2IPIl, -1 < X < 1 rlPYF *ARO-,R2,Rl ; RI <= X"2tCl1 B. ADDF *ARO--,Rl ; Rl <= C9 + Rl Q SHFT .FLOAT 1.570790327 ; CI (PII21 ;OS 

.Q., 
• FLOAT -0.0459640968 ;C3 rfVF R2,Rl ; Rl <= XH2*1C9 + RIl .FLDAT 0.07969260878 ;C5 

ADDF <ARO--,Rl ; Rl <= C7 + RI 

~ 
.FLOAT -0.00468166687 ; C7 
.FLOAT 0.00016025884 ;C9 

II'VF R2,Rl ; Rl <= XH2«C7 + Ril ;OS 

~ 
COF .FLOAT -0.000003433338; ell 

ADDF *ARo--,RI ;Rl<=C5+Rl c· ACOF .IIJRD COF ; AIlMESS OF COEFFS. 
RHO RI ROUND BEFORE • ;OS 

too 
MPVF R2,RI Rl {= X"2'(C5 + RIl 

~ CON .FLOAT -1.0, 0.0, 1.0, 0.0 ; \'lAPPING CONSTANTS 
ADDF *ARO-,Rl Rl <= C3 + RI .., 

So ACOO .IIJRD CON ; ADDRESS OF COOSTS. 
AND Rl ROUND BEFORE • 

'" rlPVF R2,Rl Rl <= X .. 2.(C3 + RIl 

~ 
• TEXT 

RDDF tRRO.RI Rl<=Cl+Rl 

~ 
START OF SIN _ 

tv SIN: C 
Q 

PUSH If' ;SAVEDP 
C UP @ACOF ; LOAD DATR PAGE POINTER 
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12 
~ 
Q 
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'" 'C' .... 

~ 

~ 
~ 
tv 
C a 
c 

N 
\0 
W 

FINISH UP SERIES AND RETURN 

lDF R4,R4 
LlWN R3,RO 
pop R2 
!!UD R2 
RNO RO 
RHO RI 
MPVF RI,flO 

TEST ORIGINAl X 
IF X ( 0 THEN RO (= -x 
R2 (= RETWN ADDRESS 
RETURN (DELAYEDI 
RIJLIill BEFORE • 
ROUND BEFORE • 
RI (= hlCI + RII 

ffffHfftfHfHHfHHHfHffff****HH******fHIHtfHH 

• PROORAI1: COS 

• IIRITTEN BY: GARY A. SlTT~ 
GAS LIGHT SOFTWARE 
HOUSTON. TEXAS 
MIlCH 1989. 

• COSINE FUNCTION: RO (= COStROI. 

• APPROXIMATE ACCURACY: 7 DECIMAL DlGlT5. 
INPUT RESTRICTl~S: NONE. 

• REGISTERS FOR INPUT: RO (ARGIJI1ENT IN RADIANSI. 
• REGISTERS USED AND RESTORED: DP AND SP. 
• REGISTERS ALTERED: ARO, IRO, AND RO-4. 
• REGISTERS FOR OUTPUT: RD • 
• ROUTINES NEEDED: ECOS (SINI. 
• EXECUTI~ CYCLES (MIN, MAXI: 46 , 46. 

• NOTE: USES SHFT CONSTANT FROM SIN PROGRAM' 
*********H"**I*II**I,,********************************** 

COS: 

EXTERNAL PROGIW1 NAMES 

.GLOBL COS 

.GLOBl ECOS 

• TEXT 

START OF COS PROGRAM 

PUSH DP 
LDP ~ACOF 

BRD ECOS 
RND RO 
ADDF @SHFT,RO 
LDF RO,R4 

RETURN OCCURS FROM SIN ' 

; SAVE DP 
; lOAD DATA PAGE POINTER 

RO (= COS(XI = SIN(X'I, (DELAYEDI 
ROUND X 
RO (= X' = X + PII2 
R4 (= X' 



tv nHfffl**uuun***UHfHftfHfHtHfltfffIHHHffHf PUSH II' ; SAVE II' 

~ · PROGRAN; EXP • LDP ffC7 ; LOAD DATA PAGE POINTER 
RND RO ; ROUND X 

· WRITTEN BY: ()AAY A. SITTON I£GF RO,R2 ; R2 <. -x 
GAS LIGHT SOFTWARE LOF RO,RI ; RI <. x 
HOUSTON, TEXAS LDFN R2,RI ; IF X < 0 THEN RI <. I X; 

MARCH 1989. II'VF @ENRI1,RI ; RI <. X • IWLNI21 
FIX RI,R3 ; R3 <. I • INTEGER IF X · EXPONENTIAL FUNCTlON: RO (. EXPIROI. FLDAT R3,RO ; RO <. FLT. PT. I 
SUBF RO,RI ; RI (. FRACTION OF :XI, 0 <. X ( I · APPROXIMATE ACCURACY; 7 DECIMAL DIGITS. I£Gl R3 ; R3 <. -I 

INPUT RESTRICTlONS; lRO: (. 88.0. LSH 24,R3 ; MOVE -I TO EXP. · REGISTERS FOO INPUT: RO. PUSH R3 ; SAVE AS INT. 

• REGISTERS USED AND RESTOREG; lIP AND SP. POPF R3 ; R3 (. FLT. PT. 2*'-1 
* REGISTERS ALTERED; RO-4. LOI ffC7,ARO ; ARO -> C£EFF. TABLE 
* REGISTERS FOR OUTPUT: RO. POP lIP ; UNSAVE II' 
* ROUTINES NEEDED: FPINV. · EXECUTION CYCLES mN, MAXI: 44 IRO (. 01, 70. EVALUATE TRUNCATED SERIES 
HHff*********HHH*tfflf***********HfHHIH********* 

AND RI ; ROUND BEFORE * 
EXTERNAL PROGRAM NAMES NPYF .ARQ--, RI, RO ; RO (. X+C7 

ADDF .ARO--,RO ; RO <. Cb + RO 
.GLOBL EXP 
.GLOBL FPINV MPVF RI,RO ; RO <. XlICb + RDI 

ADOF 'ARO-,RO ; RO (. C5 + RO 
INTERNAl CONSTANTS 

NPYF RI,RO ; RO (= XHC5 t- RO) 
;.. • DATA ADDF 'ARO--,RO ; RO (. (4 + RO 

~ seAL I NG COEFF. FOR 2'<-1 NPYF RI,RO ; RO <. XHC4 + ROI 

~ ADDF *ARO-,RO ; RO (. C3 + RO 
ENRM • FLOAT 1.442695041 ; I/LNI21 

~ RND RO ; ROUND BEFORE * o· POLYNOMIAL COEFFS. FOR 2.H, 0 (. X < 1. NPYF RI,RO ; RO <. 11(C3 + ROI ;: 

<Q., 
ADDF .ARD-,RO ; RO (= C2 + RO 

.FLOAT 1.0000000000 CO 

~ 
• FLOAT -().693147180 CI RND RO ; ROUND BEFORE • 
• FLOAT 0.240226%9 C2 NPYF RI.RO ; RO <. l'lC2 + ROI ;: • FLOAT -0.055503654 C3 ADDF 1AR0--,RO ; RO <. CI + RO '"l 

::to .FLOAT 0.009615978 C4 
<::> .FLOAT -0.001328240 C5 RND RO ; ROUND BEFORE * ;: 

'"' .FLOAT 0.000147491 C6 MPYF RI,RO ; RO <. X*ICI + ROI 

'0> C7 .FLoAT -0.000010863 C7 

... TEST FOR X < 0 AND RETURN 

S- 1£7 .OIJRD C7 

~ LDF R2,R2 ; TEST ORIGINAl -X 

~ 
• TEXT BND FPINV ; IF -X < 0 THEN RO (. Ill, I DaAYEDI 

ADDF tARO,RO ; RO (= 2H-X = CO + RO 

~ 
START OF EXP PROGRAM RND RO ; ROUND BEFORE * 

tv II'YF R3,RO ; RO <. 2*'-11 + XI 
a EXP: 

a RETS ; RETURN IIF NO FPINV BRANCHI 
SCALE VARIABLE X a 



~ f**H**HHfHUfHHHHHffH-IHHHH*HH++Hf*HHH SCALE VARIABlE X 
* PROORIII1: tR * 

~ PUSH DP ; SAVE IF 
;:::: I WRITTEN BY: GAAY A. SITTON LOP lACS ; LOAD DATA PAGE POINTER 

'" CAS LIGHT SIlfTlIARE PUSIF RO ; SAVE AS FLT. PT. B. IIlUSTON. TEXAS POP R3 ; R3 (= INTEGER FORMAT <:l MIlCH 1989. ASH -24.R3 ; R3 (= E = SIGNED EXP. ;:s 
FLOAT R3.RI ; RI (= FLT. PT. E VALUE .s;, * LOGARITHM FWCTION BASE E: RO (= tRIRO). LOF @CO,R2 ; R2 {= 1.0 

~ LDE R2.RO ; EXP. RO (= 0 II (= X ( 2) 
* APPROXlHATE ACCURA(Y; 7 IlOClHAL DIGITS. SUBRF RO,R2 ; R2 (= X - I 10 (= X ( I) ;:s INPUT R£STRICTlONS: RO ) 0.0. LOF @LNRM,RO ; RO (= tR(2) B. * R£GISTERS FOR INPUT: RO. tlPYF Rl.RO ; RO (= E*tR(2) § I R£GISTERS USED AND RESTORED: DP AND SP. LOF RO,R3 ; R3 (= EILN(2) 

'" I REGISTERS ALTERED: ARO AND Ro-3. LDI @AC8.ARO ; ARO -) COEFF. i ABLE 
'0> * R£GISTERS FOR OUTPUT: RD. POP DP ; UNSAVE DP .... I ROUTINES NEEIlEll: NONE. 

S. I EXECUTION CYCLES IMIN, HAll: 43 • 43. 
EVALUATE TRUNCATED SERIES 

'" 
tUfHHtHHHHffUHffHfHHfHfHHffHHffHffHtH 

~ 
RND R2,RI ; RI (= RND X 

EXTERNAL PROOR!II1 NAl1ES 
HPYF '~RO--,RI,RO ; RO (= IIC8 

~ ADDF IARO--,RO ; RO (= C7 + RO 
.GLOB!. tR tv 

tlPYF RI.RO ; RO (= IIIC7 + RO) C 

Q INTERNAL CONSTANTS 
ADDF IARO--,RO ; RO (= CO + RO 

C • DATA 
HPYF RI,RO ; RO (= lllCO + RO) 

SCALING CDEFFS. FOR LNIl+X) ADDF IARO--.RO ; RO (= C5 + RO 

tlPYF RI.RO ; RO (= XIIC5 + RO) LNRH .FLOAT O.693147100b ; LN(2) 
ADDF IARO--,RO ; RD (= C4 + RO CO .FLOAT 1.0000000000 ; CO 11.0) 

tlPYF RI.RO ; RO (= X'(C4 + RO) PIlLYNOl'IIAL COEFFS. FOR UH 1+X). 0 (= X ( 1. 
ADDF IARoe-.RO ; RO (= C3 + RO 

• FLOAT 0.9999964239 ; Til' OF (I 
RND RO ; ROUND BEFORE I .FLOAT -0.4998741238 ; TOP OF C2 
HPYF RI.RO ; RO (= XI(C3 + RO) • FLOAT 0.3317991l2S8 ;TDP~C3 
ADOF IARo--.RO ; RO (= C2 + RO • FLOAT -0.2407338084 ; TOP Of C4 

.FLOAT 0.1676540711 ; TIP ~ C5 
RND RO ; ROl*W BEFORE I • FLOAT -0.0953293897 ; Til' OF CO 
HPYF RI,RO ; RO (= IIIC2 + RO) • FLOAT D. D360B84937 ;TOP~C7 
ADDF fARO-,RO ; RO (= CI + RD ca .FLOAT -0.0064535442 ; TOP Of ca 

ACB • WORD CB ADD IN SCALED EXPONENT AND RETURN 

• TEXT 
POP R2 R2 (= RETURN ADDRESS 
BUD R2 RETURN IllOLA YEO) 
RND RO RIfflI) BEFORE I START OF LN PROGRAM 
HPYF RI.RO RO (= XIICI + RO) 

LN: ADDF R3.RO RO (= tRIX) + E'LN(2) 

N 
RO,RO ; TEST X \0 LOF 

Ul RETSLE ; RETI.IlN NOW IF X (= 0 
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HHHftHHffHHf**fHHfHHHftHHHfHffHffHHHf 

< PROGRAII' ATAN 

1 WRITTEN BY' DARY A. SITTON 
GAS LIGHT S(FTWARE 
f«JUSTON, TEXAS 
IIAROl 1989. 

1 ARC TAtaNT FUNCTION' RO (= ATAN(RO). 

< APP!lIJXIMTE ACCLIlACYI 7 DECIMAL DIGITS. 
INPUT RESTRICTlOHS' IDlE. 

< REGISTERS FDR INPUT! RO. 
< REGISTERS USED AND RESTORED' Ill' AND SP. 
< REGISTERS AlTERED' ARO, lRO, AND RO-4. 
< REGISTERS FDR OUTPUT! RO (IN RADIANS). 
< ROUTINES NEEDED' FDIV. 
< EXECUTION CYClES ("IN, IlAXlI 30 (:ATAN: (- 1), 69. < 
HHHHHUHfH**HfHHfHHHIHHHfHHUfffHfHH 

EXTERNAl PROGRAII NAI1ES 

.GLOIll ATAN 
,GLOIll FDIV 

INT€RNAl CONSTANTS 

• DATA 

SCALING COEFFS. FDR ATAN(X) 

.FLOAT -0,7853981035 ; -PI/4 

.FLDAT 0.7853981635 , PI/4 
,FLOAT O.OOOOO~ , ZERO 

i'Cl.VNOrHAl COEFFS. FOR ATAN(x), -1 (= X (= 1. 

Cl ,FLOAT 1.0000000000 , CI 
.FLOAT -0,3333314528 ;C3 
.FLOAT O.lffl355085 ,CS 
,FLDAT -o,1420S89944 ; C7 
• FLOAT 0,1065626393 , C9 
• FLOAT -0.0752896400 ,W 
,FLOAT 0,0429096138 , C13 
.FLOAT -0,0161057367 , CIS 

CI7 • FLOAT 0,OO2a662257 , CI7 

~17 • WORD C17 

• TEXT 

START OF ATAN PROORAi'l 

ATAN' 

SCALE VARIABlE X 

PUSH Ill' , SAVE Il' 
LDP !AC17 , LOAD DATA PAGE POINTER 
ABSF RO,R2 , R2 (= IX: 
SUBF @CI,R2 , R2 (- :x: - I 
BLED SKIP , IF : X: ) I THEN SCALE (DELAYED) 
RND RO,R3 ,R3(=RNDX 
RND RO,RI , RI (= RND X 
lOI O,IRO , lRO (= 0, POST SCALE INDEX 

SCALE FOR IX: ) I 

PUSHF RI , SAVE RND X 
ABSF RO,RI , RI (= IX: 
ADDF @CI,RI ;Rl<=lX~+l 

LDF R2,RO , RO (= :x: - I 
CALL FDIV , RO (= <:X: - ll/(lX: + 1) 

TEST FDR X' ( 0 

POPF R2 , GET ORIGINAl X 
WED SKIP ; IF X ( 0 THEN RO (= -X' (DELAYED) 
RND flO,R3 , R3 <= RND X' 
RNO RO,RI ; RI (= RND X' 
SUBI I,IRO , lRO <= -I, (PI/4) 

NEGF R3,R3 , R3 (= -X' 
SUBI I,IRO , IRO <- -2, (-P1/4) 

SKIP' /PYF RI,RI,flO , flO (= 1><2 
lOI !AC17,ARO , ARO -) COEFF, TABLE 
POP Ill' , tmAVE Ill' 

EVALUATE TRUNCATED <ODD) SERIES 

RND RO,RI , RI (= RND U<2 
/PYF >ARO--, Rl, RO ; RO <= XH2>C17 
ADOF fARO--,RO ; RO (= CIS + flO 

/PYF RI,RO , RO <= IH2«CI5 + RO) 
ADOF fARO--,RO , RO (= C13 • RO 

PlPYF Rl,RO , RO <= X"2«CI3 • RO) 
ADOF IARO-,RO , flO (= Cll • RO 

PlPYF RI,RO ; RO (= X1f2f(Cll + ROI 
ADDF fARO-,RO , RO (= C9 • flO 

RND RO R<X.tID IlEFORE 1 
PlPYF RI,RO RO (= X"21(C9 • RO) 
ADDF fARo-,RO RO <= C7 • RO 
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AND RO ; RIX.ND BEmIE 0 
If'\'F RI,RO ; RO <= XH2<1C7 + ROI 
ADIf <MO-,RO ;RO<=C5+RO 

RND RO , RIX.ND BEFORE f 

If'YF RI,RO , RO <= Xo02f1C5 + ROI 
AIlIlF <MO-,RO ,RO<=eJ+RO 

RND RO , ROONlI IIEFCIIE 0 
If'VF RI,RO ; RO <= XH20leJ + ROI 
ADIf oARO-,RO,RI ;RI<=CI+RO 

FINISH UP, POST SCAlE BY C AND RETURN 

POP R2 
BUD R2 
RND RI 
If'YF Rl,RI,RO 
AIlIlF o++AROllROI,RO 

R2 <= RETUlN ADDRESS 
RETUlN UIEUlYEDI 
ROlHIllEFCllEo 
RO <= ATANIII = 1<11 + ROI 
RO <= ATANIXI + C 10.0, PII4 DR -1'1/41 

ffHHHfHfHfHHIHHHHfHHHJHfllffHHH1ffHtH 
PROORM. SQRT 

o WRITTEN BY' G/lRY A. SITTOO 
GAS LIGHT SlfTlIo1RE 
IWSTON, TEXAS 
ItARCH 1m. 

o SQUARE ROOT FUNCTION: RO <= SllRTlROI. 

APPROXlI1ATE ACCURACY: 8 IECII1AL DIGITS. 
1tf'UT RESTRICTIONS: RO >= 0.0. 
REGISTERS FDR IIfUT: RO.· 
REGISTERS USED AND RESTDREG: DP AND SP. 

o REGISTERS AlTERED: Rll-4. 
o REGISTERS FDR OUTPUT: RO. 
o ROUTIt£S t£Eml: NlNE. 

o 
.0 

o EXEruTIltl CYCLES 'KIN, MXlI 49 , 49. 
HfHfHIHIHHHfHfffttHfHfHffHlfHHlHHHHfflf 

OOTi 
OOT2 
CNST3 
OOT4 

EXTERNIi. PROORM NAI£S 

.GLOIIL SQRT 

INTERNAl. COOTANTS 

.DATA 

• SET 
• SET 
.FLDAT 
.• FLDAT 

0.5 
1.5 
1.103553391 
O. 780330086 

; ADJUSTED 1.0 
; AIUISTED SQRTU121 

SI1SK .WORD 0FF7FFFFFH 

SQRT: 

.TEXT 

START If SQRT PROORM. 

Llf RO,R3 , TEST AND SAllE Y 
RETSLE , RETUlN NaI IF Y <= 0 

GET APPROXIMTIOO TO IIY. FOR Y = 11+K102f<£ 
AND 0 <= " < I, FDR E EllEN' XIOI = 11-1112102H-EI2 
AND FOR E ODD' XlOI = SllRTlll2lfl1-1112102H-EI2 

PUSH 
LIP 
PUSHF 
POP 
XDR 
LDI 

DP 
I!SIlSK 
RO 
R2 
1SIISK,R2 
R2,RI 

SAllE DP 
LOAD DATA PAGE POINTER 
SAllE Y AS FLT. PT. Y = 11+K102ffE 
R2 <= Y AS INTEGER 
R2 <= COf'l.EIlENT All BUT SION 
RI <= (Ht/2102H-E 
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LDI 
LSH 
ASH 
POSH 
f'(ff 

LIIE 
LIIF 
LSH 
LIIFIf/ 
rl'Yf 
POP 

R2,R4 
8,RI 
-I,R2 
R2 
R2 
R2,RI 
!CNST3,R2 
7,R4 
@CNST4,R2 
R2,RI 
lIP 

; R4 (= RI 
; RI (= RI EXP. REI1OI'EIl 
; R2 (= R2 WITII -E/2 EXP, 
; SAVE R2 AS INTEGER 
; R2 (= FLT, PT, 
, RI (= (H/2)f2ff-E/2 
, R2 (= 1,1 .. , fOR ODD E 
, TEST LS8 (f E (AS SIGN) 
, IF E EVEN R2 (= 0.78 .. , 
, RI (= CORRECTED ESTlMTE 
, lNSAVEIIP 

GEi'£RATE VIZ (USES rl'Vfl. 

rl'Vf CNSTl, RO 
RNIl RO 

• RO (= V/2 TRIH:, 
, RO (= RHO Vl2 

NEWTON ITERATICti FOR Y(X) = X - Vff-2 = 0 ... 

rl'Yf RI,RI,R2 R2 (= X[O]"2 
I!PYf RO,R2 R2 (= (Vl2) • X[O]ff2 
SUBRf CNST2,R2 R2 (= 1,5 - (VI2) • X[O]1I2 
rl'Yf R2,RI RI (= X[1] = no] * (1.5 - (V/2)<x(O]ff2) 

I!PYf RI,RI,R2 , R2 (= X[1]ff2 
rl'Vf RO,R2 • R2 (= (VI2) * XCI]ff2 
SUBRf CNST2,R2 , R2 (= 1,5 - (VI2) • X[1] .. 2 
I!PVf R2,RI ; RI (= xm = XCI] • (1.5 - (Vl2)*X[lJ1I2) 

I'I'VF RI,RI,R2 , R2 (= X[2]*,2 
I1PYF RO.R2 , R2 (= (VI2) f m]"2 
SUBRF CNST2,R2 ; R2 (= 1.5 - (VI2) • X[2]"2 
I1PYF R2,RI , RI (= X[3] = X[21 * (1,5 - (V/2)*X[2]*,2) 

RHO RI • ROUND BEFORE * 
I1PVF RI,RI,R2 ; R2 (= H3]*,2 
RNIl R2 ; ROUND BEFORE • 
I1PYF RO,R2 ; R2 (, (VI2) f H3]ff2 
SUBRF CNST2,R2 , R2 (= 1.5 - (Vf2) f X[3lff2 
RHD R2 , ROUND BEFORE • 
II'Yf R2,RI ; RI (= X[4] = XC3] • (1.5 - (V/2)'X[3]*,2) 

INVERT FINAL RESULT AND RETURN 

POP R2 R2 (= RETlQlN ADDRESS 
BUD R2 RETURN ([£lAVED) 
RHD R3 ROUND BEFORE , 
RHD RI ROUND BEFORE • 
rl'YF RI,R3,RO RO = SlIlHV) = V.SlIlTU/V) 

• WRITTEN BY' GARY A, SITTON 
GAS LIGHT SCfTWARE 
1IlUSTON, TEXAS 
I1ARCH 1989. 

f FLOATING POINT INVERSE' RO (= lIRO 

• APPROXIMATE ACClIlACY' 8 DECIML DIGITS, 
INPUT RESTRICTIONS: RO != 0.0, 

• REGISTERS FOR Ihl'UTI RD. 
• REGISTERS USED AND RESTGRED' lIP AND SP. 
• REGISTERS ALTERED. 00-2 AND R4. 
• REGISTERS FOR OUTPUT: RO. 
t ROUTINES NEEDED: NOI£. 
• EXECUTION CYCLES (MIN, MAX): 33 , 33, 
ffHJ.IHHHflfHfffffffHHHHfffffffHHfHHfHHfHf 

ONE 
TWO 

!15K 

FPrNV' 

EXTERNAL PROGRM NAllES 

.GLOBL FPINV 

INTERNAL COIIST ANTS 

.DATA 

• SET 1.0 
• SET 2.0 

• WORD OFf7fFFFFH 

• TEXT 

START OF FPINY PROGRAM 

LDF OO,RO 
RETSZ 

• TEST F 
,RETURHNCIIIFF=O 

GET APPROXIMATION TO lIF. FOR F = (1+11) .2*'E 
AND 0 (= M ( I, USE: no] = (1-11/2) , 2"-E 

PUSH lIP ; SAVE OATA PAGE POINTER 
LDP MSK , LOAD DATA PAGE POINTER 
PUSHF RO ; SAVE AS FLT. PT. F = (1t1\) * 2"E 
POP RI ; mCH BAQ( AS INTEGER 
XOR MSK,RI • C!l'PlEIIENT E & 11 BUT NOT SIGN BIT 
PUSH RI • SAVE AS INTEGER, AND BY MAGIC ... 
POPF RI • RI (= X[O] = (1-11f2) * 2't-E, 
POP OP , UNSAVE lIP 



~ NEWTON ITERATION FOR: VIXI • X - I/F • 0 ... 

g MPVF RI,RO,R4 , R4 (. F • X[O] 

~ SUBRF TWO,R4 , R4 (. 2 - F • X[Q] 

Q. MPYF R4,RI , RI (. XCIl • X[O] • 12 - F • XCO]I 

g' rlPYF RI,RO,R4 , R4 (. F • xm 

.s;, SUBRF TWO,R4 , R4 (. 2 - F • X[I] 

MPYF R4,RI , RI (. X[2] ': XII] • 12 - F • XlllI 

~ MPYF RI,RO,R4 , R4 {= F • X[2] 
;::: 
Q. SUBRF TWO,R4 , R4 (. 2 - F • X[2] 

g' MPYF R4,RI , RI (. XI3] • X[2] • 12 - F • X[2]1 

'" FOR THE LAST ITERATION: XC4]. 1X13] • II - IF' m]111 + X£3] 

~ ... RND RO,R4 , ROUND F BEFORE LAST MUL TIPL Y 

s.. RND RI,RO , RIIJND X[3] BEFORt MULTIPLIES 
~ MPYF RO,R4 , R4 {. F • X[3] • I + EPS 

~ FINISH ITERATION AND RETlilN 

~ pop RZ R2 (. RETlilN ADORtSS 
W 
C BUD R2 RETlilN (DELAYED I 

0 SUBRF 0NE,R4 R4 {= 1 - F • Xl3] = EPS 

C MPYF RO,R4 R4 (. X[3] • EPS 
ADIF R4,RI,RO RO (= XI4] • 1X13]HI - 1F<X[3]111 + x[3] 

N 

:8 

HHHffHHHHlflffUft**ff+fHfHtHH*****"*I**f**U 

• PROORAII: FDIV 

• WRITTEN BY: GARY A. SITTON 
GAS LIGHT SOFTWARE 
HOUSTON, TEXAS 
APRIL 1989. 

I FLOATING POINT DIVIDE FUNCTION: RO (. RO/RI. 

• APPROXIMATE ACCURACY: 8 DECItIAL DIGITS. 
INPUT RESTRICTIONS: RI !. 0.0. • 

I REGISTERS FOR INPUT: RO IDIVIDENDI AND Rl IDIVlSORI.' 
• REGISTERS USED AND RESTORED: DP AND SP. 
• REGISTERS AlTERED: RO-4. 
• REGISTERS FDR OUTPUT: RO IMTIENTI. 
• ROUTINES NEEDED: FPINV. 
• EXECUTION CYCLES IMIN, MAXI: 43 , 43. 
ftH***U**IHfffflnl********fIfIHfHH**UHHU***flf 

FDIV: 

EXTERNAL 'PROGRAM NAMES 

.GLOBL FDIV 

.GLOBL FPINV 

• TEXT 

START IF FDIV PROGRAM 

RND RO,R3 
LOF RI,RO 
CALL FPINV 
AND RO 
MPYF R3,RO 

RETS 

• END 

R3 (. AND X 
Rl (= Y 
RO (. l/Y 
ROiJND BEFDRE • 
RO (. X 

, RE~ 



w 
8 

;:.. 

~ 
~ 
~. 
.s;, 
~ ;:, 
Q. 
§' 
'" '0> ... 
s. 
'" 
~ 
f:2 
tv 
C o 
C 

f**H**fffffHfffff"****ffHffHHfffHHffffffIHHlffHHHtffHfff*HHlff 

PROGRA!: SMA THX. AS/! 

EXTENDED-PRECISION. FLOATING-POINT 14Q-BlTI MATH FUNCTIONS 

SMATHX.ASM CONSISTS OF THE FOLLOWING ROUTINES: 

SINX - COMPUTES A 9D SIN <Xl FOR ALL X IN RADIANS. 

COSX - COMPUTES A 9D COSINEIX) FOR ALL X IN RADIANS. 

EXPX - COMPUTES A 9D EXP I X) FOR ALL : X: =( SS. 

L/iX - COMPUTES AN SD L/iIX) FOR ALL X ) O. 

ATANX - COMPUTES AN eo ATANIX) FOR ALL X IN RADIANS. 

SQRTX - COMPUTES A 100 SQRTIX) FOR ALL X )= O. 

FPINVX - COMPUTES A 10D IIX FOR ALL X 1= O. 

FDIVX - COMPUTES A 100 XIY FOR ALL X AND ALl Y 1= O. 

FMULTI - COMPUTES A laD XlY FOR ALL X AND ALL Y. 

H**,*HIHfffHffflffflff**HHffffH*HfffHlfIfIIHfIHII*****HH*ff*HII* 

".'HfI*HH+HHfff**fff-lfff-tHfHHf+HHH-fH-HHHff 

• PROORAI\: SINX 

• WRITTEN BY: GARY A. SInON 
GAS Ll GHT SOFTWARE 
HOUSTON. TEXAS 
MARCH 1989. 

• EXTENDED PRECISION SINE FUNCTION: RO (= SINlRO). 

• APPROXIMATE ACCURACY: 9 !€WIAL DIGITS. 
INPUT RESTRICTIONS: NONE. 

• REGISTERS FOR INPUT: RO IARGII1ENT IN RADIANS). 
• REGISTERS USED AND RESTORED: OP AND $P. 
• REGISTERS ALTERED: MO, IRa, AND RO-7. 
• REGISTERS FOR OUTPun RO. 
• ROUTINES NEEDED: F1UTX. 
• EXECUTION CYCLES IMlN, MAXI: WI. 160. 
IHIIHHIfIIHHHfIHIHI**HffffffHlfftHHHHfIHff 

NRM2 
NRMI 

SHF2 
SHFI 

COF 

ACOF 

CON 

ACON 

EXTERNAL PROORIili NAMES 

.GLDBL SINX 
• GLOBL ECOSX 
• OLDBL FMum 

INTERNAL CONSTANTS 

• DATA 

SCALING COEFFS. FOR SINIX) 

• WORD 0000OOO6FH 
• WORD OFF22F9S3H 

; BOTTOM OF 21PI 
; TOP OF 2/PI 

POLYNOMIAL COEFFS. FOR SINIX) 

• WORD OOOOOOOA3H ; BOTTOM OF CI IPlI2) 
• WORD 00049QFDAH ; TOP OF CI IPlI2) 
• WORD OOOOOOODIH ; BOTTct1 OF C3 
• WORD OFFDAA2ISH ; TOP OF C3 
• WORD 00OOOO0E3H ; BOTTct1 OF C5 
• WORD OFC2335EOH ; TOP OF C5 
• WORD OFSE69754H ; TOP OF C7 
• WORD OF3280B2SH ; TDP OF C9 
• WORD 0E09997B4H ; TOP OF Cll 

• WORD COF ; ADORESS OF COEFFS. 

• FLOAT -1.0, 0.0, 1.0, 0.0 ; MAPPINO CONSTS. 

• WORD CON ; ADORESS OF CONSTS. 

• TEXT 
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SINX: 

ECOSX: 

START Of S I NX PROGRAM 

PUSH OP ; SAVE OP 
LDP @NRi11 ; LOAD DATA PAOE POINTER 

COSX ENTRY POINT 

SCALE AND MAP VARIABLE X 

PUSHf RO ; SAVE ORIGINAL X 
ABSf 00 ;OO(=:X: 
LDf @NRi1I,RI ; RI (= TOP II' 2/PI 
OR I!NRI12,RI ; OR IN BOTTCI1 Of 2/PI 
CALL FMULTX ; RO (= a:*2/PI 
FIX RO,IRO ; IRO (= INTEGER tlUADRANT G 
FLOAT IRO,RI ; RI (= FLOATING Gli\DRANT Q 

SUBf RI,RO ; RO (= X, -I ( X { I 
NEGf RO,R3 : R3 (= -x 
ADDI I,IRO ; R2 (= Q + I 
AND 3,100 ; IRO (= TABLE INDEX 
TSTB 2,IRO ; LOOI< AT 2ND LSB 
LDFNZ R3,OO ; If I THEN RO (= -x 
LDP ~ON ; LOAD DATA PAGE POINTER 
LDI @ACilN,ARO ; ARO -) CONST. TABLE 
ADDf ++AROIIRO),RO ; FINAL MAPPING, RO (= X + C 
NEGF OO,R3 ; R3 (= -x 
LDI ~Of,ARO ; ARO -} COEFF, TABLE 

EVALUATE TRWCATED SERIES 

LDF RO,RI ; RI (= X 
CALL FMULTX ; RO (= XH2 
LDF RO,RI ; Rl (= X**2 

MPYf *ARO-- ,RI, RO ; RO {= X**21C11 
ADDf *ARO-c,RO ; RO {= C9 + RO 

MPYF RI,OO ; RO (= X**2>1C9 + RO) 
ADDf *ARO-- ,RO ; 00 (= C7 + 00 

~nF RI,RO 00 (= XM2t(C7 + RD) 
LDF *ARO-- ,R2 R2 (= TOP II' C5 
OR *ARo--,R2 OR IN BOTTOM Of C5 
ADDf R2,RO RO (= C5 + RO 

CALL FIUTX RO (= X**2*(C5 + RO) 
LDf *ARO--,R2 R2 (= TOP (f C3 
OR *ARO--,R2 OR IN BOTTOI1 OF C3 
ADDf R2,RO 00 (= C3 + 00 

CAll FMULTX 
LDF *ARO-- , R2 
OR *AOO,R2 
ADDf R2,OO,RI 

TEST fOR X ( 0 AND RETURN 

NEaf R3,OO 
BRO fMULTX 
POPf AS 
LOfN R3,OO 
POP OP 

RO (= XH2*1C3 + 00) 
R2 (= TOP (f CI 
OR IN BOTTOI1 (f CI 
RI(=CI+RO 

00 (= X 
00 (= HRI = SINIX), (DELAYED> 
TEST ORIGINAL X 
IF X ( 0 THEN RO (= -x 
UNSIIVE OP 

RETURN OCCURS fROM fMULTX ' 
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• PflOORAI'\: COSX 

• IIRInEN BY: GARY A. SITTON 
GAS LIGHT SOFTWARE 
HOUSTOII. TEXAS 
iWlCH 1969. 

I EXTENIED PRECISIOII COSINE FOCTION: RO (= COS(ROI. • 

• APPROXlMTE ACClIlACY:.9 l£ClrilL DIGITS. 
INPUT RESTRICTIOIIS: NOlIE. 

I REGISTERS Fill INPUT: RO (ARGLIENT IN RADIMSI. 
I REGISTERS USED AND RESTORED: lIP MD SP. 
I REGISTERS ALTERED: MO, lRO. AND RO-7. 
• REGISTERS FIll ruTPUT: RO. 
I RruTII£S 1EElEI: ECOSX (SINXI. 
I EIECUTlOO CYCLES (nlN, Mil: 165, 165. 

• NOTE: USES SlFI AND SIF2 FRO'( SINX PflOORAI'I! 
HHffHlHllIlllllllIllIlllIllIlIlIlllHHHHHHHfHf 

EXTERNAL PflOORAI'I NAlES 

• GLOlIL COSI 
• GLOlIL ECOSl 

.TEXT 

START IF COSI PflOORAI'I 

COSI: 

PUSH lIP ; SA~ lIP 
LlIP _1 , LOAD DATA PAGE POINTER 

II!D ECOSI RO (= cosm = SIN(I'I, (!£LAYEDI 
LIF tslFl,RI Rl (= TOP IF PII2 
!XI tsIF2,RI III IN IIOITaI OF PII2 
AIIIF RI,RO RO (= I' = X + PII2 

RETIBI 0CClIiS FRO'( SINI (Ii..IAS FlU.TlI ! 

**ffHHHHflf****Hf+Hf***************HHfUfHHHH 

• PROGRAl1: EXPX 

• WRITTEN BY: GARY A. SITTON 
GAS LIGHT SOFTw.RE 
HOUSTON, TEXAS 
MARCH 1989. 

• EXTENDED PREC. EXPONENTIAL: RO (= EXP(ROI. 

• APPROXIMATE ACCURACY: 9 DECIMAL DIGITS. 
INPUT RESTRICTIONS: :RO: (= 88.0. 

• REGISTERS Fill INPUT: RD. 
• REGISTERS USED AND RESTORED: lIP AND SP. 
• REGISTERS ALTERED: ARO AND RO-7. 
• REGISTERS FOR OUTPUT: RD. 
• ROUTINES NEEDED: FMULTX AND FPIN~I. 
• EXECUTION CYCLES (nIN, MXI: 115 (RO (=0 I, 160. 
*HHffflfffHIHHHftHHHffHHHHHHHfffffHfHH 

ENRM2 
ENRMI 

C7 

AC7 

EXTERNAL PRDCoRAM NAI1ES 

.GLOBL ElPX 
• GLOiIL FMUL TX 
.GLOBL FPIN~X 

INTERNAL CONSTANTS 

• DATA 

SCALING COEFFS. FOR 2""X 

• WORD 00OOOO029H , IIOTI!l1 OF l/LN(21 
• WORD 0003SAA3BH : TOP OF I/LNt2I 

POLYNOMIAL COEFFS. Fill 2**-1, 0 (= X ( 1. 

• WORD OOOOOOOOOH , CO (1.0) 
• WORD OOOOOOOOAH , BOTIOM OF CI 
• WORD OFFCE8DEBH , TOP OF CI 
.WORD 00OOOOO6EH , BOTTOM OF C2 
.WORD OFD7SFDEDH , TOP OF C2 
.WORD OOOOOOO4bH ; BOTI!l1 OF C3 
• WORD OFB9CA833H ,TOPOFC3 
.WORD OF91D8CSbH ; TOP IF c\ 
• WORD OFbDIE7A9H ; TOP OF CS 
• WORD OF3IAA7D7H ; TOP OF Cb 
• WORD OEFC9BD9CH ; TOP OF C7 

• WORD C7 

• TEXT 

START OF ElPX PROGrulI1 
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PUSH II' ;S4M;1I' 
UP 1N:7 ; lOAD MTA PAGE POINTER -RO,R2 ;R2<=-X 
LIF RO,RI ; RI <= X 
UfII R2,RO ; IF X <OTIENRI <= IX: 
LIF IBHIl,RI ; RI <= Ta> 0' I/LNI21 
Ol _,RI , m IN BOTTaI 0' I/LNI21 
au FlU.TX , RO <= X = :x:tLN121 
FII RO,II3 , 113 <= I = INTEGER 0' X 
FlOAT R3,RI , RI <= FLT. PT. I 
SUIF RI,RO,RI , RI <= FROCTIOO 0' :·X:, 0 <= X ( I 
IEGI 113 , 113 <= -I 
LSH 24,113 , Ifl'IE -I TO EXP • 
PUSH 113 , S4M; AS IN!. 
POPF 113 ; 113 (= FLT. PT. 2 .... 1 
un IN:7,ARO , ARO -) COO'F. TABLE 
pa> II' , LtiSAVE II' 

EV!Il.lilTE TRltCATED SERIES 

If'iF IARO--,RI,RO , RO (= IIC7 
AllIIF IARO--,RO , RO (= C6 + RO 

If'YF RI,RO , RO (= X'IC6 + ROI 
AllIIF <ARO-,RO , RO (= a; + RO 

If'YF RI,RO ; RO (= XI-{CS + RO) 
AllIIF <MO-,RO , RO (= C4 + RO 

If'YF RI,RO ; RO (= Xf(C4 + RO) 
LIF IARO--,R4 , R4 (= TOP 0' C3 
m fARO-,R4 , m IN BOTTOM OF C3 
AllOF R4,RO ,RO(=eJ+RO 

If'YF RI,RO , RO (= lI(eJ + ROI 
LIF fARO-,R4 , R4 {= TOP 0' C2 
Ol 'ARO-,R4 , m IN SOTTIli'I OF C2 
AllIIF R4,RO , RO (= C2 + RO 

au Fl!UI.TX , RO (= X<lC2 + ROI 
LIF <ARO-,R4 , R4 (= TOP OF CI 
m 'ARO-,R4 , til IN BOTTOM OF CI 
AllIIF R4,RO , RO (= CI + RO 

au Fl!UI.TX , RO (= IIICI + ROI 

TEST FOR X < 0 AND RETURN 

LIF R2,R2 , TEST ORIGINAL -x 

BNO FPINVX 
ADDF IARO,RO,RI 
II'YF R3,RI,RO 
LDI1 RI,RO 

RETS 

IF -X ( 0 THEN RO (= 1/X, (DELAYEDI 
RI <= 2 .. -X = co + RO 
RO (= 2'<-11 + Xl TRIK. 
RO <= Flll /WITISSA 

, RETURN (IF t«l FPINVX BRANCHI 



W HHHfHffHftHftHffffffHffHtffff***ffff*ffflffffff* ACB .WffiI) CB 

~ • PIIOGRIIII: LHI • 
• TEXT 

~'UTTEN8Y: GARY. A. SlTT~ 
GAS LI GHT stf'TWARE STAAT OF LNX PROGRAII 
IIlJSTIlH, TEXAS 
MRCH 1989. LNX: 

• EllENlEII PREC. LIlGARITHi BASE E: RO (= LHIROI, LDF RO,RO , TEST X 
RETSLE , RETUfIN IiJW IF I (= 0 

• APPROXlIlATE ACClRACY: 8 IECIIIAL DIGITS. 
III'IlT RESTRICTiIJj5: RO ) O. O. SCALE VARIABLE I 

• REGISTERS F(Il 11I'IlT: RO, 

• REGISTERS USED AND 1IEST(IlED: lIP AND 51'. PUSH lIP , SAVE lIP 

• REGISTERS ~ TERED: ARO AND ROc7. LDP eACS : LOAD DATA PAGE POINTER 

• REGISTERS F(Il OOTP\lT: RO, PUSlf' RO , SAVE AS FLT. PT. 

• ROOTINES NEEIED: FlU.Tl. POP R3 , R3 (= INTEGER FORMAT 

• EXECUTION CYClES I"IN, 1lAx): 193, 193. ASH -24,R3 , R3 (= E = SIGNED EIP. 
FLOAT R3,RI , RI (= FLT. PT. E V~UE 
LDF @C0,R2 , R2 (= 1.0 

EI~_NAI£S llIE R2,RO , EIP. RO (= 0 11 (= X ( 2) 
SUBRF RO,R2 , R2 (= I - I 10 (= X ( 11 

.a.ra LHI LDF @lHR"I.RO , RO (= TIIP OF LHI21 
• m.oa. FlU. Tl (Il @lIIRI12,RO , (Il IN 8OTIOM OF LHI21 

~L FlU.Tl , RO (= E'LH121 
1NlERW. ClJj5TANTS LDF RO,R3 , R3 (= EflNI21 

LDI tACS,AAO , ARO -) COEFF. TABlE 
~ • DATA POP DP , UNSAVE lIP 

~ SClLINl COO'fS. F(Il LHlltXl EV~UATE TRUNCATED SERIES 

~ URI2 .IOID 0000000F7H , 8OTIOM OF LHI21 LDF R2,RI , RI (= I 
~ §. URU .IOID OFF317217H , TIIP OF LHI21 ~YF 'ARo-. RI, RO , RO (= x.es 

LDF fARO--,R2 ,R2(=TIIPOFC7 

~ 
po"YIDII~ COO'fS. f(Il U1lltXl, 0 <= I < I. OR tARO-,R2 , OR IN IIOTIOM OF C7 

ADDF R2,RO , RO (= C7 t RO 

~ CO .FlOAT 1.0 , CO 11.01 
!:: ~YF RI,RO , RO (= 1.IC7 + RO) ;: 

.IQUJ IIOOOOIIOFFH i IIOTIOM OF CI LDF 'ARO--,R2 , R2 (= TIIP OF Cb ~ 
CS· :IQUJ 1IFF7FFFC3H , TIIP OF CI OR fARO--.R2 , OR IN IIOITOM OF Co 
;: ,IQUJ 000000084H , IIOTIOM OF C2 ADDF R2,RO , RO (= Cb t RO 

'" .IQUJ OFE80107fH ,TllPOFC2 

'C' .IQUJ OOOOOOOIl'!ti ; IIOTI~ OF C3 ~YF RI,RO , RO (= 1.ICb + ROI 
.... ,IQUJ 0fE29E11fH ; TIIP OF C3 LDF 'ARQ-,R2 , R2 (= TOP OF C5 

So .IQUJ 00000009711 ;_OFC4 OR *ARO-,R2 ; OR IN IIOITOM OF C5 
~ .IQUJ ~13H ;TllPOFC4 ADOF R2,RO ; RO (= C5 + RO 

~ 
.IQUJ 00000004IH ; IIOTI~OFC5 

•• III'D2IIIDI2H ; TIIP OF C5 ~L FII.JLTX , RO (= XfIC5 + ROI 

~ 
.IQUJ 0000000E7H ; IIOTI~ OF Cb LDF 'ARO--,R2 , R2 (= TIIP OF C4 

N 
,IIIRI IJ'CIICC3'IH ,TllPOFCb OR tARo-,R2 , OR IN IIOITOM OF C4 

C ;IQUJ 000000043H , IIOTI~ OF C7 ADOF R2,RO , RO (= C4 + RO a .IQUJ 1fB130187H ; TIIP OF C7 
II .IQUJ IF8M:lI?IfH ; TIIPOFCS ~L FII.JLTX , RO (= 1.IC4 + ROI C 

LDF 'ARo-,R2 , R2 (= TOP OF C3 



~ (II 1IIRO-,R2 ,IIIINIIOTTOIIFCl 

g - R2,RO ,RO(=Cl+RO 

~ au. Flll.TX , 110 (. XIICl + 1101 

B. UF 1IIRO-,R2 , R2 (. TIP IF C2 
(II 1IIRO-,R2 ,IIIINIIOTTOIIFC2 

§ AIIF R2,RO ,RO(zC2+RO 

~ au Flll.TX , RO (= XIIC2 + 1101 

~ UF 1IIRO-,R2 , R2 (= TIP IF CI 
;: III 1IIRO-,R2 , III IN IIOTTOIIF CI 

B. - R2,RO ,RO(=CI+RO 

§ au Flll.TX , 110 (. XIICI + 1101 

'" 'Ci' AIIII IN SCAI£D EXPCIENT. .... 
So AIIF R3,RO , RO (= LNIXI + EtlNI21 

'" 
~ 
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PROORAII: ATANX 

I WRITTEN BY; GARY A. SITTEW 
GAS LIGHT SOFTWARE 
HOUSTOO, TEXAS 
ItARCIi 1989. 

EXTENIED PRECISIOO ARC TNroENT; 110 (= ATANlROI. 

I APPROXIItATE ACCL'lACY: 8 DECIIW. DIGITS. 
I Itf'UT RESTRICTIOOS: NEWE. 
I REGISTERS FOO Itf'UT: RO. 
I REGISTERS USED AND RESTIIIED: IP AND SP. 
I REGISTERS ALTERED: ARO, 1110, AND.Ro-7. 
• REGISTERS roo ruTPUTI RO lIN RADIANSI. 
I ROOTINES NEEDED' FItULTl, AND FDM. I 
I EXEtUTIOO CYCLES I"IN, MXI, 210 IIATANX:<=II, 332. I 

HfltHHHfftffHfHHtHflfHfHftHtHHtfff-HHHHII 

CI 

EXTERNAL PROORAN NAMES 

• GLOBL ATANX 
.GLOBL FItULTX 
.GLOBL FDIVX 

INTERNAl. COOSTANTS 

.MTA 

SCAlING COEFFS. FOR ATANIXI 

• WORD OOOOOOOSDH BOTIon IF -P1I4· 
.WCIlII OFFB6F0251 TIP IF -P1I4 
• WORD 0000000A2H IIOTIon IF PII4 
.WCIlII OFF49OFMH TIP OF PII4 
.IIORD OOOOOOOOOH SOTTon OF ZERO 
.WCIlII OSOOOOOOOH TIP OF ZERO 

POLYNonIAL COEFFS. FOO ATANIXI, -.1 (= X (= I, 

.WOOD OOOOOOOOOH ; TIP IF CI (1,01 

.IIIIRD 000OOOO6EH , SOTIO" OF Cl 
• WORD 0FEII55594H ; TIP IF Cl 
.IIORD OOOOOOOD9H ; IIOTTGn OF C5 
• WORD 1lFD4C88E4H ; TIP IF C5 
.IIORO OOOOOOOFFH ; IIOTIDn OF C7 
• WORD OFDEE8038H ; TOP IF C7 
.IIORO 000000056li ; IIOTTDn OF C9 
• WORD OFC5A3D83H ; TIP OF C9 
.IIORD 000000093H , IIOTIGn IF ell 
.WCIlII OFCE5CEeIIH ; TIP OF Cll 
.IIORO OOOOOOOBFH ; IIOTTDn OF ell 
• WORD OF82FCIFDH , TOP OF CI3 



W .1«lRD OfAFB9IFEH , TOP OF Cl5 ADIF R2,RO , RO (= Cl3 + RO 
~ Cl7 .1IIIlII Of73BD74AH , TIP Of Cl7 

tl'YF RI,RO , RO (= XHZ'ICI3 + ROl 
ACl7 .1IIIlII Cl7 L]f IARO--,R2 , R2 (= TOP Of ell 

00 'ARQ--,RZ , OR IN ronOll OF Cll 
.TEXT ADIF RZ,RO , RO (= Cll + RO 

START Of AlANX PROGRAIt au FnTX , RO (= IHZ'ICll + ROl 
LDF 'ARO--,R2 , R2 (= TOP OF C9 

ATANI' 00 fARG--,R2 , OR IN roTTCft OF C9 

SCALE VARIABLE X 
ADIF R2,RO , RO (= C9 + RO 

CALL FnTX , RO <= XHZtlC9 + ROl 
PUSH IP ,SAYEIP LDF tARG--,R2 , R2 <= TOP OF C7 
LIP 1AC17 , lOA1J OOTA PAGE POINTER OR tARO-,R2 ,mIN ronCft OF C7 
ABSF RO,R2 , R2 <= IX; ADOf RZ,RO ; RO (= C7 + RO 
5UBF 1e1,R2 ,R2(=:X:-I 
!LED SKIP , IF IX: ) I TI£N SCALE (InAYEDl au FIIlUI , RO (= IHZt(C7 + ROJ UF_ RO,R3 , R3 (= X lDF tARQ--,R2 , R2 (= TOP OF C5 
UF RO,RI , Rl (= X 

00 tARG--,R2 , OR IN roTTOI1 OF C5 
UlI O,IRO , lRO (= 0, POST SCALE INDEX ADDF R2,RO , RO (= C5 + RO 

SCALE Fill IX: ) I CALL FIIlI.TX , RO (= IHZt(C5 + ROJ 
1IF tARo--,R2 , R2 <= TOP OF C3 

PUSIF RO , SAYE X 
00 tARO-,R2 , OR IN ronCft OF C3 

ABSF RO,RI , Rl (= IX; 
ADDF R2,RO ,RO(=C3+RO 

AIIF IeI,RI , Rl <= IX: + I 
~ UF R2,RO , RO <= IX: - I CALL FI1I.ILTX ; RO (= XH2f(C3 + RO) 

~ 
au FDIYX _ , RO (= !iX: - lImx: + 11 

FINISH lP 
~ TEST Fill X' < 0 

~ ADDF fARO-,RO,RI , RI (= Cl + RO 
15' POPF R4 , !lET ORIGINAL X 

1IF R3,RO , RO (= I (SIGNEDl 
;:,; &D SKIP , IF I ( 0 TI£N RO <= -I' (InAYEDI au FIIlI.TX , RO (= ATANI!Xl = XI(1 + ROl 

~ 
UF RO,R3 , R3 <= X' 

NOP _!lROJ , ARO -) C (0,0, PI/4 III -P1/4J UF RO,RI , Rl <= I' 

~ stili 2,IRO , lRO <= -Z, IPII4J 
ADD IN POST SCALE YI<.UE C lING RETLIlN 

;:,; 
IEOf RO,R3 , R3 (= -X' 

POP R4 R4 (= RETI.IlN ADIflESS ~. stili Z,IRO , lRO <= -4, I-P1I4J 
BUD R4 RETURN IInAYEDJ 

;:,; LDF tARO--,RI Rl (= TOP Of C 
'" SIClPI au RlLTX , RO <= XH2 

00 tARO,RI OR IN ronCft OF C 'C> UlI 1AC17,ARO , ARO -) COO'F. TABLE 
ADDF RI,RO RO (= ATIIN!Xl + C .... I'U' IP , lNSAI'E IP 

So 
MLUllTE lRl.ICATED ((11111 SERIES <1> 

~ UF RO,RI , Rl <- XH2 

~ II'Yf __ ,RI,RO , RO <= XH2ft17 

tv NIIf 
__ ,RO 

, RO<=CI5+RO 

c 
RO <= XH2tICI5 + ROJ [3 IPYF RI,RO 

UF --,Ri R2 <= TIP Of Cl3 
C 011 

__ ,R2- OR IN _ Of Cl3 
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I IIIlmN BY' GIIRI' A. SITTIII 
GAS UGHT !iIFTWAAE 
HOUSTIII, 'TEXAS 
tIIRCH 1989. 

I APPROXIIlATE 1II:IlRICY. 10 IECIIIAL DIGITS. 
I 1II'1II RESTRICTIII6' RO ,.. 0.0. 
I IUISTERS FlII 1II'1II' RO. 
I IUISTERS USED AND R£Sl1IlED. IlP AND SP. 
I IUISTERS ALTEREDI RO-7. 
I I£lllSTERS FlII WTPUT' RO. 
I RIlITllES IEEIED' FIlLTX. 
I· EXEIlJTIIII C"/Q.fS I"IN, IIAX): 138, 138. 
"IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHHflllllllllllllllfH 

CNSTl 
CNST2 
CNST3 
CNST4 

EXTEIIIAl PROORAII NAI£S 

.GLOIL SllRTX 
• GLOIIL FIlL TI 

1_ CONSTANTS 

.DATA 

• SET 
.SET 
.FLOAT 
.FlOAT 

0.5 
1.5 
1.103553391 
0.7S033OOSI> 

, ADJJSTED 1.0 
, ADJUSTED SllRTIlI2) 

S/tSI( .IIlRD OFF7FFFFFH 

SORTX' 

.TEXT 

START OF SIlRTX PROGRAIt. 

LDF RO,R3 , TEST AND SAVE V 
RETSLE , RETURN /OJ IF V <= 0 

GET APPROXIIlATION TO IN. FOR V = U+K)f2"E 
AND 0 <= K < I, Fill E EVEN' x[0] = IH1I2)f2ft-EI2 
AND FlII E ODD' no] = SQRTUI2)'U-K/2)f2H-E/2 

PUSH 
LDP 
PUSHF 
I'(P 

lOR 
LDI 
LDI 

IlP 
ISI1SK 
RO 
R4 
@SltSI<,R4 
R4,RI 
R4,R5 

SAVE II' 
LOAD DATA PAOE POINTER 
SAVE V AS FlT. PT. V = U+K)f211E 
R4 <= v AS INTEGER 
R4 (= COll'LEltENT ALL SUT SIGN 
RI <= I H1/2)'2"-E 
RS <= RI 

LSH 
ASH 
PUSH 
f'(f'F 

LD£ 
LDF 
LSH 
LDFI'fj 

rl'VF 

8,RI 
-1,R4 
R4 
R4 
R4,RI 
lCNST3,R2 
7,R5 
1CNST4,R2 
R2,RI 

; RI (= RI EXP. REIIlVED 
; R4 (= R4 WITH -E12 EXP. 
; SAVE R4 AS INTEGER 
; R4 <= FlT. PT. 
; RI (= fl-IV2)12H-E12 
; Ri <= 1.1 ... Fill ODD E 
; ~ LSS OF E lAS SIGH) 
, IF E EVEN R2 <. O. 7B ... 
, RI <= COIRECTED ESTJIlATE 

GElERATE Vl2 IUSES rl'VF). 

rl'VF CNSTl, RO , RO (= Vl2 TRIJ'lC. 
LDI R3,RO , RO <= Vl2 All PREC. 

NEW11lI ITERATIOO FOR VIX) = X - VH-2 = 0 ... 

rl'VF RI,RI,R2. R2 <= x[0]H2 
rI'VF RO,R2 R2 <= IV/2) • X[OIH2 
SUBRF CNST2,R2 R2 <= 1.5 - IVl2) • x[0]H2 
rl'VF R2,RI RI <= XIll = X[OI * 11.5 - IVl2)'X[0]"2) 

rl'VF RI,RI,R2 , R2 <= XIllH2 
rl'VF RO,R2 , R2 <= IVI2) * x[IlH2 
SUDRF CNST2,R2 , Ri <= 1.5 - ·IVl2) • XII]1I2 
rI'VF R2,RI ,. RI <= x[2] = XIll * 11.5 - IVl2)*XIll"2) 

~VF RI,RI,R2 , R2 (= X12]1I2 
rI'VF RO,R2 , R2 (= IVl2) • X[2)1I2 
SUDRF CNST2,R2 , R2 <= I.S - (Vl2) • x[2]1I2 
~VF R2,RI , RI <= X[3] = X[2) • U.5 - (Vl2)1XI2]ff2) 

LDF RO,R2 , R2 (= Vl2 
LDF RI,RO , RO (= x[3) 
CALL FIt.l.TX , RO <= X[3)1I2 
LDF RI,R4 , R4 (= X13] 

LDF R2,RI , RI <= Vl2 
LDF R4,R2 , R2 <= x[3] 
CALL Flt.l.TX , RO <= IVl2) f X[3]1I2 
SUBRF CNST2,RO , RO <= I.S - (Vl2) • x[3)H2 
LDF R2,RI , RI <= X[3] 
CALL FItLlTX , RO <= x[4] = X[3] • U.S - (Vl2)fX[3)'f2) 

INVERT FINAL RESULT AND RETURN 

IIRD 
LDF 
I'(P 

NlP 

FMULTX 
R3,RI 
DP 

RO = SIlRTlV) = VtSllRTIl/V) IDELAYED) 
RI <= v 
ltlSAVE IlP 
DEAD CYCLE 

RETURN OCCURS FROM FlU. TX ! 
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HftffHHHfffHffHffHH*****HIU*HHHH*****Htflf 

• PROGRAII: FPINVX 

• IIUTTEII BY: GIi/lV A. SITTON 
GAS LIGHT SOFTI/ARE 
I4JUSTON, TEXAS 
I1ARCH 1989. 

EXTENDED PREC. FLT. PT. INVERSE: RO (= I/RO. 

• APPROXIMTE ACClIlACV: 10 DECII1AI. DIGITS. 
Itf'UT RESTRICTIONS: RO != 0.0. 

• REGISTERS Fill Itf'UT: RO. 
REGISTERS USED AND RESTORED: Il' AND SP. 
REGISTERS ALTERED: RO-I AND R4-7. 
REGISTERS Fill OUTPUT: RO. 
ROOTII£S ItEELED: FIU.TX, 

• EXECUTION CYClES ININ, MXII 76, 76. 
11.IIIII.J.I.tfHHHfHHfHHHHHHHHHfHfHflHH 

(J£ 

TIll 

l15li 

F1'INIIX' 

EXTERNAl. PROORAII ~ 

,Gl.O!IL FPINIIX 
,GlOII. F19JLTl 

INTERNAl. COOTIINTS 

,DATA 

.SET I,D 
• SET 2.0 

.1IIJllJ 0fF7FFFFFH 

.TEXT 

START IF FPINIIX _ 

UF RO,RO 
I£TSZ 

; TEST F 
; RETlRHDI IF F = 0 

OET _IllATION TO IIF. FIll F = I1+N) I 2HE 
lIND 0 <- " < I, USE: nOJ = 11-1112) • 2H-E 

PUSH 
LIP 
PIISIF 
I'll' 
XlIi 
PUSH 
IV'f 
I'll' 

Il' 
IIISK 
RO 
RI 
IIISK,RI 
RI 
RI 
lP 

SAVEll' 
LOAD DATA PAIi: POINTER 
SAlE AS FLT. PT, F = I1+H) I 2HE 
FETCH lIACl( AS INTEGER 
COfLEIIENT E ~ N BUT IflT SIGN BIT 
SAlE AS INTEGER, AND BY MGIC ... 
RI (= X[OJ = 11-11/2) I 2H-E, 
lNSA\E Il' 

NEWTON ITERATION FOR: VIX) = X - I/F = 0 ••• 

MPYF RI,RO,R4 R4 (= F I HO] 
SUBRF TWO,R4 R4 <= 2 - F I nOJ 
I1PVF R4,RI RI <= X[I] = HO] • 12 - F I X[O]) 

I1PYF RI,RO,R4 R4 (= F I X[I] 
SUBIIF TWO,R4 R4 <= 2 - F I XI I] 
I1PYF R4,RI RI <= X[2] = X[I] I 12 - F • X[I]) 

MPYF RI,RO,R4 R4 (= F I X[2] 
SUBRF TWO,R4 R4 (= 2 - F I X[2] 
MPYF R4,RI RI <= X[3] = X[2] • 12 - F I X[2]) 

FOR THE LAST ITERATION: X[4J = 1X[3] • 11 - IF I X[3]))) • X[3] 

CAll. FrI.IlTX 
SUBRF M,RO 
CAll. FMlUX 
ADDF RI,RO 

RETS 

.END 

RO <= F I Xl3] = I + EPS 
RO (= I - F • X[3] = EPS 
RO <= Xl3] I EPS 
RO (= X[4] = 1X[3ltil - IFlm]») + X[3] 

; RETURN 
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• IIIITlEJI BY. GARY A. SIT11II 
IMS UIlHT SIFTI/ME 
HIlISUII, 'TEXAS 
IIIIRCH 1989 • 

• EX1EIIED PlEISICW DIVIIE: RO (= RO/RI. 

• III'I'ROJlllAlE ACCtRACY: 10 IECIIIAl. DIGITS. 
• IlI'UT IIESlRICTIII6' Rl != 0.0. • 
• REGISTERS FCII IlI'UT: RO (DIVIIEND) AND RI (DIVISOR).' 
• REGISTERS USED AN) ~: II' AND 51'. 
• REGISTERS ALT8IED: RO-7. 
• REGISTERS FCII WTPIII: RO (QOOTIENT). 
• IWTIIES t£EIED: FlU.TX AND FPINVX. 
• EXmJTICW C'II:lES ("IN, IIAX): 107, 107. 
1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHtf 

FDIVX: 

EXTERNAL PROORAI1 NAIES 

.1l.OII. FDIVX 

.1l.OII. FPINVX 

.1l.OII. FlU.TX 

,TEXT 

START OF FDIVX PROORIIII 

LDF RO,R3 
LDF Rl,RO 
CALL FPINVX 
LDF R3,RI 
IIR FlU.TX 

R3 (= X 
Rl (= V 
RO (= I/V 
RI<= X 
RO (= XIV 

RE1IIlN OCCURS FRtII FlU. TX ! 

HHtH§HHfHffl •• tHHHfHHI**"IHf**HHHfIHHH 

t PROGRAII' FlU.TX 

WRITTEN BY, GARY A. SITTCW 
GAS LIGHT SlfTWARE 
IIlJSTON, TEXAS 
MARCH 1989. 

EXTENIED PRECISICW ItLlTIPLV' RO (= ROfRI. 

I APPROXlftATE IiXOOACV: 10 DECIftAL DIGITS. 
INPUT RESTRICTIONS: NONE. 
REGISTERS FOR INPUT' RO. 

I REGISTERS USED AND RESTORED' DP ~D 51'. 
I REGISTERS ALT8IED: RO AND R4-7. 
I REGISTERS FOR OUTPUT, RO • 
I ROUTII£S t£EIED, NINE. 
I EXECUTICW CVCLES (MIN, ftAX): 20, 20. 
fHHfHfHfHfIHfHffffHf,**"**HfflfffHltiHtHtIU 

FlIULTXI 

EXTERNAL PROORIIII NAtES 

.GLoa. FllULTX 

• TEXT 

START OF FIlULTX PROORIIII 

ABSF 
XOR 
ABSF 
I1PVF 
LDF 
ANON 
SUBRF 
I1PYF 
ADDF 
LDF 
ANON 
SUBRF 
Pl'YF 
ADDF 
I£GF 

RO,R4 
Rl,RO 
RI,R7 
R4,R7,R6 
R4,R5 
OFFH,R5 
R4,R5 
R7,R5 
Rb,R5 
R7,R6 
OFFH,R6 
R7,R6 
R4,R6 
Rb,R5 
RS,R6 

, R4 (= :XA: 
, RO (= SIGN INFO .. 
, R7 (= :XB: 
; R6 (= AlB 
, R5 (= :XA: 
, R5 (= A = XA - EAt2H-24 
, R5 (= EA12tt-24 
• R5 (= BlEAt2H-24 
; R5 (= AlB + BtEA'2"-24 
, R6 <= :XB: 
, Rb (= B = XB - EB'2H-24 
, R6 (= EBt2H-24 
, R6 (= AtEB*2H-24 
; RS (= :XAtXB: = AlB + (B*EAtA*EB)*2H-24 
, R6 (= - :XAIXB: 

TEST FOR IAIXB ( 0 AND RE1IIlN 

POP R4 
!IUD R4 
LDF RO,RO 
LDFN Rb,R5 
LDF R5,RO 

R4 (= RETURN ADDRESS 
RETtffl (DELAYED) 
TEST ORIGINAl.. (XA A XB) 
IF XAUB < 0 THEN R5 (= -:XAlXB: 
RO (= IAlIB 
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I 

'1 

PROGRAM: SI1ATHI.AS/1 

INTEGER 132-BITl I1ATH ROUTINES 

SI1ATHI.AS/1 CONSISTS Of THE FOLLOWING ROUTINES: 

ILOO2'- COIfUTES M = LOO2INl, N=( 2nM FOR USE WITH RAOlX 2 FFT 
PROORAIIS. 

IIlJlT - CM'UTES A 64-BIT PRODUCT Of TWO 32-BIT NtIIBERS. 

IDlY - CM'UTES THE QOOTIENT AND _INnER OF TWO 32-BIT NUllBERS. 

fHHHitH-HHHfHfHffHffHHHHfffHfHfHHfffHHffffHf**ffHffflffff 

IHHHlfHIHHH*******HIHHfHH***HIHHHHHflH 

• PROGRAi'I: lum 

• WRITTEN BY: GARY A. SITTON 
GAS LIGHT SOfTWARE 
HOOSTON, TEXAS 
I1ARCH 1989. 

I INTEGER LOG BASE 2: RO <= IINTEGERl LOG2IROl. 

I INPUT RESTRICTlONS: RO ) O. 
• REGISTERS FOR INPUT: RO. 
I REGISTERS USED AND RESTORED: SP. 
* REGISTERS ALTERED: lRO-l AND RO. 
* REGISTERS FOR OUTPUT: RO. 
I ROUTINES NEEDED: NONE. 
fffUfHflHHHHHfHHHHHHH*HHHHHHfHHHH 

EXTERNAL PROGRAM NAI1ES 

.Gl.OBL ILOG2 

.TEXT 

START OF ILOO2. PROGRAM 

ILOG2: 

LDI 1,IRO ; IRO (. I I IN IT. 11 
lOI -l,IRl ; IRI (. M IINIT. -11 

CMPI IRO,RO ; COMFARE ITO N 
LOOP: BOlD LOOP ; LOOP IF N ) I IDElAYEDl 

L5H 1,IRO ; I (= 2*1 
ADOI 1,IRl ; M = H + 1 
CMPI 100,00 ; COMPARE I TO N 

LDI IRl,OO ; 00 (= LOO2INl 
RETS ; RETURN 
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PIaMI. llU.T 

• IRlmN BY. GMY A. SJn(w 
GAS LIGfT S!F1WARE 
1«JI.ISl'(Jj.·lEXAS 
IIAROi 1989. 

llIlEiR 32 X 32 IU.TJPLY: RI, RO (= ROoRI. 
IEU.T IS TIE 64 BIT PROlX.tT (F 00 32 BIT lIi'UTS. > 

llFUT RESTRICTJ!»IS' N»IE. 
o REGISTERS Flll 1tf'UT1 RO AND RI. 
o REGISTERS USED AND RESTaD' SP. 
o REGISTERS ALTERED' ARO-I ANIJ RO-4. 
o. REGISTERS Fill OO!PUT. RI (UPPERI ANIJ RO (LOWERI. 
o ROUTIIES NEEIED. NOI£ • 
HHHHfHHHfllllllllllllllfHHHUHfHHfHUfHfff 

IIU.TI 

EXTERNAl. _ NArES 

.GLOIL linT 

.lEXT 

START (F llU. T PROOIW1 

XIIl RO,RI,ARO 
ASSI RO 
ASSI RI 

ARO (= SIGIU1 (RO<Rll 
RO (= IX: 
RI (= :Y: 

SEPARATE I1lIL TJPLIER AND IWL TIPLICAND IN TWO PARTS 

LDI 
LSH 
AND 
LSH 
AND 

-16,ARI 
ARI,RO,R2 
OFFFFH,RO 
ARI,RI,R3 
OFFFFH,RI 

ARI (= -16 (f(Il SHIFTSI 
R2 (= XI = UPPER 16 BITS (F 

RO (= XO = LOWER 16 BITS OF 
R3 (= YI = UPPER 16 BITS OF 
RI (= YO = LOWER 16 BITS OF 

CARRY OUT THE IU.TlPLlCATlOO 

"'YI RO,RI,R4 
ItPYI R3,RO 
"'YI R2,RI 
ADDI RO,RI 
tlPYI R2,R3 

PUT THE PROOOCTS TOOETHER 

LDI RI,R2 
LSH 16,R2 
CllPI O,ARO 

R4 (= XO<YO = PI 
RO (= XO<YI = P2 
RI (= XIfYO = P3 
RI (= P2+P3 
R3 (= XI>YI = P4 

R2 (= P2+P3 
R2 (= LOIIER 16 BITS OF P2+P3 
CHECK THE SIGN OF THE PRODLtT 

OONE' 

BGED IlOI£ 
LSH ARI,RI 
ADDI R4,R2,RO 
ADDC R3,RI 

IF )= 0 THEN 00'£ (DELAYED) 
RI (= UPPER 16 BITS (F P2+P3 
RO (= 110 = LOIIER !lORD OF THE PROOOCT 
RI (= WI = UPPER IIORD (F TIE PRODUCT 

NEGATE THE PRODUCT IF tI.J1BERS WERE (F OPPOSITE SIGN 

SUBRI O,RO • RO (= -110 
SUBRB O,RI , RI (= -WI (WITH B!IlROW) 

HETS ,RETURN 
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HHffffHfHllHHHfffH.HffHlfHfffffHtHHHHffU 

• PROGRM: IDIV 

• OIlITTEN Bn G/lRV A. SITTON 
GAS LI GHT S(FTWARE 
IOJSTON, TEXAS 
I1ARCH 1989. 

INTEGER 32 I 32 DIVllE: 00, RI {= RO/RI. 
• RESlL T IS A 32 BIT QUOTIENT AND I REMINDER I. 

INPUT RESTRICTIONS: RI != O. • 
• REGISTERS All IN'UT: RO (DIVIDEND! AND RI !DIVISOR!.' 
• REGISTERS USED AND RESTIJlED: SP. 
• REGISTERS AlTERED: lRO-I AND RO-3. 
• REGISTERS FOO OOTPUT: RO (IlOOTlENT! AND 

RI OREMINDERIi. 
• ROOTlt£S NEEIED: toE. 
tHtHHIIIII.I.I ••• IIIIIIIIIHHHffHftHHfHfHfHfH 

IDlY: 

EXTERIW. _ NAItES 

.1i.OBL IDIV 

START IF IDlY _ 

.TEXT 

DETERIIII\E SIGN IF RESlLT. GET ABS!l.UTE YAlUE OF II'ERANDS. 

XOO RO,RI,R2 
ASSI RO 
ASSI RI 

TEST IN'UT VAl\£S 

Cll'1 RO,RI 
IIIUD ZERQ 

R2 {= SIGNUIt (RO/Rli 
RO (= IXI 
RI (= IVI 

: ct»IPARE DIYlSOR TO DIVIDEND 
; IF Rl ) RO TlEN RETIJ1N 0 (DELAVED! 

-'IZEtfERIIHDS. USE DlFFEREta IN EXPONENTS AS 
SHIFT CWIT FOO DIYISOR, AND AS REPEAT CWIT FOO SUIIC. 

FlOo\T RO,R3 R3 (= NlRIIAlIZED DIVIDEND 
PIJSIF R3 PUSH AS FLOAT 
p(I' IRI IRI (= INTEGER 
LSH -24,IRI IRI (= DIVIDEND EXPfIIENT 

FlOo\T RI,R3 R3 (= NIlM.IZED DIVISOR 
PIJSIF R3 PUSH AS FlOo\T 
p(I' IRO IRO (= INTEGER 
LSH -24,IRO IRO (= DIVISOR EXPONENT 

ZERO: 

SUBI IRO,IRI ; IRI (= DIFFERENCE IN EXPONENTS 
LSH IRI,RI ; Rl (= ALIGNED DIVISOR WITH DIVIDEND 

DO IRl+l SUBTRA<T L SHIFTS. 

RPTS IRI 
SUSC RI,RO 

; REPEAT IRI+l T1r1ES 
; RO (= 2'(RO - Rli 

IlASK OFF THE LOWER IRl+l BITS IF RO 

LOI RO,RI 
SUBRI 31,IRI 
LSH IRl,RO 
NEGI lRI 
LSH IRI,RO 
SUBRI -32,IRI 
LSI! IRI,RI 

RI (= lREI1AINDER, IlOOTlENr: 
IRI (= 32 - (IRl+lI 
RO {= RO SHIFT LEFT IRI 
IRI (= -IRI 
RO {= lXi/IVI 
IRI (= -(JRI+D 
RI (= lREI1AINGERI 

CHECK SIGN AND NEGATE RESlLT IF I\ECESSARY. 

NEGI 
ASH 
LOINZ 
Cll'1 
RETS 

RO,R3 
-31,R2 
R3,RO 
O,RO 

RETURN ZERQ QUOTIENT. 

LOI 
LOI 
RETS 

• END 

RO,RI 
0,00 

R3 (= -1Xi/IVI 
TEST SIGN BIT 
IF SET RO {= -RO 
SET STATUS FROII RESULT 
RETURN 

RI (= lREI1AINDERI 
RO (= ° IlOOTlENT 
RETURN 
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1IIIIIIIIIIIIIIIIIHHHfffHfHffHffHHHfffHHHfHffflfHffHfffflHHH 

PROORIIIU '<'{CTal.ASII 

<'{CTOO UTILITIES 

s<'£CTal,ASII COOSISTS OF THE FlllIlllINJ ROOTlNES: 

tCaMJLT - IN-PLACE COIi'UTATIOO OF TI£ CM'lEX 'lECTOO PRODlCT OF Til:) 
COf'LEX ARRAYS USIMl 11£ Dl'IPLEX ClIDJIlATE OF TI£ SEC1JHD 
fImIY. 

tCINI.l.T - IN-PLACE CIllf'UTATlOO OF TI£ aJIII'LEX VECTOR PRODUCT OF TIIJ 
COIIPLEX fImIYS. 

tCBlTREV - IN-PLACE BIT REVERSE PERltJTATlON 00 A CIlI1Pl.EX fImIV WITH 
SEPARATE REAL lIND IIWlINARY fImIVS • 

tFMIEEE - IN-PLACE FAST CONVERSIOO OF AN IEEE ARRAY TO A TMS320C30 
fImIV. 

tTOIEEE - IN-PLACE FAST CONVERSIOO OF A TIIS32OC30 ARRAY TO AN IEEE 
fImIY. 

t<,{CltULT - IN-PLACE I1lUIPLIES A CONSTANT TIMES AN ARRAY. 

tCONMOV - IIJVES IFILLSI A CONSTANT INTO AN ARRAY. 

IVECMOV - MOVES ICOPIES) lIN ARRAY INTO ANOTI£R ARRAV. 

fHffHlfHHHfHffHHHffHHHlfHHHlfffftHHHfHffllfllffHIHHIHff 

ffffl**HfffffUHffHffffflffffltftHlffHHffHffHH+HfH 

• PROGRAM: tCffil1UL T 

• WRITTEN BY: GARY A. SITTOO 
GAS LIGHT SOFTIIARE 
HOUSTOO, TEXAS 
FEBRUAAY 1989 • 

• COIIPLEX IN-PLACE FREIllfNCY DlJllAIN CORRELATlOO: 
t CI (= CI t C1JHJIC2) , CI II'ID C2 ARE BOTH OF LENlTH 
t N, AND CI = !Xl + ItmAND CONJI(2) = IX2 - IIV21. 

t I1CORPill T ENTRY PRCTOCOL: 
VARIABLES Fill ItpUT: 

$IAD! -> WOl, SIAD2 -) mOl, 
SSAD! -) X2[01, SSAD2 -) Y2[01, 
$N = N ILENGTHI, SPARItS = DATA PAGE. 

[NPUT RESTR[CTlOOS: $N ) O. 
REGISTERS ALTERED: RC, 01', AlID-3 II'ID RO-3. 

t RCDRMUL T ENTRY PRCTOCOL: 
REGISTERS FOR INPUT: 

ARO -) mOl, ARI -) mOl, AR2 -) X2COl, 
AR3 -) Y2[01, RC = N ILENlTHI. 

INPUT RESTRICTIONS: RC ) O. 
REGISTERS ALTERED: Re, ARO-3 AND RO-3. 

• REGISTERS USED lIND RESTORED: SP. 
t REGISTERS FOR OUTPUT: MlNE. 
• RCUTINES NEEDED: NOtt:. 
IHln**fHfHH**fffHnl*'*HHfHl-tnHHHftfffHlfflffl:lH 

EXTERNAL MEMORY ADDRESSES 

.GLOIl. SPARMS ; PARAMETER PAGE ADDRESS 

EXTERNAL VARIAlI.E AOOOESSES 

.GLOIl. $N ARRAY LENGTH N 
.GLOBL SIAD! ADDRESS OF I NPUT X! 
.GLOIl. SIAD2 ADDRESS OF I NPUT VI 
.GLOBL SSAD! ADDRESS OF INPUT X2 
• GLOBL S5AD2 ADDRESS OF Uf'UT V2 

EXTERNAL PROORA/1 NAtES 

.GLOBL MCORtlULT : MEtolV ENTRY FOR COMPLEX ICORR.I MULTIPLY 

.GLOBL ReORMULT ; REGISTER ENTRY Fill CCWLEX ICORR.I I'I..lTlPLY 

START OF PROGRAM AREA 

• TEXT 

I1EI1ORY BASED PARAMETER ENTRY 
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I'ICORItULT: 

LOP HPARIIS LOAD DATA PAGE POINTER 
LDI @SN,Re Re (= N 
LDI HIADI,ARO ARO -) mOl 
LDI HIAD2,ARI ARI -) mOl 
LDI HSADI,AR2 AR2 -) X2[0) 
LDI @SSAD2,AR3 AR3 -) 1'2[0) 

REGISTER BASED PARAl£TER ENTRY 

RCtRtJl.T: 

IllI1PLEX ItLTIPLY lCORRELATIONI LOOP 

:: 

UXPJ: 
:: 

SUBI 

RPTB 
~YF 

~YF 

~YF 

ADIF 
~YF 

SUBF 
STF 
STF 

RETS 

I,Re 

LOOPI 
fARO, fAR2,RI 
fARI, fAR3,R3 
lAR2++,fARI,RO 
RI,R3,R2 
fARO, fAR3++ ,RI 
RI,RO,R3 
R2,fARO++ 
R3,-lAR1++ 

;Re(=N-I 

; REPEAT 8I.OCK N mEl> 
; RI (= lI[JlIX2IIl 
; R3 (= YJ[J)IY2IIl 
; RO (= Yl[JlU2IIl, IOCR. AR2 AND •• , 
; R2 (= XJ[J)1X2IIl + YJ[J)IY2[I) 
; RI (= XlIIHY2m, IOCR. AR3 
; R3(= YJ[J)IX2IIl - Xlm1Y2[Jl 
; Xl[ II (= R2, IOCR. ARO AND.,. 
; YI[Jl (= R3, IOCR. ARI 

; RETlI\N 

t-UUHItHIHHH.fHHHfHHltHHHHIHHUHHfIHHHHf 

• PROORAI1: fCOO~lLT 

• OIlmEN BY: GARY A. SITTON 
GAS LIGHT SOFTWARE 
IIlUSTON, TEXAS 
APRIL 1989. 

I CGI1I'LEI IN-PLACE FREIlIDCY OOI'IlIN CGNVG.UTION' 
I CI (= CI I C2, CI AND C2 ARE BOTH IF LENGTH 
I N, ANO CI = IXI + IIYII AND C2 = IX2 + IfY21. 

I ~PIIJI. T ENTRY PROTOCOl: 
VARIABLES FOR 11f'IJT' 

SIAD! -) mOl, SIAD2 -) mOl, 
SSADI -) 12[01, SSAD2 -) Y2[0), 
$N = N lLENGTH), SPARIIS = DATA PAGE. 

INPUT RESTRICTJ~' $N ) O •. 
REGISTERS ALTERED' Re, DP, ARO-3 AND RO-3. 

I RCONI1U. T ENTRY PROTDCQ' 
REGISTERS FOR INPUT: 

ARO -) mOl, ARI -) YIIO), AR2 -) X2[0), 
AR3 -) Y2[0), Re = N lLENGTHI. 

INPUT RESTRICTI~' Re ) O. 
REGISTERS ALTERED' Re, ARO-3 AND RO-3. 

• REGISTERS USED AND RESTORED: SP. 
I REGISTERS FOR OUTPUT: NIH:. 
I ROUTINES NEEIEJ. NIH:. 
HHfHHHHfHHHfHH-HfHfHHHHllllllllllllllllllllff 

EXTERNAL I'B'IllY ADmESSES 

.GlO81. SPAR!1S ; PARAI£TER PAGE ADmESS 

EXTERNAL VARIABLE ADmESSES 

.GlO81. $N 

.GlOBL SIADI 

.GlO81. SIAD2 

.GlOBL SSADI 
,GlO81. SSAD2 

ARRAY LENGTH N 
ADmESS IF IIf'IJT XI 
ADmESS OF IIf'IJT YI 
ADmESS IF IIf'IJT X2 
ADmESS IF INPUT Y2 

EXTERNAL _ NAI£S 

.GlO81. I1CONIU.T ; l1ElUlY ENTRY FOR C!II'LEX IC(JN, I ItLTIPLY 

.GlO81. Rrof1I.I.T ; REGISTER ENTRY FOR C!II'LEX (C(JN. I ItLTIPLY 

START OF _ AREA 

• TEXT 

PEI1IllY BASED PARrI£TER ENTRY 



::... 
g 
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~ 
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So 
'" 
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N 
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t.> ..... 
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1tC3fU.T: 

UP 
IlII 
IlII 
IlII 
IlII 
IlII 

I$PMIIS 
@SH,Re 
I$IADI,ARO 
I$IAlI2,ARI 
HSADI,AR2 
1$SAD2,AR3 

LOAD DATA PAGE POINTER 
RC (= N 
ARO -) mOl 
ARl -) mOl 
AR2 -) X2Wl 
AR3 -) Y2IOl 

REGISTER BASED PARAIETER ENTRY 

Rroft.lT: 

ClJl>LEX IU.TiPLY (CONVOLUTION) LOOP 

SUBI I,RC , RC (= N - I 

RPTB LOOP2 , REPEAT !lOCI( N TillES 
If'YF tARO, tAR2,Rl , RI (= Xl[ll'X2lll 
If'YF tARI, tAR3, R3 , R3 (= YllIl*Y2lIl 
If'YF IAR2++,tARI,RQ ,RQ (= YllIJfX2lll, INCR. AR2 AND ... 

:: SUBF R3,RI,R2 , R2 <= XllIlIX2lll - YllIlfY2lll 
If'YF tARO, fAR3++ , R 1 , Rl (= XlllllY2lll, INCR. AR3 
ADDF RI,RQ,R3 , R3 (= YllI]tX2[[J + XHIlfY2lIl 

UJ(P2: STF R2,tARO++ , XIlIl <= R2, INCR. ARO AND ... 

" STF R3,4AR1++ , Yllll (= R3, INCR. ARI 

RETS , RETURN 

HHHnfHHHfHf*H*ftHIHHl-H+HHfHffHHHfHHI 

f PROOlAII: fCBITREV 

WRITTEN BY: GAAY A. SITTON 
GAS LIGHT SOfTWARE 
HOUSTON, TEXAS 
MARCH 1m. 

f BIT RE~ERSE INDEX MAP TWO REAL AARAYS AS A SIIRE I 
I CD!fLEX ARRAY WITH THE SWAPPING DONE IN-PLACE. 
I XlIl, YlIl (-) XlJl, YIJl, WHERE J = BRII). 
• LENGTH OF ARRAYS N )= 4 IS ABSCLUffiY REQUIRED. 

f I1CBITREV ENTRY PROTOCOL: 
~ARIABLES FOR INPUT: 

SIADI -) XlOl, SIAD2 -) YEOl, 
$N = N (LENGTH), SPARI1S = DATA PAGE. 

INPUT RESTRICTIONS: $N )= 4. • 
REGISTERS ALTERED: RC, DP, IRQ, ARO-3 AND RO-3 •• 

• RCBITRE~ ENTRY PROTOCOL: 
REGISTERS FOR INPUT: 

ARO -) XlOl, ARI -) YIOl, RC = N (LENGTH). I 
INPUT RESTRICTIONS: RC )= 4. 
REGISTERS ALTERED: RC, IRO, ARO-3 AND RQ-3. 

* REGISTERS USED AND RESTORED: SP. 
I REGISTERS FOR ruTPUT: NONE. 
* ROUTiNES NEEDED: ~. 
IHHH*****H-HHIHIHfffHfHfHHHHHHHfHIHHH 

EXTERNAL tEIIORY ADORESSES 

.GLOBl SPARl1S , PARAMETER PAGE ADDRESS 

EXTERNAL VARIABLE ADDRESSES 

.GLOBl $N 

.GLOBL SIADI 
• GlOBl $1 AD2 

ARRAY lENGTH N 
ADDRESS OF INPUT X 
ADDRESS If INPUT Y 

EXTERNAL PROGRAM NllllES 

.GLOBL I1CBITREV ,IIE~Y ENTRY FOR CctlPlEX BIT REVERSE 

.GLOBl RCBITREV ,REGISTER ENTRY FOR COIIPlEX BIT REVERSE 

START OF PROGRAM AREA 

.TEXT 

MEMORY BASED PARAMETER ENTRY 

M<BITREV: 



w -0'\ 

::... 

9 
~ 
~ 
15' 
;:; 

<Q, 

~ 
;:; 

£t 
c 
;:; 

'" 'a> ... 
s-
o:. 

~ 
f2 
N 
<::> a 
<::> 

LOP 
LDI 
lOI 
LDI 

UPARMS 
@SN,Re 
@SIADI,ARO 
@SIAD2,ARI 

LOAD Il1TA PAGE POINTER 
RC (= N 
ARO -) ARRAY I 
ARI -) ARRAY Y 

REGISTER BASED PARAMETER ENTRY 

RCBITREV: 

lOI RC,IRO : IRO (= N 
SUBI 3,Re ; Re (= N - 3 
LSH -I,IRO ; lRO (= N/2 FOR BIT REVERSE 
lOI ARO,AR2 ; AR2 -J ARRAY I IBIT REV.) 
NP fAR2++IIRO)B : INCR. 8RIAR2) (OUTSIDE LOOP) 
NOP fARO++ ; INCA. ARO (OUTSIDE LOOP) 
lOI ARI,AR3 ; AR3 -J ARRAY Y (BIT REV.) 

00 BIT REVERSE SWAP ON !10TH ARRAYS 
SKIPPING THE OTH ~ N-IST ELEMENTS 

RPTB LOIJ'3 ; REPEAT LOOP N-2 TIMES 
Clf'I AR2,ARO ; COII'ARE AR2 TO ARO 
8GElJ LOO>3 ; IF ARD )= AR2, LOOP lDELAYED) 
NP fARl ++ ; INCA. ARI 
NOP 'AR3++(!RO)B ; INCA. 8RIAR3) 
UF 'ARO++,RO ; RO (= xm, INCR. ARD 

UF fAR2,R2 ; R2 (= XIJl 
UF fARl,RI ; RI (= vm 

" LDF fIIR3,R3 ; R3 (= YrJl 
STF RO, fAR2 ; x[Jl (= RO 

II STF R2, f-ARD ; ICll (= R2 
STF RI,fAR3 ; YIJl (= Rt 

:: STF R3, fARl ; YCll (= R3 
UO'3: NP fAR2++(!RO)B ; INCA. liR(AR2) 

RETS ; RETURN 

*lfttltfHHfftftfHHHfHHIH*HnHntHftHIfHHHH 

• PROGRAM: 'F11IEEE 

• WRITTEN BY: GARY A. SITTON 
GAS Ll GHT SOFTWARE 
HOUSTON, TEXAS 
iWlCH 1989. 

.' • CONVERT AN ARRAY OF IEEE FLOATING-POINT tI.l'l8ERS TO • 
• TMS320C30 FLOATING-f'OlNT FOONAT. ASSlI'lES NO: INF., • 
• NAN, 00 DENORMALlZED NlIMlIERS. 

• ~MlEEE ENTRY PROTOCOL: 
VARIABLES Foo INPUT: 

SIADI -J 1[0l, SN = N lLENGTH), 
SPARMS = DATA PAGE. 

INPUT RESTRICTIONS: $N J O. 
REGISTERS ALTERED: Re, OP, ARO--I ~ RD-t. 

• RFMlEEE ENTRY PROTOCOL: 
REGISTERS Foo Ilf'lfT: 

ARO -J x[ol, RC = N (LENGTH). 
INPUT RESTRICTIONS: RC J O. 
REGISTERS ALTERED: Re, ARD-I AND RD-I. 

• REGISTERS USED AND RESTORED: SP. 
• REGISTERS FOR OUTPUT: NONE. 
• ROUTINES NEEDED: NONE. 
HHHlffH**HHHHHHH-HHHHHfHHfHHffHHHH 

CTAB 

EXTERNAL I1EIIORY ADDRESSES 

• Gl.OBL SPARMS ; PAIW'£TER PAGE ADDRESS 

EXTERNAL VAAIABLE ADDRESSES 

.GLOBL $N 

.GLOBL SIADI 
; ARRAY LENGTH N 
; ADDRESS OF I NPUT X 

EXTERNAL PROORAIt NAtES 

• Gl.OBL MFMlEEE ; MEllJRy ENTRY Foo IEEE -J 'C30 WMRSION 
• GLOBL RFMlEEE ; REGISTER ENTRY Foo IEEE -J 'C30 ctmERSION 

CONSTANTS FOR !10TH CONVERSIONS 

• DATA 

• WORD OfFSOOOOOH 
• WOOD OFFOOO()()()!l 
• WORD 07FOOOOOOH 
• WOOD OSOOOOOOOH 
• WORD OSIOOOOOOH 
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TAIIA .I0Il) CTAB 

START OF _ MEA 

.TEXT 

_ SASEIl PAIW£JER ENTRY 

IflllEEE' 

UP - • LOAD DATA PAG£ POINTER 
L111 N.RC ; RC <= N 
L111 ISIADI,ARO ; ARO -) IEEE MAAY 

REGISTER SASEIl PAIW£JER ENTRY 

RRUEEE. 

SUBI I,RC ;RC<=N-I 
UP ICTAB ; lOAD DATA PAGE POINTER 
L111 ITAIIA,ARI ; ARI -) aJNSTANT TABlE 

IEEE -) 'C30 CONVERSION LOIP 

RPTB lOOP4 ; REPEAT lOOP N TIllES 
AND tARO, tARI,OO ; IIEPlACE FRACTIIl'l WITIl 0 
ADDI tARO,OO ; SHIFT SIGN AND EXPIIDT INSERTING 0 
L11IZ _1111,00 ; IF All ZERO, lOAD 'C30 0.0 
L111 tMo,Rl ; TEST ORIGiNAl NJ/1BER 
BGED lOOP4 ; IF >= 0, STm; rtJ1BER 10000YEDI 
SUBI _1121,00 ; REJ()YE EXI'tt£NT BIAS 0271 
PUSH 00 ; SA"" AS AN ItffEGER 
POPF 00 ; lJISAVE AS A FL T, PT. NItIIER 

NEGF 00 ; NEGATE 'C30 NJ/1BER 

lOOP4' STF RO,fARO++ ; STm; 'C30 tlI1BER, INCR. ARO 

RETS ; RETURN 

HHHfffHfHHfHHfffHffffHHfffHHffHHfHHHfH 

* _. *TOIEEE • 

< WRlmN BY' GARY A. SITTON 
GAS LIGHT SOFTWARE 
HOUSTON, TEXAS 
APRIL 1989, 

• CONVERT AN ARRAY OF TllS32OC30 FlOATING-POINT 
• tlI1BERS TO IEEE FlOATING-POINT FOR/1AT. ZERO 
• IS TIE 0Nl V SPECIAl CASE. 

• mOIEEE ENTRV PROTOCOL: 
VARIABlES FOR INPUT: 

SIADI -) X[Ol, $N = N IlENGTHl, 
SPIIRIIS = DATA PAGE • 

INPUT RESTRICTIIl'lS' $N ) O. 
REGISTERS AlTERED' RC, lIP, ARO-l AND RH. 

RTOIEEE ENTRY PROTOCil.' 
REGISTERS FOR INPUT' 

ARO -) X[OI, RC = N ILENGTIlI, 
INPUT RESTRICTIONS' Re ) O. 
REGISTERS AlTERED' Re, ARQ-I AND 00-1. 

• REGISTERS USED AND RESTORED' SP. 
• REGISTERS FIlR OUTPUT' NONE, 
• ROOTINES NEEDED. NONE. 

NOTE. <1OlEEE SHARES THE CTAB TABLE FR(II *FIIIEEE 
fHfffHHfHfHHfl-tHl-HfHHffHI-H4Hfff*fffHHfHff 

mOIEEE. 

EXTERNAl IIEIIllV ADORESSES 

• GLOBl SPARtIS ; PARAI£TER PAGE ADDRESS 

EXTERNAl VARIABlE ADDRESSES 

.GLOBL SN 

.GLOBL SIADI 
; ARRAY LENGTIl N 
; ADDRESS OF INPUT X 

EXTERNAl PROGRA" NMES 

.GLOBL mOIEEE ; I1EIOlY ENTRV FOR 'C30 -) IEEE CON\£RSION 
• GLOBl RTOlEEE ; REGISTER ENTRY FOR 'C30 -) IEEE CONI'ERSION 

START OF PROGRM AREA 

• TEXT 

~RY BASED PARMETER ENTRY 
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RTOIEEE: 

LOP 
LOI 
LOI 

HPARMS 
HN,RC 
@$iADI,ARC 

LOAD DATA PAGE POINTER 
RC {= N 
ARC -) 'C30 ARRAY 

REGISTER BASED PARAMETER ENTRV 

SUBI I,RC RC{=N-I 
LOP @CTAB LOAD DATA PAGE POINTER 
LOI eTASA,ARI ARI -) CONSTANT TABLE 

'C30 -) IEEE CONVERSION UXP 

RPTB LOOI'5 : REPEAT LOOP N TillES 
ABSF <MO,RO : TEST llU1ilERl 
LDPI HAR1I4l,RO , IF = 0, LOAD FAKE 0.0 
LSH I,RO , SHIFT OFF SIGN BIT 
PUSHF RO , SAVE AS A FLT. PT. 
LDP tARO,RI , TEST ORIGINAL N\.ItBER 
IlGED LOOPS , IF )= 0, STORE tUIIIER (DELAYEDl 
POP RO , UNSAVE AS AN INTEGER 
ADDI HAR1!2l,RO , ADD EXPONENT BIAS 027l 
LSI! -I,RO , ADJUST FOR SIGN BIT 

OR HAR1I3l,RO , r.£GATE IEEE IU1iIER 

UXP5' STI RO,<ARO++ , STORE IEEE tUllIER, INCR. ARC 

RETS , RE1LIiN 

**HHftHfHfffffH**HffHfHffHH*HffffHH ... ·HfHHHH 

• PROGRN1: *VECI1ULT 

• WRITTEN BV: GARV A. SITTON 
GAS Li GIlT SOFTWARE 
HOUSTON, TEXAS 
FEBRUARV 1989. 

f SCALAR - VECTOR IUTiPLY: xm {= XEIlfC, C IS A 
• CONSTANT AND THE ARRAY X IS OF LENGTH N )= I. 

• MCltH ENTRV PROTOCOL: 
VARIABLES FOR INPUT: 

SIADI -) XIOI, SN = N (LENGTHl, 
ICNST = C, IPARl1S = DATA PAGE, 

HAJT RESTRICTIONS: IN ) O. 
REGISTERS ALTERED: RC, DP, ARO AND RO-I. 

• RVECI1UL T ENTRY PROTOCOL: 
REGISTERS FOR I~UT: 

ARO -) xeOI, RO = C, RC = N (LENGTHl. 
INPUT RESTRiCTiONS: RC ) O. 
REGiSTERS ALTERED: RC, ARC AND RI. 

• REGISTERS USED AND RESTORED: SP. 
• REGISTERS FOR OUTPUT: NONE. 
• ROUTINES NEEDED: NONE. 
tHffHHtfffHfHUHfHHfffffHfUHfHHHfffHfHffHfH 

EXTERNAL IIEMORV ADORESSES 

• GLOBL IPARIIS : PARAMETER PAGE ADORESS 

EXTERNAL VARIABLE ADORESSES 

.GLOBL IN 
• GLOBL SCNST 
.GLOBL SIADI 

ARRAY LENGTH N 
ADDRESS OF CONSTANT C 
ADDRESS Of INPUT X 

EXTERNAL PROORM NAI£S 

• GLOBL IIIWI.I. T ,I1EIIllY ENTRY FOR SCALAR - VECTOR 11.1. TiPL Y 
,GLOBL RVECI1ULT ,REGISTER ENTRY FOR SCALAR - VECTOR IIl.TiPLY 

START OF PRIlMAII AREA 

• TEXT 

IEllJRY BASED PARAI1ETER ENTRY 

!VECI1ULT: 

LOP 
LOI 

HPARI1S 
HN,RC 

: LOAD DATA PAGE POINTER 
, RC {= N 
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YJ -10 

LDI 
UF 

KIADI,ARO 
KCNST,RO 

, ARO -) nOl 
,RO(=C 

REGISTER BASED PARAIIETER ENTRY 

R'IECItl.T: 

SKIP!: 

SUBI 2,RC 
"'YF RO,fARO,RI 
Cll'I O,RC 
lilT SKIPI 

RC(=N-2 
RI (= c.no] 
CIlIf'ARE RC TO 0 
IF RC ( 0 THEN SKIP LIXP 

SCALAR - VECTOR tIJl. TI PLY LIXP 

RPTS RC REPEAT INST. N-I TIMES 
",YF RO,HtARO,RI RI (= c.m+ll 
STF RI,>ARO 1m (= c.ml 

STF RI,'ARO , I[N-I] (= C'WI-!] 

RETS ; RETURN 

HtffHffHfHffffff**fHfftHHfHHIIIIIIIIIIIIIIHHHHH 

• PROGRAM: fCON/lO'l f 

WRImN BY: GARY A. SITT~ 
GAS LIGHT SOFTWARE 
HOUSTON, TEIAS 
FEBRUARY 1989. 

• SCALAR -) VECTOR i'IJVE: 1m (= C, C IS A 
• CONSTANT AND TIE ARRAY I IS OF LENGTH N. 

• I'ICOOI1OV ENTRY PROTOCOL: 
VARIABLES FOR INPUT: 

SIAD! -) nOl, $N = N (LENGTH), 
$CNST = C, $PAR/tS = DATA PAGE. 

INPUT RESTRICTIONS: $N ) O • 
REGISTERS ALTERED: Re, lIP, ARO, AND RO. 

• RCONMOV ENTRY PROTOCOL: 
REGISTERS FOR INPUT: 

ARO -) 1[01, RO = C, RC = N (LENGTH). 
INPUT RESTRICTIONS: RC ) O. 
REOISTERS ALTERED: RC, ARO. 

• REGISTERS USED AND RESTORED: SP. 
• REGISTERS FOR OUTPUT: NONE. 
• ROUTINES NEEDED: NONE. 
ffHHfffHfHHHI-HHHfH-tHfHHHffHHffHftHfHHHH 

MC~~MOV: 

EXTERNAL MEMORY ADDRESSES 

• GLOBL IPARHS ; PARAMETER PAGE ADDRESS 

EXTERNAL VARIABLE ADORESSES 

.GLOBL $N 

• GLOBL ICNST 
.GLOBL SIADI 

ARRAY LENGTH N 
ADDRESS OF CONSTANT C 
ADDRESS OF INPUT X 

EXTERNAL PROGRAM NAMES 

• GLOBL tK:ONHOV ; MEMORY ENTRY FOR CONSTANT TO VECTOR HOVE 
• GLOBL RC0III10V ; REGISTER ENTRY FOR CONSTANT TO VECTOR MOVE 

START OF PROGRAM AREA 

• TEXT 

MEMORY BASED PARAMETER ENTRY 

LOP 
lDI 

WARMS 
@IN,RC 

; LOAD DATA PAGE POINTER 
; RC (= N 
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RWftI'i. 

LDI 
LlF 

ISIADI,ARO 
IItNST,RO 

• ARO -) xtoJ 
,RO(=C 

REGISTER.BASED PMAIETER ENTRY 

SUBI I,RC ,RC<=N-I 

SCAUIR 10 '£Till I1IMO UXP 

RPTS RC 
STF RO, IARO++ 

RETS 

, REPEAT INST. N T1I£S 
,1m <= C 

,RETLIlN 

flfHHHfffftffHfHftHfHffHfffHHHffHfHHHfftHHH 

I PROORAI!' f\l:C/fJV 

• WRITTEN BY: GARY A. SITTON 
GAS LIGHT SCflWARE 
II1USTON, TEXAS 
FElIRUARY 1989. 

• VECTOR ~YE: ym <= 1!I1, 1= O, ... ,IH (N)= Il. 

I I1'IE~V ENTRY PROTOCOL: 
VAlUABLES Fill IIf'UT: 

$IADI -) I[OJ, $1AD2 -) Y[OJ, 
$N = N (LENGTHI, tPARI1S = DATA /'ME. 

INPUT RESTR[CTlONS' $N ) O. 
REGISTERS ALTERED: ftC, DP, ARO-I, AND RO. 

R'lECIIIl'I ENTRY PROTOCOL: 
REGISTERS Fal [1f'UT: 

ARO -) I[OJ, l1li1 -) Y[OJ, RC • N (LENGTHI. 
[NPUT RESTRICTIONS' RC ) O. 
REGISTERS ALTERED: RC, ARO-I, AND RO. 

I REG[STERS USfI) AND RESTtllEII: SP. 
I REG[STERS Fill OUTPUT: 10'£. 

I 

I ROOTiNES reDED' ruE. 
ffftHtHffffttHfHHHfffHHHHHflHHfffll.111111111111 

I1'IECIIIl'I' 

EITERI/AI.. I£IIIIlV ADDRESSES 

.GLOB!. tPARI1S , PARAI£TER PAlE ADDRESS 

EXTERNAL VAR[ABLE ADIIRESSES 

.GLOB!. $N 

.GLOB!. $IADI 

.GLOB!. $1AD2 

_Y LENGTH N 
ADDRESS OF IIf'UT I 
ADIIRESS IF IIf'IJT Y 

EXTERI/AI.. PROGRAIt NAItES 

.GLOB!. I1'IECIIlII 

.GLOB!. RVEOIJII 
, I£to!y ENTRY Fal VECTIIl 10 '£Till lIllIE 
, REG[STER ENTRY Fal '£Till 10 'IECTlJI lIllIE 

START OF _ MEA 

.Tm 

rEMRY BASED PARAI£TER ENTRY 

LOP 
LD[ 
LDI 

ISPARI1S 
m,RC 
ISIADI,ARO 

LOAD DATA PAlE POINTER 
RC <= N 
ARO -) X[OJ 
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LDI ISIAIl2,1IR1 , IIRI -) YIOI 

IEGISTER BIISED PARMETER ENTRY 

R'iEOIlYI 

SUBI 2,RC ,RC<=N-2 
Uf tMO++,RO , RO (= UOI 
Cll'I O,RC , ilII'ARE RC TO 0 
lILT Sl(IP2 I IF RC ( 0 TIEN Sl(IP LOOP 

IlECTII! 11M: LOOP 

RPTS RC , REPEAT INST. N-I TIlES 
Uf tMO++tRO , RO (= mill 
S1F RO,tARI++ , 11M: xm TO ym 

Sl(IP2: S1F RO,tARl , 11M: UN-II TO YIN-II 

RETS I RE11JIN 

.EIID 

tHHHfHffffHIIIIIIIIIIIIIIII.lllllllllltHiHHHHHHIIIIIIIIIIIIIIIIIII 

PROGRA": tfFT2. ASII 

RADIX 2 m ROOTINfS 

IfFT2.ASII CCIISISTS (F TI£ FIILLII/IM> ROOTINES: 

CFFFT2 - CIlI'l£)( DIF FmwARD RADIX ·2 m USING SEPARATE ~ lIND 
II1AGINARY ARRAYS lIND 314 CYCl£ SINE TABLE. 

I. CIFFT2 - COlt'LEX DIT INVERSE RADIX 2 FFT USING SEPARATE REAl lIND 
IIVIGINARY ARRAYS lIND 314 CYCl£ SUE TABLE IlXES t«lT ItnUlE 
THE liN SCILE FACTOR. 

ffffHftfHffHfftfffffHHHtfHHHfffHfHHtHffHfHHfHHlftHfffHtHf 
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HHUHHftffHHfHfHHHH**HHH**HfHHHfHIIHHHI 

I PROORAM: CFFFT2 

I WRITTEN BY' GARY A, SITTON 
GAS LIGHT SOFTWARE 
HOUSTON, TEXAS 
MRCH 1989, 

I SPECIAl VERSION USES 3/4 SIN!: TABLE LOOKUP WITH 
I TI£ PARAI'IETERS PASSED IN PREDEFIN!:D IIEi'IOOY LOCATIONS, 
I COIIPL£X RADIX-2 DIF FORWARD FFT FOR THE Tl1Sl2OClO, 
I THIS PROORAM ASSlI1ES NORML ORDERED DATA AS IJroT, 
I BUT LEAYES TI£ OUTPUT llaXED IN BIT REVERSED ORDER, 
I TWO POINTERS ARE USED FCll SCPARATE REAl AND IMAGINARY I 
I ARRAYS, 

I VARIABLES FOR IJroT: 
sIADI -) REAlIOl, siAD2 -) lMAGIOJ, 
$N = N ILOOTHI, $M = M ILOO2INII, 
SSItE -) SItE TABLE, WMMS = DATA PAGE, 

INPUT RESTRICTIONS: $N ). I, 
I REGISTERS AlTERED: RC, Q', IRO-I, ARo-7, AND RO-7, 
I REGISTERS USED AND RESTORED: SI', 
I REGISTERS FCll OUTPUT: NOtE, 
I ROOTlt£S t£EIaI: NOtE. 
HIIII""III'IIIIIIIIIIIIHflHfHHH-lltHIHHHHfH.Hff 

CFFFT2: 

EXTERNAl _ twES 

• GLOBL CFFFT2 : ENTRY POINT FCll EXECUTION 

EXTERNAl IEltORY ADDRESSES 

.GLOBL S511£ ; SINE TABLE ADCllESS 
• GLOBL WARMS ; PARAIETER PAGE ADDRESS 

EXTERNAl VARIABLE ADCllESSES 

.GLOBL $N 
,GLOBL $M 

, GLOBL SIAOI 
.GLIlIII. SIAD2 

,TEXT 

FFT LOOTH, N = 2**M 
" = LIll2INI )= 2 
REAl III'UT ARRAY AOCllESS 
IMAGINARY INPUT ARRAY ADCllESS 

STMT IF DIF FFFT PROORAM 

INITIAlIZE LiXJ> VARIABLES 

UI' 
!.DI -tSN, lAO 

; LDAD DATA PAGE POINTER 
; lRO (= NI IINIT, NI 

FLOOP: 

FIil.W 

LOI lRO,IRI IRI (= N 
LSH -2,IRl IRI (= N/4, OFFSET FOR COSIN!: 
LOI O,AR6 AR6 (= K IINIT, 01 
lOI IRO,R7 R7 (= NI 
LSH -I,R7 R7 (= N2 IINIT, NI2I 
lOI I,RS RS (= IE IINIT,I1 

OUTER LOOP 

ADDI I,AR6 K (= K + 1 
lOI @$IADI,ARO AR() -) XIOI 
ADD! R7,ARO,ARI ARI -) XILI 
LDI @$IAD2,AR2 AR2 -) YIOI 
ADOI R7,AR2,AR3 AIl3 -) YILI 
LOI RS,RC SETUP 1ST INNER LOO' REPEAT COONTER, 
SUBI I,Re RC lONE LESS THAN TI£ lESlRED II 

FIRST INNER LOO' !UNITY TWIDDLE FACTOR I 

RPTB 
ADOF 
SUBF 
ROOF 
SUBF 
STF 
STF 
STF 
STF 

FBLKI 
fARO,lARI,RO 
fARI,fARO,RI 
IAR2,IAR3,R2 
tARl, IAR2, R3 
RO, tAR0++IIROI 
RI,IARI++IIROI 
R2,1AR2++IIROI 
R3, fAR3++( IRO) 

PROGRAM EXIT TEST 

CMPI @$N,AR6 
RETSGE 

MAIN INNER LOOP 

LDI 2,AR7 
LDI I,ARO 
LDI I,AR2 
LDI @$SINE,AR5 

; REPEAT BLOCK IE THIES 
; RO (= WI + XILI 
; RI (= xm - XILI 
; R2 (= VIII + YILI AND .. , 
; R3 (= V!ll - YILI 
; xm (= RO, INCA. ARO AND .. , 
; XILI (= RI, INCR. ARI 
; Y III (= R2, INCA, AR2 AND, .. 
; YILI (= R3, INCR, AR3 

; COMPARE M TO K 
; IF K )= " TI£N IlET\Rl 

J (= 2, IPRE-INCREIlENTEDI 
ARO (= I IINIT. II 
AR2 (= I IINIT, II 
ARS (= SINTABllAl IINIT. IA = 01 

FlNLOP: ADDI RS,ARS ; AR5 -) SINTABlIA (= IA + IEl 
LDF fARS,R6 
ADDI AR5,IRI,AR4 
AOOI @$IADI,ARO 
ADDI @$IAD2,AR2 
ADDI R7,ARO,ARI 
ADDI R7,AR2,AR3 
LDI RS,RC 
SUBI I,Re 

; R6 (= SINIXI, IX = 121P1IN)fIAI 
; AR4 -) COSIXI 
; ARO -) xm 
; AR2 -} YIII 
; ARI -) XILI 
; AR3 -} YILI 
; SETUP 2ND INNER LIXJ> REPEAT COONTER. 
; RC lONE LESS THAN THE lESlRED II 

SECOND INNER LOO' 1000S TWIDDLE ROTATIONI 

RPTB FBLK2 ; REPEAT BLOCK IE TIMES 



;:.... SU!iF *MI, <MO, R2 

g 5IJBF tIIR3,tAR2,RI 
II'YF R2,Rb,RO 

~ :1 ADIF tAR2,tIIR3,R3 

'" II'YF RI,*M4,R3 
::to :: STF R3, IM2++! lROI Cl 
;::! SUIIF RO,R3,R4 

~ 
II'YF RI,R6,RO 

:: ADDF <MO, *MI,R3 

~ II'YF R2,<AR4,R3 
;::! II STF R3,*MO++IIROI 

B. ADIF RO,R3 

Cl FIiLK2' STF R3, *MI ++ I lRO I 
;::! II STF R4, IAR3++ II RO I 

'" ~ Cll'I . R7,AR7 .... 
S- IILTD FIN1.Cf 
<1\ LOI AR7,ARO 

~ 
LOI AR7,AR2 
ADDI I,AR7 

~ 
N IIRD FLOOP 
C LSI! I,RS a LOI R7,IRO 
C LSI! -I,R7 

END OF OUTER lOO' 

..., 
~ 

, R2 (= XT = XIII - XILI 
, RI (= YT = Y1I1 - YILI 
, RO (= XTtSIN AND ... 
, R3 (= YIII + Y!L1 
, R3 (= YTtCOS AND ... 
, YIII (= YIII + YILI, INCR. AIl2 
, R4 (= COStYT - SINIXT 
, RO (= SINtYT AND ... 
, R3 (= XIII + XILI 
, R3 (= eoslXT AND ... 
, XIII (= XIII + XILI , INCR. ARO 
, R3 (= eoslXT + SIN<YT 
, XILI (= eoslXT + SINIYT, INCR. ARI AND ... 
, YILI (= eoslYT - SINtXT, INCR. AR3 

, COMPARE N2 TO J 

IF J ( N2 TlEN LOOP IDELAYEDI 
ARO (= J 
AR2 (= J 
J (= J + I 

NEXT F'l STAGE IDELAYEDI 
IE (= 2f!E 
NI (= N2 
N2 (= N2/2 

tffHfHHf .. ***fUfHfHHfHffH .... HfftffHHfHfU .. fHHf 

• PROGRAM' CIF'l2 

I WRITTEN BY' GARY A. SITTON 
GASLIGHTSOFTIIARE 
HOUSTOO, TEXAS 
MARCH 1989. 

• SPECIAL VERSION USES 3/4 SINE TAIILE LOO<\JP WITH 
I THE PARAMETERS PASSED IN PREDEFINED NEI100Y LOCATIOOS. 
• CDNPLEX RADIX-2 DIT INVERSE F'l FOR THE TIIS32OC3Q. 

• THIS PROGRAM ASSUMES BIT REVERSED ORDERED DATA AS 
INPUT. BUT LEAVES THE OUTPUT INDEXED IN NORJ1AL 00lER. 

• TWO POINTERS ARE USED FOR SEPARATE REAl AND IIIAGINARY • 
f ARRAYS • 

• VARIABLES FOR INPUT: 
SIADI -) REAUOI. SIAD2 -) IIIAG[oJ, 
$N = N ILENGTHI, SH = H ILOO2INII, 
$SINE -) SINE TABLE, SPARMS = DATA PAGE. 

INPUT RESTRICTIONS' $N ) 1. 
f REGISTERS ALTERED: Re, DP, lRO-I, ARO-7, AND RO-7. 
I REGISTERS USED AND RESTORED: $P. 

• REGISTERS FOR OUTPUT: NONE. 
• ROUTINES NEEDED: NONE. 
fIHHH»fffHHHfHfltff**fffHHfHIHfHHHflffHfffff 

CIFFT2: 

EXTERNAL PROORAN NAMES 

.GlOBL (IFFT2 , ENTRY POINT FOR EXECUTION 

EXTERNii'. MEMORY ADDRESSES 

• GlOBL SS I NE : SINE TABLE ADDRESS 
• GlOBL $PARMS : PARAMETER PAGE ADDRESS 

EXTffi'W. VARIABLE ADDRESSES 

• GlOBL $N 

.GLOBL $N 

• rUBL SIADI 
• GLOBL SIAD2 

FFT LENGTH, N = 2'*H 
M = LOO2INI )= 2 
REAL INPUT ARRAY ADDRESS 
IMAGINARY INPUT ARRAY ADDRESS 

START OF DIT IFF! PROOR!iI1 

• TEXT 

INiTIALIZE LOOP VARIABLES 

LDP 
LDI 

@.?ARMS 
I!$~. IRO 

: LOAD DATA PAGE POINTER 
: "lRO (: N 



W LDI IRO,IRI IRI (= N MPYF *AR4, fAR3,RO ; RO (= COSJ.y(U, AND .•. 

~ LSH -2,IRI IRI {= N/4, OFFSET FOR COSINE 
" SUBf R3,R4,R2 ; R2 (= XT = COS*X(L) - SINfV(U 

LDI @$M,ARb ARb (= K lINn. MI MPYF Rb, 'ARI,RI ; RI (= SIN>l{L1, AND ... 
LDI I,R7 R7 (= N2 IINIT. II 

" SUBf R2, .ARO,R3 ; R3 (0 XIII - IT 
LDI IRO,RS R5 (= N ADDf RO,RI,R4 ; R4 (= YT = COSfYlLi + SIN.XILI 
LSH -1,R5 RS (0 IE IINIT. N/21 SUBF R4,.AR2,R3 ; R3 (0 Ytll - YT, AND ... 
LDI 2,IRO IRO (= NI lINn. 21 " STF R3, fARl H( lRO) ; XILI C= XIII - IT, INCR. ARI 

ADDF R2, 'ARO,R3 ; R3 (= XIII + XT, AND ... 
OUTER LOOP " STF R3,fAR3t+(IRO) ; VILI (= Ytll - n, INCR. AR3 

ADDF R4, .AR2,R4 , R4 (= VII I + VT 
ILOOP: LDI !$lADI,ARO , ARO -) 1101 IBLK2: STF R3, tAROHI IROI ; XIII (= XIII + IT, INCR. ARO AND ... 

ADDI R7,ARO,ARI ; ARI -) XILI " STF R4,'AR2++IIROI , VIII (o VIII + VT, INCR. AR2 
LDI mAD2,AR2 ; AR2 -) VIOl 
ADDI R7,AR2,AR3 , M3 -) VILI CMPI R7,AR7 ; CCMPARE N2 TO J 
LDI RS,RC ; SETUP 1ST INNER LOOP REPEAT COUNTER. 
SUBI I,RC , RC lONE LESS mAN THE DESIRED II BLTD IINW' ; IF J C N2 THEN LOOP IDELAVEDI 

LDI AR7,ARO ; ARO (= J 
FIRST I~ LOOP IUNITY TWIDDLE FACTOR I LDI AR7,AR2 , AR2 (= J 

ADDI I,AR7 ; J (= J + I 
RPTB IBLKI ; REPEAT BLOCK IE TI MES 
ADDf tARO, tARI,RO , RO (= XIII + XILI SKIP: SUBI I,ARb ,K(=K-I 
SUBF tARI, tARO, RI ; RI (= XIII - XILI eMPI O,ARb ; CCMPARE 0 TO K 
ADlF *AR2, >AR3, R2 , R2 (= VIII + VILI AND ... BGTD ILOOP , IF K ) 0 TI£N LOOP IDELAYEDI 
SUBF fM3, *AR2, R3 ; R3 (= VIII - VILI LSH -I,RS , IE (= IE/2 
STF RO, tARO++ II RO I ; XII I (= RO, INCR. ARC AND ... LDI IRO,R7 ; N2 (= NI 

I: STf RI,fARI++llROI , XILI Co RI, INCR. ARI LSH I,IRO , NI (= 2INI 

::.... 
IBLKI: STF R2, tAR2++1 IROI ; VI I I (= R2, INCR. M2 AND ... 
:: STf R3, fM3tt( IRO) , VILI (= R3, INCR. AR3 PROORAM EXIT POINT 

g 
CllPI @1II,ARb ,CCMPAREMTOK RETS ; RETURN 

~ BEQD SKIP ; If K = M THEN SKIP TWIDDLED LOOP 

B. • END 

§ MIN INI£R WIF 

<Q, LDI 2,AR7 , J {= 2, IPRE-INCREMENTEDI 
LDI I,ARO , ARO (= I lINn. 11 

~ LDI 1,M2 ; AR2 (= I IINIT. 11 
;:: LDI ISSIt£,ARS , ARS (= IA lINn. 01 

B. IIII.(P' ADDI RS,ARS , ARS -) SINTABIIA (= IA + IEl § 
Co 

LDF tARS,Rb , Rb (= SINIXI, IX = 12tPIINIfIAI 

'& 
ADDI ARS, IRI, AR4 , AR4 -) COSIXI 
ADDI mADI,ARO ; ARO -) XIII .., 
ADDI HIAD2,AR2 ; AR2 -) VIII 

S- ADDI R7,ARO,ARI ; ARI -) XILI 
~ ADDI R7,AR2,AR3 , M3 -) YILI 

~ 
LDI RS,RC , SETUP 2ND INNER LOOP REPEAT CIlIINTER. 
SlJBI I,RC , RC lONE LESS TIWl THE [{SIRED II 

~ 
SECOOl INNER LIXl' IOC(S TWIDDLE RDTATIOIII tv 

C a RPTB IBLK2 REPEAT BLOCK IE TIMES 
C tf'YF tAR4, tARI,R4 R4 {= CQStXILi 

tf'YF Rb,>AR3,R3 R3 {= SINfVILI 
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_: $lINALG.ASI1 

LINEAR ALGElIRA RO.JTlNES 

$lINALG.ASI1 CONSISTS OF TI£ F(llIlllIN; ROUTINES: 

<SOLUTN - S()LI'ES A WElL CONDITIONED SYSTEM OF LINEAR EIlUATlONS WITH 
~Y Nll'1IIER IF IEPENIJENT VARIABLE SETS. USES NO !DIAGONAL) 
PIVOTING WITH NORI1AL -PRECISION FLOATING-POINT MATH. 

<SOl.UTNX - S()LVES A WElL CONDITIONED SYSTEM OF LINEAR EIlUATlONS WITH 
~Y NUi'IIIER OF IEPENIJENT VARIABLE SETS. USES NO !DIAGONAL) 
PIVOTING WITH EXTENDED-PRECISION FLOATING-POINT MATH. 

fHfHHHfHfffffIHHHHnHHHUffIHffHHHffH**HfHUHUflf**it***** 
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, PROGRAM: 'SOLUTN 

, WRITTEN BY: GARY A. SITTON 
GAS LIGHT SOFTWARE 
HOUSTON, TEXAS 
MAY 1989. 

INORMAL PRECISION VERSION) 

• SOLVES A SYSTEM OF LINEAR EQUATIONS A<X = Y IN THE < 
• TABLEAU FORMAT B = AH, ~ M X N MATRIX. THIS 
, MEANS THAT A IS AN M X M SQUARE MATRIX IF COEFFI- < 
• CIENTS, AND -Y IS AN M X N-M RECTANGULAR MATRIX • 
• OF N-M VECTORS EACH HAVING M ELEI'CNTS, EACH OEPEN- , 
• DENT VARIABLE COLUMN VECTOR IS NEGATED AND APPENOED • 
• TO THE COEFFICIENT MATRIX A. THE SET OF N-M INQE- • 
, PENDENT SOLUTION VECTORS X WILL APPEAR IN PLACE OF • 

THE ORIGINAL APPENDED COLUMNS WHEN SOLUTN FINISHES. , 
• ROW MAJOR MATRIX STORAGE FORMAT IS ASSUMED PLUS 
• THE PROGRAM ASSUMES N } M ) I ANO BIO, 01 '= 0.0 
• SINCE THE METHOD USES DIAGONAL PIVOTING AND STARTS • 
• WITH BIO, 01. ANY PIVOT ELEMENT ( 10"-8 IN ITS 
• ABSOLUTE VALUE WILL IMPLY AN "ILL CONDITIONED" 
• SYSTEM OF EQUATIONS, I. E. NOT HAVING SUFFICIENT 
• LINEAR INDEPENDENCE, AND WILL RESULT IN AN INeOt!- • 
, PLETE SOLUTION. AN INOO1PLETE SOLUTION WILL BE 

INDICATED BY THE VALUE OF R3 = 0.0 ON EXIT, ELSE • 
• R3!= 0.0 AND EQUALS THE LAST PIVOT ELEMENT VALUE. • 

, MSOLUTN ENTRY PROToaJL: 
VARIABLES FOR INPUT: 

IIADI -) BIO, 0.1, $NROw = M, 
INCOL = N, $PARMS = DATA PAVE. 

INPUT RESTRICTIONS: N ) M ) I. 
REGISTERS ALTERED: Re, DP, ARO-7, IRO-I, 

ANn RO-7. 

• RSOLUTN ENTRY PROTOCOL: 
REGISTERS FOR INPUT: 

ARO -) BIO, OJ, ARI = M, AR2 = N. 
INPUT RESTRICTIONS: AR2 ) ARI ) 1. 
REGISTERS ALTERED: Re, ARO-7, IRO-I, AND RO-7. • 

• REGISTERS USED AND RESTORED: SP. 
• REGISTERS FOR OUTPUT: R3. 
, ROUTINES NEEDED: FPINV (SEE $MATH). 

• NOTE: COMMENTED OUT RND INSTRUCTIONS MAY BE ACTl- , 
.. VATED FOR ADDIT IONAL ACCURACY WITH LOSS OF SPEED. 

******fH*****************tii****t************************ 

EXTERNA, PROGRAM NAMES 



\j) • GLOBL I1S(LUTN I£nORV BASED ENTRY CALL FPINV ; RO (= -liBIK, KI 
N 
0'1 • 0l0Bl. RSa.UTN REGISTER BASED ENTRY RND RO ; ROUND INIJERSE 

• GLDBL FPINY RECIPROCIi. ROOTINE 
DIVIDE RlGiT PART OF Pll'OT ROW BY -PIVOT aEllENT 

EXTERNIi.. PARAltETER NAI£S 
ADDI AR3,IRO,AR7 ; AR7 -) BIK, KI .Gi.DBl _ 

; PARIiIETER SPACE ADDRESS LDI ARb,RC ; RC (= N-K-2 
,GLOBl fIADI ; POINTER TO MATRIX B, ADDRESS OF BIO, 0] 
.0l0Bl SIflOI ; NUI1BER OF !DIS IN"B, I'AI.lE OF " RPTB 0l00P ; REPEAT DIVIDE lOOP N-i<-l TIMES 
,OlOIL SNCOl ; NmBER OF cruJlNl IN B, VIWE OF N MPYF RO, f++/IR7 ,R2 ; R2 <= BIK, J]tH/BIK, Kll 

RND R2 ; ~ 't" TO ROLWD t 
INTERNlLW6TANTS DlOOP: STF R2,tAR7 ; BIK, J] <= R2 

.DATA START "It-INER lOOP II INDEll 

EPSN ,FlOAT 1,0£-8 ; SINWLAAITY CRITERION LDI O,IRI ; IRI (= I IINIT. 0) 
ZERO .SET 0,0 , SINWLAAITY FLAG LDI ARO,AR4 ; AR4 -) BIO, 0] 

START 5W/TN _ CI1PI lRO,lRI , COIf ARE I TO K 
llOOP: BEQ SKIP ; IF I = K Tl£N SKIP PIVOT Rill 

" ,TElT 
ca1PLETE PIVOTING OPERATION 

IEIU!Y BASED PARIiIETER ENTRY 
ADDI AR4,IRO,AR5 ; AR5 -) Bll, KI _: 
lDF • tAR5,RO , RO <= B1I, KJ 
LDI ARb,RC ; RC <= N-K-2 

lOP HPARIIS , lllAD DATA PAGE POINTER CI1PI I,RC ; COIf ARE RC TO I 
;:t... LDI ISIAIlI,ARO , ARO -) B10, OJ BlTD JUMP ; IF RC < I Tl£N t() RPTB IDElAYED) 

g LDI _,ARI , ARI <= " 
LDI 1tHOO..,AR2 ,AR2<=N SUBI I,RC , RC <= N-K-3 -~ ADDI AR3,IRO,AR7 ; AR7 -) BIK, JJ 

Q. REGISTER BASED PARAltETER ENTRY MPYF RO, f++/IR7 ,RI , RI <= B1K, K+I]tm, KJ 

§' RSW/TNI START INNER-INNER lOOP (J INDEll 

~ 5ETU' lOOP REGISTERS RPTB JlOOP , REPEAT PIVOT lOOP N-K-2 TIMES 

~ MPYF RO,*++AR7,Rl , RI <= B1K, JJtBlI, K] 

;:s UP IEPSN , lOAD DATA PA(£ POINTER II ADDF RI, t++AR5, R2 ; R2 (= BlI, "J] + RI 

Q. LDI O,IRO , lRO <= K IINIT. 0) RND R2 ; REI'IOVE IIf- TO ROltID + 

~' LDI ARO,AR3 , AR3 -) BIO, 0] ..lOOP: STF R2,_ ; Bll, J] <= R2 
SUBI I,ARI , ARI <= 11-1 

~ 
LDI AR2,AR6 ,AR6<=N END OF INNER-INNER LOOP (J INDEX) 

SUBI 2,AR6 , AR6 <= N-2 .., ..lII(P: ADDF RI, t++MS, R2 ; R2 <= BlI, N-Il + RI 

So MAIN lOOP (K INtEll RND R2 ; R8t0VE .... n TO ROUND + 
<11 STF R2,_ , Bll, N-Il <= R2 

~ 
KlOOPI lDF HAR3(JRO),R3 ; R3 <= B1K, KJ, NEXT PIVOT 

ABSF R3,RO , RO <= 1R31 SKIP: CI1PI ARI,IRI , COMPARE I 10 "-I 

~ CII'F IEPSN,RO , COMPARE I B1K, Kli TO EPS BlTD IlOOP ; IF I < 11-1 lIEN lOOP (DElAYED) 

N ILT SINl , IF I B1K, KJ I ( EPS Tl£N STOP 
C ADDI AR2,AR4 AR4 -) Bll+I, OJ 

a COfI/TE RECIPIDA OF -PIVOT ELEIEirr ADDI I,IRI I <= 1+1 

C 
CI1PI IRO,IRI COMPARE I TO K 

-- R3,RO , RO <= -B1K, KJ 
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END IF IIt£R LOOP II INDEX) 

01'1 ARI,IRO 
Il.TD {(lOOP 

ADDI AR2,AR3 
ADDI I,IRO 
SUBI 1,AR6 

, cot'ARE K TO IH 
, IF K ( IH TI£N LOOP 

AR3 -) 8[K'I, 01 
K (= K'I 
ARb (= IHH 

END IF OUTER LOOP IK INDEX) 

RETS ,RETURN 

Slt«lIl.AR SYSTElI EXIT 

UF ZERO,R3 , SET "SINOULAR" FLAG 

RETS , RETI.IlN 
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I PROGRAI1: lSOLUTNX 

I IIlITTEN 8Y' GARY A. SITION 
GAS LI GHT SIl'TIIARE 
IIlUSTON, TEXAS 
MY 1989. 

IEXTENDED PRECISION VERSION) 

I SOLVES A SYSTEM IF LINEAR Ellll'ITlGNS AIX = Y IN TI£ I 
I TABLEAU FORMAT 8 = AH, AN M X N /lATRIX. THIS 
• MEANS THAT A IS AN M X M SIlUARE MATRIX IF COEFFI- I 
I CIENTS, AND -Y IS AN M X N-I1 RECTANGllAR /lATRIX 
I IF N-M.VECTORS EACH HAVING M ELEMENTS. EACH IE'EN- • 
• CENT VARIABLE CGLUHN VECTIll IS NEGATED AND A'I'ENIEl • 
I TO THE COEFF[ClENT /lATRIX A. TI£ SET IF N-I1 INIIE- I 
I PENDENT SOLUTION VECTORS X WILL APPEAR IN PLACE IF I 
• THE ORIGINAL APl'ENDED CGLUMNS IoIiEN SOLUTNX FINISI£S.' 
• ROW MAJOR MATRIX STORAGE FOR/IAT IS ASSUIIED PLUS 
• THE PROGRAM ASSUNES N ) M ) I AND 8[0, 01 != 0.0 
I SINCE THE METHOD USES DIAGOOAl PIVOTING AND STARTS • 
• WITH 8[0, 01. ANY PIVOT ELEHENT ( 1Ott-10 IN ITS • 
• ABSOLUTE VALUE WILL IMPLY AN "ILL CONDITIONED" 
• SYSTEM OF EIlIJATlONS, I. E. NOT HAVIOO SlfFICIENT 
• LINEAR INDEPENDENCE, AND WILL RESlA.T IN AN INCOII- • 
• PLETE SOLUTION. AN INCOHPLETE SOLUTION WILL BE 
• INDICATED BY THE VAlUE IF R3 = 0.0 ON EXIT, ELSE • 
• R3!= 0.0 AND EQUAlS THE LAST PIVOT ELEMENT VAllE. • 

• MSOLUTNX ENTRY PROTQCGL: 
VARIABLES FOR INPUT: 

IIADI -) BID, 01, INROW = M, 
INCOL = N. 'PARMS = DATA PAGE. 

INPUT RESTRICTIONS: N ) M ) I. 
REGISTERS ALTERED: RC, DP, ARO-7, IRO-I, 

AND RO-7. 

• RSOLUTNX ENTRY PROTOCOl' 
REGISTERS FOR INPUT: 

ARO -) 810, 01, ARI = M, AR2 = N. 
INPUT RESTRICTIONS: AR2 ) ARI ) I. 
REGISTERS AlTERED: Re, ARO-7, IRO-I, AND RO-) •• 

• REGISTERS USED AND RESTORED: SP. 
I REGISTERS FOR OUTPUT: R3. 
• ROUTINES NEEDED: FPINVX AND FMULTX ISEE $MATHXI. 

• NOTE: THE RND INSTRucnONS MAY BE REMOVED WITH 
• SOI1E LOSS Of ACCURACY BUT INCREASE IN SPEED. 
n****fU**H****fHfiUffU*************UHfUffUIHH 

EXTERNAL PROGRAM NAMES 
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• GLOBL IIS(LUTNX 
.!LOB!. RSOLUTNX 
.GLOB!. FPINVX 
.!LOB!. FI1ULTX 

IEMRY BASED ENTRY 
REGISTER BASED ENTRY 
RECIPROCAL ROUTINE 
tlULTIPLY ROUTINE 

EXTERNAL PARAI'IETER NMES 

.!LOB!. IPARIIS 

.!LOB!. SIADI 

.!LOB!. SNROW 

.!LDBL SNCOl. 

INTeRIW. CONSTANTS 

.DATA 

EPSNX .FLDAT I.Of-IO 
ZEROX .SET 0.0 

PARIiI£TER SPACE AD1llESS 
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Introduction 

The TMS320C30 is a high-speed, floating-point, digital signal processor. The TMS320C30s 
advanced interface design allows it to be used to implement a wide variety of system configura­
tions. Its two external buses and DMA capability provide a parallel 32-bit interface to byte- or 
word-wide devices, while the interrupt interface, dual serial ports, and general purpose digital I/O 
provide communication with a multitude of peripherals. 

This application report describes how to use the TMS320C30s interfaces to connect to vari­
ous external devices. Specific discussions include implementation of parallel interface to devices 
with and without wait states, use of general purpose I/O, and system control functions. All inter­
faces shown in this report have been built and tested to verify proper operation. 

Major topics discussed in this report are as follows: 

• System Configuration Options Overview 

• Primary Bus Interface 
- Zero Wait Interface to RAMs 
- Ready Generation 
- Bank Switching Techniques 

• Expansion Bus Interface 
- ND Converter Interface 
- D/A Converter Interface 

• System Control Functions 
- Clock Oscillator Circuitry 
- Reset Signal Generator 

• Serial Port Interface 

• XDSIOOO Target Design Considerations 

System Configuration Options Overview 

The various TMS320C30 interfaces allow connections to a wide variety of different device 
types. Each of these interfaces is tailored to a particular family of devices. 

Categories of Interfaces on the TMS320C30 

The interface types on the TMS320C30 fall into several different categories depending on 
the devices to which they were intended to be connected. Each interface comprises one or more 
signal lines that transfer information and control its operation. Shown in Figure 1 are the signal line 
groupings for each of these various interfaces. 
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Figure 1. External Interfaces on the TMS320C30 
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All of the interfaces are independent of one another and different operations may be per· 
formed simultaneously on each interface. 

The Primary and Expansion buses implement the memory mapped interface to the device. 
The external DMA interface allows external devices to cause the processor to relinquish the Prima· 
ry bus and allow direct memory access. 

Typical System Block Diagram 

The devices that can be interfaced to the TMS320C30 include memory, DMA devices, and 
numerous parallel and serial peripherals and I/O devices. Figure 2 illustrates a typical configuration 
of a TMS320C30 system showing different types of external devices and the interfaces to which 
they are connected. 
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This block diagram constitutes essentially a fully expanded system. In an actual design, any 
subset of the illustrated configuration may be used. 

Primary Bus Interface 

The primary bus is used by the TMS320C30 to access the majority of its memory mapped 
locations. Therefore, typically when a large amount of external memory is required in a system, 
it is interfaced to the primary bus. The expansion bus (discussed in the next section) actually com­
prises two mutually exclusive interfaces, controlled by the MSTRB and IOSTRB signals respec­
tively. Cycles on the expansion bus controlled by the MSTRB signal are essentially equivalent to 
cycles on the primary bus, with the exception that bank switching is not implemented on the expan­
sion bus. Accordingly, the discussion of primary bus cycles in this section applies equally to 
MSTRB cycles on the expansion bus. 

Although both the primary bus and the expansion bus may be used to interface to a wide vari­
ety of devices, the devices most commonly interfaced to these buses are memories. Therefore, de­
tailed examples of memory interface will be presented in this section. 

Zero Wait State Interface To Static RAMs 

For full speed, zero-wait state interface to any device, the TMS320C30 requires a read access· 
time of 30 ns from address stable to data valid. Because, for most memories, access time from chip 
select is the same as access time from address, it is theoretically possible to use 30 ns memories 
at full speed with the TMS320C30. This, however, dictates that there be no delays present between 
the processor and the memories. This is usually not the case in practice, due to interconnection de-
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lays and the fact that typically some gating is required for chip select generation. Therefore, slightly 
faster memories are generally required in most systems. If one level of reasonably high-speed (be­
low 10 ns in propagation delay) gating is used to generate chip select for the memories, 20 ns de­
vices may be used. 

Among currently available RAMs, there are two distinct categories of devices with different 
interface characteristics. These two categories are RAMs without output enable control lines (OE), 
which include the I-bit wide organized RAMs and most of the 4-bit wide RAMs, and those with 
OE controls, which include the byte wide and a few of the 4-bit wide RAMs. Many of the fastest 
RAMs do not provide OE control, and use chip select (CS) controlled write cycles to insure that 
data outputs do not turn on for write operations. In CS controlled write cycles, the write control line 
(WE) goes low prior to CS going low, and internal logic holds the outputs disabled until the cycle 
is completed. Using CS controlled write cycles is an efficient way to interface fast RAMs without 
OE controls to the TMS320C30 at full speed. 

In the case of RAMs with OE controls, the use of this signal can provide added flexibility 
in many systems. Additionally, many of these devices can be interfaced using CS controlled write 
cycles with OE tied low, in the same manner as with RAMs without OE controls. There are, howev­
er, two requirements for interfacing to OE RAMs in this fashion. First, the RAMs OE input must 
be gated with chip select and WE internally so that the device's outputs do not turn on unless a read 
is being performed. Second, the RAM must allow its address inputs to change while WE is low, 
which some RAMs specifically prohibit. 

The circuit shown in Figure 3 shows an interface to Cypress Semiconductor's CY7C186 
25 ns 8K x 8-bit CMOS static RAMs with the OE control input tied low and using a CS controlled 
write cycle. 
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Figure 3. TMS320C30 Interface to Cypress Semiconductor CY7C186 CMOS SRAM 
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In this circuit, the two chip selects on the RAM are driven by STRB and A23, which are 
ANDed together internally. The use of A2310cates the RAM at addresses OOOOOh through 03FFFh 
in external memory and STRB establishes the CS controlled write cycle. The WE control input is 
then driven by the TMS320C30 R/W signal, and the OE input is not used, and is therefore connected 
to ground. 

The timing of read operations, shown in Figure 4, is very straightforward since the two chip 
select inputs are driven directly. The read access time of the circuit is therefore the inverter propaga­
tion delay added to the RAMs chip select access time or tl + t2 = 5 + 25 = 30 ns. This access time 
therefore meets the TMS320C30s specified 30 ns requirement. 
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Figure 4. Read Operations Timing 
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During write operations, as shown in Figure 5, the RAMs outputs do not turn on at all, due 
to the use of the chip select controlled write cycles. The chip select controlled write cycles are gen" 
erated by the fact that R/W goes active (low) before the STRB term of the chip select input. Because 
the RAMs output drivers are disabled whenever the WE input is low (regardless of the state of the 
OE input) bus conflicts with the TMS320C30 are automatically avoided with this interface.The cir­
cuit's data setup and hold times (t1 and t2 in the timing diagram) of approximately 50 and 20 ns, 
respectively, also easily meet the RAMs timing requirements of 10 and 0 ns. 

Figure S. Write Operations Timing 
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If more complex chip select decode is required than can be accomplished in time to meet 
zero-wait state timing, wait states or bank switching techniques (discussed in a later section) should 
be used. 
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It should be noted that the CY7C186's OE control is gated internally with CS, therefore the 
RAMs outputs are not enabled unless the device is selected. This is critical if there are any other 
devices connected to the same bus; if there are "no other devices connected to the bus, then OE need 
not be gated internally with chip select. 

RAMs without OE controls can also be easily interfaced to the TMS320C30 using a similar 
approach to that used with RAMs with OE controls. If there is only one bank of memory implem­
ented, and no other devices are present on the bus, the memories' CS input may often be connected 
to STRB directly. If several devices must be selected, however, a gate is generally required to AND 
the device select and STRB to drive the CS input to generate the chip select controlled write cycles. 
In either case, the WE input is driven by the TMS320C30 R!W signal. Provided sufficiently fast 
gating is used, 25 ns RAMs may still be used. 

As with the case of RAMs with OE control lines, this approach works well if only a few banks 
of memory are implemented where the chip select decode can be accomplished with only one level 
of gating. If many banks are required to implement very large memory spaces, bank switching can 
be used to provide for multiple bank select generation while still maintaining full speed accesses 
within each bank. Bank switching is discussed in detail in a later section. 

Ready Generation 

The use of wait states can greatly increase system flexibility and reduce hardware require­
ments over systems without wait state capability. The TMS320C30 has the capability of generating 
wait states on either the primary bus or the expansion bus and both buses have independent sets of 
ready control logic. Ready generation is discussed in this subsection from the perspective of the 
primary bus interface, however, wait state operation on the expansion bus is similar to that of the 
primary bus, therefore these discussions pertain equally well to expansion bus operation. Thus, 
ready generation will not be included in the specific discussions of the expansion bus interface. 

Wait states are generated on the basis of the internal wait state generator, the external ready 
input (RDY), or the logical AND or OR of the two. When enabled, internally generated wait states 
effect all external cycles, regardless of the address accessed. If different numbers of wait states are 
required for various external devices, the external RDY input may be used to tailor wait state gener­
ation to specific system requirements. 

If the logical OR (or electrical AND since the signals are true low) of the external and wait 
countready signals is selected, the earlier of either ofthe two signals will generate a ready condition 
and allow the cycle to be completed. It is not required that both signals be present. 

The OR of the two ready signals can be used to implement wait states for devices that require 
a greater number of wait states than are implemented with external logic (up to seven). This feature 
is useful, for example, ifa system contains some fast and some slow devices. In this case, fast de­
vices can generate a ready signal externally with a minimum oflogic, and slow devices can use the 
internal wait counter for larger numbers of wait states. Thus, when fast devices are accessed, the 
external hardware responds promptly with a ready signal that terminates the cycle. When slow de­
vices are accessed, the external hardware does not respond, and the cycle is appropriately termi­
nated after the internal wait count. 

The OR of the two ready signals may also be used if conditions occur that require termination 
of bus cycles prior to the number of wait states implemented with external logic. In this case, a 

TMS320C30 Hardware Applications 341 



shorter wait count is specified internally than the number of wait states implemented with the exter­
nal ready logic, and the bus cycle is terminated after the wait count. This feature may also be used 
as a safeguard against inadvertent accesses to nonexistent memory that would never respond with 
ready and therefore lock up the TMS320C30. 

If the OR of the two ready signals is used, however, and the internal wait state count is less 
than the number of wait states implemented externally, the external ready generation logic must 
have the ability to reset its sequencing to allow a new cycle to begin immediately following the end 
of the internal wait count. This requires that, under these conditions, consecutive cycles must be 
from independently decoded areas of memory and that the external ready generation logic be capa­
ble of restarting its sequence as soon as a new cycle begins. Otherwise, the external ready genera­
tion logic may lose synchronization with bus cycles and therefore generate improperly timed wait 
states. 

If the logical AND (electrical OR) of the wait count and external ready signals is selected, 
the later of the two signals will control the internal ready signal, and both signals must occur. Ac­
cordingly, external ready control must be implemented for each wait state device in addition to the 
wait count ready signal being enabled. 

This feature is useful if there are devices in a system that are equipped to provide a ready sig­
nal but cannot respond quickly enough to meet the TMS320C30s timing requirements. In particu­
lar, if these devices normally indicate a ready condition and, when accessed, respond with a wait 
until they become ready, the logical AND of the two ready signals can be used to save hardware 
in the system. In this case, the internal wait counter can be used to provide wait states initially, and 
become ready after the external device has had time to send a not ready indication. The internal wait 
counter then remains ready until the external device also becomes ready, which terminates the 
cycle. 

Additionally, the AND of the two ready signals may be used for extending the number of wait 
states for devices that already have external ready logic implemented but require additional wait 
states under certain unique circumstances. 

In the implementation of external ready generation hardware, the particular technique 
employed depends heavily on the specific characteristics of the system. The optimum approach to 
ready generation varies depending on the relative number of wait state and non-wait state devices 
in the system and the maximum number of wait states required for anyone device. The approaches 
discussed here are intended to be general enough for most applications, and are easily modifiable 
to comprehend many different system configurations. 

342 

In general, ready generation involves the following three functions: 
1) Segmentation of the address space in some fashion to distinguish fast and slow devices. 
2) Generating properly timed ready indications. 
3) Logically ORing all of the separate ready timing signals together to connect to the physi­

cal ready input. 
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Segmentation of the address space is required so that a unique indication of each of the partic­
ular areas within the address space that require wait states can be obtained. This segmentation is 
commonly implemented in a system in the form of chip select generation. Chip select signals may 
be used to initiate wait states in many cases, however, occasionally chip select decoding consider­
ations may provide signals that will not allow ready input timing requirements to be met. In this 
case, coarse address space segmentation may be made on the basis of a small number of address 
lines, where simpler gating allows signals to be generated more quickly. In either case, the signal 
indicating that a particular area of memory is being addressed is normally used to initiate a ready 
or wait state indication. 

Once the region of address space being accessed has been established, a timing circuit of 
some sort is normally used to provide a ready indication to the processor at the appropriate point 
in the cycle to satisfy each device's unique requirements. 

Finally, since indications of ready status from multiple devices are typically present, the sig­
nals are logically ORed using a single gate to drive the RDY input. 

One of two basic approaches may be taken in the implementation of ready control logic de­
pending upon the state in which the ready input is to be between accesses. If RDY is low between 
accesses, the processor is always ready unless a wait state is required; if RDY is high between ac­
cesses, the processor will always enter a wait state unless a ready indication is generated. 

If RDY is low between accesses, control of full speed devices is straightforward; no action 
is necessary since ready is always active unless otherwise required. Devices requiring wait states, 
however, must drive ready high fast enough to meet the input timing requirements. Then, after an 
appropriate delay, a ready indication must be generated. This can be quite difficult in many circum­
stances since wait state devices are inherently slow and often require complex select decoding. 

If RDY is high between accesses, zero wait state devices, which tend to be inherently fast, 
can usually respond immediately with a ready indication. Wait state devices may simply delay their 
select signals appropriately to generate a ready. Typically, this approach results in the most efficient 
implementation of ready control logic. Figure 6 shows a circuit of this type which can be used to 
generate 0, 1, or 2 wait states for multiple devices in a system. 
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Figure 6. Circuit For Generation of 0, 1, or 2 Wait States for Multiple Devices 
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In this circuit, full speed devices drive ready directly through the '74AS2I, and the two fJip­
flops delay wait state devices' select signals one or two HI cycles to provide 1 or 2 wait states. 

Considering the TMS320C30's ready delay time of 8 ns following address, zero wait state 
devices must use ungated address lines directly to drive the input of the '74AS21, since this gate 
contributes a maximum propagation delay of 6 ns to the RDY signal. Thus, zero wait state devices 
should be grouped together within a coarse segmentation of address space if other devices in the 
system require wait states. 

With this circuit, devices requiring wait states may take up to 36 ns from a valid address on 
the TMS320C30 to provide inputs to the '74AS20s inputs. Typically, this allows sufficient time 
for any decoding required in generating select signals for slower devices in the system. For exam-
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pie, the 74ALS138 driven by address and STRB, can generate select decodes in 22 ns, which easily 
meets the TMS320C30s timing requirements. 

With this circuit, unused inputs to either the 74AS20s or the 74AS2I should be tied to a logic 
high level to prevent noise from generating spurious wait states. 

If more than 2 wait states are required by devices within a system, other approaches may be 
employed for ready generation. Ifbetween three and seven wait states are required, additional flip­
flops may be included, in the same manner as shown in Figure 6, or internally generated wait states 
may be used in conjunction with external hardware. If greater than seven wait states are required, 
an external circuit using a counter may be used to supplement the internal wait-state generator's 
capabilities. 

Bank Switching Techniques 

The TMS320C30's programmable bank switching feature can greatly ease system design 
when large amounts of memory are required. This feature is used to provide a period of time during 
which all device selects are disabled that would not normally be present otherwise. During this in­
terval, slow devices are allowed time to turn off before other devices have the opportunity to drive 
the data bus, thus avoiding bus contention. 

When bank switching is enabled, any time a portion of the high order address lines change, 
as defined by the contents of the BNKCMPR register, STRB goes high for one full HI cycle. Pro­
vided STRB is included in chip select decodes, this causes all devices to be disabled during this 
period. The next bank of devices is not enabled until STRB goes low again. 

Bank switching is not required during writes since these cycles always exhibit an inherent 
one-half HI cycle setup of address information before STRB goes low. Thus, when using bank 
switching for read/write devices, a minimum of half of one HI cycle of address setup is provided 
for all accesses. Therefore, large amounts of memory can be implemented without wait states or 
extra hardware required for isolation between banks. Also, note that access time for cycles during 
bank switching is the same as that of cycles without bank switching, and accordingly, full speed 
accesses may still be accomplished within each bank. 

When using bank switching to implement large multiple-bank memory systems, an impor­
tant consideration is address line fanout. Besides parametric specifications for which account must 
be made, AC characteristics are also crucial in memory system design. With large memory arrays 
which commonly require large numbers of address line inputs to be driven in parallel, capacitive 
loading of address outputs is often quite large. Because all TMS320C30 timing specifications are 
guaranteed up to a capacitive load of 80 pF, driving greater loads will invalidate guaranteed AC 
characteristics. Therefore it is often necessary to provide buffering for address lines when driving 
large memory arrays. AC timings for buffer performance may then be derated according to man­
ufacturer specifications to accomodate a wide variety of memory array sizes. 

The circuit shown in Figure 7 illustrates the use of bank switching with Cypress Semiconduc­
tor's 'CY7C185 25 ns 8K x 8 CMOS static RAM. This circuit implements 32K 32-bit words of 
memory with one wait-state accesses within each bank. 
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w 
~ Figure 7. Bank Switching For Cypress Semiconductors CY7C185 
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A wait state is required with this implementation of bank memory because of the added prop­
agation delay presented by the address bus buffers used in the circuit. The wait state is not a function 
of the fact that the memory is organized as multiple banks or the use of bank switching. When bank 
switching is used, memory access speeds are the same as without bank switching once bank bound­
aries are crossed. Therefore, no speed penalty is paid when using bank switching except for the oc­
casional extra cycle ihserted when bank boundaries are crossed. It should be noted, however, that 
if the extra cycle inserted when crossing bank boundaries d()es impact software performance signif­
icantly, code can often be restructured to minimize bank boundary crossings, thereby reducing the 
effect of these boundary crossings on software performance. 

The wait state for this bank memory is generated using the wait state generator circuit pres­
ented in the previous section. Because A23 is the signal which enables the entire bank memory sys­
tem, the inverted version of this signal is ANDed with STRB to derive a one wait state device select. 
This signal is then connected in the circuit along with the other one wait state device selects. Thus, 
any time a bank memory access is made, one wait state is generated. 

Each of the four banks in this circuit is selected using a decode ofAlS-A13 generated by the 
74AS138 (see Figure 8). With the BNKCMPR register set to OBh, the banks wiII be selected on 
even 8K-word boundaries starting at location 080AOOOh in external memory space. 
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Figure 8. Bank Memory Control Logic 
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The 74ALS2541 buffers used on the address lines are necessary in this design since the total 
capacitive load presented to each address line is a maximum of20 x 5 pF or 100 pF (bank memory 
plus zero wait-state static RAM), which exceeds the TMS320C30 rated capacitive loading of 80 
pF. Using the manufacturers derating curves for these devices at a load of 80 pF (the load presented 
by the bank memory) predicts propagation delays at the output of the buffers of a maximum of 16 
ns. The access time of a read cycle within a bank of the memory is therefore the sum of the memory 
access time and the maximum buffer propagation delay or 25 + 16 = 41 ns, which, since it falls be­
tween 30 and 90 ns, requires one wait state on the TMS320C30. 

The 74ALS2541 buffers offer one additional system performance enhancement in that they 
include 25-ohm resistors in series with each individual buffer output. These resistors greatly im­
prove the transient response characteristics of the buffers especially when driving CMOS loads 
such as the memories used here. The effect of these resistors is to reduce overshoot and ringing 
which is common when driving predominantly capacitive loads such as CMOS. The result of this 
is reduced noise and increased immunity to latchup in the circuit, which in turn results in a more 
reliable memory system. Having these resistors included in the buffers eliminates the need to put 
discrete resistors in the system which is often required in high speed memory systems. 

Thiscircuit could not have been implemented without bank switching, since data output's 
turn-on and turn-off delays would have caused bus conflicts. Here, the propagation delay of the 
74AS 138 is only involved during bank switches, where there is sufficient time between cycles to 
allow new chip selects to be decoded. 

The timing of this circuit for read operations using bank switching is shown in Figure 9. With 
the BNKCMPR register set to OBh, when a bank switch occurs, the bank address on address lines 
A23-A13, is updated during the extra HI cycle while STRB is high. Then, after chip select decodes 
have stabilized, and the previously selected bank has disabled its outputs, STRB goes low for the 
next read cycle. Further accesses occur at normal bus timings with one wait state as long as another 
bank switch is not necessary. Write cycles do not require bank switching due to the inherent address 
setup provided in their timings. 
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Figure 9. Timing For Read Operations Using Bank Switching 
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The timing for this interface is summarized in the Table 1. 

Table 1. Bank Switching Interface Timing 

Time Interval Event Time Period 

t1 HI falling to address/STRB valid 14 ns 

t2 Add to select delay 10 ns 

t3 Memory disable from STRB 10 ns 

t4 HI falling to STRB 10 ns 

t6 Memory output enable delay 3 ns 

Expansion Bus Interface 

The TMS320C30s expansion bus interface provides a second complete parallel bus which 
can be used to implement data transfers concurrently with and independent of operations on the 
primary bus. The expansion bus comprises two mutually exclusive interfaces controlled by the 
MSTRB and IOSTRB signals, respectively. This section discusses interface to the expansion bus 
using IOSTRB cycles; MSTRB cycles are essentially equivalent in timing to primary bus cycles, 
and are discussed in the previous section. 

Unlike the primary bus, both read and write cycles on the I/O portion of the expansion bus 
are two HI cycles in duration and exhibit the same timing. The XR/W signal is high for reads and 
low for writes. Since I/O accesses take two cycles, many peripherals that require wait states if inter­
faced either to the primary bus or using MSTRB may be used in a system without the need for wait 
states. Specifically, in cases where there is only one device on the expansion bus, devices with ac­
cess times greater than the 30 ns required by the primary bus, but not more than 59 ns can be inter­
faced to the I/O bus without wait states. 
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ND Converter Interface 

AID and D/A converters are components that are commonly required in DSP systems and 
interface efficiently to the I/O expansion bus. These devices are available in many speed ranges 
and with a variety of features, and while some may be used at full speed on the I/O bus, others may 
require one or more wait states. 

Figure 10 shows an interface to an Analog Devices AD1678 analog to digital converter. The 
AD1678 is a 12-bit, 5 Ils converter allowing sample rates up to 200 kHz and with an input voltage 
range of 10 volts bipolar or unipolar. The converter is connected according to manufacturers speci­
fications to provide 0 to + 10 volt operation. This interface illustrates a common approach to con­
necting devices such as this to the TMS320C30. Note that the interface requires only a minimum 
amount of control logic. 

Figure 10. Interface to AD1678 AiD Converter 
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The AD1678 is a very flexible converter and is configurable in a number of different operat­
ing modes. These operating modes include byte or word data format, continuous or non-continuous 
conversions, enabled or disabled chip select function, and programmable end of conversion indica­
tion. This interface utilizes 12-bit word data format, rather than byte format to be compatible with 
the TMS320C30. Non-continuous conversions are selected, so that variable sample rates may be 
used, since continuous conversions occur only at a rate of200 kHz. With non-continuous conver­
sions, the host processor determines the conversion rate by initiating conversions through write op­
erations to the converter. 

TMS320C30 Hardware Applications 351 



The chip select function is enabled, so the chip select input is required to be active when ac­
cessing the device. Enabling the chip select function is necessary to allow a mechanism for the 
AD1678 to be isolated from other peripheral devices connected to the expansion bus. To establish 
the desired operating modes, the SYNC and 12/S inputs to the converter are pulled high and EO­
CEN is grounded, as specified in the AD1678 data sheet. 

In this application, the converter's chip select is driven by XA12, which maps this device at 
S04000h in I/O address space. Conversions are initiated by writing any data value to the device, 
and the conversion results are obtained by reading from the device after the conversion is com­
pleted. To generate the devices Start Conversion (SC) and Output Enable (OE) inputs, IOSTRB 
is ANDed with XR/W. Therefore, the converter is selected whenever XA12 is low, and OE is driv­
en when reads are performed, while SC is driven when writes are performed. 

As with many AID converters, at the end of a read cycle the AD1678 data output lines enter 
a high impedance state. This occurs after the Output Enable (OE) or read control line goes inactive. 
Also common with these types of devices, is that the data output buffers often require a substantial 
amount of time to actually attain a full high-impedance state. When used with the TMS320C30, 
devices must have their outputs fully disabled no later than 65 ns following the rising edge of 
IOSTRB, since the TMS320C30 will begin driving the data bus at this point if the next cycle is a 
write. If this timing is not met, bus conflicts between the TMS320C30 and the AD1678 may occur, 
potentially causing degraded system performance and even failure due to damaged data bus drivers. 
The actual disable time for the AD1678 can be as long as 80 ns, therefore buffers are required to 
isolate the converter outputs from the TMS320C30. The buffers used here are 74LS244s that are 
enabled when the AD1678 is read, and turned off30.8 ns following IOSTRB going high. Therefore, 
the TMS320C30 requirement of 65 ns is met. 

When data is read following a conversion, the AD1678 takes 100 ns after its OE control line 
is asserted to provide valid data at its outputs. Thus, including the propagation delay of the 74LS244 
buffers, the total access time for reading the converter is 118 ns. This requires two wait states on 
the TMS320C30 expansion I/O bus. 

The two wait states required in this case are implemented using software wait states, howev­
er, depending on the overall system configuration it may be necessary to implement a separate wait 
state generator for the expansion bus (refer to section on ready generation). This would be the case 
ifthere were multiple devices that required different numbers of wait states connected to the expan­
sion bus. 

Figure 11 shows the timing for read operations between the TMS320C30 and the AD1678. 
At the beginning of the cycle, the address and XR/W lines bej::ome valid t1 = 10 ns following the 
falling edge ofH1. Then, aftert2 = 10 ns from the next rising edge ofH1, IOSTRB goes low, begin­
ning the active portion of the read cycle. After t3 = 5.S ns, the control logic propagation delay, the 
lOR signal goes low, asserting the OE input to the AD1678. The '74LS244 buffers take t4 = 30 ns 
to enable their outputs, and then, following the converters access delay and the buffer propagation 
delay (t5 = 100 + 18 = 118 ns) data is provided to the TMS320C30. This provides approximately 
46 ns of data setup before the rising edge of IOSTRB. Therefore, this design easily satisfies the 
TMS320C30s requirement of 15 ns of data setup time for reads. 
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Figure 11. Read Operations Timing Between the TMS320C30 and AD1678 
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Unlike the primary bus, read and write cycles on the I/O expansion bus are timed the same 
with the exception that XR/W is high for reads and low for writes and that the data bus is driven 
by the TMS320C30 during writes. When writing to the AD1678, the '74LS244 buffers do not turn 
on and no data is transferred. The purpose of writing to the converter is only to generate a pulse 
on the converter's SC input, which initiates a conversion cycle. When a conversion cycle is com­
pleted, the AD1678's EOC output is used to generate an interrupt on the TMS320C30 to indicate 
that the converted data may be read. 

It should be noted that for different applications, use ofTLC1225 or TLC1550 NO conver­
ters from Texas Instruments may be beneficiaL The TLC1225 is a self-calibrating 12-bit-plus-sign 
bipolar or unipolar converter which features 10 JlS conversion times. The TLC1550 is a lO-bit, 
6 JlS converter with a high speed DSP interface. Both converters are parallel-interface devices_ 

D/A Converter Interface 

In many DSP systems, the requirement for generating an analog output signal is a natural con­
sequence of sampling an analog waveform with an NO converter and then processing the signal 
digitally internally. Interfacing D/A converters to the the TMS320C30 on the expansion I/O bus 
is also quite straightforward. 

As with NO converters, D/ A converters are also available in a number of varieties_ One of 
the major distinctions between various types of D/A converters is whether or not the converter in­
cludes latches to store the digital value to be converted to an analog quantity, and the interface to 
control those latches. With latches and control logic included with the converter, interface design 
is often simplified, however, internal latches are often included only in slower D/A converters. 

Because slower converters limit signal bandwidths, the converter chosen for this design was 
selected to allow a reasonably wide range of signal frequencies to be processed, in addition to illus­
trating the technique of interfacing to a converter using external data latches. 

Figure 12 shows an interface to an Analog Devices AD565A digital to analog converter. This 
device is a 12-bit, 250 ns current output DAC with an on-board 10 volt reference. Using an off­
board current-to-voltage conversion circuit connected according to manufacturers specifications, 
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the converter exhibits output signal ranges 0 to + 1 0 volts, which is compatible with the conversion 
range of the AID converter discussed in the previous section. 

XD Bus 

Figure 12. Interface Between the TMS320C30 and the ADS6SA 
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Because this DAC essentially performs continuous conversions based on the digital value 
provided at its inputs, periodic sampling is maintained by periodically updating the value stored 
in the external latches. Therefore, between sample updates, the digital value is stored and main­
tained at the latch outputs that provide the input to the DAC. This results in the analog output re­
maining stable until the next sample update is performed. 

The external data latches used in this interface are '74LS377 devices that have both clock 
and enable inputs. These latches serve as a convenient interface with the TMS320C30; the enable 
inputs provide a device select function, and the clock inputs latch the data. Therefore, with the en­
able input driven by inverted XA12 and the clock input driven by IOW, which is the AND of 
IOSTRB and XR/W, data will be stored in the latches when a write is performed to I/O address 
805000h. Reading this address has no effect on the circuit. 

Figure 13 shows a timing diagram of a write operation to the D/A converter latches. 
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Figure 13. Write Operation to the D/A Converter Timing Diagram 

I 

H1\ I \ / , \ / ~ I , I I 

XA12-XAO ~ : : >C 
, I I I 

XA12 t1-W \ 
I , r I I 
I I I , 14"' t3~ I I I , \l / 'OSTRB t2-~ I , 

~t4 I 

lOW \l A 
I 
I >-XD32-XDO ~ 

I I 
I I 
J+----t5----~ I 

I I 
14"-- t6--t1 

Because the write is actuall y being performed to the latches, the key timings for this operation 
are the timing requirements for these devices. For proper operation, these latches require simply 
a minimal setup and hold time of data and control signals with respect to the rising edge of the clock 
input. Specifically, the latches require a data setup time of20 ns, enable setup of25ns, disable setup 
of 10 ns and data and enable hold times of 5 ns. This design provides approximately 60 ns of enable 
setup, 30 ns of data setup, and 7.2 ns of data hold time. Therefore, the setup and hold times provided 
by this design are well in excess of those required by the latches. The key timing parameters for 
this interface are summarized in Table 2. 

Table 2. Key Timing Parameter for D/A Converter Write Operation 

Time Interval Event Time Period 

tl HI falling to address valid 10 os 

t2 XAI2 to XAI2 delay 5 TIS 

t3 HI rising to IOSTRB falling 10 ns 

t4 IOSTRB to lOW delay 5.8 ns 

ts Data setup to lOW 30 ns 

t6 Data hold from lOW 7.2 TIS 

System Control Functions 

There are several aspects ofTMS320C30 system hardware design that are critical to overall 
system operation. These include such functions as clock and reset signal generation and interrupt 
control. 
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Clock Oscillator Circuitry 

An input clock may be provided to the TMS320C30 either from an external clock input or 
by using the on-board oscillator. Unless special clock requirements exist, using the on-board oscil­
lator is generally a convenient method of clock generation. This method requires few external com­
ponents and can provide stable, reliable clock generation for the device. 

Figure 14 shows a clock generator circuit using the internal oscillator. This circuit is designed 
to operate at 33.33 MHz and since crystals with fundamental oscillation frequencies of 30 MHz 
and above are not readily available, a parallel-resonant third-overtone circuit is used . 

. Figure 14. Crystal Oscillator Circuit 
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In a third-overtone oscillator, the crystal fundamental frequency must be attenuated so that 
oscillation is at the third harmonic. This is achieved with an LC circuitthat filters out the fundamen­
tal, thus allowing oscillation at the third harmonic. The impedance of the LC circuit must be induc­
tive at the crystal fundamental and capacitive at the third harmonic. The impedance of the LC cir­
cuit is given by: 

z (w) = L/C 
j [w L - 1/wC ] 

(1) 

Therefore, the LC circuit has a pole at: 

1 
w --­

p - ./Lc 
(2) 

At frequencies significantly lower than wP' the 1/(wC) term in (1) becomes the dominating 
term, while wL can be neglected. This gives: 

z (w) = jwL for w < wp (3) 

In (3), the LC circuit appears inductive at frequencies lower than wp' On the other hand, at 
frequencies much higher than wP' the wL term is the dominant term in (1), and 1/(wC) can be ne­
glected. This gives: 
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1 
z (w) = -. - for w > w p 

JWC 

(4) 

The LC circuit in (4) appears increasingly capacitive as frequency increases above wp' This 
is shown in Figure 15, which is a plot of the magnitude of the impedance of the LC circuit of Figure 
14 versus frequency. 

Figure 15. Magnitude of the Impedance of the Oscillator LC Network 
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Based on the discussion above, the design of the LC circuit proceeds as follows: 
1) Choose the pole frequency wp approximately halfway between the crystal fundamental 

and the third harmonic. 
2) The circuit now appears inductive at the fundamental frequency and capacitive at the 

third harmonic. 

In the oscillator of Figure 13, choose wp = 22.2 MHz, which is approximately halfway be­
tween the fundamental and the third harmonic. Choose C = 20 pF. Then, using (2), L = 2.6 f-lH. 

Reset Signal Generation 

The reset input controls initialization of internal TMS320C30 logic and also causes execu­
tion of the system initialization software. For proper system initialization, the reset signal must be 
applied at least ten HI cycles, i.e., 600 ns for a TMS320C30 operating at 33.33 MHz. Upon power­
up, however, it can take 20 ms or more before the system oscillator reaches a stable operating state. 
Therefore, the powerup reset circuit should generate a low pulse on the reset line for 100 to 200 
ms. Once a proper reset pulse has been applied, the processor fetches the reset vector from location 
zero which contains the address of the system initialization routine. Figure 16 shows a circuit that 
will generate an appropiate powerup reset circuit. 
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+5V 

Figure 16. Reset Circuit 
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The voltage on the reset pin (RESET) is controlled by the R 1 C1 network. Mter a reset, this 
voltage rises exponentially according to the time constant R 1 C1, as shown in Figure 17. 

Figure 17. Voltage on the TMS320C30 Reset Pin. 
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The duration of the low pulse on the reset pin is approximately t1, which is the time it takes 
for the capacitor Cl to be charged to 1.5 V. This is approximately the voltage at which the reset input 
switches from a logic a to a logic 1. The capacitor voltage is given by: 

t ~) 
V = Vee [ 1 - e - r 
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where i = RICI is the reset circuit time constant. Solving (5) for t gives: 

Setting the following: 

Rl = 
CI = 
Vee = 
V = 

100 kQ 

4.7 IAF 
5V 
VI=1.5V 

V 
t = - RICI In [1 - - ] 

Vee 

(6) 

gives t = 167 ms. Therefore, the reset circuit of Figure 16 provides a low pulse of long enough 
duration to ensure the stabilization of the system oscillator. 

Note that if synchronization of multiple TMS320C30s is required, all processors should be 
provided with the same input clcock and the same reset signal. Mter powerup, when the clock has 
stabilized, all processors may then be synchronized by generating a falling edge on the common 
reset signal. Because it is in the falling edge of reset that establishes synchronization, reset must 
be high for a period of time (at least ten HI cycles) initially. Following the falling edge, reset should 
remain low for at least ten HI cycles and then be driven high. This sequencing of reset may be ac­
complished using additional circuitry, based on either RC time delays or counters. 

Serial Port Interface to Ale 

For applications such as modems, speech, control, instrumentation, and analog interface for 
DSPs, a complete analog-to-digital (ND) and digital-to-analog (D/A) input/output system on a 
single chip may be desired. The TLC32044 analog interface circuit (AIC) integrates on a single 
monlithic/CMOSchip a bandpass, switched-capacitor, antialiasing-input filter, 14-bit resolution 
ND and D/A converters, and a lowpass, switched-capacitor, output-reconstruction filter. The 
TLC32044 offers numerous combinations of master clock input frequencies and conversion/sam­
pling rates, which can be changed via digital processor control. 

Four serial port modes on the TLC32044 allow direct interface to TMS320C30 processors. 
When the transmit and receive sections of the AIC are operating synchronously, it can interface to 
two SN54299 or SN74299 serial-to-parallel shift registers. These shift registers can then interface 
in parallel to the TMS320C30, otherTMS320 digital processors, or to external FIFO circuitry. Out­
put data pulses are emitted to inform the processor that data transmission is complete or to allow 
the DSP to differentiate between two transmitted bytes. A flexible control scheme is provided so 
that the functions of the AlC can be selected and adjusted coincidentally with signal processing via 
software control. Refer to the TLC32044 data sheet for detailed information. 

When interfacing the AlC to the TMS320C30 via one of the serial ports, no additional logic 
is required. This interface is shown in Figure 18. The serial data, control and clock signals connect 
directly between the two devices and the AlC's master clock input is driven from TCLKO, one of 
the TMS320C30s internal timer outputs. The AlC's WORD/BYTE input is pulled high selecting 
16-bit serial port transfers to optimize serial port data transfer rate. The TMS320C30s XFO, confi­
gured as an output, is connected to the AIC's reset (RST) input to allow the Ale to be reset by the 
TMS320C30 under program control. This allows the TMS320C30 timer and serial port to be ini­
tialized before beginning conversions on the Ale. 
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Figure 18. AIC to TMS320C30 Interface 
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To provide the master clock input for the AlC, the TCLKO timer is configured to generate 
a clock signal with a 50% duty cycle at a frequency ofHl/4 or 4.167 MHz. To accomplish this, the 
timer 0 global control register is set to the value 3Clh, which establishes the desired operating 
modes. The timer 0 period register is set to 1 which sets the required division ratio for the HI clock. 

To properly communicate with the AlC the TMS320C30 serial port must be configured ap­
propriately. To configure the serial port, several TMS320C30 registers and memory locations must 
be initialized. First the serial port should be reset by setting the serial port global control register 
to 2170300h. (The AlC should also be reset at this time. See description below of resetting the AlC 
using XFO). This resets the serial port logic and configures the serial port operating modes includ­
ing data transfer lengths and enables the serial port interrupts. This also configures another impor­
tant aspect of serial port operation: polarity of serial port signals. Because active polarity of all seri­
al port signals is programmable, it is critical that the bits in the serial port global control register 
that control this be set appropriately. In this application all polarities are set to positive except FSX 
and FSR which are driven by the AIC and are true low. 

The serial port transmit and receive control registers must also be initialized for proper serial 
port operation. In this application, both of these registers are set to 111h, which configures all of 
the serial port pins in the serial port mode, rather than the general purpose digital I/O mode. 

With the operations described above completed, interrupts are enabled, and provided the seri­
al port interrupt vector(s) are properly loaded, serial port transfers may begin after the serial port 
is taken out of reset. This is accomplished by loading El70300h into the global control register. 

To begin conversion operations on the AI C and subsequent transfers of data on the serial port, 
the AIC is first reset by setting XFO to zero at the beginning of the TMS320C30 initialization rou-
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tine. Setting XFO to zero is accomplished by setting the TMS320C30 IOF register to 2. This sets 
the AIC to a default configuration and halts serial port transfers and conversion operations until 
reset is set high. Once the TMS320C30 serial port and timer have been initialized as described 
above, XFO is set high by setting the IOF register to 6. This allows the AIC to begin operating in 
its default configuration, which in this application is the desired mode. In this mode all internal fil­
tering is enabled, sample rate is set at approximately 6.4 kHz, and the transmit and receive sections 
of the device are configured to operate synchronously. Conveniently, this mode of operation is ap­
propriate for a variety of applications, and if a 5.184 MHz master clock input is used, the default 
configuration results in an 8 kHz sample rate which makes this device ideal for speech and telecom­
munications applications. 

In addition to the benefit of a convenient default operating configuration, the AIC can also 
be programmed for a wide variety of other operating configurations. Sample rates and filter charac­
teristics may be varied, in addition to which, numerous connections in the device may be configured 
to establish different internal architectures, by enabling or disabling various functional blocks. 

To configure the AIC in a fashion different from the default state, the device must first be 
sent a serial data word with the two LSBs set to one. The two LSBs of a transmitted data word are 
not part of the transferred data information and are not set to one during normal operation. This con­
dition indicates that the next serial transmission will contain secondary control information, not 
data. This information is then used to load various internal registers and specify internal configura­
tion options. There are four different types of secondary control words distinguished by the state 
of the two LSBs of the control information transferred. Note that each secondary control word 
transferred must be preceded by a data word with the two LSBs set to one. 

The TMS320C30 can communicate with the AIC either synchronously or asynchronously 
depending on the information in the control register. The operating sequence for synchronous com­
munication with the TMS320C30 shown in Figure 19, is as follows: 

1) The FSX or FSR pin is brought low. 
2) One 16-bit word is transmitted or one 16-bit word is received. 
3) The FSX or FSR pin is brought high. 
4) The EODX or OEDR pin emits a low-going pulse. 

Figure 19. Synchronous Timing ofTLC32044 to TMS320C30 
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For asynchronous communication, the operating sequence is similar, but FSX and FSR do 
not occur at the same time (see Figure 20). After each receive and transmit operation, the 
TMS320C30 asserts an internal receive (RINT) and transmit (XINT) interrupt, which may beused 
to control program execution. 
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Figure 20. Asynchronous Timing of TLC32044 to TMS320C30 
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XDSIOOO Target Design Considerations 

The TMS320C30 Emulator is an eXtended Development System (XDS1000) which has all 
the features necessary for fuII-speed emulation. The TMS320C30 uses a revolutionary technology 
to aIIow complete emulation via a serial scan path. If users provide a 12-pin header on their target 
system, realtime emulation can be performed using the TMS320C30 in their target system. 

To use the emulation connector of the XDS1000, the signals shown in Figure 21. should be 
provided to a 12 pin header (two rows of six pins) with pin 8 cut out to provide keying. Table 3 de­
scribes the pins and signals present on the header. 

Figure 21. 12 Pin Header Signals 
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EMU2 t S 6 GND 
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EMU3 9 10 GND 

H3 11 12 GND 

TOP VIEW 

Table 3. Signal Description 

Signal Name Description 

EMUO Emulation pin O. 
EMUl Emulation pin 1. 
EMU2 Emulation pin 2. 
EMU3 Emulation pin 3. 
H3 TMS320C30 H3. 
GND Ground. 
PD Presence detect. It indicates that the cable is connected and target system is powered up. It 

should be tied to +5 volts in the target system. 
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In addition to the signals required atthe emulation connector, the EMU4 through EMU6 sig­
nals on the TMS320C30 must also be appropiately connected to ensure proper emulation operation. 
The EMU4 signal must be tied to +5 volts and EMUS and EMU6 must be left unconnected. Also, 
the RSVO through RSVlO signals must be tied to +5 volts as described in the Third-Generation 
TMS320 User's Guide (literature number SPRU031). 

Summary 

The TMS320C30 is a high-performance 32-bit floating-point digital signal processor. Its 
dual parallel-interface busses and serial ports, along with a wide variety of additional support inter­
faces make the device an extremely flexible system-level DSP microprocessor. Using the tech­
niques described in this report, the TMS320C30 can be used to implement sophisticated signal pro­
cessing applications with the high precision and dynamic range provided by 32-bit floating-point 
arithmetic. 

This application report has described the use of external interfaces on the TMS320C30 to 
connect it to memories, ND and D/A converters, and numerous other peripheral devices, as well 
as the generation of wait states and other system functions. 

The interfaces described in this report have all been built and tested to verify proper opera­
tion, and the techniques described can be extended to encompass design of more complex systems. 
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Introduction 

Certain applications require the exceptionally high arithmetic throughput inherent in the 
TMS320C30 Digital Signal Processor but must use the IEEE floating-point number format, which 
differs from the TMS320C30's number format. The TMS320C30 uses a 2's complement format 
for the mantissa and exponent. Besides making the device more compatible with analog to digital 
converters, it is computationally more efficient in both speed and die size than the IEEE format. 
Applications requiring the IEEE format can benefit from the use of a custom chip for this conver­
sion. For this reason, a chip has been designed, built, and tested. This report describes that chip. 

The TMS320C30-IEEE Floating-Point Number Format Converter is a peripheral that per­
forms floating-point number conversions between the native format of the TMS320C30 and the 
Single-Precision IEEE Standard 754-1985. This conversion is performed in hardware and can con­
vert an incoming (IEEE-formatted) or outgoing (TMS320C30-formatted) floating-point number 
in less than one TMS320C30 instruction cycle. Normally, the part is placed between memory and 
the TMS320C30. 

This peripheral has two operating modes. 

• Mode 1 does not pipeline any data through the chip. Instead, one wait state is automatical" 
Iy generated to compensate for the converter's propagation delays. This mode is equiva­
lent in performance to equipping the TMS320C30 with a single-cycle convert instruction. 
In those applications where speed is of utmost importance, the pipeline mode is provided. 

.. Mode 2 enables the converter's built-in pipeline. 

Because propagation delays through the chip reduce the access time required for 
TMS320C30 external memory, the pipeline mode allows conversions to take place on one data val­
ue while a previously converted value is being read, or written, by the TMS320C30. Depending 
on the TMS320C30 instruction cycle time and the access time of memories being used, the pipeline 
mode can eliminate degradation in TMS320C30 throughput entirely. However, it should be noted 
that values fed through the pipeline appear at the output in the next cycle. Therefore, an extra read 
or write (i.e., the same operation that was being performed) must be performed to flush the pipeline. 
Consequently, when pipeline mode is used, data values and their addresses are skewed from one 
another. This mode is intended for high-speed block transfer/conversion, and the address skew 
should be acceptable. 

All control signals to and from the converter are compatible with TMS320C30 signals so that 
no extra circuitry is required to use this chip. In fact, it has been designed to appear as much as possi­
ble like a simple bus transceiver (e.g., SN74LS245). Consequently, it has two data buses. Data bus 
A (pins DA31 through DAO) should be connected directly to one of the TMS320C30's data buses 
and the other to memory. Its direction pin (DIR) should be tied to the read/write pin (RIW), and 
its output enable pin (DE) can be tied to either STRB or MSTRB of the TMS320C30, depending 
on where in the TMS320C30 memory map IEEE numbers are stored. 

Key Features 

This device is designed to fit into systems equipped with TMS320C30 external memory into 
which IEEE formatted numbers are stored. Below is a list of some specific features of the 
TMS320C30-IEEE Floating-Point Converter: 
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• Automatic wait-state generation during conversions 

• Automatic interrupt generation when IEEE NaNs are encountered 

• Automatic pipeline mode for single-cycle conversions 

• Built-in SCOPE (i.e., JTAG) testability logic 

Report Overview 

• External Interfaces - Describes the external interfaces of this chip, the pinout, and pins. 

• Architectural Overview- Describes the functions of the converter. Gives an overview of 
the TMS320C30 and IEEE Standard 754-1985 number formats and the scope of numbers 
that can be converted. 

• Converter Operating Modes - Describes the converter's operating modes. 

• Interrupts - Describes the Not a Number interrupt generated by the converter. 

• Software Application Examples - Contains software application examples. 

• Hardware Application Examples - Contains hardware application examples. 

• JTAG/lEEE-1149.1 Scan Interface - Contains the JTAG/IEEE scan interface description. 

Typographical Conventions 

In this report, buses are signified with the bus name in capital letters, followed by the range 
of signals (bits) enclosed in parentheses and separated by a colon. For example, TI(31:0) is bus 
"TI", bits 31 through 0 (31 is the most significant bit, 0, the least). Table 1 shows the symbols and 
their corresponding meaning that are used in sections of the report concerning control logic, algo­
rithm overview, and bit-specific conversion algorithms. 

Table 1. Symbols and Meanings 

Symbol Name Meaning 

+ plus arithmetic summation 
I pipe logical OR 
& ampersand logical AND 
! exclamation point one's complement 
- minus two's complement 
" caret EXCLUSIVE OR 

External Interfaces 

Packaging 

The TMS320C30 device is housed in an 84-pin package. This pinout was chosen for efficient 
flow through connection to the buses. The TMS320C30-IEEE Converter's pin assignments are 
shown in Table 2, and the pin locations are shown in Figure 1. 
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Table 2. Pin Assignments 

Pin Name Pin Name Pin Name 

1 GND 29 DA3 57 DA29 
2 DB15 30 DA4 58 DA30 
3 DB14 31 DAS 59 DA31 
4 DB13 32 DA6 60 TDI 
5 DB12 33 DA7 61 TMS 
6 DB11 34 DA8 62 TCK 
7 DBlO 35 DA9 63 vec 
8 DB9 36 DAlO 64 GND 
9 DB8 37 DA11 65 TDO 
10 DB7 38 DA12 66 TIP 
11 DB6 39 DAB 67 RST 
12 DB5 40 DA14 68 DB31 
13 DB4 41 DA15 69 DB30 
14 DB3 42 vee 70 DB29 
15 DB2 43 GND 71 DB28 
16 DBI 44 DA16 72 DB27 
17 DBO 45 DA17 73 DB26 
18 WAIT 46 DA18 74 DB25 
19 PIPE 47 DAl9 75 DB24 
20 eLK 48 DAZO 76 DB23 
21 vee 49 DAZI 77 DB22 
22 GND 50 DAZ2 78 DB21 
23 NAN 51 DAZ3 79 DB20 
24 DIR 52 DAZ4 80 DB19 
25 OE 53 DA25 81 DBl8 
26 DAD 54 DA26 82 DBl7 
27 DAl 55 DA27 83 DBl6 
28 DA2 56 DA28 84 vee 
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Figure 1. Pin Locations 
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Pinout Description 

Table 3 describes the pin functions. 

Table 3. Converter Signals 

Signal Pins TYpe Description 

DIR 1 Input Direction - This pin determines what type of conversion 
should take place. When it is high, data on bus B is converted 
from IEEE to TMS320C30 format and output on bus A. When 
it is low, data on bus A is converted from TMS320C30 to IEEE 
format and output on bus B. This pin is normally tied directly 
to the TMS320C30 read/write pin. 

OE 1 Input Output Enable (active low) - In combination with the DIR 
pin, this pin disables the currently driven bus (i.e., bus A or B). 

370 TMS320C30 IEEE Floating-Point Format Converter 



Table 3. Converter Signals (Concluded) 

Signal Pins Type Description 

WAIT 1 Output This pin is driven high in nonpipelined operations to signal the 
TMS320C30 to extend its external memory access to allow 
the conversion to complete. It can be tied directly to the 
TMS320C30 ready line. It is appropriately driven for both 
read and write operations, but is always low in pipelined mode 
of operation. 

PIPE 1 Input Pipeline Enable - When this is high, the converter is confi-
gured in pipeline mode. It must be tied low for nonpipeline 
mode. 

CLK 1 Input Clock - This clock is the wait-state generator and the pipeline 
clock. It should be connected directly to the TMS320C30 HI 
clock pin. 

NAN 1 Output Not-a-Number Interrupt - This pin is driven low for 1.5 CLK 
cycles and signals an attempted conversion of the IEEE for-
mat: Not-a-Number. This pin can be tied directly to one of the 
TMS320C30 interrupt pins and can signal command or mes-
sage passing in multi-processor, shared-memory-type de-
signs. 

DA(3I:O) 32 Input/Output Data Bus A - This 32-bit bus should be tied to either one of 
the two TMS320C30 data buses (Le., the primary or expan-
sion buses). 

DB(31:0) 32 Input/Output Data Bus B - This 32-bit bus is normally connected to a 
memory array containing IEEE-formatted data. 

TCK 1 Input Test Clock. 

TMS 1 Input Test Mode Select. 

RST 1 Input Reset (active low) - This pin resets aU logic on the device. 

TDI 1 Input Test Data In. 

TDO 1 Output Test Data Out. 

TIP 1 Output Test Instruction Register Parity - During instruction register 
scan, when paused, this output reflects instruction register 
even parity. 
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Architectural Overview 

Figure 2 shows the block diagram of the converter. 
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Figure 2. Converter Block Diagram 
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The TMS320C30 attains a peak performance of 33 MFLOPS, largely due to the float­
ing-point format that it uses. In this format, both exponent and mantissa are represented in 2's-com­
plement form. 

In the IEEE format, the mantissa is represented in signed-magnitude form, and the exponent 
includes a bias (i.e., an offset). Additionally, values of numbers are not determined by the same for­
mula. Instead, the exponent is used to flag numbers that are encoded differently. For example, if 
the exponent is 255, the value is considered not a number (NaN). Another exception is signaled 
when the exponent is zero. In this case, the mantissa is defined to be denormalized. 
The TMS320C30's floating-point format is considerably simpler; most numbers can be converted 
to it without any loss of precision. However, some denormalized IEEE numbers are smaller than 

can be represented in TMS320C30 format. When these numbers are converted, they are translated 

to the closest TMS320C30 values. The error is less than ±2-127. 

IEEE Floating-Point Format Overview 

IEEE Standard 754-1985 defines formats for single-, single-extended-, double- and 
double-extended-precision floating-point numbers. The single-precision format fits entirely with-
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in 32 bits, which is the bus width of the TMS320C30, and is the only format supported by the con­
verter. 

low: 

The format of the single-precision IEEE Standard 754-1985 is shown below: 

Figure 3. Single-Precision IEEE Standard 754-1985 Format 

31 30 23 22 O-BIT# 

5 EXPONENT FRACTION 

MSB LSB MSB LSB 

In this format, 

5 is the sign bit of the mantissa (0 = positive, 1 = negative). 

EXPONENT is an unsigned 8-bit field that determines the location of the binary point 
of the number being encoded. 

FRACTION is a 23-bit field containing the fractional part of the mantissa. 

LSB is the least significant bit of a field 

MSB is the most significant bit of a field 

The decimal value (v) of some number X is defined by one of five separate cases shown be-

Case 1: If EXPONENT = 255 and FRACTION .. 0, then v is NaN. 

Case 2: If EXPONENT = 255 and FRACTION = 0, then v = ± infinity. 

Case 3: If 0< EXPONENT < 255, then v = (_l)S 2exp-127 (1.FRAC) 

where: 

5 is either ° or 1 

FRAC is the decimal equivalent of FRACTION 

EXP is the decimal equivalent of EXPONENT 

Note that an implied 1 exists to the left ofthe binary point as shown above. This means 
the mantissa of an IEEE-encoded value has 24 bits of precision. 

Case 4: If EXPONENT = ° and FRACTION .. 0, then v is a denormalized number and 
v = (_l)S 2-126 (O.FRAC) 

where 
5 is either ° or 1 

FRAC is the decimal equivalent of FRACTION 

Note that an implied ° exists to the left of the binary point as shown above. This means 
the mantissa of an IEEE-encoded value has 24 bits of precision. 
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Case 5: If EXPONENT = a and FRACTION = 0, then v = ± zero. 

TMS320C30 Floating-Point Format Overview 

TMS320C30 single-precision floating-point format uses a 2's-complement exponent and 
mantissa and is shown in Figure 4. 

Figure 4. TMS320C30 Single-Precision Floating-Point Format 

31 24 23 22 

EXPONENT S FRACTION 

MSB LSB MSB LSB 

The decimal value (v) of some number X is determined as follows: 
v = {(_2)S + (.FRAC)) 2exp 

where S is either a or 1 

FRAC is the decimal equivalent of FRACTION 

EXP is the decimal equivalent of EXPONENT 

o +- BIT # 

An alternate way of describing the TMS320C30 mantissa is as follows: 

ss.fraction 

Note that the bit to the left of the binary point is implied and is the complement of the sign 
bit. This gives the TMS320C30's mantissa 24 bits of precision and not 23 bits as might be expected. 
For example: 

The most positive TMS320C30 mantissa is 

01.11111111111111111111111 = 2 - 2-23 

The least positive TMS320C30 mantissa is 

01.0000 0000 0000 0000 0000 000 = 1 

The most negative TMS320C30 mantissa is 

10.0000 0000 0000 0000 0000 000 =-2 

The least negative TMS320C30 mantissa is 

10.11111111111111111111111 = -1- 2-23 

Note that zero is uniquely identified when the TMS320C30 exponent is -128. 

IEEE Number Conversion 

This section describes the classifications of IEEE numbers, how they are decoded, and the 
algorithms necessary to translate them to TMS320C30 format. 
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IEEE Dynamic Range 

Table 4 shows the dynamic range of IEEE numbers. This chart can be used to quickly deter­
mine the case classification of an IEEE number. 

Table 4. IEEE Range of Numbers 

Sign Exponent Mantissa Value Type Case 

0 FF 0 not applicable NaN 1 
0 FF 0.000 ... 000 + infinity + Infinity 2A 
0 FE 1.111...111 (2_Z-23)x2127 + Normalized Number 3A 
0 FE 1.111...110 (2_2-22)x2127 + Normalized Number 3A 
0 FE 1.111...101 (2_2-21 + 2-231X2127 + Normalized Number 3A 
0 FE 1.111...100 (2_Z-21)x212 + Normalized Number 3A 

0 FE 1.000 ... 000 2127 + Normalized Number 3A 
0 FD 1.111...111 (2_Z-23)x2126 + Normalized Number 3A 
0 FD 1.111...110 (2_Z-22)x2126 + Normalized Number 3A 
0 FD 1.111...101 (2_2-21+2-23Jx2126 + Normalized Number 3A 
0 FD 1.111...100 (2_2-21 )x212 + Normalized Number 3A 

0 01 1.000 ... 000 Z-126 + Normalized Number 3A 
0 00 0.111...111 (1_Z-23)xZ-126 + Denormalized Number 4A 
0 00 0.111...110 (1_Z-22)xZ-126 + Denormalized Number 4A 
0 00 0.111...101 (1_2-21+Z-23ix2-126 + Denormalized Number 4A 
0 00 0.111...100 (1_Z-21)xZ-1 6 + Denormalized Number 4A 

0 00 0.100 ... 000 Z-127 + Denormalized Number 4A 
0 00 0.011 ... 111 (1_Z-22{xZ-127 - Denormalized Number 4B 
0 00 0.011 ... 110 (1-Z-2 )xZ-127 - Denormalized Number 4B 
0 00 0.011...101 (1_2-20+ 2-22)x2-127 - Denormalized Number 4B 

0 00 0.000 ... 011 (1+Z-1)x2-14S - Denormalized Number 4B 
0 00 0.000 ... 010 Z-148 - Denormalized Number 4B 
0 00 0.000 ... 001 Z-149 - Denormalized Number 4B 
0 00 0.000 ... 000 + 0.0 + Zero 5 
1 00 0.000 ... 000 -0.0 -Zero 5 
1 00 0.000 ... 001 -(2-149) - Denormalized Number 4D 
1 00 0.000 ... 010 -(2-148; - Denormalized Number 4D 
1 00 0.000 ... 011 -(1+Z- )xZ-148 - Denormalized Number 4D 
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Table 4. IEEE Range of Numbers (Concluded) 

Sign Exponent Mantissa Value Type Case 

1 00 0.011 ... 111 -{1_T22)xT127 - Denormalized Number 4D 
1 00 0.100 ... 000 -{T12,? - Denormalized Number 4D 
1 00 0.100 ... 001 -{1+2- 2)x2-127 - Denormalized Number 4C 
1 00 0.100 ... 010 -{1+2-21)x2-127 - Denormalized Number 4C 
1 00 0.100 ... 011 -{I +2-21+2-22)x2-127 - Denormalized Number 4C 

1 00 0.ll1...1ll -{1_2-23)x2-126 - Denormalized Number 4C 

1 01 1.000 ... 000 -{T126i - Normalized Number 3C 
1 01 1.000 ... 001 -{1+2- 3)xT126 - Normalized Number 3B 
1 01 1.000 ... 010 -{I +T22)xT126 - Normalized Number 3B 
1 01 1.000 ... 011 -{1+T22+T23)x2-126 - Normalized Number 3B 

1 01 1.111...1ll -{2_2-23)x2-126 - Normalized Number 3B 
1 02 1.000 ... 000 -{2-12i - Normalized Number 3C 
1 02 1.000 ... 001 -{2+T 3)xT125 - Normalized Number 3B 
1 02 1.000 ... 010 -{2+ 2-22)x2-125 - Normalized Number 3B 
1 02 1.000 ... 011 -{1+2-22+2-23)x2-125 - Normalized Number 3B 

1 FE 1.111...100 -{2_2-21)x2127 - Normalized Number 3B 
1 FE 1.111...101 -{2-2-21+2-23Jx2127 - Normalized Number 3B 
1 FE 1.1ll ... ll0 -{2_T22)x212 - Normalized Number 3B 
1 FE 1.111... II 1 -{2_T23)x2127 - Normalized Number 3B 

1 FF =0 - infinity - Infinity 2B 

IEEE-to-TMS320C30 Control Logic 

The control logic that classifies incoming IEEE data in order to perform correct translation 
to TMS320C30 format is shown below. The form of the expressions was chosen to minimize propa­
gation delay through the device. 

The logic is simplified if the following three factors are used (refer to typographical defini­
tions for symbols used): 

EXPFF= IEEE(30) & IEEE(29) & IEEE(28) & IEEE(27) & 
IEEE(26) & IEEE(25) & IEEE(24) & IEEE(23) 

EXPOO = !( IEEE(30) IIEEE(29) I IEEE(28) I IEEE(27) I 
IEEE(26) I IEEE(25) I IEEE(24) I IEEE(23) ) 

MANTO = !( IEEE(21) I IEEE(20) IIEEE(19) IIEEE(18) I 
IEEE(17) I IEEE(16) I IEEE(15) I IEEE(14) I 
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Then 

IEEE(13) 
IEEE(9) 
IEEE(5) 
IEEE(l) 

Case 1: NaN 

I IEEE(12) 
I IEEE(8) 
I IEEE(4) 
I IEEE(O» 

I IEEE(ll) 
I IEEE(7) 
I IEEE(3) 

= EXPFF & (IEEE(22) I !MANTO) 

Case 2A: positive infinity 

= !IEEE(31) & EXPFF & !( IEEE(22) I !MANTO) 

Case 2B: negative infinity 

= IEEE(31) & EXPFF & !( IEEE(22) I !MANTO) 

Case 3A: positive normalized numbers 

= !IEEE(31) & !EXPOO & !EXPFF 

Case 3B: negative normalized numbers with fraction ... 0 

I IEEE(lO) 
I IEEE(6) 
I IEEE(2) 

= IEEE(31) & !EXPOO & !EXPFF & (!MANTO I IEEE(22» 

Case 3C: negative normalized numbers with fraction = 0 

= IEEE(31) & !EXPOO & !EXPFF & !( !MANTO I IEEE(22) ) 

Case 4A: positive denormalized numbers :2: T127 

= !IEEE(31) & EXPOO & IEEE(22) 

Case 4B: positive denormalized numbers < 2-127 

= !IEEE(31) & EXPOO & !IEEE(22) & !MANTO 

Case 4C: negative denormalized numbers s (_1_2-23) x 2-127 

= IEEE(31) & EXPOO & IEEE(22) & !MANTO 

Case 4D: negative denormalized numbers> (_1_2-23) x 2-127 

= IEEE(31)& EXPOO & (IEEE(22) 1\ !MANTO) 

Case 5: positive and negative zero 

= EXPOO & !IEEE(22) & MANTO 

IEEE-to-TMS320C30 Conversion Algorithm Overview 

Table 5 shows the conversion algorithms used on the sign, exponent, and mantissa fields of 
IEEE numbers to produce the corresponding TMS320C30 fields. These fields are broken down into 
bit-specific algorithms in the following section. 
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Table S. Conversion Algorithms from IEEE to TMS320C30 Format 

TMS320C30 

Case Exponent Sign Fraction 

l. elEEE SIEEE fIEEE 
2A. 7Fh SIEEE 7F FFFFh 
2B. 7Fh SIEEE OOOOOOh 
3A. eIEEE + 81h SIEEE fIEEE 

3B. elEEE + 81h SIEEE -fIEEE 

3C. elEEE " 80h SIEEE -fIEEE 
4A. 81h SIEEE 2 x flEEE 

4B. 80h SIEEE OOOOOOh 
4C. 81h SIEEE 2 x -fIEEE 

40. 80h 0 OOOOOOh 
5. 80h 0 OOOOOOh 

Note: Fraction, above, has only 23-bits 

IEEE-to-TMS320C30 Bit-Specific Conversion Algorithms 

These circuits were designed by examining Table 5 and finding all possible choices for each 
bit. The different choices were fed into data selectors, whose addresses were derived from the 
case-identifying logic described in the preceding section on control logic. 

For maximum performance, all data selectors were designed from NAND gates. This also 
permitted minimization by eliminating all NAND gates that had an input of 0 and by reducing the 
number of NAND inputs where a bit was always 1. However, for clarity, no minimization is shown 
here. Instead, that detail can be seen in the following figures. 

The following bit algorithms are shown in bit descending order, starting with IEEE bit 31. 

Figure S. IEEE Bit 31 to TMS320C30 Bit 23 

IEEE(31)---e>:=fD------~ f-----i.. TMS320C30(23) 

CASE4D : ' 

CASES --
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Figure 6. IEEE Bit 30 to TMS320C30 Bit 31 

IEEE(30) :=) 
ab 

CASE3C 
"1" aB 

"0" Ab 

IEEEBIAS(30) AB 

b = CASEI , CASE2A , CASE2B , CASE3C 
B= !b 
A = CASE2A , CASE2B , CASE3A , CASE3B 
a= !A 

TMS320C30(31 ) 

Figure 7. IEEE Bit 0 to TMS320C30 Bit 0+1, Where 29 <!: 0 <!: 24 

IEEE(n) --------ef ab 

"1" ---------.t aB 
1----. TMS320C30(n+ 1) 

"0" ---------.t Ab 

IEEEBIAS(n) --------ef AB 

b = CASE2A , CASE2B , CASE3A , CASE3B 
B =!b 
a = CASE2A , CASE2B , CASEI , CASE3C 
A= !a 

Figure 8. IEEE Bit 23 to TMS320C30 Bit 24 

IEEE(23) ~ 
"1" aB 

"0" -"" Ab 

IEEEBIAS(23) .. AB 

/' 
b = CASEI , CASE3C , CASE4B , CASE4D , CASES 
B= !b 

~ TMS320C30(24) 

A = CASE4B , CASE4D , CASES' CASE3A' CASE3B 
a= !A 
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Figure 9. IEEE Bit n to TMS320C30 Bit n, Where 22 ~ n ~ 1 

C = CASE2A I CASE3B I CASE3C I CASE4C 
c= !C 
b = CASEI I CASE2A I CASE3A I CASE4A I CASE4C 
B =!b 
A = CASE4A I CASE4C 
a= !A 

Figure 10. IEEE Bit 0 to TMS320C30 Bit 0 

IEEE(O) --------~ ab 

"1" --------~ as 

"0" --------~ Ab 

B=CASE2A 
b =!B 

1-----. TMS320C30(0) 

A = CASEI I CASE2A I CASE3A I CASE3B I CASE3C 
a= !A 

TMS320C30 Number Conversion 

This section describes the classifications of TMS320C30 numbers, how they are decoded, 
and the algorithms necessary to translate them to IEEE format. 

TMS320C30 Dynamic Range 

Shown in Table 6 is the dynamic range ofTMS320C30 numbers. As with Table 4, this table 
can be used to quickly determine case classification of a TMS320C30 number. 
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Table 6. TMS320C30 Range of Numbers 

Exponent Sign Mantissa Value Type . Case 

7F 0 1.111...111 (2_r23)x21U Positive Number 6 
7F 0 1.111...110 (2_2-22)x2127 Positive Number 6 
7F 0 1.111...101 (2_r21+r23jx2127 Positive Number 6 
7F 0 1.111...100 (2_r21 )x212 Positive Number 6 

7F 0 1.000 ... 000 2127 Positive Number 6 
7E 0 1.111...111 (2_2-23)x2126 Positive Number 6 
7E 0 1.111...110 (2_r22)x2126 Positive Number 6 
7E 0 1.111...101 (2_2-21+2-23)x2126 Positive Number 6 

00 0 1.000 ... 000 1 Positive Number 6 
FF 0 1.111...111 1_2-24 Positive Number 6 
FF 0 1.111...110 1_2-23 Positive Number 6 
FF 0 1.111...101 1_r22+2-24 Positive Number 6 

FF 0 1.000 ... 000 r 1 Positive Number 6 
FE 0 1.111...111 (2_r23)xr2 Positive Number 6 
FE 0 1.111...110 (2_2-22)xr2 Positive Number 6 
FE 0 1.111...101 (2_2-21+2-23)x2-2 Positive Number 6 

82 0 1.000 ... 000 r 126 Positive Number 6 
81 0 1.111...111 (2_r23)xr127 Positive Number 7 (note 1) 
81 0 1.111...110 (2_2-22)xrI27 Positivr Number 7 (note 1) 
81 0 1.111...101 (2_2-21+2-23Jx2-127 Positive Number 7 (note 1) 
81 0 1.111...100 (2_2-21 )x2-1 7 Positive Number 7 (note 1) 

81 0 1.000 ... 010 (1 +2-22)xrI27 Positive Number 7 (note 1) 
81 0 1.000 ... 001 (1 +r23)xrI27 Positive Number 7 (note 1) 
81 0 1.000 ... 000 2-127 Positive Number 7 (note 1) 

80 0 0.111...111 (note 2) Implied Zero 8 
80 0 0.111...110 (note 2) Implied Zero 8 
80 0 0.111...101 (note 2) Implied Zero 8 

80 0 0.000 ... 001 (note 2) Implied Zero 8 
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Table 6. TMS320C30 Range of Numbers (Concluded) 

Exponent Sign Mantissa Value Type Case 

80 0 0.000 ... 000 0.0 Zero 8 

80 1 10.111...111 (note 2) Implied Zero (note 3) 
80 1 10.111 ... 110 (note 2) Implied Zero (note 3) 
80 1 10.111 ... 101 (note 2) Implied Zero (note 3) 

80 1 10.000 ... 011 (note 2) Implied Zero (note 3) 
80 1 10.000 ... 010 (note 2) Implied Zero (note 3) 
80 1 10.000 ... 001 (note 2) Implied Zero (note 3) 

80 1 10.000 ... 000 (note 2) Implied Zero 8 

81 1 10.111...111 (_1_Z-23)xZ-127 Negative Number 9 (note 1) 
81 1 10.111...110 (_1_Z-22rz-127 Negative Number 9 (note 1) 
81 1 10.111...101 (-1-2-2 +2-23)x2-127 Negative Number 9 (note 1) 

81 1 10.000 ... 010 (_2+2-22)x2-127 Negative Number 9 (note 1) 
81 1 10.000 ... 001 (_2+Z-23)xZ-127 Negative Number 9 (note 1) 

81 1 10.000 ... 000 -(Z-126j Negative Number 10 
82 1 10.111...111 (-1-Z-2 )xZ-126 Negative Number 11 
82 1 10.111...110 (_1_Z-22)x2-126 Negative Number 11 
82 1 10.111...101 (_1_2-21+2-23)x2-126 Negative Number 11 

FF 1 10.000 ... 001 _1+Z-24 Negative Number 11 
FF 1 10.000 ... 000 -1 Negative Number 10 
00 1 10.111...111 (_1_2-23)x2-1 Negative Number 11 
00 1 10.111...110 (_1_Z-22)xZ-l Negative Number 11 
00 1 10.111 ... 101 (_1_2-21+2-23)x2-1 Negative Number 11 

00 1 10.000 ... 001 _2+2-23 Negative Number 11 
00 1 10.000 ... 000 -2 Negative Number 10 
01 1 10.111...111 _2_2-22 Negative Number 11 
01 1 10.111...110 _2_Z-21 Negative Number 11 
01 1 10.111 ... 101 _2_2-20+Z-22 Negative Number 11 

7F 1 10.000 ... 001 (_2+Z-23)x2127 Negative Number 11 
7F 1 10.000 ... 000 -(2128) Negative Number 12 
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Notes: 1) Numbers converted to IEEE denormalized values lose one least significant bit of accuracy. 

2) The TMS320C30 does not produce these numbers under normal arithmetic operations. Because the exponent 
of these numbers is -128, the TMS320C30 considers them zero. TMS320C30 Boolean operations are capa­
ble of producing numbers of these forms. Because of this, proper conversion to IEEE format is unclear and 
should be avoided. See note 3. 

3) Case 8 & Case 9 are activated simultaneously. This is the only instance where the cases are not mutually ex­
clusive. The TMS320C30 does not produce these numbers under normal arithmetic operations. Because the 
exponent of these numbers is -128, the TMS320C30 considers them zero. TMS320C30 Boolean operations 
are capable of producing numbers of these forms. Because of this, proper conversion to IEEE format is un­
clear. This dilemma can be resolved with minor modification to the case qualifier logic. See note 2. 

TMS320C30-(o-IEEE Control Logic 

Conversion from TMS320C30 format to IEEE format is qualified with a different set of 
Boolean equations. To eliminate confusion between IEEE and TMS320C30 cases, different case 
numbers are used. 

The logic is simplified if the following three factors are used: 

EXPSO Sl = lC30(31) 
C30(27) 

EXP7F= lC30(31) 
C30(27) 

MANTO = C30(22) 
C30(lS) 
C30(14) 
C30(1O) 
C30(6) 
C30(2) 

Then, 

Case 6: positive numbers 2: r 126 

= lEXPSO_S1 & !C30(23) 

Case 7: positive numbers N such that 

(2_2-23) x 2-127 2: N 2: 2-127 

I C30(30) 
I C30(26) 

& C30(30) 
& C30(26) 

I C30(21) 
I C30(17) 
I C30(13) 
I C30(9) 
I C30(S) 
I C30(1) 

= EXPSO_S1 & C30(24) & lC30(23) 

Case 8: zero 

= EXPSO_81 & C30(24) 
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I C30(29) 
I C30(2S) 

& C30(29) 
& C30(2S) 

I C30(20) 
I C30(16)· 
I C30(12) 
I C30(S) 
I C30(4) 
I C30(O) 

I C30(28) 

& C30(2S) & 
& C30(24) 

I C30(19) 
I C30(lS) 
I C30(1l) 
I C30(7) 
I C30(3) 

383 



Case 9: negative numbers N such that 

(_1_2-23)x2-127 ~ N ~ (_2+2-23)x2-127 

= EXP80_81.& C30(23) & lMANTO 

Case 10: negative numbers N such that 

-(2-126) ~ N ~ -(2127) and whose fraction is 0 

= l( EXP80_81 & lC30(24)) & lEXP7F & C30(23) & MANTO 

Case 11: negative numbers N such that 

-(2-126) > N > -(2128) and whose fraction ;0' 0 

= lEXP80_81 & C30(23) & lMANTO 

Case 12: negative 2128 

= EXP7F & C30(23) & MANTO 

TMS320C30-to-IEEE Conversion Algorithm Overview 

Table 7 shows the conversion algorithms used on the sign, exponent, and mantissa fields of 
TMS320C30 numbers to produce the corresponding IEEE fields. These fields are broken down into 
bit-specific algorithms in the next section. 

Table 7. Conversion Algorithms from TMS320C30 to IEEE Format 

IEEE 

Case Sign Exponent Fraction 

6 sC30 eC30+7Fh fC30 
7 sC30 00 ( fC3Oi'2)+400000h 
8 0 00 OOOOOOh 
9 sC30 00 (fC30+ 1 )/2+400000h 
10 sC30 eC30+80h OOOOOOh 
11 sC30 eC30+7Fh fC30+ 1 
12 sC30 FFh OOOOOOh 

TMS320C30-to-IEEE Bit-Specific Conversion Algorithms 

These circuits were designed by examining Table 7 and finding all possible choices for each 
bit. The different choices were fed into data selectors whose addresses were derived from the 
case-identifying logic described in the preceding section on TMS320C30 to IEEE control logic. 

Just as in the IEEE case-identifying logic, all data selectors were designed from NAND gates 
for maximum performance. This also permitted minimization by eliminating all NAND gates hav­
ing an input of 0 and by reducing the number of NAND inputs where a bit was always 1. However, 
for clarity, no minimization is shown here. Instead, that detail can be seen in the following figures. 
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The following bit algorithms are shown in bit-descending order, starting with TMS320C30 
bit 31. 

Figure 11. TMS320C30 Bit 31 to IEEE Bit 30 

TMS320C30SIAS(31) --------~ ab 

"1" ------------~aB 

"0" ____________ ~ Ab 

TMS320C30(31) ~ 

CASE10 -+-/ 

B = CASEIO I CASE12 
b =!B 

)----.!AB 

a = CASE61 CASEll I CASE12 
A= !a 

(------. IEEE(30) 

Figure 12. TMS320C30 Bit n to IEEE Bit n-1, Where 31 :2: n :2: 24 

TMS320C30SIAS(n) ---------~ .. > 
"1" ~-------.. ~ aB 

"0" ------------~ Ab 

TMS320C30(n) --------~ AS 

V 
B = CASElO I CASE12 
b =!B 
a = CASE6 I CASEll I CASE12 
A= !a 

(------. IEEE(n·1) 

Figure 13. TMS320C30 Bit 23 to IEEE Bit 31 

TMS320C30(23) 0 
____ ---I 1---- IEEE(31) 

CASES . 
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Figure 14. TMS320C30 Bit 22 to IEEE Bit 22 

TMS320C30(22) ---------1~ ab 

"1" ---------i~ aB 
1-----+ IEEE(22) 

"0" --------~ Ab 

TMS320C30NEG(22) ---------1~ AB 

B = CASE71 CASE91 CASEll. 
b =!B 
a = CASE61 CASE71 CASE9 
A= !a 

Figure 15. TMS320C30 Bit D to IEEE Bit D, Where 21 ~ D ~ 1 

TMS320C30(n+1) --------~~ 
TMS320C30(n) --------~ 

"0" --------~ 

TMS320C30NEG(n+1) --------~ 

TMS320C30NEG(n) --------~ .. / 

C = CASE6 I CASE9 
c= !C 
b = CASE61 CASE71 CASEll 
B= !b 
A= CASEll 
a= !A 

1------1~. IEEE(n) 
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Figure 16. TMS320C30 Bit 0 to IEEE Bit 0: 

.. ~ ab TMS320C30(O) ---------1~ 

TMS320C30(1) ---------1~ as 

.. "0" ---------pt 

.. TMS320C30NEG(1) ----------.t 

B = CASE7 I CASE9 
b =!B 
a = CASE61 CASE71 CASEll 
A= !a 

Scope of Conversion 

Ab 

AS 

/ 

.. IEEE(O) 

This section describes the actions taken by the converter when it converts to and from the 
IEEE format. When there is not a match between formats, the converter forces the translated num­
ber to the closest approximation. 

IEEE-to-TMS320C30 Exceptions 
The match is not exact in translating from four sets of IEEE numbers to TMS320C30 num­

bers. They are: NaN, ± infinity, ± zero and denormalized numbers too small to represent. 

NaN (Not a Number) 

The NaN format is especially useful in passing commands to another process. So that com­
mands can be passed through the converter, NaNs are not converted. However, the bit positions of 
the sign and exponent bits are altered. That is, the sign bit of the IEEE number is transferred to the 
sign bit of the TMS320C30 format. Likewise, the exponent field is transferred. In this way, the sign 
of the NaN is preserved which may aid in quick detection of the code. In other words, the 
TMS320C30 Branch on Positive instruction (BP) or Branch on Negative instruction (BN) are ef­
fective. So that the command can be acted on quickly, a NaN interrupt is generated. 

± Infinity 

When positive or negative infinity is passed through the converter, the most positive or nega­
tive TMS320C30 number is produced. 

Denormalized numbers whose magnitude < 2-126 

Half of the denormalized IEEE numbers are out of range of TMS320C30 numbers. These 
denormalized numbers have very small magnitudes and are therefore forced to zero when con­
verted. 

± Zero 

The IEEE format includes representations for positive and negative zero, but the 
TMS320C30 format does not. The converter forces each of these numbers to the singular 
TMS320C30 zero format. 
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TMS320C30·to·IEEE Exceptions 

There are two sets ofTMS320C30 numbers that do not perfectly match IEEE numbers. One 
set consists of a single value (- 2127). The other consists of numbers converted to IEEE denormal­
ized numbers. 

_2127 

The single value, - 2127, is a very large negative number. When this number is translated, neg­
ative infinity is produced. 

Numbers Translated to Denormalized Values 

When the exponent is-127, denormalized IEEE numbers are produced, and one least signifi­
cant bit of accuracy is lost. This occurs because the TMS320C30 mantissa must be right-shifted 
one bit in order that the exponent be increased to -126, which is the most negative exponent the 
IEEE format can use. 

Converter Operating Modes 

The converter is controlled by the TMS320C30. Conversions occur when the converter's 
output enable pin (OE) is active (i.e., low) and the TMS320C30 performs a read or write over its 
primary (STRB active) or expansion (MSTRB active) buses. This requires the converter to be 
placed directly between the TMS320C30 and external memory. That memory is where IEEE data 
will be stored. If direct (Le., no conversion wanted) access to that memory is desired, transceivers 
like the SN74LS245 should be added in parallel with the converter. However, doing so requires that 
only one data path be enabled at a time. If unused, one of the XF pins of the TMS320C30 can be 
dedicated to perform this selection. 

During a read, data is converted from IEEE format to TMS320C30 format. During a write, 
data is converted from TMS320C30 format to IEEE format. This will happen if the TMS320C30 
R/W or XR/W pin is tied to the converter's direction (DIR) pin. Table 8 shows how to put the con­
verter into its two operating modes and briefly describes each mode. 

Table 8. Converter Operating Modes 

Mode Pin Description 

Memory PIPE=O Flow-Through Conversion Enabled - In this mode, the converter essentially 
behaves like a simple bus transceiver, such as an SN74LS245, except with an 
integrated floating-point format converter. When this mode is used, conver-
sions take two cycles. Because of this, the converter automatically generates a . 
wait state, which will halt the TMS320C30 for one cycle until the conversion 
is complete. 

Pipeline PIPE=l Converter's Pipeline Registers Enabled Internally - This mode permits 
single-cycle conversion. As one data value is being converted, a previously 
converted value is output. 
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Memory Mode Operation 

In this mode, one wait cycle is automatically generated during conversions from 

• IEEE format to TMS320C30 format (reads) 

• TMS320C30 format to IEEE format (writes) 

The converter will not generate wait cycles of any other length and requires that the 
TMS320C30 HI clock pin be tied to the converter's CLK pin. Figure 17 sbows the timing diagram 
for this mode of operation. 

Figure 17. Memory Mode Timing Diagram 

elK 

f--~-
I 

Pipelined Operation 

Pipeline mode permits consecutive conversions every instruction cycle without wait cycles. 
However, because the pipeline has two internal stages, it takes two consecutive occurrences of the 
same operation (i.e., two reads or two writes) before it is filled. Therefore, the first read after a tran­
sition from a write will not provide properly converted data, and vice versa. 

There is an address skew of one address when consecutive data values are converted. This 
should not be a major problem when blocks of memory are converted. The only added task will 
be to perform one extra transfer (read or write) to convert the last value remaining in the pipeline. 
With this exception, operation is identical to the Memory mode. Figure 18 shows a timing diagram 
for this mode of operation. 
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Figure 18. Pipeline Mode Timing Diagram 

elK 

DIR J, 
WAIT _____ "'--____ -'-_____ .__--"-____ ""'-_"'--____ -,-_ 

A(31:0) -~ 
I 

I 

: 'C30:IN 2 X JC I I 

8(31:0) --.\ 
I 

~: IEE~ OUT 1: ~ 
I , , 

Interrupts 

The converter automatically generates an interrupt whenever the conversion of an IEEE 
number classified as Not a Number (NaN) is attempted. The interrupt pulse is 1.5 HI cycles wide. 
This is compatible with the TMS320C30 edge-triggered interrupt types. Table 9 shows this inter­
rupt and its trigger. Note that the converter does not change the value of the NaN, but it does alter 
its bit positions. This assures that the sign bit of the IEEE number remains a sign bit in the 
TMS320C30 format. The same is true of the exponent field. The fractional field is left unchanged. 
If NaN is used to pass a code or command to the TMS320C30, interpretation of the code requires 
onl y the alteration of the comparison mask in software. For more information, refer to the previous 
subsection NaN (Not a Number). 

Table 9. NaN Interrupt 

Name Function Sources 

NAN Not a Number IEEE eASEl: NaN 
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Software Application Examples 

Simple Nonpipelined Conversion 

If an external device (i.e., RAM, ROM, dual bus RAM, latch, etc.) contains a single-precision 
IEEE floating-point number and the corresponding TMS320C30 number is needed, the following 
TMS320C30 code will perform the required conversion: 

EXTO 
* 

.word 

LOI 
LOF 

0800000h 

@EXTO,ARO 
*ARO,RO 

put address of external device here 

load ARO w/address of external device 
RO=C30 formatted number 

The following example performs TMS320C30-to-IEEE format conversion: 

EXTO 
* 

* 

.word 

LOI 
STF 

0800000h 

@EXTO,ARO 
RO, *ARO 

Simple Pipelined Conversion 

put address of external device here 

load ARO w/address of external device 
location pointed to by ARO=IEEE formatted 

number 

This example illustrates the overhead when the converter's pipeline mode is used. Since a 
single value will be converted, it is necessary to read the converter one extra time to flush the pipe­
line. Once again, assume that an external device (i.e., RAM, ROM, dual bus RAM, latch, etc.) con­
tains a single-precision IEEE floating-point number, and the corresponding TMS320C30 number 
is needed. 

EXTO .word 0800000h put address of external device here 
* 

LOI @EXTO,ARO load ARO w/address of external device 
LOF *ARO,RO ignore loaded value, 1st load queues 

* pipeline 
LOF *ARO,RO RO=C30 formatted number, address is 

* immaterial 

The following example performs TMS320C30 to IEEE format conversion: 

EXTO 
* 

* 

.word 

LOI 
STF 
STF 

0800000h 

@EXTO,ARO 
RO,*ARO 
RO,*ARO 

Pipelined Block Conversions 

put address of external device here 

load ARO w/address of external device 
value stored not correct until 2nd store 
location pointed to by ARO=IEEE formatted 

number 

In the previous subsection, the pipeline was used, but not efficiently. This example shows a 
more typical application of pipeline mode. Again, external memory contains IEEE formatted data. 

N 
EXTO 
OAOR 
* 

.set 

.word 

.word 

03FFh 
0800000h 
0809800h 
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N = # of values to convert - 1 
put external address here 
put destination address here 
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RCR: 
* 

N 
EXTO 
DAOR 
* 

* 
* 

II 

N 
EXTO 
SAOR 
* 

AC: 

N 
EXTO 
SAOR 

II 
* 

LOI 
LOI 
LOF 
LOI 
RPTB 
LOF 
STF 

@EXTO,ARO 
@OAOR,AR1 
*ARO++,RO 
N,RC 
RCR 
*ARO++,RO 
RO,*AR1++ 

This is more efficient: 

.set 03FEh 

.word 0800000h 

.word 0809800h 

LOI @EXTO,ARO 
LOI @OAOR,AR1 
LOF *ARO++,RO 
LOF *ARO++,RO 
RPTS N 

LOF *ARO++,RO 
STF RO, *AR1++ 

load ARO w/address of external device 
load AR1 w/destination address 
prime (preload) the converter's pipeline 
block will be repeated N (0400h) times 
specify end address of block repeat 
read converted values into RO 

; store converted values into on-chip 
memory 

N = # of values to convert - 2 
put external address here 
put destination address here 

load ARO w/address of external device 
load AR1 w/destination address 
prime (preload) the converter's pipeline 
read 1st converted value for 1st STF 
repeat next instruction N-1 (03FFh) 

times, extra loop is to store last 
value converted 

read converted values into RO 
store converted values into on-chip 

memory, 1st store will save junk 

The following example performs TMS320C30 to IEEE format conversion: 

.set 0400h 

.word 0800000h 

.word 0809800h 

LOI @EXTO,ARO 
LOI @SAOR,AR1 
LOI N,RC 

RPTB AC 
LOF *AR1++,RO 
STF RO,*ARO++ 

This is more efficient: 

.set 03FFh 

.word 0800000h 

.word 0809800h 

LOI @EXTO,ARO 
LOI @SAOR,AR1 
LOF *ARO++,RO 
RPTS N 

LOF *AR1++,RO 
STF RO,*ARO++ 

STF RO, *ARO++ 

N equals number of values to convert 
put external address here 
put source data address here 

load ARO wi address of external device 
load AR1 wi source data address 
block will be repeated N+1 (0401h) times, 

extra loop is to store last value 
converted 

specify end address of block repeat 
read TMS320C30 format numbers into RO 
store converted values into external 

device 

,N equals number of values to convert - 1 
put external address here 
put source data address here 

load ARO w/address of external device 
load AR1 wi source data address 
read 1st converted value for 1st STF 
repeat next instruction N (0400h) times, 

extra loop is to store last value 
converted 

read converted values into RO 
store converted values into external 

device 
store last value 

Using TMS320C30 External Flag 0 (XFO) 

As mentioned in the section on converter operating modes, one ofthe TMS320C30's XFpins 
can be tied to the converter's output enable (OE) pin to enable the data path through the converter 
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or to bypass it, as the case may be. The following TMS320C30 code uses the TMS320C30 XFO 
pin to do this (see Hardware Applications Examples section later in this report for the hardware 
configuration). Nonpipelined mode is assumed. 

N 
EXTD 
SADR 
* 

II 
* 

.set 

.word 

.word 

LDI 
LDI 
LDI 
LDF 
RPTS 
LDF 
STF 

LDI 

03FFh 
OBOOOOOh 
OB09BOOh 

@EXTD,ARO 
@SADR,AR1 
2,IOF 
*ARO++,RO 
N 
*AR1++,RO 
RO,*AR1++ 

6,IOF 

N equals number of values to convert - 1 
put external address here 
put source data address here 

load ARO w/address of external device 
load AR1 wi source data address 
XFO=output=O, select the converter 
read 1st converted value for 1st STF 
repeat next instruction N+1 (0400h) times 
read converted values into RO 
store converted values into on-chip 

memory, 1st store will save junk 
XFO=output=l, deselect the converter 

Using the TMS320C30 DMA Capability 

The built-in TMS320C30 DMA controller can be used to read converted IEEE values. The 
TMS320C30 assembly code to set up the DMA is shown below. Non-pipelined mode is assumed. 

DMA 
GLBL 
N 
EXTD 
DADR 
* 

.word 

.word 

.set 

.word 

.word 

OBOBOOOh 
OC53h 
0400h 
OBOOOOOh 
0809800h 

* DMA controller setup 
* 

LDI 
LOI 
LOI 
LOI 
LDI 
STI 
STI 
STI 
STI 

@OMA,ARO 
@EXTO,RO 
@OAOR,Rl 
N,R2 
@GLBL,R3 
RO,*+ARO(4) 
Rl,*+ARO(6) 
R2,*+ARO(8) 
R3, *ARO 

base address of OMA registers 
OMA global regIster in it value 
N equals number of values to convert 
put external address here 
put destination data address here 

ARO -> OMA control registers 
RO address of IEEE data 
Rl = converted data destination address 
R2 = OMA transfer count 
R3 = OMA Global register initial value 
DMA will transfer from external device 
DMA will transfer to RAM block 0 
OMA will transfer N values 
start the OMA 

Hardware Application Examples 

IEEE Data Stored in TMS320C30 External MSTRB Memory 

Below is shown an example of interfacing the converter to TMS320C30 external memory 
containing only IEEE formatted data. In this configuration, it is likely that the memory would be 
dual bus RAM to enable a second processor to share data with the TMS320C30 through this 
memory. Figure 19 shows an interface to a static RAM (SRAM) bank. 
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Figure 19. Interface to Static RAM 
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Bypassing the Converter 

A previous subsection (Using TMS320C30 External Flag 0) showed TMS320C30 assembly 
code that used the TMS320C30 XFO pin either to steer data through the converter or to bypass the 
converter for direct, or unconverted, access to that memory. Figure 20 shows a circuit that can be 
used with that code. 
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Figure 20. Steered Access to the Memory 
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JTAG/IEEE-1149.1 Scan Interface 

Integrated circuit and board-level testing is increasingly important. JTAG or IEEE-1149.1 
is a standard test methodology. It is based on a 4-wire connection to a device and provides access 
to all I/O buffers (boundary scan) of a device. This permits stimulation and observation of internal 
logic. By allowing stimulation of output pins and observation of input pins, external circuitry can 
also be tested. If implemented completely, this can eliminate "bed of nails" test rigs. 

The TMS320C30-IEEE Floating-Point Format Converter is equipped with a JTAG/ 
IEEE-1149.1 compatible scan interface. The internal architecture is based on Texas Instruments' 
SCOPEtm design specifications. This provides for boundary-scanning of the device and inclusion 
of an eight-bit instruction register. 

Figure 21 shows the internal scan architecture and gives the naming conventions used to de­
scribe the device blocks: 

Figure 21. Scan Architecture 

BOUNDARY DATA REGISTER 

BYPASS DATA REGISTER 

TOO 

TDI INSTRUCTION REGISTER 

TMS 
TITAP >---+--- TIP 

TCK 

I/O Pin Description 

TCK 

The TCK input clock signal is the scan clock. It typically will be generated off-board by a 
test controller. All tests of the device are controlled by an external controller and proceed at the scan 
clock (TCK) speed. 

TMS 

The TMS input signal is clocked in by TCK. TMS controls the test mode of the device. Using 
TMS and TCK, a test controller can scan registers through the device, perform tests, or place the 
device in a normal functional mode. 
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TDI 

The IDI input signal is used to input serial data through the registers in the device. All data 
is clocked in by TCK and shifts according to the state ofthe test logic set up by an external test con­
troller using TMS and TCK. 

TDO 

The IDO output signal is used to scan serial test data out of the device under the control of 
the test host. While shifting data, TDO is active-shifting data out on the falling edge ofTCK. When 
through shifting data, IDO is tri-stated. 

TIP 

TIP is an output indicating good or bad parity in the instruction register. The indication de­
faults to good if the external controller does not check for parity. To check parity, the test controller 
places the device in the instruction register pause state. While in this state, the device will output 
the actual (Le., hardware-determined) parity of the device's instruction register. A high logic level 
indicates good parity, while a low logic level indicates bad parity. 

Architectural Elements 

TITAP 

The Texas Instruments' Test Access Port (TITAP) is a 16-state state-machine designed ac­
cording to the JTAG and IEEE-1149.1 specifications. The TITAP controls the test logic and is con­
trolled by the TMS and TCK inputs to the device from an external test host controller. 

Instruction Register 

The Instruction Register is eight bits in length. Table 10 lists the instructions available for 
this device. 

Table 10. Test Instructions 

msb-> Isb Instruction 

00000000 Boundary Scan 
10000001 ID Register Scan 
10000010 Sample Boundary Scan 
00000011 Boundary Scan 
00000110 Control Boundary HI-Z 
10000111 Control Boundary 1/0 
00001010 Read Boundary-Normal 
10001011 Read Boundary-Test 
00001100 Boundary Selftest 
11111111 Bypass Scan 
All Others Bypass Scan 

The Instruction Register is preloaded with 00000001 (msb-Isb) in the instruction register 
capture state of the TITAP. This is not per the JTAGIIEEE-1148.1 standards. 
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Boundary Scan Instruction 

This instruction places the device in test mode: all function inputs and outputs are controlled 
by the test logic. Function inputs and outputs are sampled in the data register capture state of the 
TITAP, and the boundary data register is selected in the data register scan path during data register 
scans. 

ID Register Scan Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The bypass data register is selected in the data register scan path during data 
register scans. 

Sample Boundary Scan Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. Function inputs and outputs are sampled in the data register capture state 
of the TITAP, and the boundary data register is selected in the data register scan path during data 
register scans. 

Control Boundary HI-Z Instruction 

This instruction places the device in test mode: all function outputs are tri-stated (if possible), 
while all function inputs operate in their normal mode. The bypass data register is selected in the 
data register scan path during data register scans. 

Control Boundary 1/0 Instruction 

This instruction places the device in test mode: all function inputs and outputs are controlled 
by the test logic. The bypass data register is selected in the data register scan path during data regis­
ter scans. 

Read Boundary - Normal Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The boundary data register retains its current state in the data register capture 
state of the TITAP, and the boundary data register is selected in the data register scan path during 
data register scans. 

Read Boundary - Test Instruction 

This instruction places the device in test mode: all function inputs and outputs are controlled 
by the test logic. The boundary data register retains its current state in the data register capture state 
of the TITAP, and the boundary data register is selected in the data register scan path during data 
register scans. 

Boundary Self-Test Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The boundary data register contents are toggled, and the data register cap­
tures the state of the TITAP. Also, the boundary data register is selected in the data register scan 
path during data register scans. 
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Bypass Scan Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The bypass data register is selected in the data register scan path during data 
register scans. 

Boundary Data Register 

The boundary data register contains 70 bits and is ordered according to Figure 22. 

Figure 22. Scan Path Bit Order 
TDI -> DIR -> PIPE -> CLK -> OEZ -> NAN -> WAIT-> 

DA31 -> DA30 -> ... -> DAl-> DAO-> 
DB31-> DB30 -> ... -> DB1-> DBO -----:> IDO 

Bypass Data Register 

The Bypass Data Register is one bit in length and is operated in accordance with the JTAG/ 
IEEE-1149.1 specifications. 

Scan References 

Refer to the following documents for further descriptions of the test logic of this device: 
1) A Test Access Port and Boundary Scan Architecture; Technical Sub-Committee of the 

Joint Test Action Group (JTAG). 
2) IEEE Standard 1149.1- IEEE Standard Test Access Port and Boundary-Scan Architec­

ture. 
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Introduction 

Speech coders are critical to many speech transmission and store-and-forward systems. With 
the emergence of universal standards, it is possible to develop systems that are interoperable. Quali­
ty and bit rate for speech coders vary from toll quality at 32 kilobits/second (kbps) (CCITT 
ADPCM) to intelligible quality at 2.4 kbps (DOD LPC-lO). Recently, a new standard for 4.8 kbps 
with near toll-quality has been proposed and is based on code-excited linear prediction (CELP) 
techniques [1,2]. Unfortunately, products based on new coding algorithms are often slow to appear 
because of the considerable time and effort required to develop real-time implementations. 

The purpose of this article is to demonstrate how a CELP coder based on this new standard 
can be quickly developed using SPOX. Utilizing the power of the TMS320C30 DSP plus the ease 
of use provided by C and the SPOX DSP library, an efficient and portable coder can be written in 
a much shorter period of time than that required by conventional assembly language methods. Be­
cause of the portability of SPOX andC, the coder can also be compiled and executed on a variety 
of hardware platforms. 

A 4.8-kbps CELP Coder 

CELP coders were first introduced by Atal and Schroeder in 1984 [3]. These coders offer 
high quality at low bit rates, but at a high computational cost. Implementing the original systems 
directly required several hundred million instructions per second (MIPS). Much of the research on 
CELP techniques has concentrated on reducing this computational load to facilitate real-time im­
plementations. 

The proposed U. S. Federal Standard 4.8-kbps CELP coder (USFS CELP), Version 2.3, uses 
several techniques to reduce the complexity to a level where a one- or two-processor implementa­
tion is possible. These are the main characteristics of the coder: 

o 240-sample frame size at 8-kHz sampling rate 

o Tenth-order short-term predictor 
- Calculated once per frame, open loop 
- Autocorrelation with Hamming window 
- LSP quantization 

o Four subframes (60 samples) 
- One tap pitch predictor 

1) Closed loop analysis 
2) Even/odd subframe delta search method 

- I024-e1ement codebook 
1) Overlapped by 2 (see Pitch and Codebook Search) 
2) 75% of elements are zero 

Block diagrams of the decoder and encoder are shown in Figure 1. 
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Figure 1. USFS CELP Decoder and Encoder Structures 
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Bit allocations are given in Table 1 [2,4]. 

Table 1. 4.8.kbps CELP Parameters 

Spectrum Pitch Codebook 

Update 30 ms (240 samples) 7.5 ms (60) 7.5 ms (60) 
Parameters 10 LSP 1 delay, 1 gain 1 of 1024 index, 1 gain 
Bps 1133.3 1466.7 2000 

Remaining 200 bps reserved for expansion, error protection, and synchronization 
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The standard also specifies an error protection scheme utilizing forward error-correcting 
Hamming code and parameter smoothing. 

The major computational parts of the algorithm are the pitch search and the codebook search, 
both of which are performed four times per frame. An important technique to reduce the computa­
tions is the end-correction convolution technique (see Pitch and Codebook Search). This is a recur­
sive convolution method that reduces the number of multiply-adds by an order of magnitude. 

In addition, the codebook is designed to have approximately 75% of the samples equal to 
zero. This allows many of the convolution updates in the codebook search to be reduced to a simple 
shift of a vector of samples. On DSP processors with circular addressing, this shift can be replaced 
by using circular buffers. 

To further reduce complexity, the pitch search is limited in range for every other subframe. 
During even-numbered subframes, the optimal pitch value is performed over the range 20 to 147 
(128 values). On the odd subframes, the search is only over the range 16 from the previous pitch 
value. This also decreases the bit rate with a negligible effect on speech quality. 

If adequate processing power is not available, you can implement an interoperable coder by 
using a subset of the full codebook. For example, if only the first 128 vectors from the codebook 
could be used, the sub-optimal coder would work with an optimal coder if the same frame structure 
and bit rate were used. 

These techniques produce complexity estimates for the USFS CELP coder ranging from 5.3 
MIPS to 16.0 MIPS for a 128-vector and 1024-vector codebook, respectively[4]. 

Using SPOX in Development 

The computational complexity of CELP coders, even with use of the various techniques to 
reduce it, has made real-time implementations impractical on first- and second-generation DSPs. 
The recent introduction of the third-generation TMS320C30[5], however, makes it feasible to im­
plement the USFS CELP coder with one or two processors. Furthermore, because of the general­
purpose capabilities of the TMS320C30 and the availability ofa C compiler and SPOX, develop­
ment of a real-time coder can be significantly expedited. 

In particular, SPOX provides the following functions to facilitate software development. 

• C standard I/O functions 
- printf(), seanf( ) 
- fopen(), fread( ), fwrite( ) 

• Stream I/O to move data efficiently 

• Standard set of DSP math functions 
- Filters 
- Vector operations 
- Windows 
- Levinson-Durbin algorithm 

• Processor independence 

Both FORTRAN and Cversions of the Version 2.3 USFS CELP coder were available as start­
ing points for the real-time implementation. The initial development was done on a Sun worksta-

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 407 



tion equipped with SPOX/SUN [6] and the usual UNIX programming tools, such as the symbolic 
debugger dbx. SPOX/SUN is a library of SPOX DSP math functions that can be used for develop­
ing SPOX applications on Sun workstations. The new version of the coder utilizing SPOX was 
checked against the existing implementation for correctness. After the new version was debugged 
on the workstation, the source code was recompiled employing the Texas Instruments TMS320C30 
C compiler and linked with the SPOX;XDS library for the XDSlOOO development system. 

The same facilities for testing the code on the workstation were available on the XDSIOOO. 
A SPOX stream function (see Input/Output section) read digitized speech from a disk file. Status 
information was printed to the console screen. Command line arguments were used to vary the en­
coder's parameters such as the codebook size. 

The software development process for the USFS CELP coder followed three evolutionary 
steps: 

• C program using standard I/O 

• C program using SPOX functions for faster math and I/O 

• C program using SPOX and assembly language optimizations 

The first step was taken because an existing C implementation was available. The C standard 
I/O provided by SPOX made it possible to run the application code written in C directly on the 
XDSIOOO. For example, functions (fscanf(» that read control information from a disk file on the 
Sun also worked on the XDSIOOO using the PC's hard disk. 

In general, it would have been easier to start with the SPOX library functions to implement 
some of the common operations contained in the coder. Many of the functions needed (filtering, 
correlation, dot-product) are in the SPOX DSP library. In this case, the C implementations ofthese 
standard vector and filter functions in the existing program were replaced with the corresponding 
SPOX functions. The SPOX functions, written in optimized assembly language, execute several 
times faster than the corresponding C functions. 

The last step was needed to meet real-time constraints. XDS 1 000 timing capabilities allowed 
the identification of two time-critical sections of the code which were then rewritten in 
TMS320C30 assembly code. Since the interface to the SPOX math functions is open, new math 
functions can be written that work with SPOX data structures such as vectors and filters. 

Implementation 

Several major parts of the USFS CELP encoder are implemented with a mixture of C, SPOX, 
and TMS320C30 assembly language functions. The decoder can be easily constructed from the 
material presented here. An adaptive postfilter for the decoder is not described here. 

The framework of the resulting encoder is shown in Figure· 2. A description of the major 
functions performed can be found in the following sections. Appendix A provides a short summary 
of the SPOX functions employed in the next four sections (Input/Output, Spectrum Analysis, Fil­
ters, and Pitch and Codebook Search). 
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Figure 2. Structure of the Encoder Function 

encoder(instream, outstream) 
SS stream instream; 
Ss=stream outstream; 

while ( SS_get(instream, SV_array(speech» ) { 

/* Apply a high pass filter to the input speech */ 
SF_apply(hpfilter, speech, speech); 

/* Find the coefficients of the short-term prediction filter */ 
calculateLP(speech, invcoeffs); 

/* 
* Convert the direct form coefficients to line spectrum pairs. 
* Then quantize the LSP's and convert back to direct form. 
*/ 

/* 

SV_a2lsp(invcoeffs, lsps); 
quantizeLSP(lsps, qntzlsps); 
SV_lsp2a(qntzlsps, invcoeffs); 

* For each of the 4 subframes, determine the pitch prediction 
* parameters and codebook (excitation) parameters 
*/ 

for (i = 0; i < 4; i++) { 

genShortResidual(s[i], res[i]);/* generate short term residual */ 
pitchSearch(s[i], res[i]); /* find optimum pitch predictor */ 
genFullResidual(s[i], res[i]); l* generate residual */ 
codeSearch(res[i], reshat); /* find best code book vector */ 
updateFilters(reshat); /* update filter states */ 

} 
packParams(); /* pack parameters into output array */ 
SS~ut(outstream, params); 

Input/Output 

Input speech samples are obtained by employing a function (SS Jet( », which reads data 
from a named stream (instream). The creation of instream during program initialization deter­
mines the source of the data. During development, the easiest source is a disk file with digitized 
speech. When real-time testing is needed, a codec connected to a TMS320C30 serial port could be 
utilized. For example, instream could be created to read from standard input with the following 
code segment. 

#define FRAMESIZE 240 * sizeof(Float) 

instream = SS_create(DF_FILE, DF_STDIN, FRAMESIZE, NULL); 

The output stream (outstream) consists of the packed frame parameters. It could also go to 
a disk file or a serial port by using SSJ>ut(). 

Spectrum Analysis 

After preconditioning the signal with a highpass filter (see the Filters section), the coeffi­
cients of the short term prediction filter can be found by using the function calcuIateLP( ) shown 
below. 
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window, rc, error, cor, gammavec; 

calculateLP(S, coeffs) 
SV_Vector s, coeffs; 

SV window(s, window, s); 
Sv=corr(s, s, cor); 
SV autorc(cor, coeffs, rc, error); 
sv=mu12(gammavec, coeffs); 

/* window the speech in-place */ 
/* autocorrelation */ 
/* Levinson-Durbin */ 
/* bandwidth expansion */ 

The vector window is initialized to contain the desired window; in this case, a Hamming win­
dow is used. The autocorrelation terms are stored in the vector cor that has the same length as the 
order of the short term filter. SV _autorc() uses a Levinson-Durbin type algorithm to compute the 
inverse filter coefficients. As a side effect, the reflection coefficients are also stored in rc. Finally, 
a IS-Hz bandwidth expansion is produced by the multiplication of the inverse filter coefficient vec­
tor by a vector (gammavec) consisting of the terms 

g[i] = 0.994 i for i = 0, 1, •.• , m-1 

Efficient quantization is obtained by: 

• Transforming the prediction coefficients into line spectrum pairs (LSPs) 

• Then quantizing the LSPs 

The conversions between prediction coefficients and LSPs are not currently in the SPOX li­
brary. The existing C implementation evaluates cosine values directly, which is too expensive com­
putationally. A more efficient routine (SV _a2Isp()), that employs table-lookup of cosine values, 
has been written utilizing the algorithm outlined in [7]. The quantized LSPs are transformed back 
to direct-form coefficients for use in the short-term predictor. 

Filters 

Three filters in the encoder can be realized by use of SPOX filter objects. The inverse filter 
A(z) and the short term predictor l/A(z) share the same fiitercoefficients. The former is an FIR filter 
and the latter an all-pole filter. The final filter is the all-pole weighting filter W(z) with coefficients 
given by l/A( f... z), with f... = 0.8. 

During the initialization of the encoder, the filters are created with the code fragment shown 
below. 

410 

#define FILTERSIZE 

SF Filter 
SV-Vector 
SA=Array 

11 * sizeof(Float) 

invfilter, predfilter, wgtfilter; 
invcoeffs, wgtcoeffs; 
array; 

array = SA create(SG CHIP, FILTERSIZE, NULL); 
invfilter ~ SF create(array, NULL, NULL); 
SF_bind(invfilter, invcoeffs, NULL); 

array = SA create(SG CHIP, FILTERSIZE, NULL); 
predfilter-= SF_create (NULL, array, NULL); 
SF_bind(predfilter, NULL, invcoeffs); 
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array = SA_create(SG_CHIP, FILTERSIZE, NULL); 
wgtfilter.= SF create(NULL, array, NULL); 
SF_bind(invfilter, NULL, wgtcoeffs); 

Note that the inverse and prediction filters are both bound to the same coefficient vector. For 
each new frame of speech, this vector is updated when it is passed to calculateLP(). 

An important consideration is that the filters are used more than once during a frame. A dif­
ferent signal is filtered each time, but the state (history) of the filter must be the same. This is ac­
complished before each filter operation by using the 

o SF _getstate() function to recover a vector with the state of the filter at the end of the pre­
vious frame 

• SF _setstate() function to restore the filter's state 

The following code segment shows how the short term prediction residual is generated for 
the pitch search. 

SF setstate(predfilter, NULL, predstate); 
SV-fill(residual, 0.0); 
SF=apply(predfilter, residual, residual); /* zero input of filter */ 

SV_sub3(residual, speech, residual); /* speech - history */ 

SF_setstate(invfilter, invstate, NULL); 
SF_apply(invfilter, residual, residual); /* filter with inverse */ 

SF_setstate(wgtfilter, NULL, wgtstate); 
SF_apply(wgtfilter, residual, residual); /* filter with weighting */ 

Pitch and Codebook Search 

After the program finds the short-term predictor and generates the corresponding residual, 
the pitch predictor and code book parameters are found for each of the four subframes. The pitch 
and codebook search functions are similar: both search over a set of values to minimize an error 
term. In this section, only the codebook search is illustrated (see Figure 3). Many of the functions, 
however, can be applied to the pitch predictor calculations. 

Ii 
CODEBOOK 

Figure 3. Codebook Search Block Diagram 
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The search in Figure 3 minimizes the distance between the input vector and one of many gen­
erated vectors. The quantity being minimized is the Euclidean norm: 
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e = II r-r W (1) 
= r' r - 2 r' r + r' r 

where 

r = the original residual 
r = the synthesized residual 

It can be seen from the vector definition that only two terms need to be computed - the corre­

lation of rand r and the energy of r ;' this is because the energy of the original residual is invariant 
over all the generated residuals. It appears that there would be N convolutions and 2N dot products 
to perform for each sub-frame. Implemented directly, the codebook search would thus require 66 
MIPS if N = 256 and a sub-frame length of 60 are specified. 

Instead, the USFS CELP coder uses a specially structured codebook that greatly reduces the 
computational load. The biggest savings comes from the elimination of all but one of the convolu­
tions for each subframe. The codebook is overlapped, as shown in Figure 4. 

Figure 4. Structure of Overlapped Codebook 
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This. structure permits a recursive convolution computation. The first code book vector is 
convolved normally with the weighting filter. Subsequent convolutions, however, make use of the 
following relationships. 

Vi+l(Z) = z-IR;(z) + Xi+l[l ]H(z) 
Ri + l(z) = Z-IVi+1(Z) + Xi+l[O]H(z) 

(2) 

where R;(z) is the Z-transform of the generated residual. Given the convolution of the pre­

vious codebook vector with the weighting filter, the convolution employing the next vector can be 
found with only 120 (2 x 60) multiplies and adds. 

This number can be further reduced by another property of the codebook. The vectors are 
generated by center-clipping a gaussian noise source, which causes approximately 75% of the ele­
ments to be zero. Thus, 75% of the updates to the convolutions require no multiplications or addi­
tions; however, the convolution elements must still be shifted. The following function update( ) 
implements the recursive update operation. Note that it must be called twice per codebook vector, 
once for each new term. 
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update(x, res, wgtirnpulse) 
Float x; 
SV Vector res, wgtirnpulse; 

Float 
Int 

*rptr, *rptrrnl, *wptr; 
len; 

len SV_getlength(res); 
rptr = (Float *) SV_loc(res, len - 1); 
rptrrnl = rptr 1; 

if ( x == 0.0 ) { 

} 

for (; len> 1; len--) { 
*rptr- - = :*rptrrnl--; 

} 
*rptr = 0.0; 

else { 
wptr = (Float *) SV_loc(wgtirnpulse, len 
for (; len> 1; len--) { 

*rptr-- = *rptrrnl-- + x * *wptr--; 

*rptr = x * *wptr; 

/* no input, so just shift */ 

/* update using new input */ 
- 1); 

Once the convolution has been determined, the corresponding error and gain can be found. 

The following function calculates the error and gain terms. 

Float error(res, reshat, gain) 
SV Vector res, reshat; 
Float *gain; 

Float cor, energy; 

SV_dotp(reshat, reshat, &energy); 
SV_dotp(reshat, res, &cor); 
*gain = cor / energy; 
return( *gain * cor ); 

The codebook search function with update( ) and errore ) functions is shown below. The 
first convolution must be calculated directly, so it is done outside of the main for loop. The error 
for each entry is compared against the current maximum; if it is greater than the maximum, this 
entry becomes the new best vector. The process is repeated for each of the N vectors. 

codebook, wgtirnpulse; 

codeSearch(res, reshat) 
SV_Vector res, reshat; 

Float 
Float 
Int 

errrnax, gain, err; 
*cbptr; 
i, best; 

findlrnpulse(wgtirnpulse); 

SV_setbase(codebook, FIRSTVEC); 

convolve (codebook, wgtirnpulse, reshat); 
errrnax = error(res, reshat, &gain); 
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best = 0; 
cbptr = (Float *) SV_loc(codebook, 0) - 1; 

for (i = 1; i < N; i++) { 
update(*cbptr--, reshat, wgtimpulse); 
update(*cbptr--, reshat, wgtimpulse); 
if ( (err = error(res, reshat, &gain)) > errmax ) { 

errmax = err; 
best = i; 

After the search is completed, the gain of the best vector is recomputed and quantized. The 
corresponding gain index and index of the codebook element can then be readied for transmission. 

Assembly Language Enhancements 

The codebook and pitch searches require the largest share of the computation cycles in the 
encoder. One way to increase performance is to recode critical parts of these functions in assembly 
language. One such function is the update() function described above for the recursive convolu­
tion computation. 

An assembly language version of update() was written to take advantage of the parallel in­
structions and repeat block capabilities of the TMS320C30. The assembly language function uti­
lizes the same calling structure as the C version. The function was written using the assembly lan­
guage macros provided with spa X to work with the vector, matrix, and filter objects in the DSP 
library[8]. The new version of update() is listed in Figure 5. 
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Figure 5. Update Function Written in TMS320C30 Assembly Language 

* 
* Synopsis: 
* 
* 
* 
* 
* 

Void update(x, res, wgtimpulse) 
Float X; 
SV Vector res, wgtimpulse; 

#include <sv30.h> 

FP .set ar3 
.global _update 

.text 

_update: 
push 
ldi 

* 

FP 
sp, FP 

* 
* 

Set the 
arO 
arl 
rc 
r2 

following registers by using 
- SV_loc(wgtimpulse, 0) 

* 
* 
* 

* 

* 
* 
* 

ldi 
SV_getl 
ldi 
SV_get2 

ldf 
bzd 
subi 
addi 
ldi 

General case 

addi 
subi 

mpyf 
addf 

SV loc(res, 0) 
- the length of the vectors 
- X 

*-FP(2), ar2 
ar2, SV LOCO, arO 
*-FP(3)-; ar2 
ar2, SV_LENlsV_LOCO, 

*-FP(4), rl 
shift 
1, rc 
rc, ar1 
arl, ar2 

when x 1= 0.0 

rc, arO 
2, rc 

r1, *arO--, r2 
r2, *--ar2, rO 

rc, arl 

rptb lp20 
*arO--, mpyf rl, r2 

1120 : 
addf r2, *- -ar2, rO 
stf rO, *ar1--

bud end 
stf rO, *arl--
mpyf rl, *arO, rO 
stf rO , *arl 

* 
* Case for x -- 0.0 
* 
shift: subi 2, rc 

Idf *--ar2 I rO 

rptb slp 
slp: ldf *--ar2, rO 
II stf rO, *ar1--

stf rO, *ar1--
ldf 0.0, rO 
stf rO, *ar1 

* 
end: pop FP 

rets 

vector object macros 

x 
x is 0 so just shift 

ar1 -> res[l 1] 
ar2 -> res[i 1] 

arO -> wgt[l - 1] 
set loop count 

x * wgt[i] 

x * wgt[i] 

res[O] x*wgt[O] 

loop 1 - 1 times 
prime the pipe 

final store 
first term = 0.0 
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Performance 

A complete CELP encoder was implemented as described above. Two versions were tested: 

• One encompassing C and standard SPOX functions 

• One having C, SPOX, and two custom TMS320C30 assembly language functions 

Table 2 shows the execution times for different combinations of codebook size, processor, 
and implementation. To achieve near real-time performance for a codebook with 128 vectors, the 
codebook and pitch search functions were completely rewritten in assembly language. Each func­
tion required approximately 130 lines of assembly code. 

Table 2. Timing of Various Implementations of the CELP Encoder 
for One Frame of Speech 

Codebook Size Sun (C/SPOX) C30 (C/SPOX) C30 (C/SPOX/ASM) 

128 16,000 IDS 88.2 IDS 39.0 IDS 

256 24,000 IDS 114.6 IDS 54.3 IDS 

Memory requirements for the program on the TMS320C30 were approximately 14,000 
words for instructions and approximately 6,000 words for data. The application code required ap­
proximately 4500 words of instructions. The SPOX operating system and DSP math functions con­
sumed the remaining 9500 words of memory. This figure reflects many functions that are essential 
for easing development but unnecessary for a real-time implementation. 

Once a real-time implementation has been achieved, the SPOX memory requirements can 
be greatly reduced by porting (or customizing) SPOX to a custom hardware implementation. In this 
case, the SPOX memory requirements can be reduced to approximately 4000 words, making a 
12K-word implementation feasible (both data and instruction memory requirements). 

These timings show that a real-time CELP coder can be implemented on a single 
TMS320C30. They also illustrate the power of the TMS320C30 compared to a standard micropro­
cessor. Note that a TMS320C30 implementation has approximately 500,000 instruction cycles 
available in a 30-ms frame. 

Version 3.0 of the USFS CELP coder has significant improvements in computational com-
plexity, including: 

• Ternary codebook to eliminate multiplications 

• Shorter codebook 

• Faster LSP conversion and quantization 

Work to bring the SPOX implementation up to Version 3.0 is continuing. An investigation 
of a two-processor implementation is also being performed. 
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Summary 

A 4.8-kbps CELP coder based on a Department of Defense-proposed standard has been im­
plemented on a TMS320C30. Several of the functions used in the encoder were illustrated. A sub­
optimal implementation of the encoder using a 128-vector codebook is possible on only one 
TMS320C30. Work is continuing on both the algorithm and the software implementation to im­
prove the coder's real-time performance. 

With SPOX, the encoder was developed in less than one month. The resulting source (with 
the exception of two TMS320C30 assembly language functions) can be compiled and run on a Sun 
workstation, a PC, or a TMS320C30 system such as the Texas Instruments XDS1000. This repre­
sents a considerable improvement in development time and effort over previous implementation 
methods. 
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Appendix A 

The SPOX functions used in the code examples are briefly described below. Complete de­
scriptions can be found in Getting Started With SPOX and the SPOX Programming Reference M an­
ual. These manuals are supplied with the XDSIOOO. They are also available from Spectron Micro­
Systems, Inc. 
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Stream Functions 

Ss_get - get data from a stream into an array 

lnt SS get(stream, array) 
SS=stream stream; 
SA_Array array; 

SS_put - put data from an array to a stream 

lnt SS_put(stream, array) 
SS_Stream stream; 
SA_Array array; 

Vector Functions 

sv_autorc - perform inverse filter calculations 

void SV_autorc(cor, inv, rc, alpha) 
SV vector cor; 
SV-Vector inv; 
SV-Vector rc; 
sv=vector alpha; 

SV_corr calculate correlation of two vectors 

SV Vector SV corr(srcl, src2, dst) 
SV Vector srcI; 
SV-vector src2; 
Sv=vector dst; 

SV_dotp - calculate the dot product of two vectors 

SV Vector SV_corr(srcl, src2, result) 
SV Vector srcI; 
SV-Vector src2; 
Float *result; 

fill a vector with a value 

SV Vector SV fill(vector, value) 
- SV Vector vector; 

Float value; 

SV_getlength - return the length of a vector 

lnt SV getlength(vector) 
Sv=vector vector; 

return the address of a vector element 
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Ptr SV loc{vector, num) 
SV-Vector vector; 
Int num; 

SV mu12 multiply elements of two vectors 

SV_Vector SV_mu12{src, dst) 
SV vector src; 
sv=vector dst; 

SV_setbase - set the base of a vector 

SV sub3 

SV window 

void Sv_setbase{vector, base) 
SV Vector vector; 
Int base; 

subtract elements of two vectors and store results in a third 
vector 

SV Vector SV sub3{srcl, src2, dst) 
SV Vector srcl; 
SV-Vector src2; 
Sv=vector dst; 

apply a symmetric window to a vector 

SV Vector SV window{src, wnd, dst) 
SV Vector src; 
SV-Vector wnd; 
sv=vector dst; 

Filter Functions 

SF_apply - apply a filter to a vector 

SV_Vector SF_apply(filter, input, output) 
SF Filter filter; 
Sv-vector input; 
SV-Vector output; 

SF_bind bind coefficient vectors to a filter 

Void SF bind(filter, num, den) 
SF Filter filter; 
SV-Vector num; 
sv=vector den; 

SF_getstate - copy filter state arrays into vectors 

void SF getstate(filter, hisinv, hisoutv} 
SF Filter filter; 
SV-Vector hisinv; 
sv=vector hisoutv; 

SF_setstate - copy vectors into filter state arrays 

Void SF setstate(filter, hisinv, hisoutv} 
SF Filter filter; -
Sv-vector hisinv; 
sv=vector hisoutv; 
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Part V. Computers 
12. A DSP-Based Three-Dimensional Graphics System 

(Nat Seshan) 
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This application report is based on the author's bachelor's thesis at the Massachusetts Insti­
tute of Technology. 

The placement of a high-performance computational engine, such as an advanced digital sig­
nal processor, between the host processor and the video controller in a graphics system can improve 
performance tremendously. Several factors make the Texas Instruments TMS320C30 Digital Sig­
nal Processor well-suited to this task: 

• 32-bit floating point arithmetic provides both high-resolution and large dynamic range in 
calculation. 

.. Single-cycle, 60-ns instruction execution and parallel bus access greatly improve system 
throughput. 

• A hardware single-cycle multiplier facilitates the matrix arithmetic, which is frequently 
required in 3D graphics. 

• The ease of programmability allows the design of flexible and expandable systems. 

• Software tools, such as simulators[1], assembler/linkers[2], and high-level language de-
buggers/compilers[3], decrease product development time. 

• In-circuit scan-path emulators[4], decrease hardware prototyping and debugging time. 

• The use of a standard device lowers the overall system cost. 

With the use of the TMS320C30, the host processor can request higher-level commands of 
the rest of the system. Instead of issuing requests for line-draws or screen clears, it can, for example, 
request that a 3D object be rotated 90 degrees and then be redrawn. In addition, a rendering element 
(usually a video controller or graphics system processor) can devote its resources solely to screen 
management rather than doing some portion of the computationally intensive processing. The fol­
lowing pages provide a description of how a 3D graphics system used the TMS320C30 to compute 
object transformations. 

The digital signal processor resides on the TMS320C30 Application Board (C30AB) de­
signed for the IBM PC/AT or compatible. The PC's 80x86 acts as the host processor and communi­
cates to the C30AB through an 8-bit bus slot. Also resident on the bus is a Texas Instruments 
TMS34010 Software Development Board (SDB)[5,6]. The SDB contains a TMS34010 Graphics 
System Processor (GSP) [7], which manages the screen memory and drives the video display. 
Overall, this system is meant to serve as an instructional model of how a graphics system can be 
designed using an advanced digital signal processor. 

The Potential for Graphics Pipelines 

A mechanical engineer for an automobile manufacturer wants to design a robot arm for plant 
automation. Before building a prototype machine, he wishes to compare the ways in which various 
designs can pick up and assemble components. To do this,the engineer needs a CAD system capable 
of creating, storing, and adjusting representations of 3D objects and then rendering the images on 
a video display. The CAD system has four basic aspects: 

1) A user interface for command entry. 
2) A data management system to store objects and their screen representations. 
3) One or more computational engines to perform high-speed calculations for applications 

such as transformations, clipping, lighting/shading, and fractal graphics. 
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4) A rendering engine to control the video memory and to drive the video display. 

These four tasks are common to many graphics systems, whether they be intended for CADI 
CAM, fractal graphics, heads-up displays in fighter aircraft, or Postscript printer control. If one or 
more processors are assigned to each function, the resulting pipeline will achieve greatly improved 
system throughput. 

In a single-processor system, the CPU is directly responsible for all computations. It must 
write to video memory, perform all necessary computations, interface to the user, and manage all 
data storage and recovery. Although additions to the system, such as a video-memory controller 
or a floating-point coprocessor, may speed up the system, the CPU remains overly burdened as the 
only intelligent component of the system. 

Independent Screen Management 

A two-processor system can use a GSP to drive the CRT and to control the video memory. 
To control the display, the GSP either must interface to an analog monitor through a color palette 
or must directly drive a digital monitor. If the video memory is volatile, the processor needs a re­
fresh controller that runs in parallel with other processor actions. Special hardware can be devel­
oped for screen clears and polygon fills. For flexibility of data representation, the processor should 
to be able to access pixels of varying bit-widths. At the instruction level, specialized operations 
could be created to speed pixel processing. Libraries of subroutines for windowing, drawing, and 
text management enable the rendering engine to execute higher-level commands. Overall, these 
features allow the CPU to send more powerful directives to the GSP. 

A Multiprocessor Pipeline 

Adding more links in the graphics pipeline can further relieve the CPU of burdensome tasks. 
Performance improvements result from each stage being optimized for a particular function. In ad­
dition, throughput increases with the number of stages. The pipeline may also contain multiple pro­
cessors running in parallel at a particular stage to further improve the latency of that stage. Figure 
1 shows a full-scale implementation of a graphics pipeline for 3D graphics. 
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Figure 1. A Full Scale Graphics Pipeline 
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In a large-scale graphics pipeline, the host processor runs the applications program. The user 
may be trying to use a CAD program, model the formation of galaxies, animate 3D objects, etc. 
The host runs these programs at the top level, provides the user interface, and communicates to all 
I/O devices, including mass storage systems. For numerically intensive applications it may be ap­
propriate to have a digital signal processor as this host. For example, modeling the formation of 
galaxies requires numerical solutions to systems of differential equations. But even in such a case, 
it would be reasonable to have a more general-purpose CPU act as a user front end to the digital 
signal processor. 

The purpose of the object manager is to communicate with the host by receiving data and 
transferring it to other processors in the system. It manages the global representation of all screen 
parameters and objects. A Reduced Instruction Set Computer (RISC) processor would be 
well-suited as either the host or the object manager because of its high-performance general-pur­
pose architecture. 

Because a DSP has a highly parallel architecture, a fast execution cycle time, an instruction 
set optimized for numerical processing, and several development tools, it would perform well as 
any of the computational stages in a graphics pipeline. For example, a DSP could act as a transform 
manager that calculates the new universal coordinates of globally stored objects according to rota-
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tion, translation, and scaling commands from the object manager. Also, the DSP could act as a light­
ing manager that accepts parameters of environmental lighting settings from the object manager 
and applies them to the transformed objects. For example, the user may set ambient intensities as 
well as other sources of varying geometries, intensities, and colors. The lighting manager then ap­
plies these light sources to the surfaces of the objects, which may have varying degrees of specular 
or diffuse reflection, to compute the necessary shading. 

Although the perspective and clipping stage of the system is represented in Figure 1 by a 
single processing unit, the task may be further partitioned to several DSPs working in series. The 
perspective calculation takes viewing parameters from the object manager, such as direction of 
view, location of viewer, and zoom, and produces a two-dimensional projection for the screen. Ob­
jects that are too high, too low, or too far right or left can be clipped automatically because the result­
ing two-dimensional coordinates are off screen. However, clipping objects fully or partially ob­
scured by other objects may require additional stages. Also, objects behind the viewer and those 
too far away for the user to recognize should be clipped appropriately. 

Although digital signal processors are well-suited to be the computational stages of a graph­
ics pipeline, a processor optimized to be a rendering engine might serve better to drive the video 
display and manage the video memory. Such a processor could also help with the clipping tasks 
described above. A z-buffer could hold the transformed z-coordinate of each pixel that is projected 
on to the x-y plane of the screen to facilitate hidden surface removal. Adevice such the Texas Instru­
ments TMS34010 or the recently introduced TMS34020 could serve as the rendering engine in a 
full scale system. Both these processors have 32-bit general-purpose architectures with instruction 
sets and external memory interfaces optimized for graphics. 

An Overview of This Implementation 

The system shown in Figure 2 is not intended to be a marketable product. Rather, it is targeted 
toward those who have the intention of designing products in the graphics market. Firms having 
experience in graphics will be able to resolve the tougher issues of graphics system design without 
presentation of the described system. The system shown in this report illustrates an attractive option 
for designing a fast, reliable, portable graphics system with quick turn-arounc:i time. 
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Figure 2. A Simple Three-Processor Graphics Pipeline 
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One strength of this system is its complete use of standard, commercially available parts. In 
general, use of standard parts allows for faster design and manufacturing, as well as a more reliable, 
easier-to-support product. Even the three hardware subsystems can be found on the market: 

1) The IBM PC compatible host 
2) The TMS320C30 Application Board object manager and transform engine subsystem 
3) The TMS34010 Software Development Board rendering subsystem 

Another strength of this system is the complete use of portable software. Use of portable soft­
ware often speeds design times because system software can be mostly debugged before the actual 
target hardware is available. All software for this system was written in Kernigan and Ritchie C. 
The command and rendering routine was first debugged on the PC and GSP with the intermediary 
stage removed. Once debugged, the computationally intensive portion of the software was ported 
to the DSP, which then assumed control of the GSP. The software on the TMS34010 SDB used 
many of the graphics routines in the TMS34010 Graphics/Math Library. These routines have been 
used in many other graphics systems using the TMS3401O. 

System Hardware 

The IBM PC was chosen as the host because of its extensive support by TI development tools. 
In addition, a large amount of documentation is available concerning interfacing to the PC bus. The 
system described in this report is designed to run best on an 80386-based IBM PC compatible with 
an AT power supply and an 80387 floating-point coprocessor. However, either Intel 8086 or 80286 
general-purpose microprocessors can also act as the host to the computational engine. The host 
computer sends commands to 

• Load and delete objects 

• Target an object for adjustment 

• Adjust a particular object 

• Recalculate the perspective or 

• Redraw the screen. 

The 80X87 floating-point coprocessor is not absolutely necessary but greatly improves the 
time to generate floating-point parameters for the next stage. 

This graphics demonstration was the first application developed using the TMS320C30 
Application Board (C30AB). Since that time, the C30AB has been included as a part of the 
XDS1000 emulation system for the TMS320C30 Digital Signal Processor. The TMS320C30's fea­
tures include 

• 60-ns single-cycle execution time (more than 33 MFLOPS) 

• 2K x 32-bit dual-access RAM 

• 4K x 32-bit dual-access ROM 

• 64 x 32-bit instruction cache 

• Two 32-bit external memory expansion buses 

• Single-cycle floating-point multiply/accumulate 

• 1\vo external 32-bit memory ports 
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• On-chip DMA controller 

• Zero-overhead loops and single-cycle branches 

• Two on-chip timers and two serial ports 

• Floating-point/integer and logical 32/40-bit ALU 

• 16M-word memory space 

• Register-based CPU 

• Development tools, including a simulator, assembler/linker, optimizing C compiler, C­
source debugger, and an in-circuit emulator/debugger 

• On-chip scan-path emulation logic 

• Low-power CMOS technology 

The TMS320C30 executes commands from the 80X86 to transform objects, load objects into 
or delete objects from the system, and compute the projection oOD objects on the 2D screen. When 
given a directive to draw the screen, it sends a command to the rendering engine to clear the current 
screen. Then, the TMS320C30 transfers lists oflines, points, and polygons for the next stage to ren­
der. 

The TMS34010 Software Development Board (SDB) has been used in TMS34010 develop­
ment support since 1987. It is configurable for a variety of monitors. The board supports the 
TMS34010 Graphics/Math Function Library [8] (a library of high-level routines callable from any 
C program). This board was slightly modified to receive commands from the C30AB as well as 
from the PC host. Program loaders, C compilers [9], assemblers, and C language standard I/O li­
brary support have been developed for this board, as well as for the C30AB. Both cards interface 
to an IBM PC through an 8-bit slot on the AT bus. The TMS34010 GSP on the SDB is an advanced 
high-performance CMOS 32-bit microprocessor optimized for graphics display systems. Its key 
features include: 

• 160-ns instruction cycle time 

• FuIJy programmable 32-bit general-purpose processor with a 128M-byte address range 

• Pixel processing, X-Y addressing, and window clip/pick built into the instruction set 

• Programmable pixel size with 16 boolean and 6 arithmetic pixel processing options (Ras-
ter-Ops) 

• 31 general purpose 32-bit registers 

• 256-byte LRU on-chip instruction cache 

• Direct interfacing to both conventional DRAM and multipart video RAM 

• Dedicated 8116-bit host processor interface and HOLD/HLD interface 

• Programmable CRT control (HSYNC, VSYNC, BLANK) 

• FuII line of hardware and software development tools, including a C compiler 

The TMS34010 GSP receives commands from the TMS320C30, along with arrays of points, 
lines, and filled polygons to be drawn. It then uses library routines to render these images on the 
video display. 
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System Limitations 

The system described here is an instructional system built in a limited development time. As­
pects of the system could be optimized for speed and for memory usage. A high-speed 3D graphics 
system has many features that were not implemented. 

This design is non-optimal in several ways. The C routines could be hand-coded to execute 
faster. A 32-bit host bus interface would allow word-at-a-time data transfers to the TMS320C30. 
The GSP could be interfaced to faster video memory. At the time of this writing, the TMS34020 
second-generation graphics system processor is available. The entire TMS320C30 program could 
be configured to run from internal memory. Many of these optimizations were not realized because 
of the limited time available for developing the system. 

Many operations that an advanced digital signal processor could easily perform were not de­
signed into this system. These tasks include curved and textured surface generation, lighting, shad­
ing, and front and back clipping. For demonstrative purposes, only the endpoint transformation and 
perspective calculations were implemented. 

Similarly, the capabilities of the GSP are clearly underutilized in this pipeline. The GSP is 
adept at managing multiple windows for display. It can also display text in various fonts. The pres­
ented system simply requires that the GSP manage a single graphics-only (no text) window. 

Representation of Graphics Elements 

Any graphics system must have a method of representing the image to be portrayed on the 
screen. This method requires a system that is able to store and display primitive elements. These 
elements could range in complexity from three coordinates describing a point to a set of parametric 
equations representing an irregular three-dimensional surface. However, simply defining a set of 
primitive drawing structures does not result in an adequate graphics data representation. The engi­
neer designing the robot does not think of the system as several sheet-metal polygons welded to­
gether. He more likely conceives of the arm as a clamp attached to a hand, which, in turn, is attached 
to an arm, etc. A powerful graphics system must not only describe the primitives to be rendered 
on the CRT, but also how the primitives are organized or related. 

Frames of reference play the central role in the organization of graphics primitives. Any set 
of graphics primitives rigid with respect to each other can be said to exist in the same, constant 
frame. When the primitives move, they move as a single unit and remain in the same orientation 
with respect to each other. In this system, any such set of primitives is called an object. The transfor­
mational state of any object is determined by three sets of three parameters each. These sets of the 
object correspond to the 

• Translation 

• Scale 

• Rotation 

Translation of an object within its frame simply amounts to moving all locations in that frame 
a specified distance along the X-, y-, and z-axes. Thus, each object must hold a set of translation 
factors, denoted in this system's software by dx, dy, and dz (See Listing 1 in the Appendix). Simi-
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larly, SX, sy, and sz determine the scale of an object. These factors determine how many units of 
the untransformed object's coordinates are represented by one unit of the transformed object's 
coordinates. The three parameters shown in Appendix Listing 1 that represent all possible orienta­
tions of an object (theta, phi, and omega) are described in Table 1. 

Table 1. Angles of Rotation 

Angle 
Axis Rotation is Direction of 

Zero Value Around Positive Rotation 

e z x to y Positive x-axis 

(J) x y to z Positive y-axis 

<j> y z to x Positive z-axis 

The Object Data Structure 

Every object contains one or more sets of locations, which are referenced by the drawing 
primitives within the object. The locnum field of the object structure (see Listing 1) represents the 
number of locations available to be referenced by primitives within the object. This and other array 
sizes are kept for end points in For/Next-type loops and to allocate the appropriate space for the 
array contained within an object. Every location (see Appendix Listing 2) contains three float­
ing-point numbers representing a coordinate in 3D space: x, y, and z. Their integer x-y locations 
on screen are also saved: a, b. To reference a location, a primitive needs only to know the index 
in the locs array. This allows many primitives to reference the same location. 

Three different primitives were implemented to be rendered on the screen: 

• Points 

• Line segments 

• Filled polygons 

Points are rendered as single pixels on the screen. The point structure shown in Listing 3 of 
the Appendix contains the color to draw the point and the index to the location (Iocn) that is refer­
enced by that point. The line structure in Listing 4 ofthe Appendix contains a color and two indices 
(startlocn and endlocn) to two end-points of the segment. Finally, the filled polygon shown in List­
ing 5 of the Appendix contains, in addition to the color, the number of vertices (vertnum) for the 
polygon, and a pointer (*vertlocn) to an array of vertex location indices listed in the order in which 
they are connected). The last location in the vertex array is connected back to the first, closing the 
polygon. 

Hierarchy 

The final array contained within an object (the parent object) is a list of pointers to child ob­
jects defined with respect to the transformed frame of the parent. The number of potential internal 
objects, MAXOB, sets the static size of the array of pointers to child objects. (In this implementa­
tion, MAXOB = 10.) In addition, the parameter obnum keeps track of how many of these potential 
child objects are utilized. The final bookkeeping parameter is subnum. If subnum equals n, then 
the object was the nth object pointed to in its parent object's child-object array. 
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Figure 3. Hierarchical Representation of the Solar System 
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The solar system (Figure 3) represents a classical example of a hierarchical structure. The 
sun slowly revolves around the galaxy. Wherever the sun travels, the planets follow in the same 
frame. In turn, each planet may have satellites that revolve around them. The planet is defined with 
a certain offset (radius of orbit) from the sun, and the satellite is defined similarly with an offset 
from the planet. To describe the movement ofthe earth over a period of time, you need only to adjust 
for its revolution around the sun and the revolution of the moon around the earth. You do not need 
to describe the rotation of the moon around the sun because when a planet is moved, its satellites 
automatically move with it. 

Transformation parameters are referenced to the frame of the object's parent. Thus, to fully 
describe a planet orbiting the sun, one must define an empty frame revolving about the sun at some 
offset, and then define a planet within that frame rotating about some axis. The levels of abstraction 
within this hierarchy give this data representation its power. 

The flexibility of the object structure permits the system to model the viewer. The viewer 
is considered to be at the absolute origin of the system. At system initialization, the first object 
loaded is the universal object *universe. An appropriate choice for such an object would be a set 
of axes. The view is then adjusted by modifications to the parameters of the *universe: 

dx, dy, dz - Object translation (viewing position) 

sx, sy, sz - Object scale (zoom) 

theta, phi, omega - Object orientation (pan) 
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These three sets of parameters respectivel y represent the position of the origin of the universe 
with respect to the viewer (viewing position), how much the view is magnified to the user (zoom), 
and where the origin is with respect to the user (pan). 

Transformations 

Transformations of locations in 3D space can be reduced to four-dimensional matrix arith­
metic[10]. A location in space can be represented by a four-dimensional row vector (x y z 1). When 
this vector left-multiplies any 4-by-4 transformation matrix, the resulting row vector represents the 
transformed point. Tables 2, 3, and 4 illustrate the 4-by-4 transformation matrices for rotation 
around each axis. 

Table 2. Z-Axis Rotation Matrix 

[ cos sine 0 0 ] -sin cos 0 0 

0 0 1 0 

0 0 0 1 

Table 3. Y-Axis Rotation Matrix 

[ cos 0 -sin 0 ] 0 1 0 0 
sin 0 cos 0 

0 0 0 1 

Table 4. X-Axis Rotation Matrix 

[ 1 0 0 0 ] 0 cos sin 0 

0 -sin cos 0 

0 0 0 1 

It can be shown that these matrices can be used to account for a rotation about any arbitrary 
axis passing through the origin. The transformation matrix shown in Table 5 corresponds to scaling 
a location by (sx, sy, and sz) and then moving it by (dx, dy, and dz). 
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Table 5. Translation and Scaling Matrix 

[ sx 0 0 0 ] 0 sy 0 0 

0 0 sz 0 

dx dy dz 1 

The arbitrary transformation of a frame can be defined by a matrix resulting from a multipli­
cation of a subset of the above transformation matrices. However, this multiplication is in general, 
not commutative. That is, rotating around the x-axis and then translating is not the same as translat­
ing and then rotating about the x-axis. By sending values for the nine parameters, the host can re­
quest the adjustment of an object. However, this system defines these operation as always taking 
place in the order below: 

1) Scale object by (sx, sy, and sz) 
2) Translate object by (dx, dy, and dz) 
3) Rotate object around z-axis by theta. 
4) Rotate object around x-axis by omega. 
5) Rotate object around y-axis by phi. 

When the matrices shown in Tables 2 through 5 are multiplied, the resulting matrix always 
contains (000 I)T as its final column. Thus, to denote an arbitrary transformation, you need only 
remember the first three columns of the composite matrix. If you were to apply the transformations 
in the order stated previously, the resulting equations in Table 6 would determine the element of 
the transformation matrix R. 

A DSP-Based Three-Dimensional Graphics System 435 



Table 6. Transformation Equations 

fI2 = sysin8 (2.2) 

r13 = szsinQ (2.3) 

r14 = cosQ (dxcos8 -dysin8 )+dzsinQ (2.4) 

r21 = sx(sin8 costj> +cos8 sinQ sintj> ) (2.5) 

r22 = syCcos8 costj> -sin8 sinQ sintj> ) (2.6) 

r23 = -szcosQ sintj> (2.7) 

r24 = sintj> (sinQ (dxcos8 -dysin8 )-dzcosQ )+cos<jJ (dxsin8 +dycos8 ) (2.8) 

r31 = sxCsin8 sin<jJ -cos8 sinQ cos<jJ ) (2.9) 

r32 = Sy( cos8 cos<jJ +sin8 sinQ cos<jJ ) (2.10) . 

r33 = szcosQ cos<jJ (2.11) 

r34 = cos<jJ (sinQ (-dxcos8 +dysin8 +dzcosQ )+sin<jJ (dxsin8 +dycos8 ) (2.12) 

Note that there also exists a matrix p[3][4] (see Listing 1 in the Appendix) that represents 
the product of all the ancestral transform matrices of an object and that object's R matrix. This ma­
trix represents the object's transformation from the absolute origin of the system. 

The Host Processor's Access to Objects 

The 80X86 host can exert its control over objects in the following ways: 
1) Target Objects - The host can set the target object for adjustment, deletion, or insertion 

of a child object by either targeting the parent object or a particular child object of the 
currently targeted object. 

2) Load and Delete Objects - The host has the ability to add objects to the system with initial 
transform parameters. In addition, it can remove objects from the system (including all 
objects within the deleted objects). When the targeted object is deleted, the new target 
object defaults to being the object's parent. 

3) Adjust Objects - By specifying the nine transform parameters, the host can adjust an ob­
ject in its parent's frame. 

4) Change Perspective - To change the viewing perspective, the host must request that the 
*universe be adjusted. 

5) Update Screen Representation - The host can request that the targeted object and its child 
objects have their location array's screen representations updated. 

6) Redraw View - Once all adjustments and updates of screen coordinates are re-specified, 
the host can request that the view be updated. 

Overall, the object structure serves well as a data representation for 3D graphics. A single 
set of locations is available to be referenced by the points, line segments, and filled polygons to be 
rendered on the screen. Each object contains parameters and matrices that specify the transformed 
state of the object. Thus, at any time these matrices could be applied to the original co-ordinates 
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loaded into the system to calculate the transformed location of the point. Therefore, as the transfor­
mation and the projection on to two-dimensional co-ordinates are done in one step, the original 3D 
coordinates can be retained and only the final modified two-dimensional screen representation 
need be updated. The point of view can simply be modified by adjusting the *universe as one would 
adjust any other object. Overall, the hierarchical object structure provides a powerful and flexible 
way to manage graphical data. 

DSP Command Execution 

The digital signal processor assumes the role of the object manager and keeps track of the 
representations. Before examining the precise manner in which the TMS320C30 processes the 
commands from the host, one needs to understand the underlying hardware of this subsystem. A 
description of the TMS320C30 Application Board can be found in the application report 
TMS320C30ApplicationBoard Functional Description, located in this book. The report describes 
the avenues of communication between the C30AB and the PC over the PC's bus. An examination 
of how the TMS320C30 receives and processes data and commands from the 80X86/7 follows. 

Initialization 

As its first initialization task, the PC maps the dual-port SRAM of the C30AB into its address 
space by writing the 8 MSBs of address to the mapping register. It then brings the C30AB out of 
reset by writing a 1 to the SWRESET in the C30AB's control register. The PC then loads the 
TMS320C30 application program into the dual-port SRAM. Loader support software on the 
C30AB EEPROM moves the code to the proper location in the TMS320C30's address space. Final­
ly, the PC switches the TMS320C30's memory map into run mode to start program execution. The 
first part of the main routine initializes the system (see Listing 8 in the Appendix). 

For the system software to run properly, the DSP software must initialize several different 
items. 

1) It enables the on-chip instruction cache. 
2) It sets the external flag bit on the C30AB target connector to transfer control of the ren­

dering system from the PC to the C30AB (This assumes that the PC loaded the rendering 
software before it started up the C30AB). 

3) It configures both the primary and the expansion bus with zero software wait-states. 
Thus, all wait states are generated by the address-decoding PALs on the C30AB. 

In addition, the linker configures 
1) Primary bus SRAM as program storage 
2) Expansion bus SRAM as heap memory allocation 
3) Zeroth page of internal RAM as space for system constants 
4) First page of internal RAM as the system stack. This configuration maximizes the poten­

tial for parallel data and instruction accesses 
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ing 
The initialization procedure then appropriates several local variables for system use, includ-

1) Two registered looping variables, i andj 
2) The constant 2 PI 
3) Registered pointers to the communication registers of the rendering subsystem, 

*hstdata and *hstcntl 

The TMS320C30 initially sets the contents of these GSP registers to indicate that the compu­
tational stage does not have any requests of the rendering stage. 

The TMS320C30 system software contains the global variables shown in Listing 7 oftheAp­
pendix. The dual-port SRAM pointer dual_port is initialized to point to the lowest location on the 
I/O expansion bus. This pointer points to an integer array that contains all data and command from 
the Pc. Another pointer to the currently targeted object (*to) is set to reference the universe. The 
*universe is set as its own parent with an obnum of 0, indicating no internal objects are loaded. 

During the final part of initialization, the C30AB software waits for the PC to load the static 
*universe object. To understand how the PC loads objects into the system, you must comprehend 
the general communications protocol between the TMS320C30 and the 80X86. 

Host to DSP Communication 

A two-way polling scheme arbitrates access of the dual-port SRAM. The software allocates 
the first two words of the SRAM as COMMAND and ACKNOWLEDGE signals, respectively 
(see Listing 6 in the Appendix). Remember that the TMS320C30 must mask off the 24 MSBs of 
dual-port data to receive the proper 8-bit value. The processors poll and write to these two words 
in order to send requests and acknowledgments. During initialization, the TMS320C30 clears both 
the COMMAND and ACKNOWLEDGE locations of the dual-port SRAM. The PC graphics 
application software must run after this point to ensure that this phase of the initialization does not 
clear a command from the Pc. Once the system software starts executing on both the PC and the 
TMS320C30, the following sequence enables the PC to send a command to the C30AB: 

1) The PC waits for the dual-port SRAM to become free by polling the ACKNOWL-
EDGE word for a zero. 

2) The PC loads all command parameters into the dual-port SRAM. 
3) The PC then loads the appropriate command byte into COMMAND. 
4) Once the TMS320C30 returns to its command detection loop, it acknowledges a re­

ceived command by writing the same byte into the ACKNOWLEDGE word. 
5) The PC sees that the TMS320C30 has acknowledged the command and writes OOh into 

COMMAND to withdraw its command. The PC thereby relinquishes control of the 
dual-port SRAM. 

6) The TMS320C30 reads all necessary p&rameters into its main memory. 
7) The TMS320C30, by writing a zero to the ACKNOWLEDGE word, indicates that the 

PC can request another command. This returns the sequence to step (1). 
. . 

The TMS320C30 treats all of its data types as 32-bit values, but it can read only one byte of 
valid data from the dual-port SRAM. Thus, the TMS320C30 must mask and concatenate the bytes 
that the PC maps into contiguous locations to form multibyte words. In addition, since Intel and 
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the TMS320C30 have different standards, floating-point values from the PC must be converted be­
fore the TMS320C30 can use them. 

The TMS320C30 can receive either unsigned 8-bit chars or unsigned 16-bit short integers 
from the Pc. The macros shown in Listing 6 of the Appendix are used to access thes'e data types 
from the dual-port SRAM. The DPLONG macro takes a certain location in the dual-port, finds the 
short integer located there, and concatenates it into a 32-bit value for the TMS320C30. The word 
LONG in the macro indicates all integers whether chars, shorts, or longs are represented as 32-bit 
values by the TMS320C30. 

Table 7. Comparison ofIntel and TMS320C30 32-Bit Floating-Point Formats 

Standard 
Exponent Exponent Sign Mantissa Mantissa 
Field Bits Format Bit Field Format 

TMS320C30 31-24 mo's Complement 23 22-0 Two's Complement 
Intel 30-23 Offset Binary 31 22-0 Magnitude 

Table 7 illtistrates the differences between the TMS320C30 and the Intel single-precision 
floating-point formats. For every floating-point value that the TMS320C30 receives, it must ex­
tract the appropriate fields, convert the fields to the appropriate numerical representation, and then 
reassemble the fields in TMS320C30 floating-point format. The dpfloat routine shown in Listing 
9 of the Appendix uses the union structure flIong shown in Listing 6 ofthe Appendix to allow ma­
nipulations normally available only for integers on the floating-point value. The program first con­
catenates the four-byte value in the dual-port SRAM into a single 32-bit integer and then converts 
this word to TMS320C30 format. 

Computational Subsystem Software 

Using the communication techniques described in the last section, the TMS320C30 pro­
cesses the graphics command from the Pc. After performing C30AB initialization, the program 
main enters a command detection/execution loop. For each valid value of the COMMAND byte, 
a C case statement executes the appropriate code. Since these routines are, in general, too long to 
be discussed in exhaustive detail, the rest of this section merely summarizes how they work. 

When the PC wants to load an object, it first loads the initial nine floating-point transforma-
tion parameters into the dual-port SRAM. It then loads the number of 

1) Locations 
2) Drawn points 
3) Lines 
4) Filled polygons 

These values are limited to 16 bits, thereby allowing for only 65,535 primitives of each type. 
The size of the dual-port SRAM further limits the array sizes in this implementation. Then the PC 
loads three floating-point parameters, (x,y, andz), for each location. The size of the dual port limits 
the number of locations to 377. Once these parameters are loaded into the memory, the host places 
the command byte for an object load into COMMAND. Upon reception of these parameters, the 
TMS320C30 allocates space for the object as a child of the current target object and also allocates 
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space for the location, point, and line arrays. Because the size of each polygon varies, space is allo­
cated as each polygon is read. 

After allocating global space for the new object and loading the locations, the TMS320C30 
requests more data from the PC. It first requests the points, then the lines, then each polygon. The 
dual-port SRAM limits the primitive arrays to 2047 points and 1364 lines. In addition, each poly­
gon is limited to 4092 vertices. The TMS320C30 makes a data request by replacing the current 
COMMAND byte that it wrote in ACKNOWLEDGE with 127, the flag for the PC to load more 
data. Although the roles of ACKNOWLEDGE and COMMAND are reversed in this case, the 
TMS320C30 requests data in much the same way the PC requests commands. Once the 
TMS320C30 completes loading the object, it selects the object as the new target object. Finally, 
using the equations in Table 6, the TMS320C30 calculates the initial value of the object's transfor­
mation matrix. 

The target object is the object in the hierarchy selected for adjustment, deletion, or calculation 
of screen coordinates. The PC can either target an object's parent or one of the object's child objects. 
The command to target a child requires the PC to specify either the child object's sibling number 
or subnum. Thus, when selecting objects for adjustment, the PC must remember where it loaded 
objects into the hierarchy. 

To adjust the transformation parameters of a given object, the PC simply loads the new pa­
rameters into the dual-port SRAM. The TMS320C30 adds the values of the new angles of rotation 
and translation factors to the previous ones. In addition, the TMS320C30 multiplies the old scaling 
factors by the new ones. Then, the TMS320C30 calculates the transformation matrix of the object 
by using the equations in Table 6. It does not recalculate screen locations, however, until this is spe­
cifically requested by the pc. The TMS320C30 can thus avoid calculating screen coordinates until 
all adjustments have been made. 

Once the PC requests all the changes for a frame on the display, it requests recalculation of 
screen coordinates at each node it changed. The PC can request recalculation for a particular object 
and thus update its internal objects as well. This allows the TMS320C30 to avoid recalculating 
screen coordinates of unchanged locations. For maximum efficiency, the PC must request recalcu­
lation in the highest node that it adjusted along any particular path. Thus, in the planetary example 
given earlier, if, in a period of time, only Pluto and its moon Charon were moved (the other bodies 
miraculously standing still), only Pluto would need to be targeted for recalculation. 

To calculate transformations, the TMS320C30 multiplies the object's transformation matrix 
by its parent's parent transformation matrix to obtain its own parent transformation matrix, p[3] [4]. 
The TMS320C30 right-multiplies all locations within that object by this matrix to achieve the 
transformation from the absolute origin of the system. The computational engine calculates per­
spective by dividing the transformed x- and y-coordinate by the transformed z-coordinate so that 
locations farther away appear closer together. The plane z=O is defined to be the plane of the screen. 
This also has the feature that objects behind the viewer appear upside-down in front of the viewer 
because the objects' z-coordinates are negative. Thus, the program running on the PC must main­
tain all objects in front of the viewer. Then, the TMS320C30 recursively executes this procedure 
for each object within the targeted object. 

Unlike the recalculation of screen coordinates, the redrawing of objects is done for all objects 
within the system. Thus, the draw_object routine is called with the *universe as the argument. The 

440 A DSP-Based Three-Dimensional Graphics System 



precise manner in which the TMS320C30 uses this program to redraw the screen is described in 
the TMS320C30 Drawing Routine Section found later in this report. 

Summary of DSP Command Execution 

The dual-port SRAM on the C30AB provides all means of communication between the PC 
and the TMS320C30. A two-way:polling scheme arbitrates the TMS320C30'sand the PC's access 
to this SRAM. Using this protocol, the PC can request object loading, deletion, or adjustment, but 
can request only modification of the object currently targeted for these changes. Also, at the host's 
request, the computational engine may recalculate the screen representation of all locations within 
the targeted object. Once all updates for a particular view are made, the PC may request a redrawing 
ofthe display. The description of the rendering subsystem, presented next, facilitates a better under­
standing of how the TMS320C30 requests rendering commands of the GSP. 

The Rendering Subsystem 

A modified version of the TMS34010 Software Development Board serves as the rendering 
stage of this graphics pipeline. A complete overview of this PC-based card can be found in the 
TMS34010 Software Development BoardUser's Guide [2]. Because only minor modifications 
were made to the commercially available SDB, the hardware aspects of the rendering subsystem 
are discussed in less detail than the computational stage. The same holds true for many software 
routines taken from the TMS34010 Math/Graphics Function Library.[8] After presenting over­
views of the TMS34010 and the SDB, this section focuses on the C30AB/SDB interface and the 
communications protocol used for command and data transfer between the TMS320C30 and the 
GSP. 

The TMS34010 Graphics System Processor 

The TMS3401 0 combines the best features of general-purpose processors and graphics con­
trollers in one powerful and flexible Graphics System Processor, Key features of the TMS34010 
are its speed, high degree of programmability, and efficient manipulation of hardware-supported 
data types, such as pixels and two-dimensional pixel arrays. 

The TMS34010's unique memory interface reduces the time needed to perform tasks such 
as bit alignment and masking. The 32-bit architecture supplies the large blocks of continuously-ad­
dressable memory that are necessary in graphics applications. TMS34010 system designs can take 
advantage of video RAM technology to facilitate applications such as high-bandwidth frame buff­
ers; this circumvents the bottleneck often encountered when using conventional DRAMs are used 
in graphics systems. 

The TMS3401O's instruction set includes a full complement of general-purpose instructions, 
as well as graphics functions frorn.which you can construct efficient high-level functions. The in­
structions support arithmetic and~oolean operations, data moves, conditional jumps, plus subrou­
tine calls and returns. 
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The TMS34010 architecture supports a variety of pixel sizes, frame buffer sizes, and screen 
sizes. On-chip functions have been carefully selected so that no functions tie the TMS34010 to a 
particular display resolution. This enhances the portability of graphics software and allows the 
TMS34010 to adapt to graphics standards such as MIT's X, CGIICGM, GKS, NAPLPS, PHIGS, 
and other evolving industry and display management standards, 

TMS34010 Software Development Board 

Figure 4 shows the block diagram of the modified TMS34010 SDB. The graphics SDB is a 
single card designed around the IBM PC/XT Expansion Bus and serves as a software development 
tool for programmers writing application software for the TMS34010 Graphics System Processor. 
The development of a high-performance bit-mapped graphics display in this application report 

demonstrates the simplicity of hardware design using the TMS34010 SDB. 
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Figure 4. Modified TMS34010 Software Development Board Block Diagram 
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This board comes with interactive debug software. Its features include software breakpoints, 
software single-step and run with count. At the same time, current machine status is displayed on 
the top half of the host monitor. 

The SDB contains 512K bytes of program RAM for the TMS34010 to execute drawing func­
tions, application programs, and displays. Both the program RAM and the frame buffer are accessi­
ble to the host through the TMS3401O's memory-mapped host port. 
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The frame buffer consists of eight SIP memory modules organized into four color planes. 
This allows 16 colors per frame from the digital monitor. The TMS34070 color palette incorporates 
a 12-bit color lookup table to give you a choice of 16 colors in a frame from a 4096-color palette. 
Furthermore, the palette incorporates a variety of unique line load features to allow the color lookup 
table to be reloaded on every line; this means that 16 of 4096 colors can be displayed per line. 

The TMS34010 Host Interface 

The GSP has two 16-bit buses: one interfaces with the video and program memory, and a sec- . 
and interfaces to a host processor. The host can access the GSP by writing and reading four internal 
memory-mapped GSP 16-bit registers: 

444 

• HSTADRL and HSTADRH together form a 32-bit pointer to a location in the GSP's ad­
dress space. 

• HSTCNTL contains several programmable fields that control host interface functions. 

• HSTDATA buffers data that is transferred through the host interface between the GSP's 
local memory and the host processor. 

Several signals are available for communications between the host and the GSP. 

• HD15 through HDO are the actual data lines. 

• HCS is the interface select signal strobe from the host. 

• HSFI and HSFO select which host register is being addressed. 

• HREAD and HWRITE are, respectively, the read and write strobes from the host. 

Table 8 shows how the above signals address the four host registers. 

• HLDS and HUDS signals, respectively, select the low byte or the high byte of the host 
interface registers. 

• HRDY informs the host when the GSP is ready to complete a transaction. 

• HINT is the interrupt signal from the host to the GSP. 
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Table 8. TMS34010 Signals Controlling Host Port Interface 

Host Interface Control Signals 

HCS 
HSFI & 

HREAD HWRITE Operation HSFO 

1 XX X X No Operation 
0 00 0 1 HSTADRL read 
0 00 1 0 HSTADRL write 
0 01 0 1 HSTADRH read 
9 01 1 a HSTADRH write 
0 10 0 1 HSTDATA read 
0 10 1 0 HSTDATA write 
0 11 0 1 HSTCNTL read 
0 11 1 0 HSTCNTL write 

The fields in HSTCNTLcontrol host interrupt processing, auto-incrementing ofthe host ad­
dress register, and protocol in byte-at-a-timeaccesses to the 16-bit host port (whether the lower or 
the higher byte comes first). HSTCNTL also contains the status of interrupts from the host to the 
GSP and from the GSP to the host and a three-bit message word in either direction. These control 
bits are shown in Table 9. 

Table 9. TMS34010 Host Control Register Fields 

Field Name Purpose Write Access 

0-2 MSGIN Input Message Buffer Host Only 
3 INTIN Input Interrupt Bit Host Only 
4-6 MSGOUT Output Message Buffer GSP Only 
8 INTOUT Output Interrupt Bit GSP Only 
8 NMI Nonmaskable Interrupt Host Only 
9 NMIN Nonmaskable Interrupt GSP and Host 
10 Unused Unused Neither 
11 INCW Increment Pointer Address on Write GSP and Host 
12 INCR Increment Pointer address on Read GSP and Host 
13 LBL Lower Byte Last GSP and Host 
14 CF Cache Flush GSP and Host 
15 HLT Halt TMS34010 Processing GSP and Host 

TMS320C30 Application Board Interface 

In its unmodified form, the SDB communicates to the PC host through a single transceiver. 
A PAL decodes the PC address into the appropriate register selection signals. The registers are 
mapped redundantly into blocks of PC memory address space, as shown in Table 10. The board was 
modified by the addition of a connector to a cable from the C30AB's target connector. The 
TMS320C30 sends to the modified SDB the following: 

• The TMS320C30s expansion bus address 

• The TMS320C30s data signals 

• I/O address space access strobe 

• Expansion bus read and write strobes 
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These signals map the GSP's host interface registers in the TMS320C30's address space (also 
shown in Table 10). The TMS320C30 mapping is actually replicated in four-word blocks untilloca­
tion 8057FFh. 

Table 10. Mapping ofTMS34010 Host Control Registers 

Register PC Mapping TMS320C30 Mapping 

HSTDATAO C7000h - C7CFFh 805002h 
HSTCNTL C7DOOh - C7DFFh 805003h 
HSTADRL C7EOOh - C7EFFI1 80500011 
HSTADRH C7FOOh - C7FFFh 805001h 

The modified SDB board must be able to select either the PC or the C30AB as its host. The 
C30AB target connector makes the two external flag bits XFO and XFl available to the SDB. The 
TMS320C30 can configure these flags as either input or output pins. Upon leaving reset, these pins 
default to inputs and remain in the high-impedance state. XFO is pulled Iowan the SDB to appear 
off when the TMS320C30 is in reset. After the PC loads the rendering software into the GSP, it acti­
vates the C30AB and loads the TMS320C30's software. As discussed earlier, the TMS320C30, 
during initialization, configures XFO as an output and loads it with a one. The address-decoding 
PALs on the SDB use this signal to select the C30AB as the SDB's host. When the TMS320C30 
controls the SDB, it communicates through a full 16-bit interface to the GSP. Thus, before the inte­
ger screen coordinates are sent in two's-complement form to the GSP, they must be clipped to a 
range of -32,768 to 32,767. Fortunately, this range is still two orders of magnitude greater than the 
resolution of most monitors. 

In general, the above interface is fairly straightforward. The only complication is that the de­
signers of the GSP expected a relatively slow microcoded general-purpose processor as a host. This 
allows the GSP to actually assert its HRDY line 80 ns before it is actually ready to process a transac­
tion. When interfacing to the TMS320C30, PALs become necessary as state machines to create the 
appropriate number of wait-states on host reads and writes and thus ensure proper interprocessor 
communication. 

DSP to GSP Communication 

The TMS320C30 loads all commands and data into a command buffer contained within a 
space not usually mapped by the SDB's C compiler configuration. This portion of GSP address 
space, the Shadow RAM, is normally reserved for optional PROMs. However, by writing a 1 to 
an RS latch in the GSP's memory space, this area becomes occupied by the topmost portion of pro­
gram/data DRAM. Before the TMS320C30 starts writing to HSTDATA to access this memory, 
it configures the host address to autoincrement. Once the GSP finishes processing data in the shad­
ow RAM, it resets the value of the address registers to point to the beginning of the shadow RAM 
in order to allow the TMS320C30 to properly load its next command and data. 

The communication protocol between the TMS320C30 and the GSP closely resembles the 
protocol between the PC and the TMS320C30. The MSGIN and MSGOUT fields, respectively, 
replace the COMMAND and ACKNOWLEDGE words. However, rather than these fields con-
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taining a particular value for a command, the value of 3 (binary 011) in either of these fields indi­
cates that a command or an acknowledge exists. Upon reception of a command request, the GSP 
refers to the first location of the shadow RAM for a command word from the TMS320C30. Thus, 
the overall command scheme proceeds as follows: 

1) The TMS320C30 waits until it sees that the MSGOUT field contains a O. 
2) The TMS320C30 stores all command and data into the shadow RAM. 
3) The TMS320C30 writes a 3 to the MSGIN field and waits for acknowledgment. 
4) The GSP acknowledges the reception of a command by writing a 3 to the MSGOUT 

field. 
5) The TMS320C30 withdraws its request by writing a 0 to MSGIN. 
6) The GSP reads the first word of the shadow RAM for the command and jumps to the 

appropriate case to process it. 
7) Once the GSP is finished with all data in the shadow RAM, it resets the values of the 

host address registers and then writes a 0 to the MSGOUT bit, indicating that the 
TMS320C30 is free to request another command. 

The TMS320C30 Drawing Routine 

When the TMS320C30 receives a redraw-screen request from the PC, it sends a command 
to the GSP to clear the screen after the monitor has drawn the bottom line; this ensures that the last 
view was drawn in its entirety. The TMS320C30 then calls its draw_object routine with *universe 
as an argument. For each array of primitives within the object, the TMS320C30 sends the size of 
the array and the array of screen representations of the primitives themselves to the TMS34010. 
Thus, the TMS320C30 can request the GSP to draw arrays of points, lines, or filled polygons. Once 
all arrays are drawn, draw_object recursively executes for all child objects within the universe. 
In this manner, all objects defined within the system are drawn. 

GSP System Initialization 

Several initialization routines are provided in the TMS34010 Math/Graphics Function Li­
brary User s Guide [8]. The GSP executes these programs to properly configure the system before 
it begins its command detection loop: 

• The call to init_ video configures the graphics buffer for an NEC Multisync Monitor dis­
playing 640 x 480 resolution. 

• The init~raphics function initializes the graphics environment by setting up the data 
structures for the graphics functions and assigning default values to system parameters. 

• The init_screen command initializes the screen. The entire frame buffer is cleared, and 
a color lookup table is loaded with the default color palette. 

• The init_ vuport function initializes the viewport data structures and opens viewport 0, 
the system, or root window. 

• The set_origin command sets the origin of the system to the center of the screen. 

Drawing Routines 

Several drawing routines are also provided in the TMS34010 Math/Graphics Function Li­
brary User's Guide [8]: 
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• For each primitive in an array sent from the TMS320C30, the GSP sets the proper drawing 
color with the set_color command. 

• The TMS320C30 commands the GSP to execute to the clear_screen before it starts to re­
quest drawing of primitives for the next view. 

• The TMS320C30 requests a wait_scan execution from the GSP to ensure that the GSP 
has fully displayed the last view before drawing the current view. 

• The GSP uses the drawyoint(x,y) function to render a point on the display. 

• Similarly, it uses the draw Jine(xl,yl,x2,y2) command to draw a line. The arguments are 
the screen coordinates of the two end-points of the segment. 

• The fillyolygon (n, Iinelist, ptIist) function takes as arguments of the number of vertices, 
an array of the line segments forming the sides of the polygon, and a list of screen coordi­
nates referenced by the linelist. 

Summary 

The TMS34010 Software Development board provides a good rendering module for this 
graphics system. The support hardware has been debugged and used in industry since 1987 and thus 
makes a reliable rendering subsystem. The target connector to the C30AB provides access to the 
TMS320C30 as an alternate host. Three PALs and two transceivers allow the TMS320C30 to as­
sume control of the GSP, once both have started running their software. The draw_object program 
on the TMS320C30 can command the GSP to draw graphics primitives. Functions in the 
TMS3401 0 M ath/G raphics Function Library User s Guide [8] allow the GSP to initialize the moni­
tor interface, clear the screen, ensure that an entire screen has been drawn, and draw the graphics 
primitives. Overall, the TMS34010 development tools provide an easy means to develop a render­
ing subsystem for this graphics pipeline. 

Possible Improvements 

Several changes may be incorporated into the system to improve performance. Some simple 
enhancements involve modifications of the computational subsystem's software to allow faster and 
more transparent command execution. Restructuring the method in which the data and command 
pass through the pipeline, a more complex modification, can greatly increase throughput. Addi" 
tional features such as more complex primitives, lighting, windowing, and text display would re­
quire major software modifications to the system. However, any such modifications would not 
need to change the communication protocols or the command detection loops significantly. Finally, 
although the TMS320C30 represents the state-of-the-art in digital signal processing, the host pro­
cessor and the rendering engine may be improved. 

Computational Subsystem Software 

The drawing routine currently sends the primitive arrays of an object one at a time to the GSP. 
Instead, it should send all primitive arrays for all objects to be redrawn in a single pass. The GSP 
should then process the contents of this stack of commands and data. 

Currently, as soon as the PC finishes requesting objects adjustments, it must request recalcu­
lations of the screen coordinates of location arrays. The screen_object routine must operate on aU 
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objects that have been adjusted directly or indirectly by having their ancestors adjusted. Instead, 
this routine should be called once with the *universe as the argument. The object structure should 
contain a flag that is set when an object is adjusted and reset when it is drawn. Thus, the new 
screen_object procedure would recursively search down the hierarchy of objects until it encoun­
ters an object that has been adjusted and then should recalculate all the screen coordinates for it and 
those of its internal objects. Upon completion, it should search the rest of the hierarchy for adjusted 
objects. Thus, the host would have to request only adjustment, targeting, and draw commands. 
Screen representations would be automatically recalculated whenever a draw command is ex­
ecuted. 

Rendering Subsystem Software 

Rendering subsystem drawing routines could be improved by designing functions coded to 
handle the primitive arrays rather than individual programming elements. These functions may be 
able to fit in the GSP's instruction cache and improve execution time. 

Improved Data Flow 

One problem consistent at all stages of the system is the method of buffering. A single buffer 
usually contains all data and commands to be transferred from one stage to the next. Thus, during 
command execution one processor may wait for the other to relinquish control bfthe command 
buffer. 

The first of two methods to improve the dual-port SRAM connecting the PC and the DSP 
is to divide the SRAM into two buffers. The PC writes the current command to one buffer, while 
the TMS320C30 processes commands and data stored in the other. This prevents contention for 
the dual-port SRAM. The particular buffer which each processor controls is swapped on each com­
mand request. Second, adding three more 4K x 8 dual-port SRAMS in parallel would allow the PC 
to communicate to the TMS320C30 with full 32-bit wide words. Thus, the masking and concatena­
tion necessary to receive larger data types would become unnecessary. On the original design the 
potential addition of these RAMs consumed a prohibitive amount of board space. Full word size 
is possible only if space constraints are eased. 

The splitting of the command buffer between the TMS320C30 and the GSP allows the GSP 
to drawthe current screen while the TMS320C30 sends the primitive arrays for the next. Similarly, 
two display buffers allow one buffer to be displayed on the monitor while the GSP draws the next 
view to the other. 

Computational Features 

The DSP is suited to perform many other types of computational features. Because these 
functions are more complex, they were not implemented in the limited design time available. This 
system truncates objects that are too high, too low, too far right, or too far left by using the GSP's 
drawing routines that automatically clip coordinates outside the screen boundaries. However, the 
system cannot determine whether one object is in front of another and draw the objects appropriate­
ly. Functions to do this hidden-surface removal require complex algorithms to determine whether 
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one 3D surface obscures another. Simpler routines could be made to clip objects that are too far 
away to see or objects that are behind the viewer. 

A lighting feature would allow appropriate factors of light intensity and reflection to deter­
mine the shading of surfaces. Lighting may be ambient (equal everywhere) or come from several 
possible source geometries. Reflections could either be diffuse and scatter light equally in all direc­

tions, or be specular like those off any shiny surface. With these parameters, the TMS320C30 can 
compute the appropriate shading of a given pixel. In this scenario, the GSP is reduced to drawing 
single points with a given color. Thus, any lighting function would slow rendering time. 

More complex primitives can be produced by using the TMS320C30 to generate arrays of 
pixels representing solutions to equations. The PC could dispatch a command to draw a primitive 
based on a particular type of equation (such as the parametric equations representing a sphere) and 
then load the appropriate parameters for that equation. The DSP would generate the appropriate set 
of pixels for that object and send it to the GSP as arrays of points. 

Rendering Features 

The TMS34010 Math/Graphics Function Library [8] permits the user to create and select 
various windows for display. Once a window is selected the DSP can run the existing system soft­
ware within that window. Thus, the host would also need to be able to direct the DSP to tell the GSP 
how to manipulate its windows. The Library also enables the GSP to print text on the screen. This 
feature also would not be very difficult to implement. 

A More Advanced Host 

A more advanced host could be a high-speed RISCprocessor such as SPARe. This unit could 
communicate with the DSP at faster rates, so command transfers would consume less time. In addi­
tion, SPARC is a 32-bit machine, which could allow word transfers between host and DSP in a 
single instruction. 

A More Advanced Rendering Engine 

The TMS34010's performance as a rendering engine could be improved. If the GSP could 
be ready to complete a transaction when the HRDY line is asserted and not some period of time 
later, the C30AB to SDB interface would be more straightforward and not require as "many wait 
states. This problem is corrected in the second-generation GSP TMS34020, which was not avail­
able at the time of the design of this system. In addition, the TMS34020 also allows the host to trans­
parently access the GSP's bus while the GSP continues processor functions. 

Conclusion 

Despite its shortcomings, this system still demonstrates the dataflow in a graphics pipeline 
using a digital signal processor as a computational element. One main benefit of the digital signal 
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processor is the availability of development tools such as C compilers, assemblerllinkers, software 
development boards, and in-circuit emulators that accelerate design time. The TMS320C30 also 
provides speeds comparable to many bit-slice processors that require programmers to develop ex­
tensive microcode routines. The hardware multiplier, floating-point capability, RISC architecture, 
and parallel bus access facilitate fast, precise graphics calculations. Overall, a digital signal proces­
sor provides an attractive option to the graphics system designer interested in making high-per­
formance systems with quick turnaround time. 
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Appendix A 

Graphics Programs 

Listing Name 

1 TMS320C30 C Structure Representing an Object 
2 TMS320C30 C Structure Representing a Location 
3 TMS320C30 C Structure Representing a Point 
4 TMS320C30 C Structure Representing a Line 
5 TMS320C30 C Structure Representing a Filled Polygon 
6 TMS320C30 Communications Macros 
7 TMS320C30 Global Variables 
8 TMS320C30 Main Command Execution Loop 
9 TMS320C30 Floating-Point Conversion Routine 
10 TMS320C30 Object Loading Routine 
11 TMS320C30 Screen Coordinate Calculation Routine 
12 TMS320C30 Transformation Matrix Evaluation Routine 
13 TMS320C30 Object Deletion Routine 
14 TMS320C30 Request for Additional Data in Object Load 
15 TMS320C30 Object Drawing Routine 
16 TMS34010 Point Structure 
17 TMS34010 Line Structure 
18 TMS34010 Color Array 
19 TMS34010 Color Palette 
20 TMS34010 Main Command Execution Routine 
21 PC Object Loading Data Structure 
22 PC Communications Macros 
23 PC Global Variables 
24 . PC Targeted Object Adjustment Routine 
25 PC Routine to Set Parameters for an Object Load 
26 PC Routine to Target Parent of Current Target Object 
27 PC Routine to Target a Child of Current Target Object 
28 PC Routine to Redraw Screen 
29 PC Routine to Load the Primitives of a Wireframe Cube 
30 PC Main Routine to Draw a "Planetary System of' Cubes 
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****f**fUHffHHfHHHHIHHffHnHIUHffHfffHHfHHHfffHflffHfltt 

--)listing 1: TI'IS320C30 C Structure Representing an Object 

struct object 
( 

str-uct object fparent;!f object within who's frall€ the object is defined *1 
long subnulrt; /1 sibling number of object ., 
long locfllJm: /f nUlilber of locations *1 
1 clOg ~tnlJm; /1 nlJmber of points 1/ 
long 1 nnUIrI; /f nUllber of 1 ines *1 
long pgnum: 1* number of polygons 1/ 
long oonulI; /1 nUllber of daughter objects 1/ 
float sx; float sy; float sz; 1* scale factors 1/ 
float dx; float dy; float dz; /f offsets 1/ 
float theta; /f angle of rotation around z-axis (x to y) 1/ 
float phil 1* angle of I'otation al'ound x-axis (y to zl *1 
float omega; 1* angle of rotation around y-a.xis (z to xl II 
floa.t r[3H41; 1* matl'ix formed by scale, the offset, then rotate II 
float 0(3)[4]; 1* ascending product of all ancestral I' matrices II 
loc *locs; 1* poirlter to location array II 
point fpointsl 1* pointer to point array II 
line llines: 1* pointer to line arr-ay . II 
polygon "polygons; II pointer to polygon array II 
struct object fobjects[!1AXOB1; II pointer to anay of *1 

Ilpointers to child objects +I 
l, 

H***HfHfllfffHHHIHfHHHffHHHHflflfffHIfHHHlfHHffHfffffflff 

fHHfHfHH"*UHfIHUfHfHHftfHfffllllffffHfHfflHlffHfHffHllfflf 

-)Listing 2: TI1S32OC3O C Structure Representing a Location 

typedef struct 
{ 

float x; 
long a; 

} toc; 

float y; 
long b; 

float z; II world coordinates *1 
1* screen cMrdinates II 

ttffffftfHffHffHffffIHHlffHfHlfflffffHlffl*HfffHllfflfHffH***lflff 

HHflHlflHffHHHUHHHHHIHIHHfHflffHHHHHHlfHHHffHfHflf 

--)Listing 3: TMS320C30 C Structure Representing a. Point 

typedef struct 

long color-; 
long locn; 

} point; 
II nUlilber of location in location array *1 

lHf*************I****HfIHIIH*IHIHfHffffHfHfflf-ffllfflfflffffffIIHffHI 

flllffIHfffflffH+HI**Uffff*-HlffIHH*HfllffIHIfIUIIIIIIIIHIHIIHfflf 

--)Usting 4: Tl'\S320C30 C Structure Representing a Line 

typedef struct 
{ 

long color; 
long startlocn; 
long endlocn; 

} line; 

II start loc number II 
If end loc number II 

tHlfttffftlfff*ffffttHlfnffffHlfflHffllHflfHIHHflllHlffllfflfffffIff 

HHftHflfffllfHlfflfHffHffltfHfffffUUHHHHlfffHHHHIH+HlffffH 

--)Usting 5: Tl'1S320C30 C Structure Representing a Filled Polygon 

typedef struct 
{ 

long color-; 
long vertnum; 
10llg tvertlocn; 

} polygon; 

II number of vertices *1 
1* array of vertices 1 (lC numbers H 

********lflfffIHHHHH-*lIH**HHHffHfIHfffffHfffHHfffffffHflfffffH 
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--)Usting b: TttS320C30 CouuniCltions ",eros 

/1--------------------------------11 
/1 COI1IUUCATIOOS I1ACROS TO GSP 1/ 
/1-------------------------------1/ 
Ide fine CTLfRf[ 0x0800 
Idefine CTLREQ 0><0803 
'define CTLACI( 0x0033 
#define CTLWITH 0x0830 
Ide fine HOSTCNTL ('h.tcntl ~ OxOOfFF) 
/1-------------------· --------.,.---------------1/ 
/1 IIIIUII.II1 NI.ItBER IF INTERIIAI. OOJECTS 1/ 
/*--------------------------------------1/ 
'deline l1li108 10 
/1-----------------------------------------1/ 
/1 PC COItI..WlCATIOO LOCATIONS f/ 
/1--------------------------------------------'---1-, 
'define rottAND (Idual-port Ie 0x0fF1 
Idefine ACKNOII.EOOE duo LporW I 
/.------------------------------------------------*, '* DATA·RECO'.{RY FROI1 THE lXW. POOT *' 
/1-----------------------------------------------1/ 
'define [fOCal 
Idefint [fI(al 
.define lP2Cai 
'define [f3(il 
Idefine DPl(ttJ(a) 

dual_por-t[aJ 
dual-porth. + 1] 
dUil_port[a + 2] 

duaLporHa + 3] 

(liongi {{iPUol ~ OxOOFFl « B : (OPO(al ~ OxQIlFFill 

.. IU .... H*HfIHlfHHHH.HflfffHffHlllffHHIHffHIIHIHlffH.H.ffH 

*.I*'HIHf*IHffltHIHfI*Hf-HHfHfHftIHHHHfHfH-fffHIII"fffHHfffl 

--)llsting 7: ll1S32OC30 Globa.l Viriables 

long k,l; 
struct object luniverse, fto, Ino; 
urlsigned long IduaLport; 
unIon 
{ 

float f; 
unsigned long i; 
} fllong; 

/1 teaporary inO looping varia.bles II 
/1 univer-se, target object, next object 1/ 
/1 dUll port SRAtI 1/ 
/f variable to construct a c30 forllat 1/ 
/f float froll inbl forINt allollling 1/ 
/1 bit Nnipulation on a float 1/ 

fIHfHflflffHfHf.HIHHfHHffffHUHHfffffHIHfffHIHffHIHU.HHH 

HffHfHfHffHfffHfHffHHfHtHHHfftHHfHHftHHHfHfftHlfHfHfff 

-)listing 8: lltS320C30 tlain Couand Execution Loop 

void Hine) 
{ 

register float hlopi = 6.28318S308; 
register long i, j; 
register long fhstdat.a = (long *' OxSOSOO2; /* 340 host data register *1 
register long *tlstcnt! = (long *1 0xa05003; 1* 340 host control registerll 
duaLport = (unsigned long *1 0x804000; 
asm(" OR OBOOh,SPI;I* enable cache II 
aSll M LDI 02h,IOF"I; If set XFO and aSSUile control of 340SDB */ 

/* set for zero internal wait states on both buses II 
I«unsigned long II 0x8080bOl = 0; 
*«unsigned long *1 OxB080641 = OxlOOO; 
Ihstcntl = CTlFREE;/1 turn- off any request to TMS34010 II 
*duaLport = 0; 1* turn off- any request frorJ the PC II 
ACKNOWlEOOE = 0; /1 turn off any acknolillegeraent to the PC 1/ 

/. allocate space for the internal object 1/ 
universe = (struct ObjHt II /lilloc (sizeoHstruct object); 
to = universe; II target universe 1/ 
to-)subnull = 0; /1 set universe sibling number to 0 */ 
to-)parent = to; /* universal object is its oltn parent 4/ 
klhile(COI'V1AND != 11; /1 first COlaand must be a load object */ 
ACKOOWlEDGE = 1; /* acknowledge that c30 is ready 1/ 
IIIhilelCOI"MND != 0); /1 wait for pc to lIIithdralll requfSt 1/ 
Ioad_objectll; /* IOid universe 1/ 
ACKNOWl.EOOE = 0; II sho~ that dual port is free */ 

llitrixll; /f calcul.ate transforlition latrix 1/ 
fori;; I /1 infinite loop for PC COHand detectionl/ 
( 

.hile(COI1I1AHlJ == 01, 
j = COMAND, 
ACKNIREOOE = j, 
IiIhilelCUV1AND != 0); 
switch Ij) 

/1 wait for PC to request service 
/1 save cOlH\ind 
1* .acknowledge request 
/1 wait for PC to withdraw request 
/1 execute requested conand nUlber 

*' I' 
*' f/ 

*' { 

co .. U 'I LOAD A lIAlilHTER OBJECT *' 
if (to-)obnull = I'IAXOB) break; /* abort if ) !taxi.um objects 1/ 
j = Hto-)obnulI; /1 increase nuaber of daughter objects */ 

/1 allocate space for nelll object 1/ 
to-)objects[jl = (str-uct object II Iftil10c (sizeof(struct object)); 

no = to-)objects[jl; /1 next object is daughter object 1/ 
no-)subnua = j; /1 set sibling nuaber of next object 1/ 
no-)parent = to; /1 assign current objfCt as no's paret II 
to = no; /1 target daughter object */ 
10ad_object(); /1 load daughter object I' 
ACKNltA.EOOE = 0; /1 show that dual port is free */ 
I'Iitrixll; /* calculate transform r.atrix 1/ 
break; 

case 2: ,. TARGET A lIAUlHTER OOJECT *' j = IPl.(HH21, /1 get daughter object nuaber to target ./ 
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ACktOA..EJ&: = 0; If sholl! thit dual port is free ., 
if (j ) to-)obnulII) break; /. can only target existing object 1/ 
to = to-)objecb[Jl; /1 h,rget daughter object ./ 
break; 

me 3' '".TARGET PIIREHT 08JECT "' 
ACKtOLEOOE = 0; /f sholll that dual port is free 1/ 
to = to-)parent; /f set targeted object to parent ./ 
brnk; 

case 4' '" DELETE TARGETED OMCT ., 
ACktOA..EJ&: = 0; If, shOll! that request dual port is free 1/ 
if (to = universe) break;/' don't allow deletion of universef , 

j = to-)subnUfD + 1; /f get nUlllber of next sibling f/-
no = to-)parent; /f set next object to parent 1/ 
delete_object(to); /* delete current object 1/ 
to -= no; ,. target parent object f/ 
1 -= to-)obnul; /f find total nUMber of siblings 1/ 

/1 decreHnt sibling nulber on all younger siblings ./ 
forB = j; i (= I; ++iI -to-)objects[il-)subnlJl; 
--t-o-}obnul; /. decreHnt total nUlber of daughter objects ./ 
brnk; 

ClSe 5: '" Al\JJST TARGETED OBJECT *' to-)sx 1= dpfloaU21; /1 adjust scales ., 
to-)sy .. dpll .. U6), 
to-)sz .= dpf1.itH01, 
to-)dx += dpfloat(14); /1 adjust offsets *' I.-)dy += dpfloItHS); 
to-}dz += dpf1 • .t(22), 
to-)theta += dpflodI261;. /1 idjust ingles *, 
I.-)phi to dpf1.1I13()), 
to-}oltga += dpfloat(34); 
AOO«N.EDGE : 0, /1 sho. that dua.l port is. free ., 
'* keep angles in the IO,2pU range) ., 
to-)theta. = flodlto-)theta, hlopi); 
I.-)phi = flodUo-}phi ,tlllopi); 
to-)oltga = f.odUo-)o~ga, tIilOPU; 
Ihltrix(to); /1 recalcula.te tra.nsform latrix ./ 
break; 

Cise 6: ,. DRAW LIlI VERSE ., 
~=.O, /1 shot! tha.t dual port is free I' 
whilell4lSTCNTL ~= CTLFREE); /* wa.it for 340 to be free I' 
'h.ldili = 4, It enter cOlRnd for a screen clea.r II 
.h.le.11 : CTl.REQ, /1 tequest service frOM 340 ., 
.hiltlHOSTCNTL != CTLACK); /i "'it for icknOlllledgement "' 'h,le.11 = CTlWITH, /f ~ithdrh request "' 
draw-object( uni verse); /i dra. .. universe "' 

IIfhiltU-KlSTCHTl != CTLFREE); /. lH.it for 340 to be free 
fhstdati. = b; /f enter cOlIINnd for i sCinline 
fhstcntl = CTLREQ; /. request service fro. 340 
while(HOSTCNTl != CTLACK); /f wait fro. acknollliedgeaent 
.hstcntl = CTlWITH; /. "ithdra~ request 
brtik; 

case 7: ,. Cl'Lcw\TE SCREEN COORDINATES 

., ., ., 

./ ., 

., 
/f ++tWARNING+++ the PC user lust execute a s.creen colltNnd- to 1/ 
/1 screen all objects that have been adusted since t~e last ./ 
/. dra.1II before the next dralil. However, if an object is 1/ 
/f screened all daughter objects are as well. ./ 
IIOaOl.EDX ::;: 0; /1 show that dual pClrt is free 1/ 
screen_objectlto); /1 calcuclate screen coordini.tes 1/ 
break; 

default: 
AtmlIUDGE : 0, 
break; 

/. show that dual port is free 1/ 

'1IIIfffIffIfIffHIfHfIHff'lffIHfIHllIfIfHlIHlf-H-fIHffHffIIHfffHfffff 

HUffIIHlffUHIHfHHHHlfffflffltHtfffff-ffHHHHHfHHfHHIfffH-H1 

--)Usting 9: TI'IS320C30 Floating-Point Conversion Routine 

llOit dpllOiI (0) 
register unSigned long i; 
( 

r"egister unsigned long sign; 
unsigned long flant, ex; 

a = IDP)I.) « 24 
IIP2la) & OxOOFf) « lb 
IOPH.) ~ OxOOfF) « B 
IDPQli) ~ OxOOFF)), 

.ign : Ii & oxsooooooo) » 8, 
ex : I Ii & OxlF800(00) 

- Ox31800000) « 1, 
if (sign) 
{ 

/1 offset froll start of dual port SRM *1 

/1 concatenate 4-byte va.lue 

/1 extract and reposition sign bit 
/1 extract exponent 
If. converts to 2f s cOlpleatnt 

./ 

., ., ., 
IMont = (- a) &I 0x007FFFFF; /t hkes 2/s cOlpleltnt of IFIintissa 1/ 
if (IIIlnt = 0) ex -= Ox010OOOOO; /f checks for input IN.ntissa of -2 1/ 

else liant -= a &: OxOO7FFFFF; 
a = sign + Nnt + ex; 
fl1ong.i = i; 
return fllong.f; 

/f otherwise leave Mntissa a.lone 
/1 reconstruct floating-point fields 

/1 return reconstructed float 

., ., 
"' 

fHlffflfffffHHlflffffHfffflfHfflllffHfffftulftHHHHfflHlfHllHlH-I 
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--}Listing 10;. 'ft'IS32OC3O Objed l~ding Routin. 

void load_object() 
( 

tIghter long i, j; 
register struct object to; 
register IDe ft •• ploe; 

/f t.lporary and looping variables *1 
1* pointer to target object 1/ 
If tHporary location pointer 'II 

register- Jine tte.pln; /f temporary line pointer 1/ 
polygon fteappg; /f ttlporary polygon pointer 1/ 
point t-t.rtppt; 'f t.llporary -point pointer 1/ 
long Ie • DPUlIGI21, 
long pi • 1PL(N;141, 
long In '1PL(N;lbl, 
long pg • IPL(N;ISI, 

If nUllber of coordinate locations 1/ 
If nullber of points 1/ 
/f nultber of 1 ines 1/ 
/f nulIOel' of polygons ., 

o = to; /f set til'get object is object for loading / 

/f initializf prillitiv@ nUlibers and transforr. paralettl's 
o·)tocnu. = Ie; 
o-)ptnuli = pt; 
0-)1nolllll = In; 
0-)pgnuD = pg; 
o-)obntlll = -1; 

*, 

o-)sx • dpfloolllOI o-).y = dpfl.ol1l41 
o-)dy • dpfl.otl2bl 
.-)p.i • dpfl.oll381 

o-)sz = dpfloat(18J 
.-)dx • dpfl.otlnl o-)dz • dpfl .. tlJOI 
0-)1.,10 • dpflootl341 '-)0"9' = dpflool1421 

'* ALLOCATE SPACE FOR OMCT PRI"JTJ~ f/ 
0-}10[S = (loc oil Nltoc (sizeof (Ioc) I Ie); 
o-)points = (point II N,l1oc (sizeof (point I t pt); 
o-)1ines = (line II tilloe (sizeof (line I f Inl; 
0-)p01Y90ns = (polygon II IrIllloc (sizeof (polygon) I pg); 

'* LOAD \!'TO 3n LOCATIOOS PER OBJECT 
for Ii = 0, j=46; i < 1C; +ti, j += 12) 
{ 

*, 
ttlpJoc = &:(o-)locs[Bl; 
I •• ploc-»( • dpflot!ljl, 

/1 stye teaporary location ./ 
/f load .. orld coordin.ates 1/ 

I •• ploo-)y' dpflodlj + 41, 
tellllploc-)z z dpfloatlj + 8); 

't LOAD LI'T 2047 POINTS PER OBJECT 
if Ipll 

I' 
( 

.ore_datal); 
for H c Or j.2 ; i < pt; ++i" j += 4) 
{ 

ItllPPI • LI,-)pointsCill; 'f s.t leeporary poinl locati.n I' 
toppt-)color'.'IPLCNjejJ; 'f 9ft point color " 
I .. ppt-)l.en • DPI.DIIGlj + 21; 'I"gtl poinl locatio. t' 

,. LOAD \l'TO 1364 LINES 
if (lnl 
( 

more_dataO; 
for Ii = 0, j=2 ; i Cln; +ti, j += b) 
( 

tempTn = &:(o-}JintS[ill; 
ttll:pln->color = lPLCN3(j); 
tellpln-)startlocn = DPLOOOCj + 2); 
hllpln-)endlocn = rPL(NJ(j + 4): 

'* LOAD 1M POL\'OO>I AT A TltE 
if Ipgl 
( 

for (i :: 0; i ( P9; Hi) 
{ 

lI:orf_d.at.a( I; 
ttllppg 
hlllppg-)co 101' 
I 
tellpP9-}vertnufI 

= &(o-)polygonsfil); 
= [l>L~121, 
= D!'LlI'«lI41, 
• I, 

I' 

/t set telpon,ry line t/ 
/f get color tl 
It get starting location II 't get ending location I' 

I' 

'f set hmpQl'ary polygQn */ 
'I get colQr 1/ 
/t get number of verteces f/ 'f set number of verteces 1/ 

/1 al1oc.ate space for vertex location list 1/ 
terappg-)vertlocn = {long II milloc (sizeof (\ong) f 1l; 

for (k = 0, j = 6; k ( 1; +tk, j += 2) /f load verteres f/ 
( 

tuppg-}vertlocn[kl = DPlONO(j I; /f set vertex location ., 

IfUfitUHf.HffHfflHfHlfHffHlIHtfHfflHfftftffHHlfHflffliHffffffff 
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-)Listing 111 TtIS32OC3O SCl'ten Coordinde calculation Routine 

void serNn_object(ol 
register struct object 10; 
{ 

register long i , j; 
register loc fteap1oc; 

/f tuporuy and looping variables *1 
1* te.ponry location pointer 1/ 

register struct object ftellpob; 
register float x,Y; 

If telportry object pointer *' 
/f co-ordinate floating point values 1/ 
If ind perspective constant 1/ fI .. t z,d, 

teapob = o-)parent; /f set teaporary object.to parent object 1/ 

/1 CQ!PUTE PIiRENT MATRIX 1/ 
1/ /f if object is universe set partnt Ntrix to transfor" litrix r 

if (0 = univtrstl 
{ 

forti = 0; i < 3; +tiJ for(j = 0; j (4; ++jl o-)p[iHjl = o-)r[i][jl; 

'I atnerWiSt p !latrix is product of r llitrix and parentIs p Htrix I' 
else forH = 0; i ( 3; ++i) 
( 

.->p[iJ[Ol = 0-),[0][01 • t .. pob-)p[i][Ol • o-),[1]{Ol I t •• pob-)p{iJ[11 
+ o-)r[2][0] I teapob-)p[iH21; 

.-)p[i1ll1 = 0-),[0][\1 I t •• pob-)p[iJ[Ol • 0-),[1H11 I te.pob-)p[iJ{!l 
• 0-),[21111 I teopob-)p{iJ[21, 

0-)p[iJ[21 = 0-)r[0]{21 I t.opob-)p[iJ[Ol • 0-),{1]{21 * te.pob-)p{i]{1J 
• 0-),[2l!2] I t •• pob-)p{iJ{2], 

0->p[i]{31 = 0-)r[0]{3] I t •• pob-)p{iJ{Ol • o-),[1]{3] I t •• poHp{iJ[!l 
• 0-),[2][3] I teopob-)p[iJ[21 • t"pob-)p{iJ[3], 

/1 arFUTE SCREEN COORDINATES 
j = o-)locnuI; 

./ 
1* get number of locations II 

for Ii = 0; i { j; +t:i> 
( 

tellploc = ItCo-)locs[i)j 

II Sive globi,l coordinates 
x = tnploc-)x; Y = tt!lploe-)y; 

/1 set telporary location II 

1/ 
Z = tuploc-)z; 

'I eileulit. z vatu" add offs.t of S, and invert for perspective " 
d = lI(x I 0-)p{21[01 • Y •• -)p[2I[!l • Z I 0-)p[2l!21 • 0-)p{2I[31 • 10), 

1* cilculat. trinsforlHd x ind-y, add p.rspectiVf, ind scale to scr@enl, 
k = 1I0ng) ((x I 0-)p{OII01 + Y • o-)p{Ol[1J 

+ Z • 0-)p[0l!21 • o-)p[OI[3]) I d I 200), 
I = (long) «x .... >p[1J{OI + y I '-)p{IJ[]I 

• Z I 0-)P[1J{21 • o-)p[J]{3]) I d I 200), 

,. clip to a 16 bit integer II 

if 
if 

(k) 32000) k = 32000, el" if (k < -32000) k = -32000, 
(I ) 32000) I = 32000, else if (I < -32000) I = -32000, 

1* Sft screen coordinates 
tellploc-)a = k; 

/f screen ill internal objects 
j = 0-)obnuln; 

t.oploc-)b = I, 

for (j = 0; i (= j; ++i> sCl'een_objectlo-)objects[ill; 

1/ 

1/ 

ffHfllffflffffffffHffflffHHHftHHHfHfHHHHlfHHHHHHtHffHlHf 

fHffHffHffHflfHfHlHffHflfHHHl-tHHlllHfflHHffffflHHHfffHffH 

-}Listing 12: TMS32OC3O Transforation Matrix Evaluation Routine 

Mtrix() 
{ 

register float cost, sint; /1 transfotl'l telllporary I' 
float coso, sino, cosp~ sinp;/l.variables II 
register struct object 10; 

o = to; 
cost = coslo-}thetal 
sint = sinlo-)theta) 
coso = cos(o-}oIHQil 
sino = sinlo-)oltgal 
cosp = cos(o-)phil; 
sinp = sin(o-)phi I; 
o-)r[O](Ol = o-)sx I cost I- coso; 
o-)r[O](l] = - o-)sy I sint I coso; 
o-)r[O][21 = o-}sz I sino; 
0-)rCOH31 = (o-)dx I cost - o-)dy I sintl I- coso + o-)dz I sino; 
o-)r[t](O] = o-)sx I Isint I cosp + cost. sino f sinp); 
o-}rCl](U = o-)sy .. (cost .. cosp - siot f sino f sinp); 
0-}r[t][2J = - o-)sz I coso I sinp; 
o-}rU](31 = ((o-)dx" cost - 6-)dy f sint) * sino - o-)dz * coso) f sinp 

+ (o-}dx I sint + o-)dy .. cost) f cosp; 
0-)r[2](O] = o-)sx .. (sint * sinp - cost * sino" cosp); 
0-)r[2](1] = o-)sy f Icost * sinp + sint I sino * (osp); 
o-)r[2H21 = o-}sz f coso f cosp; 
o-)r(2H31 = «- o-)dx I cost + o-)dy f sint) * sino t o-)dz f coso) 

f cosp + (o-)dx f sint + o-)dy * costl I sinp; 

IlfllffflfllfflflfflfffftfflHfftfffHffHffffffHllHlflfflHIIHIIHIHfHff 
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fftfHfHfffHffHffHHfIHHUlffH****fHffHftHHHffHffHftHffHfHfH 

--)Ushng 13: n1S320C30 Object Deletion Routine 

void delete_object (0) 
regishr struct object 10; 

register long i, j; /f tellp~rary, looping variables *1 

free (0-)10(50); II delete location array t/ 
free (o-)points); II delete point array II 
free (o-)lines); II delete line array 1/ 
j = o-)pgnulII; /1 get number of polygons II 
for (i = 0; i {= j: +ti) free (o-)polygons[i).vertIClcn); II deleh II 
for (i = 0; i (= j; Hil free (o-)polygonsl; II polygons 1/ 

j = Cl-)obnulI; /1 get number- of daughhr objects 1/ 
for (i = 0; t (= j;++i) delete_object(o-)objectsfi)); II delete objects 1/ 
free (0); II deJete object 1/ 

1******ftHHI**HfllllffHlfH**fUfH**HffffH*HHffff*ff**IHIIUIHH+f1 

HffHIHffffffffIHffH-f+flffl**I*,**I+f****I****IHfffHH**HlffffIHI**lff 

--)Usting 14: TI'IS320C30 Request for Additional Data in Object Load 

void aore_data{) 
( 

ACKNIlWlED6E = 127; 
IIIhile(CM'1AND ~= 127); 
ACKI«lWlEDGE = 1; 
while(COMl'1AND != 0); 

II request mort! data 1/ 
II lllait for mor-e data */ 
II restore old acknowledge *1 
/* lllait for PC to reSUllle old command */ 

IfUHfIIHUflnfllnl"*fln****Ulffl**U'UffffIHff+flUfI****ffH***'**f 

fH********fHHHfffftHlfHHHffHHfHftHfffUHHfftHffHftfffHffffHI 

--)listing 15: TI1S320C30 Object Drawing Routine 

VOid drallubject (0) 

register struct object fO; 

register long 1; /f telporary, looping variable 1/ 
register loc ftellploc; 1* teRlpol'ary location pointer IJ 
point ftelllppt; /f temporary point pointer 1/ 
register line fteltpln; 1* tuporary line pointer II 
polygon *teIlPP9; /f telporary point pointer *1 
register long fhstdata ::: (long *J 0:<805002; /f 340 host data register 1/ 
register long- fhstcntl = (long *l Ox805003; /f 340 host control register II 
register j = o-)lnnulII; II~tellporary, looping variable II 

,. OOAW ANY LINES 
If (j) 

., 
( 

IIIhile (HOSTCNTL != CTlFREE); 
Ihstdata = 123; 
Ihstenti = CTLREQ; 
Ihstdata = j; 
for(i=O; i ( j; ++iI 
( 

templrl = ~do-)lines(i]); 
Ihstdata = tupln-)color; 

II wait till 340 is free 1/ 
/1 send cOlIIIN.nd to dralll object II 
/1 request service from 340 1/ 
/1 send nUllber of lines 1/ 
II send 1 tnes 1/ 

/' save line pointer 1/ 
/1 send color 1/ 

thstdata = o-)!ocs{tupln-)startlocnJ.a: /1 send start 1/ 
Ihstdata = o-)locs[tellpin-)startlocnJ.b; 
Ihstdata = o-)locs[tellpln-)endlocnJ.il; 
Ihstdata = o-)locs[tempin-)endlocnLb; 

/'1 coordinates 1/ 
II send end II 
/'1 coordinates 1/ 

IIlhile(HOSTCNTL != CTLAClO; II wait for 340 to a.cknolwedge request II 
fhstClltl = CTlWITH; II lIIithdralil r-equest II 

,. DRAW ANY POINTS 
j = 0-)ptnulI; If get nUliber of points 

f' f' 
If (j) 
( 

.hi I, (HOSTCNTL '= CTtFREEl; 
fhstdata = 1; 
Ihstcnt1 = CTlREQ; 
Ihstdata = j; 
for(i=O; i ( j; Hi) 
( 

temppt = &Co-)points(iJ); 
Ihstdata = tellppt-)coior; 

II llliit till 340 is free 1/ 
If send collltind to drall! object 1/ 
/f request service frOIl 340 II 
II send nUliber of points 1/ 
/'1 send points */ 

II saye point pointer *1 
/1 send color II 

Ihstdah = o-)loes[tellppt-)locnJ.a; 
thstdata = o-)locs[telllppt-)locnJ.b; 

/f send scrfen coordinhs '1/ 

.hil.(HOSTCNTL '= CTLACK), 
fh.tentl = CTLUITH, 

If I&la.it for 340 to acknolwedge request II 
I. withdrilf request '/ 
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'I mAW MY PCl. VG()IS 
1 = o-}pgnul; 
if (1) 

{ 

for(i = 0; i < 1; ++il 
{ 

/f dra~ polygons 

hlllPP9 = Mo-)polygons(i1l; /f llliit till 340 is free 
j = tuppg-)vertnuI; 1* send cOlf\flolnd to dralll object 
.. hilt (HOSTCNTL != CTLFREE); /f request service frolll 340 
IRstdata. = 5; If send flUlllber of- points 
.nstentl = CTLREQ; /1 send p'oints 
fhstdah. = telppg-)color; /f send color 
'ths,tdata = j: /'1 send nUlIober of vertects 

*' 

I' 
*' *' ., 
*' *' *' *' 

II send point connect list (0,1 , 1,2, 2,3 .... j-2,j-l , j-l,O *1 
fhstdata = 0; 
forlk '=, 1; Ie ( j; ++Ie) 
( 

fhstdata = k; 

fhstdata = 0; 

fhstdata = k; 

II send vertex location list tl 
forlle = 0; k ( j; +tk) 
( 

teillploc = ltlo-)locs(tellppg-)vertlocn[k)]); II save point II 
thstdata = telllploc-)a; Ihstdah = tellploc-)b; 

whilelHOSTCNTL != CTLACK); If wait for 340 to ilcknQl~ed9t requestll 
Ihstcntl = CTLWITH; II ~ithdralll request II 

'* DRAW. ANY OOUGHTER OBJECTS *' j = o-)obnulI; II get daughter objects f/ 
for {i = 0; i (= j; ++i) drilll_objectlo-)objects[iJl; 

fHHfHflHHIHHHfHlIHHHfHHfHffHllHffHlflfHIHIfHHfHffHfffl 

fHfHHffffffffflffHlffffflHfHHHfllffffHHfffllllffffHfffffHffHHHf 

-->Listin9 16: TMS34010 Point Structure 

typedef struct 

short colOor; 
short x;, 
short y; 

} pOint; 

1* point color 
II x co-ordinate 
II y co-ordinate 

,. POINT ., 

*/ 

*' *' 
ffHHflHHIIHHfHfHtHfHfHlffHlfllffHllHllHlfHfflflflHHlllflflH 

ffftHHffHffHtHffftHfHHfHftffHHtHffffffffffffffffHHHffHHfHHf 

--)Listinll 17: TI1S34010 Line Structure 

typedef str-uet 
{ 

/f Uti: 1/ 

short color; /f line color 
short xl; /1 x co-ordinate of starting point 
short yl; /f Y co-ordinate of startii'l9 point 
short x2; /1 x co-ordinate of end point 
short y2; ,. y co-orainate of end point 

} line; 

*' *' *' *' 
*' 

ftfffffffffHHffffHfffHffffffHffHHHIHfUfffHHHHflHIHtlHllHllf1 

ttIHH**f******fHIHHfHHHHIHfIHHIHIHtllHHfHHIIHIItHHHHIH 

-)Usting 18: TMS34010 Color Array 

10)0<1 color[1~) = { 
ceo. ect, CC2, CC3, CC4, CC5, ceo, CCl, CC8, CC9, CCIO, CCII, CC12, 
CC13, CCI4, CCI5), 

t******f*ttf*lftll**fHfH**fHIHftIHffItIlHHlfffItIHHffIHtlfltIHtIHt 

ItHHHHfHfHffHfIHffHHHHHffHflHllffHHffffftHHffHHHftHHH 

I-)Usting 19: ntS34010 Color Palette 

short mypaleHlb) = { 
OxOOoo, OxFOOO, OxOOFO, OxFOFO, 0x0F00, OxFfOO, OxOFFO, OxFFFO, 
OxOAFO, 0,0900, OxfAlO, Oxf4AO, 0xI7BO, OxbbOO, Oxmo, OxBBBO I; 

flfttfflfffffHttHfffffHfHfflHHHffHlffHfHfffHfflllHllHlfHlfHIHI 
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HHHIHU**.*HfHf'fHffIfHUtUfUHUHfHffUffHffHHlfffffHfffHfff 

--)Llstlng 20: TMS34010 Main Coltllind Execution Routine 

lMin() 
( 

regISter lIne *telhplrll /f tuporary line pointer II 
regIster point fttlllppt; /f tellporary point pointer 1/ 
r-egister short tempint; /t tuparary integer 1/ 
r-egister short i; /f looping variable 1/ 
1 iot flines; /1 pointer to line array 1/ 
[loint .. points; /1 pointer to point array 1/ 
shOrt *irstadrh, *hstadr J. f hstctll, Inullber, .pgnull, "pointer, adr I, aorh; 
f«short f) Ox04000000J = OxOO01; 1* turn on sha-dOIl! ram il 
*( (short *i OxCOOOOOBO) &= Ox7FFF; If enable cache *1 
hstctll = (short 'I) OxCOOOOOfO; 1* host control register 10111 byte fl 
hstadrh = (short I) OxCOOOOOEO; Ii host address register high lIIord fl 
hstadrl = (short f) OxCOOOOODO; 1* host address register 10111 1II0rd *1 
pOInter = (short *J OxFFFOOOOO; II pointer to beginning of shadow ram il 
lines = (line *) (QxFFFOOO20J; 1* starting point of line array fl 
pOInts = (polnt *) (OxFFF00020); Ii starting point of point arra.y *1 
Dgnum = (short ii (OxFFFOO020); Iflocation of nUlllber of polygon vertecesil 
numbH = (short II (OxFFFOOOI0); Ii number- of primitives to dralll *1 
adrl = (shor-t) (((long) pointer) ~ OxOOOOFFFF); 
adrh = (short) j{({JongJ pointer) » 16) It: OxOOOOFFFF) 
inlLvideo(ll; 1* configure for a NEe tiULTISYNC, non-interlaced, 60Hz il 
inlLgrafIx(); II initialize graphics environrttnt *1 
IniLscreen(); 1* initialize screen il 
iniLvuportCl; Ii initialize viellliog windolll *1 
seLoriginf320,240); 1* place origin at center of scr-een il 
*hstadrn = adr-tl; If reset stut data address *1 
thstadrl = adrll 
thstctll = 0; 1* turn off any command to the 340 II 
for (;; ) 
{ 

IIIhile (*hstctll ~= OxOOO3); 
*hstctll = Ox0030; 

II lllii t for request from the C30 *1 
If ackno~ledge request .1 

!IIhile (*hstctll != OXOO30); 
slii tcn (*pointer) 

IIlIIait for c30 to load data &: withdra~11 
i. decode comand *1 

{ 

case 123: 
tempint = IhunDer; 
for {i = 0; i ( hlllpint; ++i) 

( 

templn = t(lioes(i)); 
set_co 1 01'1 (co Jor[terlp 1 n-)col or] J; 
draw_line! templn-)xl, 

telllpln-)yl, 
templn-)x2, 
tellpln-)y2J; 

,< ffiAW LINES " 
1* get number II 
1* of 1 ines .1 

Ifset line pointfl 
II set color II 
II draw line II 

*l1stadrh = adrh; 
*hstadrl = adr!; 
fnstctll = 0; 

II reset start dah address II 

1* turn off any cOll'Aand to the 340 *1 

brea.k; 
Cise 1: 

telpint = fnullber; 
for (i=O; i < ttl'lpint; ++i) 

( 

,< DRAW POINTS <, 
/1 get number Offl 
/f points *1 

te&ppt = Ic<points[i]); /f savt point *1 
1* set colors tJ 
/1 dr-alii point */ 

set_co lorl (co 1 or[tuppt-)co lor] 1; 
dralll_point( tellppt-)x, 

t"ppt-)yl, 

fhshdrh = adr-h; 
*hsh.drl = adrl; 
Ihstctl1 = 0; 
break; 

If reset start data address II 

II turn off any command to the 340 *1 

case 3: ,< SET SCREEN BOCKGROLffiI *' 
nelll_screen(color(fnulllber),aypalet); II clear screen 
*hshdrh = 'ldrh; If reset start data address 
Ihstadrl = adrl; 
Ihstctll = 0; 
Dreak; 

II turn off any COMand to the 340 

<, 
*, 
*, 

cas~ 41 ,< SET BACKGROUND BLACK *' 
instadrh = adrh; 
Ihstadrl = adrl; 

If reset start data address " 
ihstdll = 0; 1* turn off any cOlfllDand to the 340 *1 
nelll_screenfO,mypalet); 1* clear screen 
break; " 

case 5: If MAW A FILLED POLYGON *1 
seLcolort(color[*nulllberl); 1* set polygon color *1 
tempint = 'IpghUIt; If get number of verteces *1 
fiILpolygon(tempint, 1* fill polygon il 

(short f) (pointer + 3), 
(short f) (pointer + 3 + (telllpint « 1))); 

fhstadrh = adrn; II reset start data addr~ss <, 
*hsta~rl = adrl; 
Instctll = 0; 
break; 

case 6: 
*hstadrh = adrh; 
fhstadrl = adrl; 
Ihstdll = 0; 
waiLscan(Q); 
waiLscan(479); 
break; 

default: 
lostadrh = adrh; 
'nstadrl = adrl; 
*hstdll = 0; 
break; 

If turn off any cOllllr!a.nd to. the 340 " 
,< WAIT FOR COIIPLETE SCREEN RESCAN ., 
1* res!t start data addr~ss ., 
II turn off any cO/lllind to the 340 *1 
I*lalait ti 11 scan reaches top of screenil 

Iflalait till scan reaches bottoll (line 479)11 

II reset start data address *, 
1* turn off any COllilind to. the 340 *' 

"fffffffHIHfHfffffffffffffffHftH*fHffHfHfftHflfHIHffH*ffHIHltH 
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HHHHtfHtlHH****fHH*****fIHfHHfHfHHHHffHHHfHfffffHffHHf 

--)Ustil'lg 21: PC Object Loading Data Structure 

tYDedef struct 
( 

shOrt ptnum; 
shor·t dtnlJlfI; 
short lnliYllj 
short pgnUJII; 
float 5Xj 

float dx; 
float theta; 

} trans; 

tf number of points (locatioi'll 
1* nUll'lber of draliln dots 
If: number of 1 ines 
1* number of fi 11ed polygons 

floa.t sYi float sz; /f scale factors 
float dYi float dz; 1* offset factors 
float phi; float o~9a.i /f angles of T'otation 

*' f/ 

*' f/ *, 
./ 

*, 
fH**HltHIHnt**HHU***HlnH***ffHftHHffnH*tHIUfHHfUlfHHfH 

f1HfHfHfHfHfHfHHHHHHHHHHffHfHHHlffHlffHHHHfHHH**** 

--)Usting 22: PC COlIWunications I1a.cros 

Itdefine DATASHORT(a) It (unsigned short II (dual-port t a)) 
#define OOTAFLOAHa) IHfloat II (duaLport + a)) 
#defint! COItlAND fduaLport 
#define ACKNOWLEDGE i( (unsigned char II OxEOOOBOO1) 

HHlfIHfHfHH**HHHHHffH*HHHfIHlfHHHH***HHfHffHlfHfHHf 

.... *I************I**llffHI**HltIHIHHHII**lfHl**II**IIHIHHIHHfffnH 

--)llstll"lg 23: PC Global Val'iables 

chal' fdllaL?ort; 
tr-ans Illata; 

/1 dual part sr-arl connecting to (30 SWDSII 

***II*****lt"HIII**I****HHllfH*HfH****I**HffftffftflffHlfllffIIHffHf 

HHHfH**H**HfHHHHHfHfIIHHHfHHH"UtHIHHfHHHIHIHHIHlfl 

--)listing 24: PC Targl1ted Object Adjustllel\t Routine 

void adjusLobjectlsx, sy, sz, dx, dy, dz, theta, phi, omega) 
double sx, sY. sz, dx, dy, dz, theta, phi, oaegaj 
( 

IIlhi1e(ACK~lEDGE ~= OJ; 
DATAFLOATl21 = >x, DATlifLIlATl61 = sy, 
IlATlifLOATI141 = dx, DATIlfLOAH181 = dy, 
DATAFLOATl261 = thet., IlATAFLIlATI~1 = phi, 
COMMAND = 5, 
Ifhi le(ACKNOWlEDGE != 5); 
COMMAND = 0, 

DATlifLOATll01 = sz, 
IlATlifLOATl221 = dz, 
DATIifLOAT!341 = ,meg', 

'H*I**lfll-+HHHtH'H**HffH4fH*lfIHHHHHHfHfIIHHHHfffIHIHHHf 

**H*fIHIII*f*HUHfHH·H+HHIHfHffHHlfHHHfHHHflflfHtIHHHHf 

--)llsting 25: PC Routine to ~t Paralfleters for an Object Load 

''';(.jd seLparalfieters(sx, sy, SZ, dx, dy, dz, theta, phi, ortega) 
.:l(Euble sx, sy. sz, dx, dy, dz, theta, phi, o~ga; 

Ulhi le CACKNmjlEOOE ~= 0); /1 wai t for- C30 to be fr-ee *' data-)sx = sx; dah,-)sy = sy; data-)sz = sz; 
11a.ta-)dx = dx; d.t.-)dy = dy, data-)dz = dz; 
tlata-)theta = theta; data-)phi ': p~i; data-)oJlega = omega; 

flfflflllft***fHHHfHIltIHllfHHflffHfffHHIIHllltlfffffffflllfffIHHI 

fll**lfIHHHtHHHIfHfH+IIHIHfIIHIHlfHIIUttHfflHItItHffHlfHHI 

--)Usting 26: PC Routine to Tar-get Parent of Current Target Object 

void targeLparent() 
( 

while(ACKNOWlEDGE ~= 01; 
COMAND = 3, 
IIIhile(ACKOOWlEDGE ~= 3); 
COI1I1AND = 0, 

/1 blai t for C30 to be free 1/ 
/1 COMland to tal'get parent object 1/ 
/f wait for C30 to acknolllege request*1 
/'1 lIIi thdl'iUI request II 

1**11**f1HIIHlfflUflllnll**fIHllflHHHfIIHfflf***ttlttttt***HtH"**I* 
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U*HfHHfHf*****HHHfHHfffHHHHHfffHHHHffffffffHlfHfHffHfH 

--)Listing 27: PC Routine to Target a C~i1d of Current Target Object 

void h.rgeLchildlx) 
int X; 
( 

.hi!eIACKNOWlEDGE !- 0), 
DATASHORT(2) - x, 
COI1I'I\ND - 2, 
whilelACI<NtU.EDGE != 2); 

COI1I'I\ND - 0, 

/f lRit for C30 to be frte 1/ 
/f target 1st daughter object 1/ 
If cOlMMnd to target daughter object *1 
/f ~it for C30 to acknolll1ege request_I 
/f lIIithdralil request 1/ 

fffHffffHHHUHffH*Hf4HHtfHffUHof,HHHlffHffffHffHffHffHHfH 

HH4HffHUfffHiHffHffHHHffHHHflHffffffHffllfflfflffffffUI,UfH 

--)Usting 28: PC Routine to R.dralll Screen 

void driILobject() 
( 

IIIhileCACKtOlEDGE !== 01; 

catWID - 7, 
whil.i_EDGE !- 7), 
catWID - 0; 
tlhileCACKMJWlEDGE !== 01; 
00'I1ANIl ; 6, 
IIIIhi leCACKNlIUOOE != 6); 
OOWIND - 0, 

II wi t fo/' C30 to be fre-e 1/ 
/1 cOMand to cOIiPute screen co-ords 1/ 
/1 lRi t for C30 to acknolillege requestt/ 
/1 lIIithdrillll request 1/ 
/1 wait for C30 to be free 1/ 
/1 couand to draill screen 1/ 
/1 wait for C30 to icknollllitge requestl' 
/1 lliitMrillll request II 

IHfIHffHlfHfHHHIHfHHffHffHHHIHfffffflffHHHIHHlfffflffHfH 

ffH*ffl*ffffIHffffHHfHHHHHHf~HHHt,tHfftHHHfHffHffHtHHf 

--)listing 29: PC Routine to Load the Prillitives of a Wirefrue ,Cube 

void cubelcl 
long c; 
( 

data-}ptnull = 8; 
data.-)dtnul = 0; 
data-)lnnun = 12; 
data-)pgnum = 0; 

" nu.ber of points Ccube verteces) 1/ 
/1 no dots 1/ 
II helve lines (cube edges) 1/ 
/1 no fi1Jed polygons 

/* ---I COORDlNATE--- ---V CDollIllNATE-~ --1 CDollIllNATE-
1/ 
1/ 

DATAFLOATl4b) 1, 
DATAFLOATlSS) - I, 
DATIiFLOAT(70) - I, 
DATIIFLOATlS2) - I, 
DATIiFLOAT(94) - -I, 
DATIIFLOAHlOb) - -I, 
DATAFLOATU1S) - -1, 
DATAFlOATlI30) - -I, 
COMMND - I, 

DATAFLOATlSO) - 1, DATAFLOATl54) - 1, 
DATAFLOAT(62) - -1, DATAFlOAT(66) - 1, 
DATAFLDAT(74) - -1, DATAfLOATl7B) - -I, 
DATAFLOATlBb) - 1, DATAFLOAT(90) - -1, 
DATAFLOAT(98) - 1, DATAflOATIl02) - 1, 
DATAFLOATlll0) - -I, DATAFlOATl114) - I, 
DATAFLOATIl22) - -1, DATAFLOATIl26) - -1, 
DATAFLOATIl34) - 1, DATAfLOATIl3B) - -1, 

\lIhile (ACKNOWlEDGE != 1); 

COIWIND - 0, 

/1 cOllllind to load object II 
/1 lllait for C30 to acknowledge request.1 
It tlHhdralil request II 

.hll. IACKoo.tEDGE '- 127), 
COIWINll - 127, 

/1 !Hi t for C30 request lines II 
II cOlIHnd to IOid Jines II 

I< llt£ COLOR---
DATASHClRT(2) - c, 
DATASHORTlS) -" 
DATASHORTiI4) - " 
DATASlmTl20) - " 
DATASHORTI2b) - " 
DATASHORTl32) - " 
DATASHORT(38) - " 
DATASlIJRT(44) - " 
DATASlIJRTlSO) - " 
DATASl()RTl5Io) - c, 
DATASHORTlb2) - c, 
DATASHORTlbS) - " 
while IACKNClLEOOE _-0, 

START POINT----- ENDPOINT---- 1/ 
DATASl«JRT(4) - 0, DATASHORTlb) - 1, 
DATASHQRTIlO) - 1, DATASl()RTIl2) - 2, 
DATASHORTI W - 2, DATASHollTllB) - 3, 
DATASHORT(22) - 3; DATASl()RTl24) - 0, 
DATASHORTl2S) ; 4, DATASHORT(30) - 5, 
DATASHORT(34) - 5, DATASHORT(36) - 6, 
DATASHORT(40) - b, DATASHORT(42) - 7, 
DATASHORTl46) - 7, DATASl()RTl4S); 4, 
DATASHORTiS2) - 0, DATASHollT(54) - 4, 
DATASHORTlSS) - 1, OATASHORTlbO) - 5, 
DATASHORTlM) - 2, DATASHORT(66) - b, 
DATASHORT(70) - 3, DATASl()RTl72) - 7, 
!== 11; /1 lH.it for C30 to resulle loading II 

II shotl no requests 1/ 

HllfHfffffffffffffoHfffffflHfoHlfffftfHlHlffHltHHHIHffHffHflffflH 
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HHIIIIII ...... II.II.IIIIIIII ................. IIIIIIIIIIIIIHHHftIHHHfH 

->Lilli., 30' PC lIIi. Rolli .. 10, Dr ... 'Pl ... lvy 51,1 .. 01' Cub .. 

.ioll 
( 

rt9i1ttr ilt. XI 
"1_ptf't • lew I) 0xEOOO8OOO; 'I location 01 dlJll port StU ., 
ddt • (traM I) 0lE0008002; /. locltion of object dltl ./ 
CCIIWD·O; 
•• t-wutt ... '.OOOI •• OOOI •• OOOI.O.,O •• O •• O •• O •• O. I, 
c,,"(31, 
.. 1_,... ... 1 ... 1.4 •• 4 •• 4.0 •• 0 •• 8 •• 0 •• 0 •• 0. I, 
c,,"121, 
•• 1_1 .... 1.2 •• 2 •• 2.0 •• 5 •• 0 •• 0 •• 0.,0.1, 
c,,"l61, 
l ... gtt-ll .... oIO, 
Itt_pttllltt.rs(. 2 •• 2, .2,0. t -5. to. 10. ,0., 0.); 
M.W, 
targtl_Pll'tfttll, 
targtt-w.nW , 
Ht..parllltt.rst.3,.3, .3.0.,0,,6 .• 0.,0.,0. I; 
c.m.m, 
t ... gtt_Pll'tntl I, 
5.t-PU'IMt.ts( .3, .3 •• 3, O •• 6. 10., 0 •• 0 •• 0.); 
c,,"III, 
t,rgtt_par.nt( J; 
Stt-fll'lIltt.rs(.3,.3.o3,O. ,0. ,-6. ,0. ,0.,0.); 
c,,"151, 
targtl-lll .. ntl', 
Ht ... ,tl"Ultters(.3, .3,.3,0.,-6.,0.,0. ,0-.,0.); 
c,,"UI, 
t ... gtt-lll/'tnto, 
Iorlx • 0, x < 1000; ++xl 
( 

14ju.t..objllCt( 1.00000.I.OO92h,I.0092h. 0 •• 0 •• 0 •• 0., 0., .21, 
tarttt_chil dCll, 
adju.l_obj.ctll •• 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 2.0.1, 
ttrgtt-lllrtnW, 
t ... gtt-<M 1 d121, 
adj .. Lobjtetl1., 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 2.0.1, 
largtt-Wtft" I, 
t .. ,.t_chiI4l31, 
.djusLobjedU."" 1.,0.,0. ,0. ,0.,.2,0. I; 
tUltt_partBt(); 
hrgtt_cbildl4l, 
adjust.obj.cllI •• 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 2.0.1, 
t&rgtt-w.nt( I, 
targtt_childIOl, 
tdjusl-Objecl II •• 1 •• 1 •• 0 •• 0 •• O •• 0 •• 0 •• -. 41, 
t&rttt_chiidlOI, 
idjust_o~jtd( 1.,1. ,1 •• 0.,0.,0.,.4,0. ,0.); 
l"gtt_W, 
largtt_chil d Ill, 

.'juit ... objedU. ,1. ,1. ,0. 10. ,0'1.4,0.,0.), 
'vg.l-WtfttO, 
t .. ,et-pu'.W, 
.m .... objectll, 
.drUl...Scrttn( l; 

I,,'x 00, x < lillO, ++xl 
( 

adju,I_.bj.ct( I., I., I., O •• 0 •• O •• 0 ••• 005 •• 21, 
tar,.t_childlll, 
Idjust_obj.dll.,l •• 1.,0. ,0. ,0. ,0., .25,0.); 
tarttt-WtnW, 
targtt_cM 1 dl2l, 
&djust_o"jt.ctct~, 1.,1.,0. ,0.,0. ,0.,. 25,0.); 
targtt-w.nW, 
tarttt_cbild'3I, 
adjust_objtetll •• 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 25.0. I, 
tlrltt_pattntt); 
larg.t_,bi Idl41, 
a.djust_o'i.ctCl.,l., J. ,0. ,0. ,0. ,0. ,.15,0.); 
t&rg.t..pltent (); 
tarttl .. dild'OI, 
Idjust_objtctU., 1., •. ,0.,0.,0.,0. ,0.,-.4); 
targtt_chi IdlOl, 
idjusLob-jtctet., 1.,1.,0. ,0.,0. ,.3,0. ,0. It 
larg.t-w.nW, 
I .. ttt_,hildlll, 
adjust_objectll •• 1 •• 1 •• 0. ,0 •• 0 ••• 3.0 •• 0.1, 
targtt-lllrtnW, 
targ.LporfOW, 
sctHft..objtctCI; 
drtILscreH()C 

11111111111111111.11111111.111 •••• 1.1.111111111 ... 111111111111111111111111111. 
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Introduction 

This report describes the architecture of the TMS320C30 Applications Board (APPB), 
which is part of the TMS320C30 XDSlOOO Development System. The XDS1000 is an in-circuit 
emulation tool for TMS320C30 hardware/software system development. The APPB was designed 
with two goals: to provide a basic platform for software development and to provide a variety of 
interfaces to the TMS32C30. There are four key interfaces used on the APPB: 

1) SRAM 
2) EPROM 
3) Dual-port SRAM 
4) DRAM 

The SRAM and EPROM interfaces on the APPB are quite simple; thus, this report focuses 
on the dual-port SRAM and the DRAM interfaces. Figure 1 shows a basic block diagram of the 
APPB. 

Figure 1. TMS320C30 Applications Board (APPB) Block Diagram 

8-BIT DATA BUS 8 XDS/SOO 32 
4Kx8 0 f-+- EMULATOR 10 2K x 32 1 DUAL·PORT PORT A EPROM - SRAM A 1-+-'-' 12 { 

DUAL·PORT 13 
32 32 

SRAM 32 
~ TMS320C3~ 

32 

10 16K x 321 ADDRESS 16K x 32 Of-+-
MAPPER SRAM A SRAM 

iii' AI--
0 .J 32 32 (t 0 I/O AI-+- 10 512K x 32 1 a: a: 
w I- EXPANSION A DRAM 
I- z BUS 

Drt-~ 0 
I- 0 

iii .J 
~ II) e z ::::l II) 
a: In ::::l II) W In ::::l I- Z 

In ~ 0 > 
en a: 

0 ~ 11. Z ::E 
~ ex: >< 11. 

CONTROL w 
REG. 

The APPB features include the following: 

• TMS320C30/host communications via a designated, relocatable 4K-byte dual-bus 
SRAM memory block. 

• 16K-words (64K-bytes) zero wait-state SRAM on the TMS320C30 primary bus (STRB). 

• 2K-words of one wait-state EPROM for interrupt and reset vectors on the TMS320C30 
primary bus. 

• 16K-words (64K-bytes) zero wait-state SRAM on the TMS320C30 expansion bus 
(MSTRB). The SRAM can be selected in either one of two 8K-word banks. 

The TMS320C30 Applications Board Functional Description 469 



• I/O expansion bus. 

• 512K-words of DRAM on the TMS320C30 primary bus. 

• Emulation port. 

• IBM PC, PC/XT, PC/AT support. 

The remainder of this document describes each interface in more detail. 

Host/TMS320C30 Interface 

The host/TMS320C30 interface is composed of two basic blocks, the dual-port SRAM and 
the control logic. The control logic consists of address decoding, a read/write control register, and 
a write-only mapping register. The control registers are mapped into the host I/O space as shown 
in Table 1. Figure 2 is a block diagram of the host interface. 

470 

en 
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Table 1. Host I/O Memory Locations for Control Registers 

Host I/O Memory Locations Contents 

0330 - 0337 Semaphores (LSB is the only valid bit) 

0338 Dual-port SRAM mapping register Q 

0339 Control register R 

Figure 2. Host Interface Block Diagram 
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One of the major problems in developing an application for a PC is finding a block of memory 
that does not conflict with other memory-mapped cards. To ease this problem, the dual port SRAM 
interface has been designed to be relocatable on 4K-byte boundries throughout the lower 1M-bytes 
of host memory space. A software example of how to map the dual-port SRAM into this space is 
given later in this report. 

Writing a value to a hardware mapping register on the APPB relocates the dual-port SRAM. 
When a host memory access is generated, the value in the mapping register is compared to host ad­
dress bits A12-A19. If they match, a dual-port SRAM access is allowed. To ensure PC and PC/XT 
compatibility, the dual-port SRAM can be located only in the lower 1M-bytes of host memory. 

The APPB contains one general-purpose control register. This register is broken into two 
four-bit nibbles. The lower nibble can be read from and written to by the host and read by the 
TMS320C30. The upper nibble can be read from and written to by the TMS320C30 and read by 
the host. The lower nibble of the control register is cleared by any reset to or from the host Pc. The 
upper nibble of the control register is cleared by any reset to the TMS320C30. The names of the 
APPB control register bits and host/TMS320C30 access capabilities are given in Table 2. Table 3 
gives the control register bit definitions. 

Table 2. APPB General-Purpose Control Register Bits 

Bit Name Host Access C30 Access 

0 CINT Write/Read Read only 
1 XINTCLR Write/Read Read only 
2 DPSEL WritelRead Read only 
3 SWRESET Write/Read Read only 
4 XINT Read only WritelRead 
5 CINTCLR Read only Write/Read 
6 MBANK Read only WritelRead 
7 MSWAP Read only WritelRead 
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Table 3. APPB General·Purpose Control Register Bit Definitions 

Bit Name Function 

0 CINT Clears and disables interrupts from the TMS320C30 to the host 
(XINT). XINTCLR must be set to 1 before the TMS320C30 can gener-
ate an interrupt to the host. The host clears and reenables XINTby writ-
ing 0, then 1 to XINTCLR. On reset, XINTCLR is read as a O. 

1 XINTCLR Interrupt (INTO) to the TMS320C30. The host may interrupt the 
TMS320C30 by setting this bit to 1. The TMS320C30 clears and re-en-
abIes the CINT by writing 0, then 1 to CINTCLR. The host cannot gen-
erate an interrupt to the TMS320C30 while CINTCLR = O. On reset, 
CINT is read as a O. 

2 DPSEL Dual-port SRAM select. When this bit is set to 1, the dual-port SRAM 
is memory-mapped in the 4K-byte space of the host PC specified by 
the 8-bit value in register Q. When DPSEL = 0, the dual-port SRAM 
will not be mapped in the host PC's address space. On reset, DPSEL 
is read as a O. 

3 SWRESET TMS320C30 SWDS soft reset. SWRESET = 0 resets the TMS320C30 
SWDS. SWRESET must be set to 1 to take the SWDS out of the reset 
state. On.reset (power on), SWRESET is read as a O. 

4 XINT Interrupt to the host Pc. The TMS320C30 may interrupt the host by 
setting this bit to 1. The host clears and re-enables XINT by writing 0, 
then 1 to XINTCLR. The TMS320C30 cannot generate an interrupt to 
the host while XINTCLR = O. On reset, XINT is read as a O. 

5 CINTCLR Clears and disables interrupts from the the host to the TMS320C30 
(CINT). CINTCLR must be set to 1 before the host can generate an in-
terrupt to the TMS320C30. The TMS320C30 clears and re-enables 
CINT by writing 0, then 1 to CINTCLR. On reset, CINTCLR is read 
as a O. 

6 MBANK Memory bank select. The 16K-word bank of memory on the 
TMS320C30 parallel I/O Bus (SRAM space 1) is mapped as two over-
lapping banks of 8K-words each. MBANK = 0 selects the lower 8K-
words, MBANK = 1 selects the upper 8K-words. On reset, MBANK 
is read as a O. 

7 MSWAP Memory Swap. The MSWAP bit is used to swap the address map for 
EPROM and SRAM space O. MSWAP = 0 maps the EPROM at 
OOOOOOh-003FFFh and SRAM space 0 at FOOOOOh-F03FFFh. 
MSWAP = 1 maps the EPROM at FOOOOOh-F03FFFh and SRAM 
space 0 at OOOOOh-003FFFh. On reset, MSWAP is read as a O. 

The last portion of the control section contains the dual-port SRAM semaphore registers. 
Semaphore registers are used to coordinate communications between the host and the 
TMS320C30. Note that these semaphores do not provide hardware protection of the memory array. 
Instead, they provide a basic means (via software control) to ensure that data can be accessed from 
both sides of the dual-port SRAM without being corrupted. A software example that uses the sema­
phores is presented later in this report. 
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SRAM and EPROM Interfaces 

There are two SRAM interfaces on the APPB: one on the primary bus and one on the expan­
sion bus. Both are implemented with eight 16K-bit x 4~ 25-ns SRAMs that provide zero wait-state 
TMS320C30 operation at 32 MHz. The interfaces are quite simple and consist of a set of address 
buffers, termination resisters, and a PAL for address decode on the primary bus. Note that the 
TMS320C30 address lines are routed to various components scattered around the board and then 
to the primary bus expansion. To prevent line reflections on the SRAM addresses, buffers have been 
used to isolate the SRAM. 

There are two special features on the APPB that apply to the SRAM: 
1) You can swap the memory address ranges of the EPROM and the SRAM on the primary 

bus by setting or clearing the MSWAP bit previously described in Table 3. 
2) There are two 8K-word pages of memory on the expansion bus. 

By swapping the EPROM and SRAM, you can load in your own interrupt and reset vectors. 
Otherwise, you would have to remove the EPROMs and reprogram them with your own defined 
interrupt/reset vectors. Th(,! following code segment sets/clears the MSWAP bit. 

#define EPROM 
#define SHAM 

sel mswap(mem type) 
int-mem_type;-
{ 

char O'cntlreg 

o 
1 

/O' select EPROM O'/ 
/O' select SHAM O'/ 

(char O')Ox00805FF7j /O' pointer to control reg O'/ 

O'cntlreg 1= Ox80j /O' set MSWAP to 1 select SHAM */ if (mem_type) 
else O'cntlreg &= Ox7Fj /O' set MSWAP to 0 select EPROM O'/ 

There are 16K-words ofSRAM on the expansion bus; however, the TMS320C30 can directly 
access onl y 8K -words. Instead of wasting the unaddressable 8K-words, you can use a bank address­
ing bit (MBANK) in the APPB control register to select between the lower and upper 8K -word seg­
ments. 

The following code segment selects the current bank of memory. 

#define BANKO 
#define BANKl 

sel_mbank(bank) 
int bankj 
{ 

char O'cntlreg 

if (bank) 
else 

o 
1 

/O' select lower 8K O'/ 
/O' select upper8K */ 

(char O')Ox00805FF7j /O' pointer to control reg O'/ 

*cntlreg 1= Ox40; 
O'cntlreg &= OxBFj 

/O' select bank 1 O'/ 
/O' select bank 0 O'/ 

TheAPPB supports 2K-words of one wait-state EPROM on the primary bus for a boot loader 
and operating system support. As stated earlier, this EPROM is remappaple. 

DRAMlnterface 

The APPB provides a DRAM expansion module that is connected to the TMS320C30 prima­
ry bus. Historically, DRAM interfaces to DSP devices have not been popular because of interface 
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difficulty and limited processor address space. The TMS320C30 supplies solutions to both of those 
issues with its memory interface and 16M-words address space. Two areas of the TMS320C30 
memory interface are most useful for DRAM design: 

• Use of bank mode 

• The ability to do continous reads while in a bank without de asserting the STRB signal 

When you use these two features, it is quite simple to design a medium-speed interface to 
page-mode DRAMs. 

The TMS320C30 DRAM module consists offour banks of memory, each bank 256K x 32 
bits, that provide 1M-word (4M-bytes) of medium speed storage for the TMS320C30 (see 
Figure 3). The bank-switch function on the TMS320C30 provides fast page-mode access on back­
to-back read cycles within a DRAM page. All address and control lines to the memory array are 
buffered and series-terminated for good signal quality. The memory array uses CAS-before-RAS 
refresh to reduce component count. There is no onboard refresh timer; instead, SDACKO from the 
host PC provides a refresh request every 12-16 lAS. The D RAM access/cycle times are summarized 
in Table 4. 
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Figure 3. TMS320C30 Bank Addressing 
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In Table 4, these definitions are assumed: 

Access Time - Number of clocks from STRB active to data clocked into the TMS320C30. 
Cycle time - Number of clocks between two back-to-back cycles (includes DRAM 

RAS precharge on non-page-mode cycles). 
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Table 4. TMS320C30 DRAM Access and Cycle Times 

Mode Access Time (elks) Cyele Time (elks) 

Read 3 5 
Read (page mode) 3/2t 2 

Write 3 4 

t First page-mode access takes 3 clocks; the following accesses take 2 clocks each. 

The four banks of DRAM are mapped into the TMS320C30 memory space at the address lo­
cations shown in Table 5. 

Table 5. DRAM Bank Memory Locations in the TMS320C30 Memory Space 

DRAM Memory Bank No. TMS320C30 Memory Location 

a (RASO,CASO) 400000H-43FFFFH 
1 (RASl,CASl) 440000H-47FFFFH 
2 (RAS2,CAS2) 480000H-4BFFFFH 
3 (RAS3,CAS3) 4COOOOH-4FFFFFH 

Memory decode for the DRAM module is performed in two steps: 
I) The APPBmain card provides a memory select to decode the board range of 

400000H-4FFFFFh. 
2) Bank decode is then provided on the DRAM module through TMS320C30 address bits 

Al8 and A19. 

The DRAM controller consists of a pair of registered PALs, several SSI gates, and a delay 
line (used to time DRAM row/column address multiplexing). DRAM timing is generated from 
PAL UE5 (see schematics in Appendix C), while address decoding and special refresh control are' 
provided by PAL UD5. Both PALs are clocked off of a delayed HI clock. The DRAM controller 
looks for every opportunity to generate page-mode cycles to the DRAM. The TMS320C30 leaves 
STRB low for back-to-back reads; the DRAM controller looks for this condition and cycles CAS 
while holding RAS low (i.e., DRAM page-mode access). When STRB goes high, the DRAM con­
troller will take both RAS and CAS high to prepare for a new access. For proper operation, the 
TMS320C30 primary bus control register (refer to the Primary Bus Control Register subsection 
in the Third-Generation TMS320 User s Guide) must be set to operate off of the external ready sig­
nal and use a maximum bank size of 512 words (refer to the the Programmable Bank Switching 
subsection of the Third-Generation TMS320 User s Guide ). 
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Figures 4 through 6 show the timing for the various DRAM cycles. 

Figure 4. Page-Mode Read-Cycle Timing Diagram 
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Figure S. Single Write-Cycle Timing Diagram 
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Figure 6. Single Read-Cycle Timing Diagram 
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Expansion Interface 

The APPB 's two expansion connectors contain the signals from the TMS320C30 expansion 
port, serial ports, flag pins, etc. Each 50-pin connector (P3 and P4 of Figure 7) is composed of a 
dual row of25 pins located on O.l-inch centers. These expansion connectorsprovide easy connec­
tion to other hardware via standard 50-wire flat ribbon cable. Figure 6 shows the orientation of the 
connectors. See schematic sheet 7 of Appendix C for pinout details. 
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Figure 7. TMS320C30 Applications Board 
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All communications between the TMS320C30 and the host occur through the dual-port 
SRAM, which is 4K-bytes deep, with 8 dedicated semaphore registers. On the host side, the 
dual-port memory array is memory-mapped, while the semaphores are I/O-mapped. On the 
TMS320C30 side, the dual-port SRAM is located on the expansion bus with the memory array 
mapped from Ox00804000-0x00804FFF and the semaphores mapped from 
Ox00805FF8-Ox00805FFF. The host can directly access the dual-port SRAM without having to 
compensate for byte-wide access limitations. However, as the TMS320C30 can do only 32-bit ac­
cesses, the upper 24 bits of a data word are undefined. The TMS320C30 must therefore format data 
written to and read from the dual-port SRAM. A software example is given later in this report. 

While dual-port SRAMs provide an excellent means for multiprocessor communications, a 
certain amount of software overhead is required to coordinate data flow. As might be expected, 
there are numerous methods for coordinating data flow. This application report presents a set of 
primitives that have been developed to form a basic communications protocol. The primitives are 
written entirely in C and have been tested on the XDSlOOO with the simple test routine provided. 
Remember that there are numerous ways to do a communications protocol. The method shown in 
this report is not the best for all applications; it is simply a method that makes good use of the capa­
bility of the dual-port SRAM. 

The following are basic ideas of the communications protocol developed for this applications 
report. 

1) The dual-port memory is broken into eight equal segments. The first segment is used 
only for control structures and command passing. The remaining seven segments are 
used entirely for data passing. Segment size is set to 512 bytes. The number and size of 
segments can be changed at compile time if desired. 
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2) Each of the seven data segments is totally independent from any other data segment. 
However, only one processor can own a particular segment at any given time. The 
TMS320C30 and host can simultanously access the dual-port SRAM as long as both are 
not trying to access the same segment. 

3) The host is the master; the TMS320C30 is the slave. The TMS320C20 polls the 
dual-port control segment to determine if the host has deposited a command. If a com­
mand is present, the TMS320C30 executes the command and then returns to polling. 

4) Only the first semaphore register is used in the dual-port. Each processor uses this sema­
phore to gain access to the control segment. Access to the seven data memory segments 
are coordinated via the control structures, not the semaphores. 

5) There are seven control structures in the control segment, one for each data segment. 
Each control structure consists of 22 bytes and are defined as follows: 

Byte Name Definition 

0 pfJag Buffer present (i.e., being used) 
1 command Command to execute 
2 buf_stat Status of the data buffer 
3 nc Reserved 
4-7 count Number of 32-bit words to transfer 
8-11 addr TMS320C30 to read/write data 
12...,21 message Ten bytes reserved for message passing 

Appendix A contains routines for the communication primitives used by the host and the 
TMS320C30. Appendix Al contains routines for the PC side, Appendix A2 rQutines for the 
TMS320C30 side. Note that the routines on both sides have the same names and perform essentially 
the same function. Appendix A3 contains a memory map and description (TMS320C30 view). Af­
ter the code has be~n compiled, use the following sequence to execute the test program: 
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1) Reset the XDS/I000: 

xreset [RETURN] 
c30reset [RETURN] 

2) Get into the emulator and load the TMS320C30 dual-port code. 

emu30 
xr 
10 
xd 
[esc) 
q 'yes' 

[RETURN) 

'file name' 

load emulator 
reset the c30 
load the object file 
execute disconnect 
escape to main menu 
quit emulator 

At this point, your dual bus code should be executing and waiting for a host input. 

3) Execute host dual-port code. 

'file name' 

The host code will then print the numbers 0 through 25 to the screen. 
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Conclusion 

This report has provided basic functional details of the TMS320C30 APPB. Because of their 
complexity, the DRAM and dual-port SRAM interfaces have been discussed. The features of the 
TMS320C30 allow it to encompass a wide range of interfaces. The TMS320C30 bank-switch mode 
and continuous strobe signal on back-to-back read cycles overcome traditional DSPIDRAM prob­
lems of interface difficulty and limited processor address space. A set of communications primi­
tives routines to use with dual-port SRAM have been provided in Appendix A. These routines are 
written in C for ease of understanding and modification to meet individual needs. 
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A2 
A3 
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Appendix A 

TMS320C30 Application Board Routines, Memory Map and Description 

TMS320C30 Application Board Routines - PC Side 
TMS320C30 Application Board Routines - TMS320C30 Side 
Memory Map and Description (TMS320C30 View) 
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/. ./ 
i' APRENDIX Al '/ 
/. ./ 
/. TMS320C30 APPLICATION BOARIi ROUTINES - PC SIDE */ 
/, ./ 
/. TeXiS InstrUlwnts Jr.c. ./ 
/. 10125/89 '/ 
/. ./ 
/. Functions: ./ 
/, */ 
/. int APPBstset{) Reset APPB t/ 
/, int APPB_dpinitO Irltialize {fPB. ./ 
/. int APPB_getsell( i Cifot access to. selli.phore tnt N '/ 
i' int APPB_relsem() Reo 1 ease access to. semaphore bit N ./ 
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il int APPB_9I'!tmtlllblk() Get a block of memory froll'! DPRAM ./ 
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/. Jarill'! model. If small modI'! I is uSl'!d, thl'!n pointers used to access the 1/ 
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if ./ 
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.define CINT OxOl 
ide fine XINTCLR_ 0.02 
idefinl1' DPSEL Ox04 
#dl1'firlt' SWRESET_ OxOB 
#define XlNT 0,10 
#define CINTCtR_ 0x20 
#defHlf MBANK Ox40 
""define MSWAP OXSO 

idefine DPRAILCTL 0X(900000Q 
'define DPRAI1..SEG OxC9 
Iddine DPRAlLtEMBASE 0xC9000200 

'define DPRAILSIZE 0:<1000 
.define DPRAIUILJ(S 7 
'define DPRAILBLJCSIZE 512 
.define NIJILSEIIS S 
'define MAX-SEll_TIllE 10000 

tdefine BUF_EMPTY 
Itdefine BUFJ'ULL 

#define .NOP 0<00 
.define HOSTJfEJ'LWR Ox80 
'define HOSU1EJ1-RD Ox81 

typedef unSigned ChiI' OCHAR; 
typede-f unSigned short UINT; 
typedef unsigned Io.ng LlLONG; 

typedef strutt 

UCHAR pflug: 
UCHAR cOMland; 
UCHAR buf_stat; 
IXHAR nc; 
ULQNG count; 
ULONO addr; 
UCHAR Itessage[101; 
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/I Test prQ~riLli. */ 

/* */ 
/* SeQuence: */ 

/* */ 
/* 11 ~r1te a bloCk of lIuor)" to ttte dual port. */ 

/* 2) Realj back the block of data froll the dual port. */ 

/* */ 
/fH*'*fHHH:lHfffH"*.tHHH**H**fHHtHHf"tfH"*lfHfttHffHtHH/ 

IrIilO( ) 

GINT sermuli(DPRAILBtJ;Sl; 
int i; 
ULONG 1If!lIIarrayC25J,/fle1l2array[251; 

APPB_dpiot(}; 

hr(i:;Q:l<25;iH) {Hmarray[U = (lILONGli; melJl2uray{tl = OOL;} 

i f(APPB_PlJt~lIIbl k(25UL,JltlDir-ray ,Ox008099(0)) 
prir,tfI H f;i11ed "emory lIIr-ite\n"l; 

i f(APPB_getllfmb 1 k(251Jl, OxOQ809900,lieIll2ilrray) i 
prIntf("hiled melflory rnd\n"); 

for-( i=O; iG5; i++) pril'ltf( "value read l.d\n" ,lIIeI2arrayCi]); 

f!).atWh 

I '*ftHltHIHftH'.+HIH*f*IHHHH:lHHHHHf4tfIH"fHfftHtfHHIHH I 
n H 
/t IV'P[Lresettl,PC side I, 
/I H 
If Reset APPB. 
/. 
If Sequence: 

'* If 1) Cleu control r·tgister. 
If 2) Set Sltrf.£SEL to 1. 

i' 

./ 

./ 
-*/ 
./ 
./ 
./ 
./ 

/HfH""*flffffHfHfHHfHHHf**fffHf**HHHfH**ff+********ffHHHUf*/ 

lnt APPB_restt() 
{ 

outport(CTLREG.OJ; 
outport (ClL.REG. SWRESET _i; 
return(O); 

/HH*****UfHf*HHf**fHfHffUHfff****UHUf******fHfH****UH****f**I 
/I H 

'* APPB_dpintO, PC side ./ 
/. */ 
i* Sequence: ./ 

'* */ 
/* 11 Set I.'f'RAH selNphores to 1 (freel, */ 
/* 21 Set DPRArI Jlappiog register. */ 
/. 31 Set ~ global enable bit to 1. */ 
/. */ 
JHHHlffHfHfl**HHIHfHfHIHHflfffHflf******HHHHf**UfIHffH+H/ 

iot APF'B_dpintt) 
( 

iot 1: 
UINT uw,ddr = saLBASE; 
LOiAR fdDrar. = (UCHAR fJDPRA/'LCTL; 

fori 1=0; i<8; i++J ilutportlseliiddrH ,11; 
outporWIAI' JlEG.DPRIl1..SEGI, 
outportICTLREG,DPSEL : SWRESELI, 
returrdOl; 
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IHHHI.U**UHUtU**********U**************HffHtHHtf****UHUU****1 
H H 
1* APPILgetstlO, PC Slde 
/. 

/f Attellpts tv gain access of sela.phore /StlrlnUI/ , 
H Return a 0 if successful, a -1 if fiileQ. 
/. 
/f Sequence 
/. 

./ 
+i 
./ 
./ 
./ 
+i 
./ 

/t 1) Write 0 to SfDipnore. 1/ 
/t 2) Decrellent hloute, check for tiae<Jut = 0, or semaphore = O. *' 
II 3) Return pass/h.il. 1/ 
H H 
/HfHfHffH**H***HU*******Htftftitt-Htt+tHftHHHfH**fU********t****1 

int APPB_getsem(seltnulII) 
UINT selrloufI; 

UINT semaddr· = SEl'LBASE +- selllflum; 
UINT tir.eout = I1ALSEM_TII1E: 

outport{snaddr, OJ; 
t1hile{ --tilleout lo:& (wport(sewddrl & 1)); 

1ft hlfn?illJt 1 r-etur'oW); 
else returrd-l}; 

IHfHHttH*******UHUHttHHHfHffHffHHH****tffHHHU*****U*U**/ 

H H 
H APPB-rel sel() , PC side ./ 
/. ./ 
/. Relust selrlilPhore at "selnul/ • ./ 
/. Return a 0 if successful, a -1 if filled: +i 
/. */ 
/. Sequence ./ 
/. */ 
H I) Wrt te 1 to semaphore. ./ 
1* 2) Decreaent tilteout, check for tUleout = 0, (It seuphore = 1. */ 
II 3) Return pass/fai 1. ./ 
/. *, 
IffHfHUHfHHffHfHfffHfHU ... fHffHIH+tHHfHfHHHilfHtffH**H'1 

int APPB_re Ise.( sunu) 
UINT sellilnu .. ; 

UINT suaddr = SEtLBASE + sellnur'i 
UINT till'leout = MAX-SaLTIME; 

outoort(selMddr ,11; 
while( --til1eout U !(iilport(Seiliddr) &: 1)); 

ifltir.eoutl retur-:tIOI; 
else returrl(-ll; 
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j*********llfHlfHUU***ftH**H*f**f**fffffHHIIfH4HHfUHfHf***nUf/ 

H U 
1* APPB-getctlblldl, PC iide *1 

'* /f Find unused block of lIIillory in the dual port. 
1* Return i 0 if successful, i. -1 if failed. 

'* /'t Sequence 

'* If 1) Starch control structures for- fr-ee block of lIlenory. 
if 2) If bhcK free, set SellnulI! to block index, retur-n O. 
/4 3) Else, return -1 (failed to hnd block), ,. 

., 
*1 ., 
*' t/ 
*1 

*' *' ., . , 
!H**f***U**********HHH-U****-**H****U**U*****f*HfHlfflftHt**tnHltf! 

lnt APPB_getctlblk(sellloul) 
UINT tselllrlUIIl; 

iot i; 
DPCNTL *,octl = IIJPCNTL *)IJPRAM_CTL; 

lfU\PPB_getsell(Q}) r-eturrd-U; 

tor( 1=0; i<DPRAt'LBLKS; 1 tt) 

if( ~dpct\[i1.pflag) 

dpctl[l].~'flag = 1; 
dpdl[il.collDliod = NOP; 
oPctHl),tluLstat = BUF_Et1PTY: 
fsemnum = 1: 
it(APPB_reisem(O)l r-ehrn(-U: 
else r-eturn<Ol: 

APPB_l'tdseIl'lW): f"eturn(-ll; 

It*f*HHHt**HHHtHttfHHfUfffHfftfffftffHffHHttff**flftHHtt***HI 
H U 
If U'PB_f"elctlblk.(). PC side *1 

'* *, 
'* Reiea.se block of memory in the dual por-t. *I 

'* Return a 0 if successflJI, a -1 If fa.ileo. *' ,. *, 
'* Sequence *' " 

., 
,* t) Null out the contr-o\ structure. ., ,. 2) Return. ., , . ., 
It**HftHttfHffHHu"***ltltfHtHHHtfHHt*tftfft**t**tU:**HHHtHtH:IHI 

Int APPB_reldlblk(selilnUIII) 
UINT sell'lf\um; 

If\t 11 
DI'CNTL "pctl = IIJPCNTL ,)OPRAM_CTL; 

iHAPPB_getsertltO)) r"eturn( -1); 

dpct1[semnuml.pfla.g = 0; 
dpctl [sell\nurll~ cOlMia.nd = NOP; 
dpctl[sf:lflrtumJ.buf_stat::: BlIF_EKPT'r'; 
if(APPB_relsem(O») return{-1): 
~\se r-etur-n(O); 
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i******HUHUIHtlfHI.HfHHUHUfIH*tHfffH********UffHHH·HHff**! 

H H 
/f APPB_putlleflblkO, PC side 1/ 
I' ., ,. Write blQck of Mlllury h the dual port. "' ,. Return a 0 if successful, a. -1 if failed. ., 
,* ., 
,* Sequince ., ,. "' i* 1) Find free block of dUi.l port to ~rite mellory. ., ,. 21 Write the Dlellory. *, 
" 3) Wl'i te Ittlory puaaeters to (ootro 1 b I oek. *, 
it ., 
/HfH*HHHH-fHf****HfH**HffH*f:HHHHHHHHHH*****HHfHH*HH/ 

int APPB_putllellblk(cnt,src,dst) 
ULONG cot: 
ULClH3 *src; 
ULONG dst, 

[OPCNTl Id,ctl = I!i'CNTL tlDPRAlLCTl, 
lILONG fopram; 
UI~T 'pblk, 
lot i; 

ifiAPPB_9ttctlb 1 k(Mpblld) return(-l I; 

dpra. = IUlONi)'IIDPR/iU'EIiBASE + Idpblk • fl'RAII-IlLLSIZEII, 

forI i=O: i(cot; IH} 

fdprifl+t = *5r(++; 

IHAPPB_gehelft(OJ) r'eturn{-H; 

dpctHdpblkLcolMtand = HOSTJlB'LWR; 
dpctHdpblkl.buLstat = BUF -FULL, 
(iDctHdpbIU.colJot = cot; 
dDctHdpblkJ.ador· = dst: 

if(APPB_r~lsem(O)) returnl-ll; 

/HffHHHffff:lfHffffffHUfHHfHHUffHtHUtHtHtff:lfffftffffftttfltt! 

" H ,. APPB.g,tleflblktl, PC side I' 

'* ./ 

'* Read block of HaGry to the dual port. *' '* Return a 0 if successful, a. -1 1f h.i led. ., 
'* *, ,. Sequence *' 
,* ., ,. 1) Find free block of dual port for b'!lOry. " ,. 21 Urite /1Iemory paruehrs to control block. *, 
'* 3) Wait for Tl1S32OC30 to put requested .eDory into the dua.l port. *' 
'* 41 Read da.ta from the dual port. *, 
;* 51 Release block of dual port mel\ory. ., 
/1 *, 
!ttttttUU*HfftffHHUtftt***ffffUHff**tUUttUfftfffUUUHHtUfHlf! 

int APPB.getr.elb lk(cnt, src, dst) 
ll.ONG cnt; 
ULor.xJ srq 
ULONG fdst; 

DPCNTL *dpetl = IDPCNTL 'IDPRAIUTL, 
llONG *op'''' 
UINT opblk, 
int 1; 
UINT ti.'QUt = IlALSEll..TIIIE, 

i fIAPPB_y"etlbl kl&dpbl kll "tu"I-II, 

,,, .. = IUlONGlIIDPRAIL(o(IIBASE + Idpbl, • DPRAlLBLJCSIZEII, 

if(APPB.getstll(O)) returnl-lI; 

opctJ[dpblkJ.co_no = HDSUElLRD, 
dpctHdpblkl.buLstat = Blf-B1F'TY; 
dpctHdpblkLcount = cnt; 
dpctl[dpblkl.a.ddr = sre; 

wlllle( -·timeout ) 
( 

iFl!APPB.getse/lW) U (dpctHdpblkl.buLstat = BUF.FULl) I break; 
if(APPB_relsellt(O» return(;"ll; 

ifIAPPB.relse./O) :: !tilleoutl return{-ll; 

fore i=O; i(cnt; 1 ++) 
fdst++ = fdpraat+; 

ifIAPPB-r,1 etl bl k Idpbl kll "lu,"I-II, 



!UftHUHUffUfUUUffHtHfHffHffffffffffHfIfHfffffHffffffffHHfff! Idtfint ra 0x00 
~ 'I tI IeItfine IflST..IEIUIl 0x80 00 
00 ,. III'PENDIX A2 I' Idtfint fIlST..I'IElI..RD Ox81 ,. ., ,. T/IS32OC3O III'PLICATIOO BOARD ROUTINES - TIIS32OC3O SID€ ., typtdtf unsigntd CMr lOiAR, 

/. ./ typtdtf unsigntd short UINT; 

'I TtXiS Instrulltnts Inc. 1/ typt<ltf unsigned long ll1Nl, 

'I 10'20'89 ., 
'I I' ty .. dtf struet > 'I FUflchonsl I' ( "0 ,. -, !.CHAR pflog, "0 
/1 Int III'PLdpinito Intiilizt APPB. ./ lCltM cOlRnd; tl) 
/. int APPB_getStl() Get iCc.tSS to stHPhore bit N 1/ lCHAR buf_sh.t; = /. int APPBJ'elstllO RelttSt iCCesS to stlliphort bit N ./ lCltM nc; Q., 
/. Iftl III'PB_9tlctlblkll Get i control block in tfRAl1 ./ I.CHAR count[41; .... 
/. int APPB_rtlctlblkl) ReltHt control block in CfRAK ./ UCfWl lddr[4J, ~ 
/. .. I III'PL9tt ... blkll Get I block of lWIIory fro. mwt ./ lCltM aesngt(101; 

~~ /. Inl III'PLput ... blkO Put I block 'Of at.'Ory t'O f.fRM tI l~TL, ,. lnt Af'PILgetlongO Rtid I long lnt fro. tht rfRAI1 ./ = . 
;;i 

/1. int tfPfLgetcolIMndl) Rud l cOIIIlnd ind pirueters frOi ~ 1/ Iyp.d.f struct .... 
/. ./ ( S· J-3 

'" /. All coGe WiS coapiltd wlth TI'tS320C30 C co.plltr version 2.1, IJsing the II lOiAR om, 
tl) ~ 

~ 
/. SKlI lodel. ./ I.CHAR ICld; 
/. ./ !LOll) .ent; ~~ ~ I fflffflfffulffluUllullIMIHIHHl-fffUffffllHfffffffffffHflffflHffffl !LOll) Nddr; 

N llf'ARI1S, 
~~ C /HfHHflfnHMfffHfHHHUHl-ffHHfffHHHlffffHfIHHlffHIHfffffff! 

Q if ./ CJ)('j 
C /. Constant definitions for t"e Tt1S320C30 Applicltions Board. ./ ~fM 

~ 
/. ./ N= 
/ffffflfUftfftHfffffiffffHfHfHHHHffHfHHHfffffHfHfffHfffffffHII => -.;:; 'dtfirrt SClLBASE 0x00805FF8 0"0 :::: Idtfine CTUlEG OxOO805fF7 2 ="0 

5- CINT -itdehne 0.01 
CJ) _. 

~. '4ffint UNTCI.R.. 0.02 .... r') 

Id-ahnt DPSEL 0x04 Q.,I» 

r 'dehnt SIillESEL OXOO tD ::. 
.dthnt UNT Oxl0 Q 

a. .dthne . CINTCI.R.. 0><20 = r:Il 

~ 
'dtfine - Ox4O 

~ .<ltho. I1SWIV' 0x80 
;: Q 
tl. I<Itfint lfRAILCTl 0x00804000 I» 

~o 'dtfine: lIPAAUIEltlIASE 0x00804200 
,., 

Idtfiat lPRAII..SlZE Oxlooo Q., - '4tfint lfRAIUll(S 7 

tl Idtfint lI'RAIl.Bl.K.SlZE 512 

~ 'd.fint IUUaIS 8 
~ Id+hrrt MX_SCIL Tll£ 10000 

~o 
'defin. 8UF..EIf'TY .. gO Idtfi .. 8UF -FI.lL 
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/IHHIIHfIHIIHHHHHHIfHHIHI*"lunfHHHHHHlIHHIHHltHfH/ 

/. ./ 
/. APPB_IetsHO. 1l1S320C30 side ./ 
/. ./ 
/. AttelPh to gain access of seNphore ~sellnua~ ./ 
/. . / 
/. Sequence ./ 
/. ./ 
/. l' Wri te 0 to seaaphore. ./ 
/. 2) Wa.it till read a O. ./ 
ItfHffHHIHfI"*IHfftHIHfffftHfffffffHfHfHfnHIHHffHfffHfHfH I 

int APPB_gehtll(seenuI) 
UINT seanu.; 

l.ICWIR fseNddr = (UCHAR fHsaLBASE + semnu.J; 

*seli.ddr = 0; whilt(lsefliddr " 1l.ILJ; return(O); 

flfftHffHlfffffHfffHHffHffHfffflllHffflHlflffHHflflflHfffHHHf/ 

It t! 
/. ~B_rtlse.(), TI1S32OC3O side ./ 
/. ./ 
/ . Releue stlapnore olt ~se.nuI' ./ 
/. ./ 
/. Sequence ./ 
/. ./ 
II - 1) Writt 1 to se.a.phore. ./ 
/. 21 Ilia till rud 1. t! 
IfHfHfHflHfllfffffffHlfHfHHffHfffHffffffffflfffffflHHtfttfffflfflI 

lnt APPB_re 1 sn( selinulJ 
UINT se.nUl; 

UCHAR fsefliddr = (OCHAR 1)(SEl'LBASE + sunuI); 

fseHddr = 1; IIIhile(~tfselliddr ~ lll)); returntO); 
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/,*HIHHfHfIIHf**H'HHfffftffttfHfHtUUHHHHHffIfUf'-IHf*******1 

H H 
/* APPB_getctlblk( 1, TI1S320C30 sIde. */ 

'* 1/ 

/* Find unused bl(tc~ (of memory in the dual p~r-to */ 
/t Return a 0 if successful, a -1 if fai led. 1/ 

/t */ 
/* Sequence 1/ 

/. *' /. Ii Sear-ct. control structures for free block of melllor-y. t/ 

/. 21 If block free, set sEllnum to blOCK index, r-eturn O. */ 
/* 31 El Sf, return -1 (failed to find block). ./ 

/1 */ 
/HHfHf,**********f********************tf*****tI-Hfff***UfffffHfffH*HH/ 
iot APPB_getctlblHselllflUII) 

UINT *sellnum: 

iot i; 
Dl'CNTL *d"tl = IDI'CNTL *IDPRIlILCTL; 

APPB_getsem(OJ; 

for (i =0; i <DPRAtLBLKS; i H) 

ifl~ldpctlm.pfl.g ~ IULII 

dPctHiJ.pHag = 1; 
dpct\[il.colllllli.nd = NCfi; 
dpctHU.buLstat = BLF_OIPTY; 
fselll~ulI = 1: 

APPB_ri!!sflllO); returntO); 

~PPB_relselrl(OJ; returll(-U; 

1***HfHHfftff:tlfffHffHHHfHHHfHfHHfHffflffflfffffffHfHfffff**11 

H H 
if ~PBselctlblk(), TMS320C30 side. *1 
H H 
If Release block of mellory in the duat'port. 
II Return a 0 if successful, a -1 if failed. 
1* 
II Sequence 
/. 
II 1) Null out the control structure. 
II 2) Return. 
If 

*/ ., 
*/ 
*i 
./ 
*/ 
*/ 
*/ 

/HH******H*lltfHHHIIHHIHI*IH*I*HHflffff**H**I**lfftffHitfffftlft/ 

int APPB_relctlblk(selnulII) 
UINT sellnult; 

iot i; 
Dl'CNTL *dpctl = IDPCNTL 'IDPRAII..CTL; 

APPB_getseaW) ; 
dflctHsflllnulrI1.pfla9 = 0; 
dpctl[snnulJIl.colllland = NOP; 
dpctHselllnulIIJ.buLstat = BUF.B1PTY; 
APPB_relsem(O); returnlOl; 
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IHnUHfffHftHfffHffUfHfftHfffHHffffffHfffffHfHflfHHHHHffH! 

~ ~ 

't ~B_putllt.Olldl. TttS32OC3O side. t' 
~ I' 
't Move block of data to d\li.l port. t' 
't t, 
't StQutnce " 
't t' 
'I 11 tIove dati h the dual port. t' 
'I 2) Set dual port buffer status to BUFJULl. t/ 
't t' 
jff"**HHf-ffHHtHfoffH-IIHHHHHtHffHffHff* .. ffHffffHHHHHfHfti 

lnt APPB_putaeltb lklcnt, stC,dpb 1 k) 
UL~ cnt; 
LlL(W ISl'e; 

lilNT opblk; 

D?CNTL tdpctl • (DPCNTL tIDPAAtLCTL; 
L(;HAR tdpru; 
lII.OJ(i temp; 
lnt i.H 

doru = WCHAR t)(DPRP/UEI1BASE'" (dpblk f DPRAILBUCSllEll; 

fori i=O; i<cnt; i++) 

{ telaP = fsrc++; forij=O;j<32;j+=8) *dPril++ = hip» J; } 

APPB_9@tsellll!ol: 
doctl[d,blkJ.buL,t.t • BUfJULL; 
APPB-reiselrl{O); returnW); 

/fffHfllfftHfHHfffHHHHUffHfffttIHHHffflfffllffHffHffltHltttH/ 

~ t/ 
/t APPB_9ttlltlb1kO. TrtS32OC30 Slat. 1/ 
~ ~ 

't Move block of data frol dUll port. t' 
'I I' 
'I Sequence I' 
't I' 
'I 11 f"IoVt ~ti frol the dual port. I' 
'I 21 Rtlease block of dual port atllOry. I' 
'I I' 
/IUHHtfUHuHtffUffU .... fHfIHlIHtIHIfHfllllllllfllllfUtlIlU .. Htt/ 

int APPB_get ... blklcnt,dst,dpblkl 
u..0N3 ent; 
ll.CKi itdst; 
U!NT dpblk; 

DPC~TL tdpctl • (JlPc'NTL IIDPRAILCTL; 
LtHAR IdprH; 
ULON) ttop; 
int i,jl 

dpru = (l.CHAR I)(DPRPi'U'El'IBASE + (dpblk I IFRAI'LBlK_SlZE)); 

forI i=O; l<cnt; i++) 
( 

top = OUL; 
for(j=O;j<32;j+=81 teep := «*dpru++) WxOOOOOOffl « j; 
*dst++ = telP; 

APPB_re lctlblkldpblkl; returnlOI; 
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/HfUHHf****t*UfHU*******ffU4f*********UH+fHf.HU******U**fnfnfl 

h H 
1* fff'EqletlongO, Tf'lS32OC3Q side. 'II 
h H 
/f Get a long 1II0l'd of data froll the dllal port. 1/ 
/*ffHfHUH**fH***fffHf*******H+HHI**********ffHff***fffHffHfUHH/ 

Int APPB_getlong(src,'15tl 
ULONG "sre: 
ULONG jj.dst; 

int j; 
*dst = OUL; 
for(j=O;J<3'2;j+=8) -Idst 1= (1*5r·c++) & OxOOOOOOffl « j; 
return(Oi: 

I *****U .. I-HHH***fHffHHHHffffHfHfHHHHf****HffffffH*HHfHtff I 
h H 
/. fff'B_getcolIlI'tandll, T11S32OC30 side. ./ 
/. H 
/. Sear-eh the dual port control structures for commands. ./ 

It " /. SeQuence */ 
/. ./ 
/. 11 Get access to dual port sE'lN.phore O. */ 
/. 21 If at end of control structures, reset currenLblk. ./ 

/. 31 Surch control structures for a (ollDind. */ 
/* 41 If found, forflat parameters, ('eturn. ./ 
/. 51 Else, starch to the end of list, rdurn. */ 
h H 
IHfUf*****Hf*fH*flfflffff**ffffHffHHHf**Hff**H*ff*H**Hffffffff*ffl 

int APPB_getcohlla.nd(lIIpuIAS) 
MPARI'IS filipa-tillS; 

DPCNTl *dpctl = (DPCNTl fIOPRAfLCTl; 
static int currer,LbH: = -1; 

HPPB_getsf!lll(O); 

if(curru,Lblk )= DPRAtLBLKS) currenLblk = -1; 

while(currenLblk++ < DPRAI'LBLKS) 

if(dpctHcurrenLblkl.pflag II lULi 
( 

IfIParfllS-)IIIClIld = dpctlCcurrenLblk).coftlrlind &: OxOOOOOOff; 
IlIparDls-:>mblk = current_blk; 
APPB_get long (&:dpct 1 [curr-enLb 1 k]. count, &lIIparlls-)ltcnt); 
APPB_getl ong(&dpdl [currenLb IU.addr ,~lIparlls-)lliddr); 
APPB_relsem(O); returnlO); 

APPB_relsem(O); mpa.rlRs-)lIcmd = NOP; r-eturn(O); 



APPENDIX A3. Memory Map and Description (TMS320C30 View) 

Listed below is a summary of the APPB memory map. 

000000- 003FFF EPROM (Boot EPROM/remappable) 
004000- 3FFFFF Unused 
400000 - 4FFFFF DRAM space 
400000- 43FFFF 256K-word DRAM minimum configuration 
440000- 47FFFF 256K-word DRAM minimum configuration 
480000- 4BFFFF 256K-word DRAM option bank 2 
4COOOO- 4FFFFF 256K-word DRAM option bank 3 
500000 - 7FFFFF Unused 
800000- 801FFF SRAM space 1 (16K-byte zero wait-state SRAM) 
802000 - 805FFF Reserved by TI 
804000 - 805FFF I/O Devices 
804000- 804FFF 4K-byte dual-port SRAM 
805000 - 805FF6 I/O Expansion Bus 
805FF7 Control Register R 
805FF8- 805FFF dual-port RAM Semaphores (DO only) 
806000 - 807FFF Reserved by TI 
808000 - 8097FF Memory mapped Peripherals 
809800 - 809BFF RAM Block 0 
809COO- 809FFF RAM Block 1 
80AOOO- EFFFFF Unused 
FOOOOO- F03FFF SRAM space 0 (16K-byte zero wait-state SRAM, 

remappable) 
FOO800- FFFFFF Unused 

494 TMS320C30 Applications Board Functional Description. 
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Appendix B 

Modules 

Appendix Name 

Bl Module U5 - TMS320C30 Software Development Board 
B2 ModiHe U6 - TMS320C30 Software Development Board 
B3 Module RAMDEC - TMS320C30 Software Development Board 
B4 Module RDYEN - TMS320C30 Software Development Board 
B5 Module RAMCONTROL - TMS320C30 SWDS DRAM Module 
B6 Module RAMDEC - TMS320C30 SWDS DRAM Module 

496 TMS320C30 Applications Board Functional Description 



Appendix BI. TMS320C30 Software Development Board 

Module U5 
title' 
DWG NAME TMS320C30 SOFTWARE DEVELOPMENT BOARD 
DWG # 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR NATSESHAN 
DATE 10/01/88' 

XSUC8 device 'P20l8'; 

SAO Pin 1; 
SAl Pin 2; 
SA2 Pin 3; 
SA3 Pin 4; 
SA4 Pin 5; 
SAS Pin 6; 
SA6 Pin 7; 
SA7 Pin 8; 
SA8 Pin 9; 
SA9 Pin 10; 
NSMEMW Pin 11; 
GND Pin 12; 
NSMEMR Pin 13; 
NSIOW Pin 14; 
NSGBA Pin 15; 
NPQ Pin 16; 
XAEN Pin 17; 
NRG Pin 18; 
NQG Pin 19; 
NDPSEML Pin 20; 
NDPCEL Pin 21; 
SGAB Pin 22; 
NSIOR Pin 23; 
VCC Pin 24; 

"PC XT ADDRESS LINES - INPUTS 

"PC XT MEMORY WRITE STROBE 

"PC XT MEMORY READ STROBE...., INPUT 
"PC XT 10 WRITE STROBE - INPUT 
"SDB READ STROBE - OUTPUT 

. "DUAL-PORT ADDRESS RANGE STROBE - INPUT 
"PC XT BUS TRANSACTION DISABLE - INPUT 
"SDB CONTROL REGISTER R ENABLE - OUTPUT 
"SDB DUAL-PORT ADDRESS LATCH ENABLE - OUTPUT 
"DUAL-PORT SEMAPHORE SELECT - OUTPUT 
"DUAL-PORT SRAM CHIP ENABLE - OUTPUT 
"HOST DATA BUS INPUT ENABLE - OUTPUT 
"PC XT 10 READ STROBE - INPUT 

SA = [SA9, SA8, SA7, SA6, SAS, SA4, SA3, SA2, SAl ,SAO]; 
X = .x.; 

equations 

= !XAEN & (SA == "h338); 
= !XAEN & (SA == "h339); 

!NQG 
!NRG 
!NDPSEML = !XAEN & SA9 & SA8 & !SA7 & !SA6 & SAS & SA4 & !SA3 

& !NSIOW 
# !XAEN & SA9 & SA8 & !SA 7 & !SA6 & SAS & SA4 & !SA3 
& !NSIOR; 
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end US 
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!NDPCEL = !XAEN & !NPO; 
SGAB = !NSIOW & !XAEN 

# !NSMEMW & !XAEN ; 
!NSGBA = !XAEN & !NSIOR & (SA == "h339) 

# !XAEN & !NSIOR & SA9 & SA8 & !SA7 & !SA6 & SAS 
&SA4& !SA3 
# !XAEN & !NSMEMR & !NPO; 
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Module U6 
title' 

Appendix B2. Module U6 

DWG NAME TMS320C30 SOFTWARE DEVELOPMENT BOARD 
DWG # 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR NAT SESHAN '. 
DATE 10/01/88' 

XSUF10 

CIOAO 
CIOA1 
CIOA2 
CIOA3 
CIOA4 
CIOAS 
CIOA6 
CIOA7 
CIOA8 
CIOA9 
CIOAlO 
GND 
CIOA11 
CIOA12 
TIOW 
NSRANGE 
CIORNW 
NFR 
NFG 
NDPMEMGR 
NDPSEMGR 
TIOR 
NCIOSTRB 
VCC 

equations 

Device 'P20L8'; 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
Pin 5; 
Pin 6; 
Pin 7; 
Pin 8; 
Pin 9; 
Pin 10; 
Pin 11; 
Pin 12; 
Pin 13; 
Pin 14; 
Pin 15; 
Pin 16; 
Pin 17; 
Pin 18; 
Pin 19; 
Pin 20; 
Pin 21; 
Pin 22; 
Pin 23; 
Pin 24; 

X = X; 
C= .c.; 
CIOA = [CIOA12,CIOA11,CIOAlO,CIOA9,CIOA8, 

CIOA7,CIOA6,CIOAS,CIOA4,CIOA3,CI0A2,CIOAl,CIOAO]; 

!NSRANGE !NCIOSTRB & !CIOA12 
# !NCIOSTRB & (CIOA >= "h1FF7); 

!NDPMEMGR = !NCIOSTRB & !CIOA12; 
!NDPSEMGR = !NCIOSTRB & (CIOA >= "hlFF8); 
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!NFG 
!NFR 
!TIOR 

= !NCIOSTRB & !CIORNW & (CIOA == "hlFF7); 
= !NCIOSTRB & CIORNW & (CIOA == "hlFF7); 
= NCIOSTRB 

# (CIOA >= "hlFF7) 
# !CIOA12 
# !CIORNW; 

!TIOW = NCIOSTRB 
# (CIOA >= "hlFF7) 
# !CIOA12 
# CIORNW; 

test vectors 

([CIOA, NCIOSTRB, CIORNW] -> 
[TIOR, TIOW, NSRANGE, NFG, NFR, NDPMEMGR, NDPSEMGR]); 

READ OR WRITE TO A SEMAPHORE 

["h1FFS, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["hlFF9, 0, X] -> [0, 0, 0, 1, 1, 1, 0]; 
["h1FFA, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFB, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFC, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFD, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFE, 0, X] -> [0,0,0, 1, 1, 1, 0]; 
["h1FFF, 0, X] -> [0,0,0,1,1,1,0]; 

WRITE TO F REGISTER 

["h1FF7, 0, 0] -> [0,0,0,0,1,1,1]; 

READ FROM F REGISTER 

["h1FF7, 0,1] -> [0,0,0,1,0,1,1]; 

NCIOSTRB DISABLED 

[ X , 1, X] -> [0, 0, 1, 1, 1, 1, 1]; 

EXTERNAL READS 

["b1000000000000, 0,1] -> [1,0,1,1,1,1,1]; 
["blO00000000001, 0,1] -> [1, 0, 1, 1, 1, 1, 1]; 
["b100000000001O, 0, 1] -> [1,0,1,1,1,1,1]; 
["b1000000000011, 0,1] -> [1, 0,1,1,1,1,1]; 
["b1000000000100, 0,1] -> [1,0,1,1,1,1,1]; 
["b1000000000101, 0, 1] -> [1,0,1,1,1,1,1]; 

. ["b1000000000110, 0,1] -> [1,0,1,1,1,1,1]; 
["b1000000000111, 0,1] -> [1,0,1,1,1,1,1]; 
["blO00000001000, 0, 1] -> [1,0, 1, 1, 1, 1, 1]; 
["blOOOOOOOOlO01, 0,1] -> [1,0,1,1,1,1,1]; 
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[l\b100000000101O,0, 1] -> [1,0,1,1,1,1,1]; 
[l\blO00000001011, 0,1] -> [1,0,1,1,1,1,1]; 
[l\b1000000001100, 0,1] -> [1,0,1,1,1,1,1]; 
[l\b1000000001101, 0,1] -> [1,0,1,1,1,1,1]; 
[l\blOOOOOOOOlllO, 0,1] -> [1,0,1,1,1,1,1]; 
[l\b1000000001111,0, 1] -> [1, 0,1,1,1,1,1]; 
[l\h1FFO, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF1, 0,1] -> [1, 0,1,1,1,1,1]; 
[l\h1FF2, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF3, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF4, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF5, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF6, 0,1] -> [1,0, 1, 1, 1, 1, 1]; 

EXTERNAL 10 WRITES 

[l\b1000000000000, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blO00000000001, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOOlO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOOll, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOlOO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[I\b 1000000000 101 , 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOllO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\b1000000000111, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOlOOO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOlO01, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOlOlO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\b1000000001011, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOllOO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOll01, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blO00000001110, 0, 0] -> [0,1,1,1,1,1,1]; 
[l\blOOOOOOOOllll, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FFO, 0, 0] -> [0,1,1,1,1,1,1]; 
[l\h1FF1, 0, 0] -> [0, 1, 1, 1, 1,1,1]; 
[l\h1FF2, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FF3, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FF4, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[I\h 1FF5, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FF6, 0, 0] -> [0,1,1,1,1,1,1]; 

test vectors 

([CIOA12, NCIOSTRB, CIORNW] -> 
. [TIOR, TIOW, NSRANGE, NFG, NFR, NDPSEMGR, NDPMEMGR)); 

DUAL-PORT SRAM READ OR WRITE 

[0, 0, X] -> [0,0,0,1, 1, 1 ,0]; 

end U6 
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Appendix B3. Module RAMDEC 

module RAMDEC 
title' 
DWG NAME TMS320C30 SOFIWARE DEVELOPMENT BOARD 
DWG # 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR TONY COOMES 
DATE 10/01/88' 

XSUB4 

a12 
a13 
a14 
a15 
a16 
a17 
a18 
a19 
a20 
a21 
a22 
a23 
m_swap 
vss 

memen 
sram 
eprom 
busen 
vee 

device 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
.Pin 5; 
Pin 6; 
Pin 7; 
Pin 8; 
Pin 9; 
Pin 11; 
Pin 13; 
Pin 14; 
Pin 15; 
Pin 10; 

Pin 18; 
Pin 17; 
Pin 16; 
Pin 12; 
Pin 20; 

'P16L8'; 

"c30 address inputs 

"sram/eprom swap bit 

"dram expansion select 
" sram select 
"eprom select 
"eprom/dram data buffer select 

madd = [a23,a22,a21,a20,a19,a18,a17,a16,a15,a14,a13,a12]; 

equations 

"On reset the eprom and sram maps are swapped 
" m_swap = 0 m_swap = 1 
"sram FOOOOO-F03FFF 000000-003FFF 
"eprom 000000-003FFF FOOOOO-F03FFF 

sram = !«(madd >= "hOOO) & (madd <= "h003) & m_swap) 
# «madd >= "hFOO) & (madd <= "hF03) & !m_swap)); 

eprom = !«(madd >= "hOOO) & (madd <= "h003) & !m_swap) 
# «madd >= "hFOO) & (madd <= "hF03) & m_swap)); 

memen = !«madd >= "h400) & (madd <= "h4FF)); 

busen = !(!eprom # !memen); 
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test vectors 
([madd, m_swap] -> [sram, eprom, memen, bus en]) 
["hOOO, 1 ] -> [0, 1, 1, 1 ]; 
["hOOO, a ] -> [ 1, 0, 1, 0]; 
["h004, 1 ] -> [ 1, 1, 1, 1 ]; 
["hFOO, 1 ] -> [ 1, 0, 1, 0]; 
["hFOO, ° ] -> [0, 1, 1, 1 ]; 
["hFFO, 1 ] -> [ 1, 1, 1, 1 ]; 
["hFOO, 1 ] -> [ 1, 0, 1, ° ]; 
["h400, a ] -> [ 1, 1, 0, 0]; 
["h4CF, 1 ] -> [ 1, 1, 0, 0]; 
["hBOO, 1 ] -> [1, 1, 1, 1 ]; 

endRAMDEC 
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module RDYEN 
title' 

Appendix B4. Module RDYEN 

DWG NAME TMS320C30 SOFIWARE DEVELOPMENT BOARD 
DWG # . 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR TONY COOMES 
DATE 10/01/88' 

XSUC3 

c1k 
busen 
eprom 
strb 
rd_wr 
bhiz 
oe 
vss 

dat_rd 
dat_wr 
prdy 
epromcs 
vcc 

c= .c.; 

equations 

device 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
Pin 5; 
Pin 7; 
Pin 11; 
Pin 10; 

Pin 19; 
Pin 18; 
Pin 17; 
Pin 12; 
Pin 20; 

'PI6R4'; 

"eprom/dram data bus enable 
"epram select 
"c30 strobe 
"c30 read/write 
"dram expansion bus hold 

"data read enable 
"data write enable 
"eprom ready 
"eprom chip select 

"note: bhiz is active for 1 TMS320C30 clock cycle at the end of a dram 
" access. This provides the necessary turn off time between 
" dram/eprom accesses. 

= 

= 

epromcs = 

prdy 

504 

!(!busen & !5trb & rd_wr & bhiz); 

(!busen & !strb & !rd~wr & bhiz); 

!(!busen & rd_wr & !strb & !eprom & bhiz); 

!(!busen & !strb & rd_wr & prdy & !eprom & bhiz); 
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test vectors 
([elk, strb, busen, rd_wr, eprom, oe, bhiz ] -> prdy) 
[ c, 1, 1, 1, 1, 0, 1 ]-> I' , 
[c, 0, 0, 1, 0, 0, a ]-> I' , 
[ c, 0, 0, 1, 0, 0, 1 ] -> 0' , 
[ c, 0, 0, 1, 0, 0, 1 ] -> 1; 
[ c, 0, 0, 1, 0, 0, 1 ] -> 0' , 
[ c, 1, 0, 1, 0, 0, 1 ] -> I' , 
[ c, 1, 0, 1, 0, 0, 1 ] -> I' , 

test vectors 
([strb, busen, rd_wr, eprom, bhiz ] -> [datJd, dat_wr, epromcs]) 
[ 1, 1, 1, 1, 1 ] -> [ 1, 0, 1 ]; 
[ 0, 0, 1, 1, 1 ] -> [ 0, 0, 1 ]; 
[ 0, 0, 0, 1, 1 ] -> [ 1, 1, 1 ]; 
[ 0, 1, 1, 1, 1 ]-> [ 1, 0, 1 ]; 
[ 1, 0, 1, 1, 1 ] -> [ 1, 0, 1 ]; 
check eprom 
[ 1, 0, 1, 0, 1 ] -> [ 1, 0, 1 ]; 
[ 0, 0, 1, 0, 1 ] -> [ 0, 0, ° ]; [ 0, 0, 1, 0, a ] -> [ 1, 0, 1 ]; 
[ 0, 0, 0, 0, 1 ] -> [ 1, 1, 1 ]; 
[ 0, 1, 1, 0, 1 ] -> [ 1, 0, 1 ]; 
[ 1, 0; 1, 1, 1 ] -> [ 1, 0, 1 ]; 

end RDYEN 
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Appendix B5. Module RAMCONTROL 
Module RAMCONTROL 
title' 
DWGNAME 
DWG# 
COMPANY 
ENGR 
DATE 

XDUE5 

elk 
refre'L 
strb 
rd 
memen· 
oe 
vss 

sO 
refelr 
casen 
ren 
rasen 
mrdy 
busact 
s1 
vcc 

320C30 SWDS DRAM MODULE 
2554397 
TEXAS INSTRUMENTS INCORPORATED 
TONY COOMES 
10/01/88' 

device 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
Pin 5; 
Pin 11; 
Pin 10; 

Pin 19; 
Pin 18; 
Pin 17; 
Pin 16; 
Pin 15; 
Pin 14; 
Pin 13; 
Pin 12; 
Pin 20; 

'P16R8'; 

"refresh request 
"c30 strobe 
"c30 read/write 
"memory board chip select 
"pal output enable 

"state variable 
"refresh clear 
"column address strobe 
"write strobe 
"row address strobe 
"dram ready strobe 
"dram bus active 
"state variable 

"define machine states 
"[ refelr,rasen,casen,mrdy,busact,sO,s 1 ]; 

idle 
rasO 
casO 
cas1 
whld 
trp 
refl 
ref2 
ref3 
ref4 

refreq 
strb 
me men 
oe 

c = .c.; 

506 

= "b1111111; 
= "b1011111; 
= "b1000111; 
= "b1011101; 
= "b1111110; 
= "b1111001; 
= "b0101111; 
= "bOOO1111; 
= "b0011111; 
= "b1111101; 

= !refre'L; "convert to positive logic 
= !strb_; 
= !memen_; 
= !oe_; 
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c = .c.; 
output = [refclr,rasen,casen,mrdy,busact,sO,sl]; 

equations 

ren .- !(lrd & !strb~; high on read, Iowan writes 
state_diagram output 

state idle: 
case (refreq & strb & memen) 

( refreq & strb & !memen) 
(refreq & !strb & memen) 
(refreq & !strb & !memen) 
(!refreq & strb & memen) 
(!refreq & strb & !memen) 
(!refreq & !strb & memen) 
(!refreq & !strb & !memen) 

endcase; 

:refl; "ref has 1st priority 
:refl; 
:refl; 
:refl; 
:rasO; 
:idle; 
:idle; 
:idle; 

state rasO: 

state 

state 

state 

state 

state 

state 

goto casO; 

casO: 
case rd 

!rd 
endcase; 

casl: 
case strb & !refreq 

strb & refreq 
!strb & !refreq 
!strb & refreq 

endcase; 

whld: 
case strb & !refreq 

strb & refreq 
!strb & !refreq 
!strb & refreq 

-endcase; 

trp: 
case refreq 

!refreq 
endcase; 

refl: 
goto ref2; 

ref2: 
goto ref3; 

"cycle cas on page mode reads 
:cas1; 
:whld; 

"cycle cas on page mode reads 
:casO; 
:trp; 
:trp; 
:trp; 

"wait for refreq or !strb 
:whld; 
:refl; 
;idle; 
:refl; 

"cas,ras high 
:refl; 
:idle; 

"cas,refclr low 

"ras low 
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state ref3: "cas high 
goto ref4; 

state ref4: "ras high 
goto idle; 

test_vectors "page mode read, ref, page mode read 
([clk,refreq ,strb, rd,memen, oe ]->[output,ren)) 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 1, 
[c, 1, 
[c, 1, 
[c, 1, 
[c, 1, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 

0, 1, 0, 1 ]->[idle, 1]; 
1, 1, 1, 1 ]->[rasO, 1]; 
1, 1, 1, 1 ]->[ casO, 1]; 
1, 1, 1, 1 ]->[ cas1, 1]; 
1, 1, 1, 1 ]->[casO, 1]; 
1, 1, 1, 1 ]->[ cas1, 1]; 
1, 1, 1, 1 ]->[trp , 1]; 
1, 1, 1, 1 ]->[refl, 1]; 
1, 1, 1, 1 ]->[ref2, 1]; 
1, 1, 1, 1 ]->[ref3, 1 ]; 
1, 1, 1, 1 ]->[ ref4, 1]; 
1, 1, 1, 1 ]->[idle, 1]; 
1, 1, 1, 1 ]->[rasO, 1]; 
1, 1, 1, 1 ]->[casO, 1]; 
1, 1, 1, 1 ]->[cas1, 1]; 
1, 1, 1, 1 ]->[casO, 1]; 
1, 1, 1, 1 ]->[cas1, 1]; 
0, 1, 1, 1 ]->[trp , 1]; 
0, 1, 0, 1 ]->[idle, 1]; 

test_vectors "write cycle 
([clk,refreq ,strb, rd, memen,·oe ]->[output,ren)) 
[c, 0, 0, 0, 0, 1 ]->[idle, 1]; 
[c, 0, 1, 0, 1, 1 ]->[rasO, 0]; 
[c, 0, 1, 0, 1, 1 ]->[casO, 0]; 
[c, 0, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 0, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 0, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 0, 0, 0, 1, 1 ]->[idle, 1]; 
[c, 0, 0, 1, 0, 1 ]->[idle, 1]; 

"write cycle Iref 
[c, 0, 0, 0, 0, 1 ]->[idle, 1]; 
[c, 0, 1, 0, 1, 1 ]->[rasO, 0]; 
[c, 1, 1, 0, 1, 1 ]->[casO, 0]; 
[c, 1, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 1, 1, 0, 1, 1 ]->[refl, 0]; 
[c, 1, 1, 0, 1, 1 ]->[ref2, 0]; 
[c, 1, 0, 0, 0, 1 ]->[ref3, 1]; 
[c, 0, 0, 1, 0, 1 ]->[ref4, 1]; 
[c, 0, 0, 1, 0, 1 ]->[idle, 1]; 

end RAMCONTROL 
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module RAMDEC 
title' 

Appendix B6. Module RAMDEC 

DWG NAME 320C30 SWDS DRAM MODULE 
DWG # 2554397 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR 
DATE 

XDUD5 

clk 
refclr 
a18 
a19 
memen 
strb 
mux 
oe 
vss 

rasO 
ras1 
ras2 
ras3 
rowsel 
vec 

c= .C.; 

equations 

TONY COOMES 
10/01/88' 

device 'P16R4'; 

Pin 1; 
Pin 2; "clear refresh stat 
Pin 3; "e30 address 18 
Pin 4; "c30 address 19 
Pin 5; "dram board memory enable 
Pin 6; "e30 strobe 
Pin 7; "address mux 
Pin 11; "pal output enable 
Pin 10; 

Pin 17; "ras select 0 
Pin 16; "ras select 1 
Pin 15; "ras select 2 
Pin 14; "ras select 3 
Pin 13; "row address select 
Pin 20; 

rasO := !(!refclr # (!a19 & !a18 & !memen& !strb)); 
ras1 := !(!refclr # (!a19 & a18 & !memen & !strb)); 
ras2 := !(!refclr # ( a19 & !a18 & !memen & !strb )); 
ras3 := !(!refclr # ( a19 & a18 & !memen & !strb)); 

rowsel = mux; 
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test_vectors "page mode read, ref, page mode read 
([clk,refclr, memen, strb, a19, a18, oe]->[rasO, ras1, ras2, ras3]) 
[ c, 1, 1, 1, 0, 
[ c, 1, 0, 0, 0, 
[ c, 1, 0, 0, 0, 
[ c, 1, 0, 0, 1, 
[ c, 1, 0, 0, 1, 
[ c, 1, 1, 0, 1, 
[ c, 1, 0, 1, 1, 
[ c, 0, 0, 1, 1, 
[ c, 1, 0, 1, 1, 
[ c, 0, 0, 0, 1, 
[ c, 1, 0, 0, 1, 

test_vectors "rowsel 
(mux -> rowsel) 
1 -> 1; ° -> 0; 

endRAMDEC 
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0, 0]->[ 1, 1, 1, 1 ]; 
0, 0]->[ 0, 1, 1, 1 ]; 
1, 0]->[ 1, 0, 1, 1 ]; 
0, 0]->[ 1, 1, 0, 1 ]; 
1, 0]->[ 1, 1, 1, ° ]; 
1, 0]->[ 1, 1, 1, 1 ]; 
1, 0]->[ 1, 1, 1, 1 ]; 
1, 0]->[ 0, 0, 0, ° ]; 
1, 0]->[ 1, 1, 1, 1 ]; 
1, 0]->[ 0, 0, 0, ° ]; 
1, 0]->[ 1, 1, 1, ° ]; 
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Appendix C 

TMS320C30 Application Board Schematics 

Appendix Title 

Cl TMS320C30 Software Development Schematics 
C2 TMS320C30 SWDS DRAM Module Schematics 

TMS320C30 Applications Board Functional Description 511 



Appendix Ct. TMS320C30 Software Development Schematics 
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