
~TEXAS
INSTRUMENTS

Digital Signal Processing
Applications with the TAfS320 Family

1990

Theory, Algorithms,
and Implementations

Volume 3

Digital Signal Processor Products

Digital Signal Processing
Applications with the TMS320 Family

Volume 3

Edited by
Panos Papamichalis, Ph.D.
Digital Signal Processing

Semiconductor Group
Texas Instruments

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
TI advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control tech­
niques are utilized to the extent TI deems necessary to support this warranty. Un­
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

TRADEMARKS

ADI and AutoCADare trademarks of Autodesk, Inc.
Apollo and Domain are trademarks of Apollo Computer, Inc.
ATVista is a trademark of Truevision, Inc.
CodeView, MS-Windows, MS, and MS-DOS are trademarks of Microsoft Corp.
DEC, DigitalDX, VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.
DGIS is a trademark of Graphic Software Systems, Inc.
EPIC, XDS, TlGA, and TlGA-340 are trademarks of Texas Instruments, Inc.
GEM is a trademark of Digital Research, Inc.
GSS*CGI is a trademark of Graphic Software Systems, Inc.
HPGL is a registered trademark of Hewlett-Packard Co.
Macintosh and MPW are trademarks of Apple Computer Corp.
NEC is a trademark of NEC Corp.
PC-DOS, PGA, and Micro Channel are trademarks of IBM Corp.
PEPPER is a registered trademark of Number Nine Computer Corp.
PM is a trademark of Microsoft Corp.
PostScript is a trademark of Adobe Systems, Inc.
RTF is a trademark of Microsoft Corp.
Sony is a trademark of Sony Corp.
Sun 3, Sun Workstation, SunView, SunWindows, and SPARC are trademarks of
Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1990, Texas Instruments Incorporated

CONTENTS

FOREWORD v

PREFACE vii

PART I. INTRODUCTION

1. The TMS320 Family and Book Overview 3

2. The TMS320 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from PROCEEDINGS OF THE IEEE,
Vol. 75, No.9, September 1987) 11

3. The TMS320C30 Floating-Point Digital Signal Processor
(Panos Papamichalis and Ray Simar, Jr., reprinted from IEEE Micro Magazine, Vol. 8, No.6,
December 1988). .. 31

PART II. DIGITAL SIGNAL PROCESSING ROUTINES

4. An Implementation of FFT, DCT, and Other Transforms on the TMS320C30
(Panos Papamichalis) 53

5. Doublelength Floating-Point Arithmetic on the TMS320C30
(AI Lovrich) ... 137

6. An 8 X 8 Discrete Cosine Transform Implementation on the TMS320C25 or the TMS320C30
(William Hohl) ... 169

7. Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30
(Sen Kuo, Chein Chen) .. 191

8. A Collection of Functions for the TMS320C30
(Gary Sitton) ... 273

PART III. DIGITAL SIGNAL PROCESSING INTERFACE TECHNIQUES

9. TMS320C30 Hardware Applications
(Jon Bradley) .. 333

10. TMS320C30-IEEE Floating-Point Format Converter
(Randy Restle and Adam Cron) ... 365

PART IV. TELECOMMUNICATIONS

11. Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX
(Mark D. Grosen) 403

iii

PART V. COMPUTERS

12. A DSP-Based Three-Dimensional Graphics System
(Nat Seshan) ... 423

PART VI. TOOLS

13. The TMS320C30 Applications Board Functional Description
(Tony Coomes and Nat Seshan) ... 467

TMS320 BIBLIOGRAPHY .. 533

iv

Foreword

Much has happened in the TMS320 Family since Volume 1 of Digital Signal Processing
Applications with the TMS320 Family was published, and Volumes 2 and 3 are a timely update to
the family history.

The DSP microcomputers keep changing the perspective of the systems designers by offer­
ing more computational power and better interfacing capabilities. The steps of change are coming
more quickly, and the potential impact is greater and greater. Because things change so rapidly in
this area, there is a pressing need for ways to quickly learn how to utilize the new technology. These
new volumes respond to that need.

As with Volume 1, the purpose of these books is to teach us about the issues and techniques
that are important in implementing digital signal processing systems using microprocessors in the
TMS320 Family. Volume 2 highlights the TMS320C25; and Volume 3, the TMS320C30 chip. A
large part of the books is devoted to such matters as characteristics of the TMS320C25 and
TMS320C30 chips, useful program code for implementing special DSP functions, and details on
interfacing the new chips to external devices. The remainder of the books illustrates how these
chips can be used in communications, control, and computer graphics applications.

What these two volumes make clear is how remarkably fast the field ofDSP microcomputing
is evolving. IC technologists and designers are simply packing more and more of the right kind of
computing power into affordable microprocessor chips. The high-speed floating-point computing
power and huge address spaces of chips like the TMS320C30 open the door to a whole new class
of applications that were difficult or impractical with earlier generations of fixed-point DSP chips.
The signal processing theorists and system designers are clearly being challenged to match the cre­
ativity of the chip designers.

The present books differ from Volume 1 in the inclusion of a small section on tools. This is
a hopeful sign, because it is progress in this area that is likely to have the greatest impact on speeding
the widespread application of DSP microprocessors. While useful design tools are beginning to
emerge, much more can be done to help system designers manage the complexity of sophisticated
DSP systems, which often involve a unique combination of theory, numerical and symbolic pro­
cessing algorithms, real-time programming, and multiprocessing. No doubt future volumes of Dig­
ital Signal Processing Applications with the TMS320 Family will have more to say about this im­
portant topic. Until then, Volumes 2 and 3 have much useful information to help system designers
keep up with the TMS320 Family.

Ronald W. Schafer
Atlanta, Georgia

November 14, 1989

v

vi .

Preface

The newer, floating-point DSP devices, such as the TMS320C30, have brought an added di­
mension to DSP applications. With the TMS20C30, programming is much easier because the de­
signer does not have to worry about dynamic range and accuracy issues. An algorithm implemented
in floating-point in a high-level language can be easily ported to such a device. The new architecture
contains other features, besides the floating point capability, that simplify programming. Some of
these features (such as the software stack, the large register file, etc.) were added to facilitate the
development of high-level language compilers. Currently, C and Ada compilers have been intro­
duced. In addition, Spectron Microsystems introduced an operating system for DSPs (called
SPOX) that further facilitates the development of algorithms on the DSP devices.

Volume 3 of Digital Signal Processing Applications with the TMS320 F amity contains appli­
cation reports primarily on the third generation of the TMS320 Family (floating-point devices).
This book is a continuation of Volumes 1 and 2 in the sense that it addresses the same needs of the
designer. The designer still has the task of selecting the DSP device with the appropriate cost, per­
formance, and support, developing the DSP algorithm that will solve the problem, and implement­
ing the algorithm on the processor. This volume tries to help by bringing the designer up to date
on the applications of newer processors or in different applications of earlier processors.

The objectives remain the same as in earlier volumes. First, the application reports supply
examples of device use and serve as tutorials in programming the devices. Of course, the same pur­
pose is served on a more elementary basis by the software and hardware applications sections of
the corresponding user's guides. Second, since the source code of each application is provided with
the report, the designer can take it intact (or extract a portion of it) and place it in the application.

I t is assumed that the reader has exposure to the TMS320 devices or, at least, has the necessary
manuals (such as the appropriate TMS320 user's guides) that will help the reader understand the
explanations in the reports. The reports themselves include as references the necessary background
material. Additionally, the Introduction gives a brief overview of the available devices at the time
of the writing and points to the source of more information.

The reports are grouped by application area. The term report is used here in a broad sense,
since some articles from technical publications are also included. The authors of the reports are ei­
ther the digital signal processing engineering staff of the Texas Instruments Semiconductor Group
(including both field and factory personnel, and sUmmer students) or third parties.

The source code associated with the reports is also available in electronic form, and the reader
can download it from the TI DSP Electronic Bulletin Board (telephone (713) 274-2323). If more
information is needed, the DSP Hotline can be called at (713) 274-2320.

The editor thanks all the authors and the reviewers for their contribution to this volume of
application reports.

Panos E. Papamichalis, Ph.D.
Senior Member of Technical Staff

vii

viii

Part I. Introduction
1. The TMS320C20 Family and Book Overview

2. The TMS320C20 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from
PROCEEDINGS OF THE IEEE, Vol. 75, No.9, September 1987)

3. The TMS320C30 Floating-Point Digital Signal Processor
(Panos Papamichalis and Ray Simar, Jr., reprinted from IEEE Micro
Magazine, Vol. 8, No.6, December 1988)

2

TMS320 Family and Book Overview

Digital signal processors have found applications in areas where they were not even consid­
ered a few years ago. The two major reasons for such proliferation are an increase in processor per­
formance and a reduction in cost. Volume 3 of Digital Signal Processing Applications with the
TMS320 F amity presents a set of application reports primarily on the TMS320C30, the third-gener­
ation TMS320 device.

Organization of the Book

The material in this book is grouped by subject area:

• Introduction

• Digital Signal Processing Routines

• DSP Interface Techniques

• Telecommunications

• Computers

• Tools

• Bibliography

The Introduction contains this overview and two review articles. The first article gives a
general description of the TMS320 family and is reprinted from a special issue of the IEEE Pro­
ceedings, while the second article discusses the TMS320C30 device and is reprinted from the IEEE
Micro Magazine. The overview points out how the TMS320 family has grown since the two articles
were published and also introduces newer devices.

The five articles in the Digital Signal Processing Routines section present useful algo­
rithms, such as the FIT, the Discrete Cosine Transform, etc., that are implemented on the
TMS320C30. Two of the reports also consider implementations on the TMS320C25.

The section on DSP Interface Techniques contains an article on interfacing the
TMS320C30with external hardware, such as memorfes and AID and D/ A converters, andan article
on a hardware implementation of a floating-point converter between the IEEE and the TMS320C30
formats.

The following three sections contain one article each. In the Telecommunications section,
an implementation of the government-standard CELP speech-coding algorithm is presented. The
Computers section contains an article on 3-D graphics systems, which shows examples of using
the TMS320C30 device for graphics problems. In the Tools section, the article gives a functional
description of the TMS320C30 Application Board that is part of the hardware emulator for that de­
vice.

The Bibliography section contains a list of articles mentioning DSP implementations using

TMS320 devices. The different titles are listed chronologically and are grouped by subject. The list

is not exhaustive, but it gives pointers for pursuing practical implementations in representative

application areas.

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 3

The TMS320 Family of Processors

The TMS320 Family of digital signal processors started with the TMS32010 in 1982, but it
has been expanded to encompass five generations (at the time of this writing) with devices in each
generation. Figure 1 shows this progression through the generations. The TMS320 devices can be
grouped in two broad categories: fixed-point and floating-point devices. As implied by Figure 1,
the first, second, and fifth generations are the fixed-point devices, while the third and the fourth
generations (the latest one under development) support floating-point arithmetic.

4

Figure 1. TMS320 Family Roadmap

Floating-point DSP
Fixed-point DSP ----,----r---T---'""'\

* 1990 NEW TMS320

P m
e f

I
o

o p
r s
m /
a m
n i
C P
e s

TMS320Clx

TMS320Cl0, ·14
TMS320Cl0·25
TMS320C15/E15
TMS320C15·25
TMS320C17/E17
TMS320C14/E14

TMS320C2x

TMS32020
TMS320C25
TMS320E25
TMS320C25·50
*TMS320C26

TMS320C4x

*TMS320C40

TMS320C30
*TMS320C30·26,-I--'-"'--__

*TMS320C31

*TMS320C50
*TMS320C51

Generation

Digital Signal Processing Applications with the TMS320 Family, Vol. 3

Gen

1st

2nd

3rd

5th

t
t
~

The following article, "The TMS320 Family of Digital Signal Processors," by Lin, et. al.,
is reprinted from the Proceedings of the IEEE and gives an overview of the TMS320 family. Since
additional devices have been developed from the time the article was written, this section highlights
these newer devices. Table 1 shows a comprehensive list ofthe currently available TMS320 devices
and their salient characteristics.

Table 1. TMS320 Family Overview

Memory I/O

Data Cycle On- aIT- On-
Device

Type
Time RAM Chip EPROM

Chip
Parallel Serial DMA Chip Package

(ns) ROM Timers

TMS320ClO ~ Integer 200 144 UK 4K 8x16 DIPIPLCC
TMS320ClO-25 Integer 160 144 I.5K 4K 8xl6 DlPIPLCC
TMS320ClO-14 Integer 280 144 UK 4K 8xl6 DIPIPLCC
TMS320E14 Integer 160 256 4K 4K 7x16 1 4 CERQUAD
TMS320C15' Integer 200 256 4K 4K 8x16 DIPIPLCC
TMS320CI5-25 ~ Integer 160 256 4K 4K 8xl6 DIPIPLCC
TMS320E15' Integer 200 256 4K 4K 8xl6 DIP/CERQUAD
TMS320E15-25 Integer 160 256 4K 4K 8x16 DIP/CERQUAD
TMS320C17 Integer 200 256 4K 4K 6xl6 2 1 DIPIPLCC
TMS320EI7 Integer 200 256 4K 4K 6xl6 2 1 DIP/CERQUAD

TMS32020 ~ Integer 200 544 128K 16xl6 1 t 1 PGA
TMS320C25 ~ Integer 100 544 4K 128K 16xl6 1 t 1 PGAlPLCC
TMS320C25-50' Integer 80 544 4K 128K 16xl6 1 t 1 PGAlPLCC
TMS320E25' Integer 100 544 4K 128K 16xl6 1 t 1 CERQUAD
TMS320C26 Integer 100 UK 256 128K 1 t 1 PLCC

TMS320C30 ~ Float Pt 60 2K 4K 16M 16Mx32 2 t 2 PGA

TMS320C50 ~ Integer 50 8.5K 2K 128K 16xl6 1 t 1 CLCC

External DMA
Extemalnntemal DMA
For information on military versions of these devices, contact your local 11 sales office.

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 5

The additions to the first generation are the TMS320C14 and the TMS320E14; the latter is
identical with the former, except that the latter's on-chip program memory is EPROM. The
TMS320C14/E14 devices have features that make them suitable for control applications. Figure
2 shows the components of these devices. The memory and the CPU are identical to
TMS320C15/E15, while the peripherals reflect the orientation of the devices toward control.

Figure 2. TMS320C141E14 Key Features

32-bitALU 16x16-bit Timer/Counter 2
Multiply

Watchdog Timer 32-bit ACC

0,1 A-bit Shift 32-bit P-Reg 16 bitl/O

2 Auxiliary Registers SERIAL PORT

4 level HNJ Stack Event Manager

Some of the key features of the TMS320C14/E14 are:

• 160-ns instruction cycle time

• Object-code-compatible with the TMS320C15

• Four 16-bit timers
- 1\vo general-purpose timers
- One watchdog timer
- One baud-rate generator

• 16 individual bit-selectable I/O pins

• Serial port/USART with codec-compatible mode

• Event manager with 6-channel PWM D/A

• CMOS technology, 68-pin CERQUAD

The additions to the second generation are the TMS320E25, the TMS320C25-50, and the
TMS320C26. The TMS320E25 is identical to the TMS320C25, except that the 4K-word on-chip
program memory is EPROM. Since increased speed is very important for the real-time implemen-

6 Digital Signal Processing Applications with the TMS320 Family, Vol. 3

tation of certain applications, the TMS320C25-50 was designed as a faster version of the
TMS320C25 and has a clock frequency of 50 MHz instead of 40 MHz.

The TMS320C26 is a modification of the TMS320C25 in which the program ROM has been
exchanged for RAM. The memory space of the TMS320C26 has l.5K words of on-chip RAM and
256 words of on-chip ROM, making it ideal for applications requiring larger RAM but minimal
external memory.

A new generation of higher-performance fixed-point processors has been introduced in the
TMS320 Family: the TMS320C5x devices. This generation shares many features with the first and
the second generations, but it also encompasses significant new features. Figure 3 shows the basic
components of the first device in that generation, the TMS320C50.

Figure 3. TMS320C50 Key Features

Serial Port
Timer

S{WWaitsts
16x16
Inputs
16x16

Outputs

Some of the important features of the TMS320C50 are listed below:

• Source code is upward compatible with the TMS320C1x/C2x devices

• 50/35-ns instruction cycle time

• 8K words of on-chip program/data RAM

• 2K words boot ROM

• 544 words of data/program RAM

• 128K words addressable total memory

• Enhanced general-purpose and DSP-specific instructions

• Static CMOS, 84-pin CERQUAD

• JTAG serial scan path

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 7

The software and hardware development tools for the TMS320 family make the develop­
ment of applications easy. Such tools include assemblers, linkers, simulators, and Ccompilers for
the software. They include evaluation modules, software development boards, and extended devel­
opment systems for hardware. These tools are mentioned in the following paper by Lin, et. al. The
interested reader can find much more information in the additional literature that is published by
Texas Instruments and mentioned in the next section. In particular, the TMS320 Family Develop­
ment Support Reference Guide is an excellent source.

One important addition to the list of tools is the SPOX operating system, developed by Spec­
tron Microsystems. SPOX permits you to write an application in a high-level language (C) and run
it on actual DSP hardware. The operating system of SPOX hides the details of the interface from
you and lets you concentrate on your algorithm while running it at supercomputer speeds on the
TMS320C30.

References

Texas Instruments publishes an extensive bibliography to help designers use the TMS320 de­
vices effectively. Besides the user's guides for corresponding generations, there are manuals for
the software and the hardware tools. The TMS320 Family Development Support Reference Guide
is particularly useful because it provides information, not only on development tools offered by TI,
but also on those produced by third parties. Here is a partial list of the literature available (the litera­
ture number is in parentheses)

• TMS320 Family Development Support Reference Guide (SPRUOllA)

• TMS320Clx User's Guide (SPRU013A)

• TMS320C2x User's Guide (SPRU014)

• TMS320C3x User's Guide (SPRU031)

• TMS320Clx/TMS320C2xAssembly Language Tools User's Guide (SPRU018)

• TMS320C30Assembly Language Tools User's Guide (SPRU035)

• TMS320C25 C Compiler Reference Guide (SPRU024)

• TMS320C30 C Compiler Reference Guide (SPRU034)

• Digital Signal Processing Applications with the TMS320 Family, Volume 1 (SPRA012)

• Digital Signal Processing Applications with the TMS320 Family, Volume 2 (SPRA016)

You can request this literature by calling the Customer Response Center at 1-800-232-3200,
or the DSP Hotline at 1-713-274-2320.

Contents of Other Volumes of the Application Book

Volume 1

8

Part I. Digital Signal Processing and the TMS320 Family

• Introduction

• The TMS320 Family

Part II. Fundamental Digital Signal Processing Operations

• Digital Signal Processing Routines

Digital Signal Processing Applications with the TMS320 Family, Vol. 3

- Implementation of FIR/IIR Filters with the TMS3201OrrMS32020
- Implementation of Fast Fourier Transform Algorithms with the TMS32020
- Companding Routines for the TMS32010rrMS32020
- Floating-Point Arithmetic with the TMS32010
- Floating-Point Arithmetic with the TMS32020
- Precision Digital Sine-Wave Generation with the TMS32010
- Matrix Multiplication with the TMS32010 and TMS32020

• DSP Interface Techniques
- Interfacing to Asynchronous Inputs with the TMS32010
- Interfacing External Memory to the TMS32010
- Hardware Interfacing to the TMS32020
- TMS32020 and MC68000 Interface

Part III. Digital Signal Processing Applications

• Telecommunications
- Telecommunications Interfacing to the TMS32010
- Digital Voice Echo Canceller with a TMS32020
- Implementation of the Data Encryption Standard Using the TMS32010
- 32K-bit/s ADPCM with the TMS32010
- A Real-Time Speech Subband Coder Using the TMS32010
- Add DTMF Generation and Decoding to DSP-[lP Designs

• Computers and Peripherals

• Speech Coding/Recognition
- A Single-Processor LPC Vocoder
- The Design of an Adaptive Predictive Coder Using a Single-Chip
- Digital Signal Processor
- Firmware-Programmable C Aids Speech Recognition

• Image/Graphics
- A Graphics Implementation Using the TMS32020 and TMS3406I

• Digital Control
- Control System Compensation and Implementation with the TMS32010

Volume 2

Part I. Introduction

• Book Overview

• The TMS320 Family of DSP

• The Texas Instruments TMS320C25 Digital Signal Microcomputer

Part II. Digital Signal Interface Techniques

• Hardware Interfacing to the TMS320C2x

• Interfacing the TMS320 Family to the TLC32040 Family

• ICC Requirements of the TMS320C25

• An Implementation of a Software UART Using the TMS320C25

• TMS320CI7 1E17 and TMS370 Serial Interface

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 9

Part III. Data Communications

• Theory and Implmentation of a Split-Band Modem Using the TMS320C17

• Implementation of an FSK Modem Using the TMS320C17

• An Ali-Digital Automatic Gain Control

Part IV. Telecommunications

• General Purpose Tone Decoding and DTMF Detection

Part V. Control

• Digital Control

Part VI. Tools

• TMS320 Algorithm Debugging Techniques

10 Digital Signal Processing Applications with the TMS320 Family, Vol. 3

The TMS320 Family
of

Digital Signal Processors

Kun-Shan Lin
Gene A. Frantz
Ray Simar, Jr.

Digital Signal Processor Products-Semiconductor Group
Texas Instruments

Reprinted from
PROCEEDINGS OF THE IEEE
Vol. 75, No.9, September 1987

11

12 The TMS320 Family of Digital Signal Processors

The TMS320 Family of Digital Signal
Processors

KUN-SHAN LIN, MEMBER, IEEE, GENE A. FRANTZ, SENIOR MEMBER, IEEE,
AND RAY SIMAR, JR.

This paper begins with a discussion of the characteristics of dig­
ital signal processing, which are the driving force behind the design
of digital signal processors. The remainder of the paper describes
the three generations of the TMS320 family of digital signal proces­
sors available from Texas Instruments. The evolution in architec­
tural design of these processors and key features of each genera­
tion of processors are discussed. More detailed information ~s
provided for the TMS320C25 and TMS32OC30, the newest members
in the family. The benefits and cost-performance tradeoffs of these
processors become obvious when applied to digital signal pro­
cessing applications, such as telecommunications, data commu­
nications, graphics/image processing, etc.

DIGITAL SIGNAL PROCESSING CHARACTERISTICS

Digital signal processing (DSP) encompasses a broad
spectrum of applications. Some application examples
include digital filtering, speech vocoding, image process­
ing, fast Fouriertransforms, and digital audio [1]-[10]. These
applications and those considered digital signal processing
have several characteristics in common:

mathematically intensive algorithms,
real-time operation,
sampled data. implementation,
system flexibility.

To illustrate these characteristics in this section, we will use
the digital filter as an example. Specifically, we will use the
Finite Impulse Response (FIR) filter which in the time
domain takes the general form of

N

yin) = 2: ali) • x(n - i)
;=1

(1)

where yin) is the output sample at time n, ali) is the ith coef­
ficient or weighting factor, and x(n - i) is the (n - i)th input
sample.

With this example in mind, we can discuss the various
characteristics of digital signal processing: mathematically
intensive algorithms, real-time processing, sampled data
implementation, and system flexibility. First, let us look at
the concept of mathematically intensive algorithms.

Manuscript received October 6, 1986; revised March 27, 1987.
The authors are with the Semiconductor Group, Texas Instru­

ments Inc., Houston, TX 77521-1445, USA.
IEEE Log Number 8716214.

Mathematically Intensive Algorithms

From (1), we can see that to generate every yin), we have
to compute N multiplications and additions or sums of
products. This computation makes it mathematically inten­
sive, especially when N is large.

At this point it is worthwhile to give the FIR filter some
physical significance. An FIR filter is a common technique
used to eliminate the erratic nature of stock market prices.
When the day-to-day closing prices are plotted, it is some­
times difficult to obtain thedesired information, such as the
trend of the stock, because of the large variations. A simple
way of smoothing the data is to calculate the average clos­
ing values of the previous five days. For the new average
value each day, the oldest value is dropped and the newest
value added. Each daily average value (average (n» would
be the sum of the weighted value of the latest five days,
where the weighting factors (a(i)'s) are 1/5. In equation form,
the average is determined by

average (n) = .! • din - 1) + .! • din - 2)
5 5

+ .! • din - 3) + .! • din - 4)
5 5

+.!'d(n-5)
5

(2)

where din - i) is the daily stock closing price for the (n -
i)th day. Equation (2) assumes the same form as (1). This is
also the general form of the convolution of two sequences
of numbers, ali) and xli) [5], [6]. Both FIR filtering and con­
volution are fundamental to digital Signal processing.

Real· Time Processing

In addition to being mathematically intensive, DSP algo­
rithms must be performed in real time. Real time can be
defined as a process that is accomplished by the DSP with­
out creating a delay noticeable to the user. In the stock mar­
ket example, as long as the new average value can be com­
puted priortothe next day when it is needed, it is considered
to be completed in real time. In digital signal processing
applications, processes happen faster than on a daily basis.
In the FIR filter example in (1), the sum of products must

©1989 ffiEE. Reprinted, with permission, from PROCEEDINGS OF THE IEEE;
Vol. 75, No.9, pp. 1143-1159; September 1987

The TMS320 Family of Digital Signal Processors 13

be computed usually within hundreds of microseconds
before the next sample comes into the system. A second
example is in a speech recognition system where a notice­
able delay between a word being spoken and being rec­
ognized would be unacceptable and not considered real­
time. Another example is in image processing, where it is
considered real-time if the processor finishes the process­
ing within the frame update period. If the pixel information
cannot be updated within the frame update period, prob­
lems such as flicker, smearing, or missing information will
occur.

Sampled Data Implementation

The application must be capable of being handled as a
sampled data system in order to be processed by digital
processors, such as digital signal processors. The stock
market is an example of a sarrpled data system. That is, a
specific value (closing value) .s assigned to each sample
period or day. Other periods may be chosen such as hourly
prices or weekly prices. In an FIR filter as shown in (1), the
output yin) is calculated to be the weighted sum of the pre­
vious N inputs. In other words, the input signal is sampled
at periodic intervals (1 over the sample rate), multiplied by
weighting factor aU), and then added together to give the
output result of yin). Examples of sample rates for some typ­
ical sampled data applications [2], [4] are shown in Table 1.

Table 1 Sample Rates versus Applications

Application

Control
Telecommunications
Speech processing
Audio processing
Video frame rate
Video pixel rate

Nominal
Sample Rate

1 kHz
'8 kHz
8-10 kHz

40-48 kHz
30 Hz
14MHz

. In a typical DSP application, the processor must be able
to effectively handle sampled data in large quantity and also
perform arithmetic computations in real time.

System Flexibility

The design of the digital signal processing system must
be flexible enough to allow improvements in the state of
the art. We may find out after several weeks of using the
average stock price as a means of measuring a particular
stock's value that a different method of obtaining the daily
information is more suited to our needs, e.g., using dif­
ferent daily weightings, a different number of periods over
which to average, or a different procedure for calculating
the result. Enough flexibility in the system must be available
to' allow for these variations. In many of the DSP applica­
tions, techniques are still in the developmental phase, and
therefore the algorithms tend to change over time. As an
example, speech recogn'ition is presently an inexact tech­
nique requiring continual algorithmic modification. From
this example we can see the need for system flexibility so
that the DSP algorithm can be updated. A programmable
DSP system can provide this flexibility to the user.

14

HISTORICAL DSP SOlUTIONS

Over the past several decades, digital signal processing
machines have taken on several evolutions in order to
incorporate these characteristics. large mainframe com­
puters were initially used to process Signals in the digital
domain. Typically, because of state-of-the-art limitations,
this was done in nonreal time. As the state of the art
advanced, array processors we!e added to the processing
task. Because of their flexibility and speed, array processors
have become the accepted solution for the resealch lab­
oratory, and have been extended to end-applications in
many instances. However, integrated circuit technology has
matured, thus allowing for the design of faster micropro­
cessors and microcomputers. As a result, many digital sig­
nal processing applications have migrated from the array
processor to microprocessor subsystems (i.e., bit-slice
machines) to single-chip integrated circuit solutions. This
migration has brought the cost of the DSP solution down
to a point that allows pervasive use of the technology. The
increased performance of these highly integrated circuits
has also expanded DSP applications from traditional tele­
communications to graphics/image processing, then to
consumer audio processing.

A recent development in DSP technology is the single­
chip digital Signal processor, such as the TMS320 family of
processors. These processors give the designer a DSP solu­
tion with its performance attainable only by the array pro­
cessors a few years ago. Fig. 1 shows the TMS320 family in
graphical form with the y-axis indicating the hypothetical
performance and the x-axis being the evolution of the semi­
conductor processing technology. The first member of the
family, the TMS32010, was disclosed to the market in 1982
[11], [12]. It gave the system designer the first microcom­
puter capable of performing five million DSP operations
per second (5 MIPS), including the add and multiply func­
tions [13] required in (1). Today there are a dozen spinoffs
from the TMS32010 in the first generation of the TMS320
family. Some of these devices are the TMS320C10,
TMS320C15, and TMS320C17 [14]. The second generation
of devices include the TMS32020 [15] and TMS320C25 [16].
The TMS320C25 can perform 10 MIPS [16]. In addition,
expanded memory space, combined single-cycle multiply/
accumulate operation, multiprocessing capabilities, and
expanded I/O functions have given the TMS320C25 a
2 to 4 times performance improvement over its predeces­
sors. The third generation of the TMS320 family of proces­
sors, the TMS320C30 [26], [27]. has a computational rate ot'
33 million DSP floating-point operations per second (33
MFlOPS). Its performance (speed, throughput, and pre­
cision) has far exceeded the digital Signal processors avail­
able today and has reached the level of a supercomputer.

It we look closely at the TMS320 family as shown in Fig.
1, we can see that devices in the same generation, such as
the TMS320C10, TMS320C15, and TMS320C17, are assembly
object-code compatible. Devices across generations, such
as the TMS320C10 and TMS320C25, are assembly source­
code compatible. Software investment on DSP algorithms
therefore can be maintained during the system upgrade.
Another point is that since the introduction of the
TMS32010, semiconductor processing technology has
emerged from 3-l'm NMOS to 2-l'm CMOS to 1-l'm CMOS.

The TMS320 Family of Digital Signal Processors

Fig. 1. The TMS320 family of digital signal processors.

The TMS320 generations of processors have also taken the
same evolution in processing technology. Low power con·
sumption, high performance, and high-density circuit inte­
gration are some of the direct benefits of this semicon­
ductor processing evolution.

From Fig. 1, it can be observed that various DSP building
blocks, such as the CPU, RAM, ROM, 110 configurations,
and processor speeds, have been designed as individual
modules and can be rearranged or combined with other
standard cells to meet the needs of specific applications.
Each of the three generations (and future generations) will
evolve in the same manner. As applications become more
sophisticated, semicustom solutions based on the core CPU
will become the solution of choice. An example of this
approach is the TMS320C17/E17, which consists of the
TMS320C10 core CPU, expanded 4K-word program ROM
(TMS320C17) or EPROM (TMS320E17), enlarged data RAM
of 256 words, dual serial ports, companding hardware, and
a coprocessor interface. Furthermore, as integrated circuit
layout rules move into smaller geometry (now at 21'm, rap­
idly going to 1 I'm), not onlywill the TMS320 devices become
smaller in size, but also multiple CPUs will be incorporated
on the same device along with application-specific 110 to
achieve low-cost integrated system solutions.

BASIC TMS320 ARCHITECTURE

As noted previously, the underlying assumption regard­
ing a digital signal processor is fast arithmetic operations
and high throughput to handle mathematically intensive
algorithms in real time. In the TM5320 family [11J-[17], [26],
[27], this is accomplished by using the following basic con­
cepts:

Harvard architecture,
extensive pipelining,
dedicated hardware multiplier,

• special DSP instructions,
fast instruction cycle.

The TMS320 Family of Digital Signal Processors

2.0·~m CMOS

These concepts were designed into the TMS320 digital sig­
nal processors to handle the vast amount of data charac­
teristic of DSP operations, and to allow most DSP opera­
tions to be executed in a single-cycle instruction.
Furthermore, the TMS320 processors are programmable
devices, providing the flexibility and ease of use of general­
purpose microprocessors. The following paragraphs dis­
cuss how each of the above concepts is used in the TMS320
family of devices to make them useful in digital signal pro­
cessing applications.

Harvard Architecture

The TMS320 utilizes a modified Harvard architecture for
speed and flexibility. In a strict Harvard architecture [18],
[19J, the program and data memories lie in two separate
spaces, permitting a full overlap of instruction fetch and
execution. The TMS320 family's modification of the Har­
vard architecture further allows transfer between program
and data spaces, thereby increasing the flexibility of the
device. This architectural modification eliminates the need
for a separate coefficient ROM and also maximizes the pro­
cessing power by maintaining two separate bus structures
(program and data) for full-speed execution.

Extensive Pipe lining

In conjunction with the Harvard architecture, pipelining
is used extensively to reduce the instruction cycle time to
its absolute minimum, and to increase the throughput of
the processor. The pipeline can be anywhere from two to
four levels deep, depending on which processor in the fam­
ily is used. The TMS320 family architecture uses a two-level
pipeline for its first generation, a three-level pipeline for its
second generation, and a four-level pipeline for its third
generation of processors. This means that the device is pro­
cessing from two to four instructions in parallel, and each
instruction isat a different stage in its execution. Fig. 2 shows
an example of a three-level pipeline operation.

15

CLKOUT1

Pfefetch

decode

execute N-2 N-1

Fig. 2. Three-level pipeline operation.

In pipeline operation, the prefetch, decode, and execute
. operations can be handled independently, thus allowing

the execution of instructions to overlap. During any instruc­
tion cycle, three different instructions are active, each at a
different stage of completion. For example, as the Nth
instruction is being prefetched, the previous (N - 1)th
instruction is being decoded, and the previous (N - 2)th
instruction is being executed. In general, the pipeline is
transparent to the user.

DedicatedHardware Multiplier

As we saw in the general form of an FIR filter, multipli­
cation is an important part of digital signal processing. For
each filter tap (denoted by i), a multiplication and an addi­
tion must take place. The faster a multiplication can be per­
formed, the higher the performance of the digital signal
processor. In general-purpose microprocessors, the mul­
tiplication instruction is constructed by a series of addi­
tions, ther~fore taking many instruction cycles. In com­
parison, tIlecharacteristic of every DSP device is a dedicated
multiplier. In the TMS320 family, multiplication is a single­
cycle instruction as a result of the dedicated hardware mul­
tiplier. If we look at the arithmetic for each tap of the FIR
filter to be performed by the TMS32010, we see that each
tap of the filter requires a multiplication (MPY) instruction.

LT
DMOV
MPY
APAC

;LOAD MULTIPLICAND INTO T REGISTER
;MOVE DATA IN MEMORY TO DO DELAY
;MULTIPLY
;ADD MULTIPLICATION RESULT TO ACC

The other three instructions are used to load the multiplier
circuit with the multiplicand (LT), move the data through
the filter tap (DMOV), and add the result of the multipli­
cation (stored in the product register) to the accumulator
(APAC). SpeCifically, the multiply instruction (MPY) loads
the multiplier into the dedicated multiplier and performs
the multiplication, placing the result in a product register.
Therefore, if a 256-tap FIR filter is used, these four instruc­
tions are repeated 256 times. At each sample period, 256
multiplications must be performed. In a typical general­
purpose microprocessor, this requires each tap to be 30 to
40 instruction cycles long, whereas in the TMS320C10, it is
only four instruction cycles. We will see in the next section
how special DSP instructions reduce the time required for
each FIR tap even further.

Special DSP instructions

Another characteristic of DSP devices is the use of special
instructions. We were introduced to one ofthem in the pre­
vious example, the DMOV (data move) instruction. In dig­
ital signal processing, the delay operator (z -1) is very impor­
tant. Recalling the stock market example, during each new
sample period (Le., each new day), the oldest piece of data

16

(the closing price five days ago) was dropped and a new one
(today's closing price) was added. Or, each piece of the old
data is delayed or moved one sample period to make room
for the incoming most current sample. This delay is the
function of the DMOV instruction. Another special instruc­
tion in the TMS32010 is the LTD instruction. It executes the
LT, DMOV, and APAC instructions in a single cycle. The LTD
and MPY instruction then reduce the number of instruction
cycles per FIR filtertap from four to two. In the second-gen­
eration TMS320, such as the TMS320C25, two more special
instructions have been included (the RPT and MACD
instructions) to reduce the number of cycles per tap to one,
as shown in the following:

RPTK 255 ;REPEAT THE NEXT INSTRUCTION 256 TIMES
(N + 1)

MACD ;LT, DMOV, MPY, AND APAC

Fast instruction Cycle

The real-time processing capability is further enhanced
by the raw speed ofthe processor in executing instructions.
The characteristics which we have discussed, combined
with optimization of the integrated circuit design for speed,
give the DSP devices instruction cycle times less than 200
ns. The speCific instruction cycle times for the TMS320 fam­
ily are given in Table 2. These fast cycle times have made

Table 2 TM5320 Cycle Times

Device

TMS320C10'
TMS32020
TMS320C25
TMS320C30

Cycle Time
(ns)

160-200
160-200
100-125
60-75

-The same cycle time applies to all of the first-generation processors.

the TM5320 family of processors highly suited for mahy real­
time DSP applications. Table 1 showed the sample rates for
some typical DSP applications. This table can be combined
with the cycle times indicated in Table 2 to show how many
instruction cycles per sample can be achieved by the var­
ious generations of the TMS320 for real-time applications
(see Fig. 3).

As we can see from Fig. 3, many instruction cycles are
available to process the Signal or to generate commands for
real-time control applications. Therefore, for simple con­
trol applications, the general-purpose microprocessors or
controllers would be adequate. However, for more math­
ematically intensive control applications, such as robotics
and adaptive control, digital Signal processors are much
better suited [24]. The number of available instruction cycles
is reduced as we increase the sample rate from 8 kHz for
typical telecommunication applications to 40-48 kHz for
audio processing. Since most of these real-time applica­
tions require only a few hundreds of instructions per sam­
ple (such as ADPCM [4], and echo cancelation [4]), this is
within the reach of the TMS320. For higher sample rate
applications, such as video/image processing, digital signal
processors available today are not capable of handling the
processing of the real-time video data. Therefore, for these

The TMS320 Family of Digital Signal Processors

Third-Generation TMS320
5000

Second-Generation TMS320

!

!
First-Generation TMS320

C
600 0

j
V ~ 0

j l I
50

I
c 0
0 E
M H 0

j j I
5

0 1 kHz 10 kHz 100 kHz 10 MHz

Sample Rata

Fig. 3. Number of instruction cycles/sample versus sample rate for the TMS320 family_

types of applications, multiple digital signal processors and
frame buffers are usually required. From Fig. 3, it can also
be seen that for slower speed applications, such as control,
the first-generation TMS320 provides better cost-perfor­
mance-tradeoffs than the other processors. For high sample
rate applications, such as video/image processing, the sec­
ond and third generations of the TMS320 with their mul­
tiprocessing capabilities and high throughput are better
suited.

Now that we have discussed the basic characteristics of
digital Signal processors, we can concentrate on specific
details of each of the three generations of the TMS320 fam­
ily devices.

THE FIRST GENERATION OF THE TMS320 FAMILY

The first generation of the TMS320 family includes the
TMS32010 [13], and TMS32011 [17], which are processed in
2.4-l'm NMOS technology, and the TMS320C10 [13],
TMS320C15/E15 [14], and TMS320C17/E17 [14], processed in
1.8-l'm CMOS technology. Someolthe key features of these
devices are [14] as follows:

Instruction cycle timing:
-160 ns
-200 ns
-280 ns.

On-chip data RAM:
-144 words
-256 words (TMS320C1S/E15, TMS320C17/E17).

On-chip program ROM:
-1.5K words
-4K words (TMS320C15, TMS320C17).

4K words of on-chip program EPROM (TMS320E15,
TMS320E17).

External memory expansion up to 4K words at full
speed.

16 x 16-bit parallel multiplier with 32-bit result.
Barrel shifter for shifting data memory words into the

AlU.
Parallel shifter.
4 x 12-bit stack that allows context switching.
Two auxiliary registers for indirect addressing.

The TMS320 Family of Digital Signal Processors

Dual-channel serial port (TMS32011, TMS320C17,
TMS320E17).

On-chip companding hardware (TMS32011,
TMS320C17, TMS320E17).

Coprocessor interface (TMS320C17, TMS320E17).
Device packaging

-40-pin DIP
-44-pin PlCC.

TMS320C1O

The first generation of the TMS320 processors is based
on the architecture of the TMS32010 and its CMOS replica,
the TMS320C10. The TMS32010 was introduced in 1982 and
was the first microcomputer capable of performing 5 MIPS.
Since the TMS32010 has been covered extensively in the
literature [4], [11]-[14], wewill only provide a cursory review
here. A functional block diagram olthe TMS320C10 is shown
in Fig. 4.

As shown in Fig. 4, the TMS320C10 utilizes the modified
Harvard architecture in which program memory and data
memory lie in two separate spaces. Program memory can
reside both on-chip (1.5Kwords)oroff-chip (4Kwords). Data
memoryisthe144 x 16-bit on-chip data RAM. Therearefour
basic arithmetic elements: the AlU, the accumulator, the
multiplier, and the shifters. All arithmetic operations are
performed using two's-complement arithmetic.

ALU: The AlU is a general-purpose arithmetic logic unit
that operates with a 32-bit data word. The unit can add, sub­
tract, and perform logical operations.

Accumulator: The accumulator stores the output from the
AlU and is also often an input to the AlU. It op"rOltes with
a32-bitword length. The accumulator is divided into a high­
order word (bits 31 through 16) and a low-order word (bits
15 through 0). Instructions are provided for storing the high­
and low-order accumulator words in data memory (SACH
for store accumulator high and SACl for store accumulator
low).

Multiplier: The 16 x 16-bit parallel multiplier consists of
three units: the T register, the P register, and the multipler
array. The T register is a 16-bit register that stores the mul­
tiplicand, while the P register is a 32-bit register that stores
the product. In order to use the multiplier, the multiplicand

17

WE
DEN

I.
MEN

BiO
INSTRUCTION

MC/MP

iNf

OS
PROGRAM

ROM
11536 x 161

DATA RAM
1144" 161

LEGEND:

Ace == Accumulator

AAP = Auxiliary register pointer

ARO = Auxiliary register 0

AAl '" Au)(iliary registef 1

OP '" Data page pointer

PC '" Program counter

P '" P register

= T register

fig. 4. TMS320Cl0 functional block diagram.

must first be loaded into the T register from the data RAM
by using one of the following instructions: LT, LTA, or LTD.
Then the MPY (multiply) or the MPYK (multiply immediate)
instruction is executed. The multiply and accumulate oper­
ations can be accomplished in two instruction cycles with
the LTNLTD and MPYiMPYK instructions.

Shiflers: Two shifters are available for manipulating data:
a barrel shifter and a parallel shifter. The barrel shifter per­
forms a left-shift of 0 to 16 bits on all data memory words
that are to be loaded into, subtracted from, or added to the
accumulator. The parallel shifter, activated by the SACH
instruction, can execute a shift of 0, 1, or 4 bits to take care
of the sign bits in two's-complement arithmetic calcula·
tions.

Based on the architecture of the TMS32010/C10, several
spinoffs have been generated offering different processor
speeds, expanded memory, and various 1/0 integration.
Currently, the newest members in this generation are the
TMS320C15iE15 and the TMS320C17/E17 [14].

18

DATA

I. I.

TMS320C151E15

The TMS320C15 and TMS320E15 are fu lIy object-code and
pin-for-pin compatible with the TMS32010 and offer
expanded on-chip RAM of 256 words and on-chip program
ROM (TMS320C15) or EPROM (TMS320E15) of 4Kwords. The
TMS320C15 is available in either a 200·ns version or a 160-
ns version (TMS320C15-25).

TMS320C171E17

The TMS320C17/E17 is a dedicated microcomputer with
4K words of on-chip program ROM (TMS320C17) or EPROM
(TMS320E17), a dual·channel serial port for full-duplex serial
communication, on-chip companding hardware (u-Iawl
A·law), a serial port timer for stand-alone serial commu­
nication, and a coprocessor interface for zero glue interface
between t~e processor and any 4lB/16-bit microprocessor.
The TMS320C17/E17 isalsoobject-code compatible with the
TMS32010 and can use the same development tools. The

The TMS320 Family of Digital Signal Processors

Table 3 TMS320 First-Generation Processors

Instruction On-Chip
TMS320 Cycle Time Prog ROM
Devices (ns) Process (words)

TMS32010 200 NMOS 1.5K
TMS32010-25 160 NMOS 1.5K
TMS32010-14 280 NMOS l.5K
TMS32011 200 NMOS I.5K
TMS320Cl0 200 CMOS l.5K
TMS320Cl0-25 160 CMOS l.5K
TMS320C15 200 CMOS 4.0K
TMS320C15-25 160 CMOS 4.0K
TMS320E15 200 CMOS
TMS320C17 200 CMOS 4.0K
TMS320C17-25 160 CMOS 4.0K
TMS320E17 200 CMOS

device is based on the TMS320Cl0 core CPU with added
peripheral memory and I/O modules added on-chip. The
TMS320C17/E17 can be regarded as a semicustom DSP solu­
tion suited for high-volume telecommunication and con­
sumer applications.

Table 3 provides a feature comparison of all members of
the first-generation TMS320 processors. References to more
detailed information on these processors are also provided.

THE SECOND GENERATION OF THE TMS320 FAMILY

The secDnd-generation TMS320 digital signal processors
includes two members, the TMS32020 [151 and the
TMS320C25 [161. The architecture of these devices has been
evolved from the TMS32010, the first member of the TMS320
family. Key features of the second-generation TMS320 are
as follows:

Instruction cycle timing:
-100 ns (TMS320C25)
-200 ns (TMS32020).

4K words of on-chip masked ROM (TMS320C25).
544 words of on-chip data RAM.
12BK words of total program data memory space.
Eight auxiliary registers with a dedicated arithmetic
unit.
Eight-level hardware stack.
Fully static double-buffered serial port.
Wait states for communication to slower off-chip
memories.
Serial port for multiprocessing or interfacing to codecs.
Concurrent DMA using an extended hold operation
(TMS320C25).
Bit-reversed addressing modes for fast Fourier trans­
forms (TMS320C25).
Extended-precision arithmetic and adaptive filtering
support (TMS320C25).
Full-speed operation of MAC/MACD instructions from
external memory (TMS320C25).
Accumulator carry bit and related instructions
(TMS320C25).
1.B-l'm CMOS technology (TMS320C25):

-6B-pin grid array (PGA) package.
-6B-pin lead chip carrier (PLCC) package.

2.4-l'm NMOS technology (TMS32020):
-68-pin PGA package.

The TMS320 Family of Digital Signal Processors

On-Chip On-Chip Off-Chip
Prog EPROM Data RAM Prog

(words) (words) (words) Ref

144 4K [13]
144 4K [13]
144 4K [13]
144 [17]
144 4K [13]
144 4K [13]
256 4K [13]
256 4K [14]

4.0K 256 4K [14]
256 [14]
256 [14]

4.0K 256 [14]

TMS320C25 Architecture

The TMS320C25 is the latest member in the second gen­
eration ofTMS320 digital signal processors. It is a pin-com­
patible CMOS version of the TMS32020 microprocessor,
but with an instruction cycle time twice as fast and the inclu­
sion of additional hardware and software features. The
instruction set is a superset of both the TMS32010 and
TMS32020, maintaining source-code compatibility. In addi­
tion, it is completely object-code compatible with the
TMS32020 so that TMS32020 programs run unmodified on
the TMS320C25.

The 100-ns instruction cycle time provides a significant
throughput advantage for many existing applications. Since
most instructions are capable of executing in a single cycle,
the processor is capable of executing ten million instruc­
tions per second (10 MIPS). Increased throughput on the
TMS320C25 for many DSP applications is attained by means
of Single-cycle multiply/accumulate instructions with a data
move option (MAC/MACD), eight auxiliary registers with a
dedicated arithmetic unit, instruction set support for adap­
tive filtering and extended-precision arithmetic, bit-rever­
sal addreSSing, and faster I/O necessary for data-intensive
signal processing.

Instructions are included to provide data transfers
between the two memory spaces. Externally, the program
and data memory spaces are multiplexed over the same bus
so as to maximize the address range for both spaces while
minimizing the pin count of the device. Internally, the
TMS320C25 architecture maximizes processing power by
maintaining two separate bus structures, program and data,
for full-speed execution.

Program execution in thedevice takes the form of a three­
level instruction fetch-decade-execute pipeline (see Fig.
2). The pipeline is essentially invisible to the user, except
in some cases where it must be broken (such as for branch
instructions), In this case, the instruction timing takes into
account the fact that the pipeline must be emptied and
refilled. Two large on-chip data RAM blocks (a total of 544
words), one of which is configu rable either as program or
data memory, provide increased flexibility in syslem design.
An ott-chip 64K-word directly addressable' dOla memory
address space is included to facilitate implelTll'ntations of
DSP algorithms. The large on-chip 4K-word ",,,,ked ROM
can be used for cost-reduced systems, thll' p,"viding for
a true single-chip DSP solution. The remai"d"r IIf the 64K­
word program memory space is located e,I,-, ",Illy. Large

19

programs can execute at full speed from this memory space.
Programs may also be downloaded from slow external
memory to on·chip RAM for full·speed operation. The VlSI
implementation of the TMS320C25 incorporates all of these

features as well as many others such as a hardware timer,
serial port, and block data transfer capabilities.

A functional block diagram of the TMS320C25, shown in
Fig. 5, outlines the principal blocks and data paths within

RIW

STRB
READY

iiii
XF

MP/MC
0012-01-+'----'

A1S-AO

015·00

LEGEND'
ACCH - Accumulator high IFR - Interrupt tlag .egister
ACCl ~ Accumulator low Intenupt mask regisle.
AlU ~ Arithmetic logic unit IR - Instruction register
ARAU ~ Audla.y ,egiste. arithmetic unit Mieracall Slack
ARB ~ AUkiliel.,. regisle. pointe. buffer QlR
ARP ~ AUk,lia.v regi$ler pointer
OP = Oal8 memory pege pointer PRO
ORR =. Serial port data receive legister TIM
OXR = Serial port data transmit register

Queue instructIon register
- Product .egister

Period 'egiste. for lime.
- Timer
- Tempore.y regisle.

D)(R(161

TlM{161

PROl161

IMRt61

GREGIBI

PC Pfo9.em counter
PFC - Prefetch counter
RPTC _ Repeal instrllClion cOllnter
GREG _ Global memory .llocation register
RSR - Seri,l port recell/e shill regi"er
XSR _ Seri.1 port tr.nsmil shill r'giller
ARO·AR7 AlIlliliary registers
STO.ST1 SIaIIlS regislers

Fig. 5. TMS320C25 functional block diagram.

20 The TMS320 Family of Digital Signal Processors

the processor. The diagram also shows all of the TMS320C25
interface pins.

In the following architectural discussions on the mem­
ory, central arithmetic logic unit, hardware multiplier, con­
trol operations, serial port, and 110 interface, please refer
to the block diagram shown in Fig. 5.

Memory Allocation: The TMS320C25 provides a total of
4K 16-bit words of on-chip program ROM and 544 16-bit
words of on.chip data RAM. The RAM is divided into three
separate Blocks (BO, B1, and B2). Olthe 544 words, 256 words
(block BO) are configurable as either data or program mem­
ory by CNFD (configure data memory) or CNFP (configure
program memory) instructions provided for that purpose;
288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS320C25 to
handle a data array of 512 words while still leaving 32 loca­
tions for intermediate storage. The TMS320C25 provides
64K words of off-chip directly addressable data memory
space as well as a 64K-word off-chip program memory space.

A register file containing eight Auxiliary Registers (ARO­
AR7), which are used for indirect addressing of data mem­
ory and for temporary storage, increase the flexibility and
efficiency of the device. These registers may be either
directly addressed by an instruction or indirectly addressed
by a 3·bit Auxiliary Register Pointer (ARP). The auxiliary reg·
isters and the ARP may be loaded from either data memory
or by an immediate operand defined in the instruction. The
contents of these registers may also be stored into data
memory. The auxiliary register file is connected to the Aux·
iliary Register Arithmetic Unit (ARAU). Using the ARAU
accessing tables of information does not require the CAlU
for address manipulation, thus freeing it for other opera­
tions.

Central Arithmetic Logic Vnit (CAL V): The CAlU contains
a 16-bit scaling shifter, a 16 x 16-bit parallel multiplier, a 32-
bit Arithmetic logic Unit (AlU), and a 32·bit accumulator.
The scaling shifter has a 16-bit input connected to the data
bus and a 32·bit output connected to the AlU. This shifter
produces a left·shift of 0 to 16 bits on the input data, as pro­
grammed in the instruction. Additional shifters at the out­
puts of both the accumulator and the multiplier are suitable
for numerical scaling, bit extraction, extended-precision
arithmetic, and overflow prevention.

The following steps occur in the implementation of a typ­
ical AlU instruction:

1) Data are fetched from the RAM on the data bus.
2) Data are passed through the scaling shifter and the

AlU where the arithmetic is performed.
3) The result is moved into the accumulator.

The 32-bit accumulator is split into two 16-bit segments
for storage in data memory: ACCH (accumulator high) and
ACCl (accumulator low). The accumulator has a carry bit
to facilitate multiple-precision arithmetic for both addition
and subtract instructions.

Hardware Multiplier: The TMS320C25 utilizes a 16 x 16-
bit hardware multiplier, which is capable of computing a
32·bit product during every machine cycle. Two registers
are associated with the multiplier:

a 16·bit Temporary Register (TR) that holds one of the
operands for the multiplier, and
a 32-bit Product Register (PR) that holds the product.

The TMS320 Family of Digital Signal Processors

The output of the product register can be left-shifted 1 or
4 bits. This is useful for implementing fractional arithmetic
or justifying fractional products. The output of the PR can
also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiplelaccumulates without overflow.
An unSigned multiply (MPYU) instruction facilitates
extended-precision multiplication.

110 Interface: The TMS320C25 110 space consists of 16
input and 16 output ports. These ports provide the full16-
bit parallel 110 interface via the data bus on the device. A
single input (IN) or output (OUT) operation typically takes
two cycles; however, when used with the repeat counter,
the operation becomes single-cycle. 110 devices are mapped
into the 110 address space using the processor's external
address and data buses in the same manner as memory­
mapped devices. Interfacing to memory and 110 devices of
varying speeds is accomplished by using the READY line.

A Direct Memory Access (DMA) to external programldata
memory is also supported. Another processor can take
complete control of the TMS320C25's external memory by
asserting HOLD low, causing the TMS320C25 to place its
address, data, and control lines in the high-impedance state.
Signaling between the external processor and the
TMS320C25 can be performed using interrupts. Two modes
of DMA are available on the device. In the first, execution
is suspended during assertion of HOLD. In the second
"concurrent DMA" mode, the TMS320C25 continues to
execute its program while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive
applications.

TMS320C2S Software

The majority of the TMS320C25 instructions (97 out of 133)
are executed in a single instruction cycle. Of the 36 instruc­
tions that require additional cycles of execution, 21 involve
branches, calls, and returns that result in a reload of the
program counter and a break in the execution pipeline.
Another seven of the instructions are two·word, long­
immediate instructions. The remaining eight instructions
support 110, transfers of data between memory spaces, or
provide for additional parallel operation in the processor.
Furthermore, these eight instructions (IN, OUT, BlKD,
BlKP, TBlR, TBlW, MAC, and MAC D) become single-cycle
when used in conjunction with the repeat counter. The
functional performance olthe instructions exploits the par­
allelism of the processor, allowing complex andlor numer­
ically intensive computations to be implemented in rela­
tively few instructions.

Addressing Modes: Since most of the instructions are
coded in a single 16-bit word, most instructions can be exe­
cuted in a single cycle. Three memory addressing modes
are available with the instruction set: direct, indirect, and
immediate addreSSing. Both direct and indirect addreSSing
are used to access data memory. Immediate addressing uses
the contents of the memory addressed by the program
counter.

When using direct addreSSing, 7 bits of the instruction
word are concatenated with the 9 bits of the data memory
page pointer (DP) to form the 16-bit data memory address.
With a 128-word page length, the DP register points to one
of 512 possible data memory pages to obtain a64K total data
memory space. Indirect addressing is provided by the aux-

21

iliary registers (ARO-AR7). The seven types of indirect
addressing are shown in Table 4. Bit·reversed indexed
addressing modes allow efficient I/O to be performed for

. the resequencing of data points in a radix·2 FFT program.

Table 4 Addressing Modes of the TMS320C25

Addressing Mode

OPA
OP' (,NARP)
OP '+CNARP)
OP '-(,NARP)
OP 'O+CNARP)
OP 'O-CNARP)

OP 'BRO+CNARP)

OP 'BRO-CNARP)

Operation

direct addressing
indirect; no change to AR.
indirect; current AR is incremented.
indirect; current AR is decremented.
indirect; ARO is added to current AR.
indirect; ARO is subtracted from

current AR.
indirect; ARO is added to current AR

(with reverse carry propagation).
indirect; ARO is subtracted from

current AR (with reverse carry
propagation),

Note: The optional NARP field specifies a new value of the ARP.

TMS320C25 System Configurations

The flexibility of the TMS320C25 allows systems config­
urations to satisfy a wide range of application requirements
[16]. The TMS320C25 can be used in the following config­
urations:

a stand-alone system (a single processor using 4K
words of on-chip ROM and 544words of on-chip RAM),
parallel multiprocessing systems with shared global
data memory, or
host/peripheral coprocessing using interface control
signals.

A minimal processing system is shown in Fig. 6 using
external data RAM. and PROM/EPROM. Parallel multipro­
cessing and host/peripheral coprocessing systems can be
designed by taking advantage of the TMS320C25's direct
memory access and global memory configuration capabil­
ities.

In some digital processing tasks, the algorithm being
implemented can be divided into sections with a distinct
processor dedicated to each section. In this case, the first
and second processors may share global data memory, as
well as the second and third, the third and fourth, etc. Arbi­
tration logic may be required to determine which section
of the algorithm is executing and which processor has
access tothe global memory. With multiple processors ded-

SERIAL ::: .. "
COMMUNICA nON .

icated to distinct sections of the algorithm, throughput can
be increased via pipelined execution. The TMS320C25 is
capable of allocating up to 32K words of data memory as
global memory for multiprocessing applications .

THE THIRD GENERATION OF THE TMS320 FAMILY

The TMS320C30 [26]-[27] is Texas Instruments third-gen­
eration member of the TMS320 family of compatible digital
signal processors. With a computational rate of 33 MFLOPS
(million floating-point operations per second), the
TMS320C30 far exceeds the performance of any program­
mable DSP available today. Total system performance has
been maximized through internal parallelism, more than
twenty-four thousand bytes of on-chip memory, Single-cycle
floating-point operations, and concurrent I/O. Thetotal sys­
tem cost is minimized with on-chip memory and on-chip
peripherals such as timers qnd serial ports. Finally, the user's
system design time is dramatically reduced with the avail­
ability of the floating-point operations, general-purpose
instructions and features, and quality development tools.

The TMS320C30 provides the user with a level of per­
formance that, at one time, was the exclusive domain of
supercomputers. The strong architectural emphasis of pro­
viding a low-cost system solution to demanding arithmetic
algorithms has resulted in the architecture shown in Fig. 7.

The key features of the TMS320C30 [26], [27] are as fol­
lows:

60-ns single-cycle execution time, l-l'm CMOS.
Two 1K x 32-bit Single-cycle dual-access RAM blocks.
One 4K x 32-bit single-cycle dual-access ROM block.
64 x 32-bit instruction cache.
32-bit instruction and data words, 24-bit addresses.
32/40·bit floating-pOint and integer multiplier.
32/40-bit floating-point, integer, and logical ALU.
32-bit barrel shifter.
Eight extended-precision registers.
Two address-generators with eight auxiliary registers.
On-chip Direct Memory Access (DMA) controller for
concurrent I/O and CPU operation.
Peripheral bus and modules for easy customization.
High-level language support.
Interlocked instructions for multiprocessing support.
Zero overhead loops and single-cycle branches.

The architecture of the TMS320C30 is targeted at 60-ns
and faster cycle times. To achieve such high-performance

Fig. 6. Minimal processing system With external data RAM and PROM/EPRO~.

22 The TMS320 Family of Digital Signal Processors

PROGRAM RAM RAM ROM
CACHE BLOCK 0 BLOCK 1 BLOCK 0

(64 X 321 11K X 321 (1K X 321 (4K X 321

R5Y
H'OCD

Hl)[OA

mm
RiI'i

0(31·01

A/23·01

IIlm INTEGERJ INTEGER!

FLOA TlNG·POINT FlOA TlNG·POINT
iNf(3·01 C

MULTiPliER ALU
iACK 0

XF(l·O) 32·BIT BARREL SHIFTER

MC!MP

x, 0
EXTENDED·PRECISION

REGISTERS (RO-R7)
X2/ClKIN

Vce/ 7·D) ADDRESS ADDRESS

VSS110·01
GENERATOR 0 GENERATOR 1

VBBP AUXILIARY REGISTERS

SUBS IARO·AR7)

CONTROL REGISTERS 1121

Fig. 7. TMS320C30 functional block diagram.

goals while still providing low·cost system solutions, the
TMS320C30 is designed using Texas Instruments state·of­
the-art 1-l'm CMOS process. The TMS320C30 's high system
performance is achieved through a high degree of paral­
lelism, the accuracy and precision of its floating-point units,
its on-chip DMA controller that supports concurrent 110,
and its general-purpose features. At the heart of the archi­
tecture is the Central Processing Unit (CPU).

The CPU

The CPU consists of the following elements: floating­
point/integer mu Itiplier; ALU for performing floating-poi nt,
integer, and logical operations; auxiliary register arithmetic
units; supporting register file, and associated buses. The
multiplier of the CpU performs floating-point and integer
multiplication. When performing floating-point multipli­
cation, the inputs are 32-bit floating-point numbers, and the
result is a 40-bit floating-point number. When performing
integer multiplication, the input data is 24 bits and yields
a 32-bit result. The ALU performs 32-bit integer, 32-bit log­
ical, and 40-bit floating-point operations. Results of the mul­
tiplier and the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The TMS320C30 has the
ability to perform, in a single cycle, parallel mUltiplies and
adds (subtracts) on integer or floating-point data. It is this
ability to perform floating-point multiplies and adds (sub­
tracts) in a single cycle which give the TMS320C30 its peak
computational rate of 33 MFLOPS.

Floating-point operations provide the user with a con­
venient and Virtually trouble-free means of performing
computations while maintaining accuracy and precision.
The TMS320C30 implementation of floating-point arith-

FSXO

OXO

SOURCE AND DESTINATION CLKXO

ADDRESS GENERATORS FSRO

ORO

CONTROL REGISTERS CLKRO

FSXl

OX,

CLKXl

FSRl

DR.

ClKRl

TClKD

TClKl

metic allows for floating-point operations at integer speeds.
The floating-point capability allows the user to ignore, to
a large extent, problems with overflow, operand alignment,
and other burdensome tasks common to integer opera­
tions.

The register file contains 28 registers, which may be oper­
ated upon by the multiplier and ALU. Thefirsteightofthese
registers (RO-R7) are the extended-precision registers,
which support operations on 40-bit floating-point numbers
and 32-bit integers.

The next eight registers (ARO-AR7) are the auxiliary reg­
isters, whose primary function is related to the generation
of addresses. However, they also may be used as general­
purpose 32-bit registers. Two auxiliary register arithmetic
units (ARAUO and ARAU1) can generate two addresses in
a single cycle. The ARAUs operate in parallel with the mul­
tiplier and ALU. They support addressing with displace­
ments, index registers (lRO and IR1), and circular and bit­
reversed addressing.

The remaining registers support a variety of system func­
tions: addressing, stack management, processor status,
block repeat, and interrupts.

Data Organization

Two integer formats are supported on the TMS320C30:
a 16-bit format used for immediate integer operands and
a 32-bit Single-precision integer format.

Two unsigned-integer formats are available: a 16-bit for­
mat for immediate unsigned-integer operands and a 32-bit
single-precision unsigned-integer format.

The three floating-point formats are assumed to be nor­
malized, thus providing an extra bit of precision. The first

The TMS320 Family of Digital Signal Processors 23

is a 16-bit short floating-point format for immediate float­
ing-point operands, which consists of a 4-bit exponent, 1
sign bit, and an 11-bit fraction. The second is a single-pre­
cision format consisting of an 8-bit exponent, 1 sign bit, and
a 23-bit fraction. The third is an extended-precision format
consisting of an 8-bit exponent, 1 sign bit, and a 31-bit frac­
tion.

The total memory space of the TMS320C30 is 16M (mil­
lion) x 32 bits. A machine word is 32 bits, and all addressing
is performed byword. Program, data, and 1/0 space are con­
tained within the 16M-word address space.

RAM blocks 0 and 1 are each 1K x 32 bits. The ROM block
is 4K x 32 bits. Each RAM block and ROM block is capable
of supporting two data accesses in a single cycle. For exam­
ple, the user may, in a single cycle, access a program word
and a data word from the ROM block.

The separate program data, and DMA buses allow for par­
allel program fetches, data reads and writes, and DMAoper­
ations. Management of memory resources and busing is
handled by the memory controller. For example, a typical
mode of operation could involve a program fetch from the
on-chip program cache, two data fetches from RAM block
0, and the DMA moving data from off-chip memory to RAM
block 1. All of this can be done in parallel with no impact
on the performance of the CPU.

A 64 x 32-bit instruction cache allows for maximum sys­
tem performance with minimal system cost. The instruction
cache stores often repeated sections of code. The code may
then be fetched from the cache, thus greatly reducing the
number of off-chip accesses necessary. This allows for code
to be stored off-chip in slower, lower cost memories. Also,
the external buses are freed, thus allowing for their use by
the DMA or other devices in the system.

DMA

The TMS320C30 processes an on-chip Direct Memory
Access (DMA) controller. The DMA controller is able to per­
form reads from and writes to any location in the memory
map without interfering with the operation of the CPU. As
a consequence, it is possible to interface the TMS320C30
to slow external memories and peripherals (AIDs, serial
ports, etc.) without affecting the computational throughput
·of the CPU. The result is improved system performance and
decreased system cost.

The DMA controller contains its own address generators,
source and destination registers, and transfer counter.
Dedicated DMAaddress and data buses allow for operation
with no conflicts between the CPU and DMA controller.

The DMA controller responds to interrupts in a similar
way to the CPU. This ability allows the DMA to transfer data
based upon the interrupts received. Thus 1/0 transfers that
would normally be performed by the CPU may instead be
performed by the DMA. Again, the CPU may continue pro­
cessing data while the DMA receives or transmits data.

Peripherals

All peripheral modules are manipulated through mem­
ory-mapped registers located on a dedicated peripheral bus.
This peripheral bus allows for the straightforward addition,
removal, and creation of peripheral modules. The initial
TMS320C30 peripheral library will include timers and serial
ports. The peripheral library concept allows Texas Instru-

24

ments to create new modules to serve a-wide variety of
applications. For example, the configuration of the
TMS320C30 in Fig. 7 includes two timers and two serial ports.

Timers: The two timer modules are general-purpose
timer/event counters, with two signaling modes and inter­
nal or external clocking.

Available to each timer is an 1/0 pin that can be used as
an input clock to the timer or as an output signal driven by
the timer. The pin may also be configured as a general-pur­
pose 1/0 pin.

Serial Ports: The two serial ports are modular and totally
independent. Each serial port can be configured to transfer
8,16,24, or 32 bits of data per frame. The clock for each serial
port can originate either internally or externally. An inter­
nally generated divide-down clock is prOVided. The pins of
the serial ports are configurable as general-purpose 1/0
pins. A special handshake mode allows TMS320C30s to
communicate over their serial ports with ,guaranteed syn­
chronization. The serial ports may also be configured to
operate as timers.

External Interfaces

The TMS320C30 provides two external interfaces: the par­
allel interface and the 1/0 interface. The parallel interface
consists of a 32-bit data bus, a 24-bit address bus, and a set
of control Signals. The 110 interface consists of a 32-bit data
bus, a 13-bit address bus, and a set of control Signals. Both
ports support an external ready Signal for wait-state gen­
eration and the use of software-controlled wait states.

TheTMS320C30 supports four external interrupts, a num­
ber of internal interrupts, and a nonmaskable external reset
signal. Two dedicated, general-purpose, external 1/0 flags,
XFO and XF1, may be configured as input or output pins
under software control. These pins are also used by the
interlocked instructions to support multiprocessor com­
munication.

Pipelining In the TMS320C30

The operation of the TMS320C30 is controlled by five
major functional units. The five major units and their func­
tion are as follows:

Fetch Unit (F) which controls the program counter
updates and fetches of the instruction words from
memory.
Decode Unit (D) which decodes the instruction word
and controls address generation.
Read Unit (R) which controls the operand reads from
memory.
Execute Unit (E) which reads operands from the reg­
ister file, performs the necessary operation, and writes
results back to the register file and memory.
DMA Channel (DMA) which reads and writes memory
concurrently with CPU operation.

Each instruction is operated upon by four of these stages;
namely, fetch, decode, read, and execute. To provide for
maximum processor throughput these units can perform
in parallel with each unit operating on a different instruc­
tion. The overlapping of the fetch, decode, read, and exe­
cute operations of different instructions is called pipelin­
ing. The DMA controller runs concurrently with these units.
The pipelining of these operations is key to the high per-

The TMS320 Family of Digital Signal Processors

formance of the TMS320C30. The ability ofthe DMA to move
data within the processor's memory space results in an even
greater utilization of the CPU with fewer interruptions of
the pipeline which inevitably yields greater performance.

The pipeline control of the TMS320C30 allows for
extremely high-speed execution rate by allowing an effec·
tive rate of one execution per cycle. It also manages pipe­
line conflicts in a way that makes them transparent to the
user.

While the pipelining of the different phases of an instruc­
tion is key to the performance of the TMS320C30, the
designers felt it essential to avoid pipelining the operation
of the multiplier or AlU. By ruling out this additional level
of pipelining it was possible to greatly improve the pro­
cessor's useability.

Instructions

The TMS320C30 instruction set is exceptionally well
suited to digital signal processing and other numerically
intensive applications. The TMS320C30 also possesses a full
complement of general-purpose instructions. The instruc­
tion set is organized into the following groups:

load and store instructions;
two-operand arithmetic instructions;
two-operand logical instructions;
three-operand arithmetic instructions;
three-operand logic instructions;
parallel operation instructions;
arithmeticllogical instruction with store instructions;
program control instructions;
interlocked operations instructions.

The load and store instructions perform the movement
of a single word to and from the registers and memory.
Included is the ability to load a register conditionally. This
operation is particularly useful for locating the maximum
and minimum of a set of data.

The two-operand arithmetic and logical instructions con­
sist of a complete set of arithmetic instructions. They have
two operands; src and dst for source and destination,
respectively. The src operand may come from memory, a
register, or be part of the instruction word. The dst operand
is always a register. This portion of the instruction set
includes floating-point integer and logical operations, sup­
port of multiprecision arithmetic, and 32-bit arithmetic and
logical shifts.

Thethree-operand arithmetic and logical instructions are
a subset of the two-operand arithmetic and logical instruc·
tions. They have three operands: two src operands and a
dst operand. The src operands may come from memory or
a register. The dst operand is always a register. These
instructions allow for the reading of two operands from
memory andlor the CPU register file in a single cycle.

The parallel operation instructions allow for a high degree
of parallelism. They support very flexible, parallel floating­
point and integer multiplies and adds. They also includethe
ability to load two registers in parallel.

The arithmeticllogical and store instructions support a
high degree of parallelism, thus complementing the par­
allel operation instructions. They allow for the performance
of an arithmetic or logical instruction between a register
and an operand read from memory, in parallel with the stor-

The TMS320 Family of Digital Signal Processors

ing of a register to memory. They also provide for extremely
rapid operations on blocks of memory.

The program control instructions consist of all those
operations that affect the program flow. This section of the
instruction set includes a set of flexible and powerful con­
structs that allow for software control of the program flow.
These fall into two main types: repeat modes and branch­
ing.

For many algorithms, there is an inner kernel of code
where most of the execution time is spent. The repeat modes
of the TMS320C30 allow for the implementation of zero
overhead looping. Using the repeat modes allows these
time-critical sections of code to be executed in the shortest
possible time. The instructions supporting the repeat
modes are RPTB (repeat a block of code) and RPTS (repeat
a Single instruction). Through the useofthe dedicated stack­
pointer, block repeats (RPTBs) may be nested.

The branching capabilities of the TMS320C30 include two
main subsets: standard and delayed branches. Standard
branches, as in any pipelined machine that comprehends
them, empty the pipeline to guarantee correct manage­
ment of the program counter. This results in a branch
requiring, in the case of the TMS320C30, four cycles to exe­
cute. Included in this subset are calls and returns. A stan­
dard branch (BR) is illustrated below.

BR
MPYF
ADDF
SUBF
AND

THREE MPYF

THREE ; standard branch.
; not executed.
; not executed.
; not executed.
; not executed.

; fetched 3 cycles after BR
is fetched.

Delayed branches do not empty the pipe, but rather,
guarantee that the next three instructions will be fetched
before the program counter is modified by the branch. The
result is a branch that only requires a single cycle. Every
delayed branch has a standard branch counterpart. A
delayed branch (BRD) is illustrated below.

BRD THREE
MPYF
ADDF
SUBF
AND

THREE MPYF

; delayed branch.
i executed.
; executed.
; executed.
; not executed.

; fetched after SUBF fetched.

The combination of the repeat modes, standard branches,
and delayed branches provides the user with a set of pro­
gramming constructs which are well suited to awide range
of performance requirements.

The program control instructions also include condi­
tional calls and returns. The decrement and branch con­
ditionally instruction allows for efficient loop control by
combining the comparison of a loop counter to zero with

25

the check of condition flags, i.e., floating-point overflow.
Thecondition codes available include unsigned and signed
comparisons, comparisons to zero, and comparisons based
upon the status of individual condition flags. These con­
ditions may be used with any of the conditional instruc­
tions.

The interlocked operations instructions support multi­
processor communication. Through the use of external sig­
nals, these instructions allow for powerful synchronization
mechanisms, such as semaphores, to be implemented. The
interlocked operations use the two external flag pins, XFO
and XF1. XFO signals an interlocked-operation request and
XF1 acts as an acknowledge signal for the requested inter­
locked operation. The interlocked operations include inter­
locked loads and stores. When an interlocked operation is
performed the external request and acknowledge signals
can be used to arbitrate between multiple processors shar­
ing memory, semaphores, or counters.

DEVELOPMENT. AND SUPPORT TOOLS

Digital signal processors are essentially application-spe­
cific microprocessors (or microcomputers). Like any other
microprocessor, no matter how impressive the perfor­
mance of the processor or the ease of interfacing, without
good development tools and technical support, it is very
difficult to design it into the system. In developing an appli­
cation, problems are encountered and questions are asked.
Oftentimes the tools and vendor support provided to the
designer are the difference between the success and failure
of the project.

The TMS320 family has a wide range of development tools
available [25]. These tools range from very inexpensive eval­
uation modules for application evaluation and bench­
marking purposes, assembler/linkers, ·and software simu­
lators, to full-capability hardware emulators. A brief sum­
mary of these support tools is prOVided in the succeeding
subsections.

Software Tools

Assembler/linkers and software simulators are available
on PC and VAX for users to develop and debug TMS320 DSP
algorithms. Their features are described as follows:

Assembler/Linker: The Macro Assembler translates
assembly language source code into executable object
code. The Linker permits a program to be designed and
implemented in separate modules that will later be linked
together to form the complete program.

Simulator: The Simulator simulates operations of the
device in software to allow program verification and debug.
The simulator uses the object code produced by the Macro
Assembler/Linker.

C Complier: The C Compiler is a full implementation of
the standard Kernighan and Ritchie C as defined in The C
Programming Language [28]. The compiler supports the
.insertion of assembly language code into the C source code.
The user may also write functions in assembly language,
and then call these functions from the C source. Similarly,
C functions may be called from assembly language.
Variables defined in the C source may be accessed in
assembly language modules and vice versa. The result is a
complier that allows the user to tailor the amount of high­
level programming versus the amount of assembly lan-

26

guage according to his application. The C compiler is sup­
ported on the TMS320C25 and the TMS320C30.

Hardware Tools

Evaluation modules and emulation tools are available for
in-circuit emulation and hardware program debugging for
developing and testing DSP algorithms in a real product
environment.

Evaluation Modu/e (EVM): The EVM is a stand-alone sin­
gle-board module that contains all of the tools necessary
to evaluate the device as well as provide basic in-circuit
emulation. The EVM contains a debug monitor, editor,
assembler, reverse assembler, and software communica­
tions to a host computer or a line printer.

SoftWare Development System (SWDS): The SoftWare
Development System is a PC plug-in card with similarfunc­
tionality of the EVM.

Emulator (XDS): The eXtended Development System pro­
vides full-speed in-circuit emulation with real-time hard­
ware breakpoint/trace and program execution capability
from target memory. By setting breakpoints based on inter­
nal conditions or external events, execution of the program
can be suspended and the XDS placed into the debug mode.
In the debug mode, all registers and memory locations can
be inspected and modified. Full-trace capabilities at full
speed and a reverse assembler that translates machinecode
back into assembly instructions are included. The XDS sys­
tem is designed to interface with either a terminal or a host
computer. In addition to the above design tools, other
development support is available [25]:

ApPLICATIONS

The TMS320 is designed for real-time DSP and other com­
putation-intensive applications [4]. In these applications,
the TMS320 provides an excellent means for executing sig­
nal processing algorithms such as fast Fourier transforms
(FFTs), digital filters, frequency synthesis, correlation, and
convolution. The TMS320 also provides for more general­
purpose functions via bit-manipulation instructions, block
data move capabilities, large program and data memory
address spaces, and flexible memory mapping.

To introduce applications performed by the TMS320, dig­
ital filters will be used as examples. The remaining portion
of this section will briefly cover applications, and conclude
by showing some benchmarks.

Digital Filtering

As discussed several times in this paper, the FIR filter is
simply the sum of products in a sampled data system. This
was shown in (1). A simple implementation of the FIR filter
uses the MACD instruction (multiply/accumulate and data
move) for each filter tap, with the RPT/RPTK instruction
repeating the MACD for each filter tap. As we saw earlier,
a 256-tap FIR filter can be implemented by using the fol­
lowing two instructions:

RPTK 255
MACD *-,COEFFP

In this example, the coefficients may be stored anywhere
in program memory (reconfigurable on-chip RAM, on-chip
ROM, or external memories). When the coefficients are

The TMS320 Family of Digital Signal Processors

stored in on-chip ROM or externally, the entire on-chip data
RAM may be used to store the sample sequence. This allows
filters of up to 512 taps to be implemented. Execution ofthe
filter will be at full speed or 100 ns per tap as long as the
memory supports full-speed execution (either on-chip RAM
or high-speed external RAM).

Up to this point, it has been assumed that the filter coef­
ficients are fixed from sample to sample. If the coefficients
are adapted or updated with time, such as in adaptive filters
for echo cancelation [4], [20], then the DSP algorithm
requires a greater computational capacity from the pro­
cessor. The requirement to adapt each of the coefficients,
usually with each sample, is accomplished by three instruc­
tions (MPYA or MPYS, ZALR, and SACH) on the TMS320C25
[16]. A means of adapting the coefficients is the least-mean­
square (LMS) algorithm given by the following equation:

bk(i + 1) = bk(i) + 2B[e(i) , x(i - k)]

where bk(i + 1) is the weighting coefficient for the next sam­
ple period, bk(i) is the weighting coefficient for the present
sample period, B is the gain factor or adaptation step size,
e(;) is the error function, and x(i - k) is the input of the filter.

In an adaptive filter, it is important to update the coef­
ficients bk(i) in order to minimize the error function e(i),
which is the difference between the output of the filter and
a reference signal. Quantization·errors are critical to the
performance of the filter when updating the coefficients
and can be minimized if the result is obtained by rounding
rather than truncating. For each coefficient in the filter at
a given point in time, the factor 2*B*e(i) is a constant. This
factor can then be computed once and stored in the T reg­
ister for each of the. updates. Thus the computational
requirement has become one multiply/accumulate plus
rounding. Without the new instructions, the adaptation of
each coefficient is five instructions corresponding to five
clock cycles. This is shown in the following instruction
sequence:

LRLK AR2,COEFFD ; LOAD ADDRESS OF
COEFFICIENTS.

LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA
SAMPLES.

LARP AR2
LT ERRF ; errf = 2'B'e(i)

ZALH ',AR3 ; ACC = bk(i)'2"16
ADD ONE,15 ; ACC = bk(i)'2"16 + 2"15
MPY '-,AR2
APAC ; ACC = bk(i)'2"16

+ errf'x(i-k) + 2"15
SACH '+ ; SAVE bk(i+l).

When the MPYA and ZALR instructions are used, the
adaptation reduces to three instructions corresponding to
three clock cycles, as shown in the following instruction
sequence. Note that the processing order has been slightly
changed to incorporate the use of the MPYA instruction.
This is due to the fact that the accumulation performed by
the MPYA is the accumulation of the previous product.

The TMS320 Family of Digital Signal Processors

LRLK AR2,COEFFD ; LOAD ADDRESS OF
COEFFICIENTS.

LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA
SAMPLES.

LARP AR2
LT ERRF ; errf = 2'B'e(i)

ZALR ',AR3 ; ACC = bk(i)'2"16 + 2"15
MPYA '-,AR2 ; ACC = bk(i)'2"16

+ errf'x(i-k) + 2"15
; PREG = errf'x(i-k+l)

SACH '+ ; SAVE bk(i+l).

The adaptive filter coefficient update can further be sim­
plified using the TMS320C30 [27) as shown below. The first
instruction defines the number of times to repeat the ker­
nel. The second instruction is the repeat-block instruction
(RPTB). The RPTB instruction allows the iterations ofthe ker­
nel to be performed with zero overhead looping. The kernel
assumes that the error term is stored in register RO. It is
important to note that all of the calculations are performed
in floating-point arithmetic. The MPYF3 is a three-operand
floating-point multiply of the input sample x(i - k), which
is stored in memory by the error term errf. The next step
is a three-operand floating-point add (ADDF3) of the change
in the filtertap to the filter tap in parallel with the store (STF)
of the previously updated filter tap. That is, the store (STF)
is to be performed in parallel withADDF3. Thus the number
of cyles for a fioating-point adaptation is only two.

LDI N,RC ; load length N in-
to block repeat
counter

RPTB adapt ; repeat the adap-
tation loop N + 1
times

MPYF3 • + +ARO(l),RO,Rl ; errf ' x(i-k) - Rl
adapt:

ADDF3 '+AR1(1),Rl,R2 ; b(k,i) + errf ' x(i - k)
R2

STF R2,'ARl + +(1) ; R2 - b(k-l,i)

Since we have discussed the application of digital filter­
ing, we can now describe several applications in the areas
of telecommunications, graphicslimage processing, high­
speed control, instrumentation, and numeric processing,
and then conclude this section with several benchm·arks.
If more detail is needed on any of these applications, the
reader is referred to [4].

Te/ecommun{cations Applications

Many aspects of the telecommunications network can
take advantage of the TMS320. As telecommunications
evolves more toward an all-digital network, DSPwili become
even more utilized [23]. Several typical uses of the TMS320
are discussed.

Echo Canceler: In echo cancellation [4], [20], an adaptive
FIR filter performs the modeling routine and signal mod­
ifications to adaptively cancel the echo caused by the
impedance mismatches in the telephone transmission lines.

27

For this application, a large on-chip RAM of 544 words and
on-chip ROM of 4K words on the TMS320C25 provides for
a 256-tap adaptive filter (32-ms echo cancellation) to be exe­
cuted in a single chip without external data or program
memory.

High-Speed Modems: The TMS320 can perform numer­
ous functions such a modulation/demodulation, adaptive
equalization, and echo cancellation [21], [22]. For lower
speed modems, such as BeIl212A and V.22 bis modems, the
TMS320C17 provides the most cost-effective Single-chip
solution to these applications. For higher speed modems,
such as the V.32, requiring more processing power and
multiprocessing capabilities, the TMS320C25 and TMS-
320C30 are the designer'S choice.

Voice Coding: Voice-coding techniques [3], [4], such
as full-duplex 32-kbit/s ADPCM (CCIn G.721), CVSD,
16-kbit/s sub band coders, and LPC, are frequently used in
voice transmission and storage. Arithmetic speed, nor­
malization, and the .bit-manipulation capability of the
TMS320 provide for implementation of these functions,
usually in a single chip. For example, the TMS320C17 can
be used as a Single-chip ADPCM [4], subband [4], or LPC [4]
coder. An application of voice coding is an ADPCM trans­
coder implemented in half-duplex on a single TMS320C17
or full-duplex on a TMS320C25 fortelecommunication mul­
tiplexing applications. Another example is a secure-voice
communication system, requiring voice coding, as well as
data encryption and transmission over a public-switched
network via a modem; the TMS320C25 offers an ideal solu­
tion.

Graphics/Image Processing Applications

In graphics and image processing applications [4], the
ability to interface with a host processor is important. Both
the TMS320C30 and the TMS320C25 multiprocessor inter­
face enable them to be used in a variety of host/coprocessor
configurations [4]. Graphics and image processing appli­
cations can use the large directly addressable external data
space and global memory capability to allow graphical
images in memory to be shared with a host processor, thus
minimizing unnecessary data transfers. The ind'exed indi­
rect addressing modes allow matrices to be processed row­
by-row when performing matrix multiplication for three­
dimensional image rotations, translations, and scaling.

The TMS320C30 has a number of features that support
graphics and image processing extremely well. The float­
ing-point capabilities allow for extremely precise compu­
tation of perspective transformations. They also support
more sophisticated algorithms such as shading and hidden
line removal, operations which are computationally inten­
sive.

The large address space allows for straightforward
addressing of large images or displays. Theflexible address­
ing registers, coupled with the integer multiply, support
powerful addressing of multiple-dimensional arrays. Vec­
tor-oriented instructions allow the user to efficiently
manipulate large blocks of memory. Finally, the on-chip
DMA controller allows the user to easily overlap the pro­
cessing of data with its 110.

High-Speed Control

High-speed control applications [4], [24] use the
TMS320C17 and TMS320C25 general-purpose features for
bit-test and logical operations, timing synchronization, and

28

high data-transfer rate (ten, million 16-bit words per sec­
ond). Both devices can be used in closed-loop systems for
control signal conditioning, filtering, high-speed comput­
ing, and multichannel multiplexing capabilities. The fol­
lowing demonstrates two typical control applications:

Disk Control: Digital filtering in a closed-loop actuation
mechanism positions the read/write heads over the disk
surface. Supplemented with many general-purpose fea­
tures, the TMS320 can replace costly bit-slice/custom/ana­
log solutions to perform such tasks as compensation, fil­
tering, fine/coarse tuning, and other signal conditioning
algorithms.

Robotics: Digital signal processing and bit-manipulation
power, coupled with host interface, allow the TMS320C25
to be useful in robotics control [24]. The TMS320C25 can
replace both the digital controllers and analog signal pro­
cessing hardware for communication to a central host pro­
cessor and for the performance of numerically intensive
control functions.

Instrumentation

Instrumentation, such as spectrum analyzers and various
high-speed/high-precision instruments, often requires a
large data memory space and the high performance of a
digital signal processor. The TMS320C25 and TMS320C30
are capable of performing very long-length FFTs and gen­
erating precision functions with minimal external hard­
ware.

Numeric Processing

Numeric and array processing applications benefit from
TMS320 performance. High throughput resulting from fea­
tures, such as a fast cycle time and an on-chip hardware
multiplier, combined with multiprocessing capabilities and
data memory expansion, provide for a low-cost, easy-ta-use
replacement for a typical bit-slice solution. The TMS-
320C30's floating-point precision, high throughput, and
interface flexibility are excellent for this application.

TMS320 Benchmarks

To complete the discussion on the applications that the
TMS320 can perform, we will provide some benchmarks.
The TMS320 has demonstrated impressive benchmarks in
performing some of the common DSP routines and system
applications. Table 5 shows typical TMS320 benchmarks [4].

Table 5 TMS320 Family Benchmarks

First Second Third
DSP Routines/Applications Generation Generation Generation

FIR filter tap 400 ns 100 ns 60 ns
256-tap FIR sample rate 9.25 kHz 37 kHz >60 kHz
lMS adaptive FIR filter tap 700 ns 400 ns 180 ns
256-tap adaptive FIR filter 5.4 kHz 9.5 kHz >20 kHz

sample rate
Bi-quad filter element (five 2 ps 1 ~s 360 ns

multiplies)
Echo canceler (single 8 ms 32 ms >64 ms

chip)

SUMMARY

This paper has discussed characteristics of digital signal
processing and how these characteristics have influenced
the architectural design of the Texas Instruments TMS320
family of digital Signal processors. Three generations of the

The TMS320 Family of Digital Signal Processors

TMS320 family were covered, and their support tools nec­
essary to develop end-applications were briefly reviewed.
The paper concluded with an overview of digital signal pro­
cessing applications using these devices.

REFERENCES

[1] l. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[2] A. V. Oppenheim, Ed., Applications of Digital Signal Process­
ing.' Englewood Cliffs, NJ: Prentice-Hall, 1978.

[3] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, 1978.

[4] K. Lin, Ed., Digital Signal Processing Applications with the
TMS320 Family. Englewood Cliffs, NJ; Prentice-Hall, 1987

(5] A. V. Oppenhiem and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

[6) C. Burrus and T. Parks, OFT/FFT and Convolution Algorithms.
New York, NY: Wiley, 1985.

[7] T. Parks and C. Burrus, Digital Filter Design. New York, NY:
Wiley, 1987.

[8] J. Treichler, C. Johnson, and M. Larimore, A Practical Guide
to Adaptive Filter Design. New York, NY: Wiley, 1987.'

[9] P. Papamichalis, Practical Approaches to Speech Coding.
Englewood Cliffs, N): Prentice·Hall, 1987.

[10] R. Morris, Digital Signal Processing Software. Ottawa, ant.,
Canada: DSPS Inc., 1983.

[11] K. McDonough, E. Caudel, S. Magar, and A. leigh, "Micro·
computer with 32·bit arithmetic does high·precision number
crunching," Electronics, pp. 105-110, Feb. 24, 1982.

[12] S. Magar, E. Caudel, and A. leigh, "A Microcomputer with
digital signal processing capability," in 1982 Int. Solid State
Coni. Dig. Tech. Pap., pp. 32-33, 284, 285.

[13] First Generation TMS320 User's Guide. Houston, TX: Texas
Instruments Inc., 1987.

The TMS320 Family of Digital Signal Processors

[14] TMS320 First·Generation Digital Signal Processors Data Sheet.
Houston, TX: Texas Instruments Inc., 1987.

[15] TMS32020 User's Guide. Houston, TX: Texas Instruments
Inc., 1985.

[16] TMS320C25 User's Guide. Houston, TX: Texas Instruments
Inc., 1986.

[17] TMS32011 User's Guide. Houston, TX: Texas Instruments
Inc., 1985.

[18] H. Cragon, "The elements of single-chip microcomputer
architecture," Comput. Mag., vol. 13, no. 10, pp. 27-41, Oct.
1980.

[19] S. Rosen, "Electronic computers: A historical survey," Com­
put. Surv., vol. 1, no. 1, Mar. 1969.

[20] M. Honig and D. Messerschmitt, Adaptive Filters. Dor­
drecht, The Netherlands: Kluwer, 1984.

(21] R.lucky et al., Principles of Data Communication. New York,
NY: McGraw·Hill, 1965.

[22] P. Van Gerwen et al., "Microprocessor implementation of
high speed data modems," IEEE Trans. Commun., vol. COM-
25, pp. 238-249, 1977.

[23] M. Bellanger, "New applications of digital signal processing
in communications," IEEE ASSP Mag., pp. 6-11, July 1986.

[24J Y. Wang, M. Andrews, S. Butner, and G. Beni, "Robot-con·
troller system," in Proc. Symp. on Incremental Motion Can·
trol Systems and Devices, pp. 17-26, June 1986.

[25J TMS320 Family Development Support Reference Guide.
Houston, TX: Texas Instruments Inc., 1986.

[26] R. Simar, T. Leigh, P. Koeppen,). Leach,). Potts, and D. Bla­
lock, "A 40 MFlOPS digital signal processor: The first super­
computer on a chip," in Proe. IEEE Int'l Conf. on Acoustics,
Speech, and Signal Processing, Apr. 1987.

[27] TMS320C30 User's Guide. Houston, TX: Texas Instruments
Inc., 1987.

[28] B. Kernighan and D. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

29

30 The TMS320 Family of Digital Signal Processors

The TMS320C30 Floating-Point
Digital Signal Processor

Panos Papamichalis
Ray Simar, Jr.

Digital Signal Processor Products-Semiconductor Group
Texas Instruments

Reprinted from
IEEE MICRO MAGAZINE

Vol. 8, No.6, December 1988

31

32 The TMS320C30 Floating-Point Digital Signal Processor

The TMS320C30
Floating-Point
Digital Signal Processor

Digital signal processors have significantly impacted the way we bring
real-time implementations of sophisticated DSP algorithms to life.
What was once only a laboratory curiosity that required large comput-

ers or specialized, bulky, and expensive hardware is now incorporated into low­
cost consumer products. The rapid advancement of programmable DSPs since
their commerciai'introduction in the early 1980s lets us satisfy the needs of very
demanding applications. Implementation of basic DSP functions, such as digital
filters and fast Fourier transforms, has been integrated into advanced system
solutions involving speech algorithms, image processing, and control applica­
tions. The variety of the applications increases every day as researchers,
developers, and entrepreneurs discover new areas in which DSP devices can be
used. At the same time, the design of new devices incorporates features that make
such implementations easier.

The Texas Instruments family ofTMS320 DSPs' evolved with the expanding
needs of the DSP applications and currently encompasses over 17 devices. The
TMS320 family consists of three generations of devices. The first two genera­
tions are 16-bit, fixed-poi nt-arithmetic devices while the third one, represented
by the TMS320C30 and explained in detail here, is a 32-bit, floating-point
device. Architecturally, the TMS320 family, like most DSP devices, relies on
multiple Harvard buses. In the first two generations, we expanded the basic
Harvard architecture to permit communication between the program and data
spaces. In the third generation, we unified the two spaces to form an organization
that encompasses the advantages of both the Harvard and the von Neumann
architectures.

Overview of the TMS320C30
The 32OC30 is a fast processor (16.7 million instructions per second for an

instruction cycle time of 60 nanoseconds) with a large memory space (16 million
32-bit words) and floating-point-arithmetic capabilities. This last feature is a
major trend in new DSP devices, which was developed to answer the need for
quicker, more accurate solutions to numerical problems. DSP algorithms, being
very intensive numerically, cause a designer to worry about overflows and the
accuracy of results. The introduction of floating-point capabilities eliminates
these difficulties.

©1989 IEEE. Reprinted, with permission, from IEEE MICRO MAGAZINE;

Vol. 8, No.6, pp. 10-28; December 1986

The TMS320C30 Floating-Point Digital Signal Processor

Panos Papamichalis
Ray Simar, Jr.

Texas Instrumellts

33

In the 32OC30, a chip design with I-J.lm geometries
produces instruction cycle times lower than those achieved
with the fixed-point devices of the first two generations. In
addition, the design produces a controlled increase in die
size that results more from the extended on-chip memory
spaces than from the floating-point capabilities.

The pipelined architecture of the 32OC30 permits the
higher throughput achieved by the device, as we explain
later : Yet, programmers do not have to worry about the
pipeline when writing the code. We can describe the design
philosophy of the 320C30 (as well as all the other devices
in the TMS320 family) as an "interlocked" or "hidden­
pipeline" approach. When writing the program, program­
mers can assume that the result of any instruction will be
available for the next instruction. Most of the instructions
execute in one machine cycle. If a conflict arises between
executing an instruction in one cycle and having the data
available for the next instruction, the device automatically
inserts the necessary delay to eliminate the conflict. Since
this delay could result in loss of performance, we provide
developmenttools that identify where such conflicts occur.
With this data, programmers can rearrange and optimize
code.
M~y applications, such as graphics and image process­

ing, are difficult to implement on the earlier DSP devices
because they require a large memory space. To satisfy this
need, the 320C30 provides a total memory space of 16
million 32-bit words, memory several orders of magnitude
larger than the fixed-point devices. Furthermore, it con­
tains significantly increased on-chip memory: six thou­
sand 32-bit words of RAM and ROM. The desire to have
a device capable of offering system-level solutions to the
implemented algorithms guided the design decision to
increase on-chip memory. In other words, the 320C30
attempts to offer the capability of implementing an algo­
rithm with as little peripheral circuitry as possible.

Along the same lines, the 320C30 contains a peripheral
bus on which on-chip peripherals can be attached using a
memory-mapped approach. Currently available peripher­
als include two serial ports, two timers, and a DMA
controller. The modularity of the design permits easy
change, addition, or deletion of peripherals to accommo­
date different needs. For instance, if a J.I-Iaw-to-linear
format converter or a gate array is more important than one
of the timers for certain applications, a user can make th.e
change without impacting the core of the device.

As the power of the DSP devices increases, so does the
sophistication of the algorithms that are implemented. The
implication is that constructing and debugging an algo­
rithm at the assembly-language level becomes a more and
more tedious task. To address that problem, we provide the
320C30 development tools, which include a high-Ievel­
language compiler and a DSP operating system. The ex~
tended memory space, the software stack, and the large on­
chip register file also facilitate such a development. We've
already introduced a C compiler and announced an Ada
compiler. We expect compiler availability to change sig-

nificantly the way DSP algorithms are ported to DSP
devices. With these tools, programmers can develop the
algorithms on large computers, requiring at the most only
selective optimization when they incorporate the algo­
rithm on the 320C30.

Here, we describe the 320C30 architecture in detail,
discussing both the internal organization of the device and
the external interfaces. We also explain the pipeline struc­
ture, addressing software-related issues and constructs,
and examine the development tools and support. Finally,
we present examples of applications.

Architecture of the 320C30
Studying the architecture of the device helps in under­

standing how the different components contribute toward
a high-throughput system. The interaction and the efficient
use of the parts can contribute to very effective program­
ming. Another very important aspect to consider is the
system cost of the application. We designed the device to
incorporate on-chip features.that minimize the amount and
the cost of external logic, thus leading to very compact and
cost-effective solutions. These advantages become ex­
plicit when looking at the architecture in detail. The inter­
nal structure of the 320C30, as shown in Figure I, consists
of the

• on-chip memory and cache,
• CPU with register file,
• peripheral bus and peripherals, and
• interconnecting buses.

See Figure 2 for the die photograph. To interface with
the external world, the 32OC30 provides pins correspond­
ingto

• two buses (primary and expansion),
• two serial ports and two timers,
• four external interrupt signals,
• two external flags, and
• hold and hold-acknowledge signals.

In addition, other pins exist for address and data strobs,
power, and so on.

The overall architecture of the device is a Harvard type
in the sense that internally and externally it has multiple
buses to access program instructions, data, or perform
DMA transfers. However, it also has a von Neumann flavor
since the memory space is unified, and there is no separa­
tion of program and data spaces. As a result, the user can
choose to locate programs and data at any desired location.

Some of the major features of the 320C30 are:

• a 6O-ns cycle time that results in execution of over 16
million instructions per second (MIPS) and over 33 million
floating-point operations per second (Mflops);

• 32-bitdata buses and 24-bit address buses for a 16M.
word overall memory space;

• dual-access, 4K X 32-bit on-chip ROM and 2K X 32-
bit on-chip RAM;

34 The TMS320C30 Floating-Point Digital Signal Processor

RDV
'" HOLD
.5 HOLDA
ia STRB
E Rfjj
it D (31-0)

A (23-0)

RESET
INT (3-0)

C
a

e

Address
generator a

Inlegerl
floating-point

ALU

Address
generator 1

Auxiliary registers (8)

MC/MP

XI

X2/CLKIN

Vee (7-0)

Vss (10-0)

VBBP
SUBS Control registers (12)

Figure 1. Block diagram of the TMS320&30 architecture.

• a 64 X 32-bit program cache;
• a 32-bit integer/40-bit floating-point multiplier and

ALU;
• eight extended-precision regIsters, eight auxiliary

registers, and 12 control and status registers;
• generally single-cycle instructions;
• integer, floating-point, and logical operations;
• two- and three-operand instructions;
• an on-chip DMA controller; and
• fabrication in I-IUD CMOS technology and packag­

ing in a ISO-pin package.

Memory organization; The 320C30 provides 4K 32-
bit words of on-chip ROM, and 2K 32-bit words of on-chip
RAM. The on-chip ROM is mapped into the first4K of the
overall memory map; it is accessed when the processor
operates in the microcomputer mode. Location 0 of the
memory map holds the reset vector, and adjacent locations
hold other interrupt vectors. In microprocessor mode, the
reset vector resides in external memory, and on-chip ROM
is not accessed. The 2K on-chip RAM consists physically
of two segments of IK words each. These two segments of
RAM are mapped into adjacent sections of the memory.
Figure 3 on the next page shows the arrangement of the on­
chip memory, as well as the cache, buses, and two external
interfaceslbuses, which we examine later.

Address
generators

Control registers

Figure 2. Die photograph of the 320&30.

The TMS320C30 Floating-Point Digital Signal Processor. 35

I
Cache

I I
RAM

I I
RAM

I
ROM

(64 x 32) block 0 block 1 block
(1K x 32) (1K x 32) (4K x 32)

/' I ,.1-, rb If, 1- .1_ [

'" PDATA BUS

I I I I
PADDR BUS ~

IJ 1
DDATA BUS

'" :::>
.c M I I M
~

'" E
U DADDR1 BUS U
X I X

~
DADDR2 BUS

I
DMADATA BUS ~

DMAADDR BUS Vh

~
Program counter/Instruction register

(PC/IR)

Figure 3. On·chip memory, cache, and buses.

The internal memory (both ROM and RAM) supports
two accesses for reads and/or writes in one cycle. This key
feature permits high throughput and ease of programming,
since it makes possible three·operand instructions with
two operands residing in the memory. Notice that, to
support this feature, we include two buses dedicated to data
addresses (DADDRl, DADDR2) and one bus to carry the
data (DDATA). There are also separate program buses,
PDATA and PADDR.

The address buses are 24 bits wide, indicating that the
overall memory space is 16 million (32·bit) words. We
believe this large space will facilitate implementation of
algorithms in image processing applications that often
require large amounts of memory. The unified memory
space offers flexibility in placing program and data. But it
also permits optimal use of the memory space as a trade-off
between program and data.

An important addition to the architecture is the 64-word
instruction cache. To reduce the overall system cost of
applications, system designers often use slower (and
cheaper) external memories, a tactic that could slow down
the processor and degrade the performance. The instruc­
tion cache addresses this problem by storing on-chip in­
structions that have been fetched previously. Its main
advantage becomes obvious when loops must be executed.
In this case, the first time the instructions are fetched, they
are also stored in the cache. Any subsequent execution of
the loop does not access external memory but fetches
instructions from the cache, resulting in higher speed and

I /
CPU DMA

making the external buses available for data transfers.
The cache is segmented into two sections of 32 words

each that are transparent to users. A user can, however,
control the operation of the cache by manipulating three
control bits that are contained in the status register of the
CPU. Each control bit is dedicated to a specific operation:
cache enable/disable, cache freeze, and cache clear. When
a cache miss occurs, that is, when the next instruction is not
included in the cache, the instruction is brought in and also
stored in the cache. The two cache sections are updated on
a least recently used basis.

CPU organization. The CPU consists of the ALU
(arithmetic logic unit), the hardware multiplier, and the
register file. These units are shown in Figure 4.

The register file consists of

·eight 40-bit-wide, extended-precision registers RO
through R7,

• eight 32-bit auxiliary registers ARO through AR7,
and

• twelve 32-bit control registers.

The extended-precision registers function as accumula­
tors and can handle both floating-point and integer num­
bers. When they are used for floating-point numbers, the
top eight bits represent the exponent and the bottom 32 bits
the mantissa of the number. In their integer format, regis­
ters RO through R7 use only their bottom 32 bits, keeping
the top 8 bits unchanged in any intege~or logical operation.

36 The TMS320C30 Floating-Point Digital Signal Processor

The eight auxiliary registers ARO through AR7 can
function as memory pointers in indirect addressing, as loop
counters, or as general-purpose registers in integer arith­
metic or logical operations. Associated with these registers
are two auxiliary register arithmetic units (ARAU) that
generate two memory addresses in parallel for the instruc­
tions that need them. The flexibility of indirect addressing
increases even further when two index registers are used in
conjunction with the auxiliary registers, as we discuss
later.

The register file contains 12 control registers designated
for specific functions. If the control registers are not used
for these functions, they can be treated as general-purpose
registers in integer arithmetic and logical operations.
Examples of such control registers are the

• status register,
• index registers,
• stack pointer,
• interrupt mask and interrupt flag registers, and
• repeat-block registers.

In particular, the stack-pointer register points to the
software stack. The user has the flexibility of designating
where the stack resides, and even of changing its location
during the program execution. This feature also makes the
stack of essentially unlimited depth and permits its usage
not only for storing the program counter during subroutine
calls but also for passing arguments to subroutines. Such an
arrangement is particularly convenient in the development
of compilers, and we have used it extensively in the
320C30's optimizing C compiler.

The ALU performs floating-point, integer, and logical
operations. The ALU always stores the result in the register
file, but the input can come either from the register file or
from memory, or it can be an immediate value.

In the case of floating-point arithmetic, the input to the
ALU can originate from either a 40-bit extended-precision
register or a 32-bit memory datum. Registers RO through
R7 store the 40-bit-word result. On the other hand, in
integer arithmetic, both input and output are 32-bit num­
bers, and the output can move to either the lower 32 bits of
the RO through R7 registers or to any other register in the
register file.

The single-cycle hardware multiplier has been an inte­
gral part of DSPs because any real-time application relies
on the fast execution of multiplies. Following the same
distinction as in the previous paragraph on the ALU, the
multiplier performs both floating-point and integer multi­
plications. The 32-bit inputs to a floating-point multiplica­
tion yield a 4O-bit-wide result for storage in one of the
extended-precision registers.

In both the ALU and the multiplier the results of the
operations are automatically normalized, thus handling
any overflows of the mantissa. If there is an exponent
overflow, the result is saturated in the direction of overflow
and the overflow flag is set. Underflows are handled by
setting the result to zero and setting an underflow flag.

::I ...
0

ALU

Multiplier 32·bit
barrel
shifter

C\I 0:
C\I

0:: !
*

Cl Cl
Cl Cl C. '", « « at " Cl Cl a: 0::

Figure 4. The 320C30 central processing unit.

Buses and peripherals. Figure 3 shows that multiple
on-chip buses handle program, data, and DMA operations
in parallel. The device contains separate address and data
buses for these three operations, with the data having two
address buses to accommodate the access of multiple
operands from the memory in one cycle. Also, separate
buses lead to the register file. The rule to remember is that,
in one cycle, up to two data memory accesses are permitted
for anyon-chip memory block. This multiplicity of buses
eliminates bottlenecks. The user can maximize the through­
put of the device by ajudicious combination of the on-chip
memory with the two external buses (the primary bus and
the expansion bus).

The primary bus contains a 24-bit address bus and a 32-
bit data bus. Its true space, though, is 16M words minus the
on-chip memory and the expansion bus. The primary bus
can be placed in high impedance when the device is put on
hold. To facilitate its interfacing with slow memories, the
32OC30 offers programmable wait states (up to seven) as
well as an external ready signal. .

The expansion bus contains a 13-bit address bus and a
32-bit data bus. It has two strobes, one for memory and one
for I/O accesses. In other words, the memory space of the

The TMS320C30 Floating-Point Digital Signal Processor 37

MemOry} UI
..
" space ' " .a

~
~
"0
"0

"0 ..
E ; ..
J: J:
0!!- f>.

~ 'ij
<>. f>.

Figure 5. Peripheral bus and peripherals.

expansion bus is two segments of 8K words each. one
segment mapped as regular memory and the other one
mapped as I/O. Like the primary bus, the expansion bus
has up to seven software-programmable wait states.

A major innovation in the 320C30-to support system­
level solutions and to help in adapting the device to
changing needs-is the peripheral bus shown in Figures I
and 5. The peripheral bus supplies a way of expanding or
varying the interface with the outside world without chang­
ing the core of the device. All of the peripherals attached to
this bus are mapped to memory, and they can be replaced
by others with a minimal effort if certain applications have
different demands. '

Currently, we have implemented a DMA controller, two
serial ports, and two, timers as peripherals. The DMA
controller performs reads from and writes to any location
in the 320C30 memory map without interfering with the
operation of the CPU. The DMA controller contains its
own address generators, source and destination address
registers, and transfer counter. The two modular and totally
independent serial ports are identical with a complemen­
tary set of control registers. Each serial port can be config­
ured to transfer 8, 16, 24, or 32 bits of data per word, with
each port clock originating either internally or externally.
The pins of the serial ports are configurable as general­
purpose I/O pins, while the serial ports can also be config­
ured and used as timers.

The two 320C30 timer modules function as general­
purpose timer/event counters; each have two s'ignaling
modes and internal or external clocking. Available to each
timer is an I/O pin for use as an input clock to the timer, as
an output signal driven by the timer, or as a general­
purpose pin.

Software
The software features of a programmable DSP are

probably the most important features beca~se they.deter­
mine the effectiveness of the implementatIon. TYPIcally,
the user first develops an application on a large computer
using a high-level language and, once it is working satis­
factorily, ports it to a DSP device . .The software features
of the 320C30 that we discuss include the integer and
floating-point number representations, addressing modes,
pipeline effects, and different types of instructions and
constructs.

Integer and floating-point formats. A 32-bit, twos­
complement notation represents the integers. In addition to
this single-precision format, we have a short format, con­
sisting of l6-bit, twos-complement numbers used only for
immediate operands. Every instruction of the 320C30
consists of one 32-bit word.

We use three formats for floating-point numbers: short,
single precision, and extended precision. The single-preci­
sion, 32-bit-wide format assigns 24 bits to the mantissa and
8 bits to the exponent. The exponent occupies the 8 most
significant bits, and it is represented in twos-complement
notation, taking values between -128 and 127. The expo­
nent value -128 is the result reserved to represent zero.

The mantissa, placed at the 24 least significant bits of a
32-bit number, is normalized to a number with an absolute
value between 1.0 and 2.0. Since the mantissa is repre­
sented in a normalized, twos-complement notation, the
leftmost bit, which corresponds to the sign, and its adjacent
bit will always be the complement of each other. As a
result, only the sign bit is represented, with the most
significant bit suppressed, In other words, the mantissa
contains 24 significant bits plus the sign bit, with the most
significant bit implied.

Addressing modes. The 320C30 supports several ad­
dressing modes that allow the user to access data from
memory, registers, and the instruction word. The basic
addressing modes are

• register,
• direct,
• indirect,
• short immediate,
• long immediate, and
• PC relative.

In register mode the operand is placed into a CPU
register that is explicitly specified in an instruction. In
direct mode the data memory address is formed by preced­
ing the 16 least significant bits of the instruction word with
the 8 least significant bits of the data page pointer. To keep
all instructions one word long, we store only the 161east
significant bits from the address in the instruction word; the
rest become the data page pointer. This restriction implies
that in direct addressing the memory space is segmented
into 256 pages of 64K words each.

38 The TMS320C30 Floating-Point Digital Signal Processor

Table 1.
Addressing modes of the 320C30.

Mode Example Operation Description

Register ADDF RO,RI Operand in RO
Direct ADDF @MEM, RI Addr=MEM Operand in MEM
Short

immediate ADDF 3.14,RI Operand = 3.14
Long

immediate BRLABEL Branch to LABEL
PC relative BGE LABEL Branch to LABEL
Indirect ADDF * +ARO(di),RI Addr = ARO + di Predisplacement add

without modification
Indirect ADDF ,.. -ARO(di),RI Addr=ARO- di Predisplacement subtract

without modification
Indirect ADDF * + + ARO(di),RI Addr=ARO+di Predisplacement add and

ARO=ARO+di modify

Indirect ADDF * - -ARO(di),RI Addr=ARO-di Predisplacement subtract
ARO=ARO-di and modify

Indirect ADDF *ARO+ +(di),RI Addr= ARO Postdisplacement add
ARO=ARO+di and modify

Indirect ADDF *ARO- -(di),RI Addr=ARO Postdisplacement
ARO=ARO-di subtract and modify

Indirect ADDF *ARO+ +(di)%,RI Addr= ARO Postdisplacement add
ARO = circ(ARO + di) and circular modify

Indirect ADDF *ARO- -(di)OJo,RI Addr= ARO Postdisplacement subtract
ARO = circ(ARO-di) and circular modify

Indirect ADDF *ARO+ + (lRO)B,RI Addr= ARO Postindex (IRO) add and
ARO = B(ARO + IRO) bit-reversed modify

di is an integer between 0 and 255 or one of the index registers IRO and IRI.

Indirect addressing. the most versatile of all the modes.
specifies the address of an operand in memory through the
contents of an auxiliary register. As an option, the contents
of the register can be modified by constant displacements
or by the contents ofthe index registers. Table 1 lists all of
the addressing modes, with particular emphasis on indirect
addressing modes.

An instruction explicitly specifies the auxiliary register
used for indirect addressing. The user can modify it by a
constant displacement taking values 0 to 255 or by the
contents of one of the two index registers IRO or IR I. The
modification can take place before or after accessing the
memory. In the case of premodification. the user has the
option to change the contents of the auxiliary registereither
permanently or temporarily. The notation used for such
modifications is reminiscent of the C-Ianguage syntax.

Two special forms of indirect addressing that are par­
ticularly useful are bit-reversed and circular addressing.
Bit-reversed addressing is used with the fast Fourier trans­
form to compensate for the fact that normally ordered data

at the input of the transform are scrambled at output (bit­
reversed order). To avoid moving the data around to place
them in the proper order. bit-reversed addressing accesses
the data in scrambled order for any subsequent operation.

Circular addressing implements circular buffers. Such
buffers are very convenient for use in digital-filtering
operations. In circular addressing. BK. one of the control
registers, specifies the size of the block. Then. when the
user modifies the contents of an auxiliary register (pointing
within that block) in a circular fashion. the final value is
tested to determine if it is still within the block. If it is not.
it is wrapped around using modulo arithmetic.

The short-immediate mode encodes immediate, 16-bit­
long operands of arithmetic operations. The long-immedi­
ate mode encodes program control instructions (branch
instructions) for which it is useful to have a 24-bit absolute
address contained in the instruction word. Finally. the PC­
relative addressing also applies to program control instruc­
tions and uses the difference from the present location of
the PC counter rather than an absolute address. The last two

The TMS320C30 Floating-Point Digital Signal Processor 39

modes are transparent to the user. The user specifies the
branching label wanted, and the assembler assigns the
appropriate addressing mode.

Pipeline. To achieve the high throughput of the device,
the 32OC30 uses a four-phase pipeline with five major
functional units operating in parallel. These five units are

• instruction fetching,
• instruction decoding and address generation,
• operand reads,
• instruction execution, and
• DMA transfer.

Figure 6 shows diagrammatically how the pipeline
operates on successive instructions. When the pipeline is
full, an instruction completes the execution phase every
60-ns machine cycle.

Occasionally conflicts may arise, as in the case of a
loaded auxiliary register that needs to be used for indirect
addressing in the next instruction. To handle such cases, we
established a priority between the different units, giving
DMA the lowest priority. Among the others, an Execute
instruction has the highest and a Fetch instruction the
lowest priority. .

In programming the device, the user does not have to
worry about the pipeline conflicts, which do not occur that
often anyway. When a conflict does occur, the device
automatically inserts the necessary extra cycle(s) to make
the instructions behave as expected. In most cases, this
arrangement will be sufficient for successful operation.
For time-critical operations, though, it may be necessary to
remove the extra cycles caused by pipeline conflicts. The
user can make this correction by rearranging the instruc­
tions of the program. To do so, the user must determine
how to identify the locations where insertions occur. For
that purpose, the development tools (simulator, emulators)
contain a tracing feature that'can display the pipeline. In
this trace, any conflicts are immediately identified, and
then the user can take steps to correct the problem.

Instruction set features. The instruction set of the
320C30 supports both two- and three-operand instruc­
tions. In all arithmetic instructions (except Store), the

Cycle 2 3

1 I Fetch I Decode I Read I
'" 2 I Fetch I Decode I c:
0

ti 3 I Fetch I
~ 4 I .E

5

Figure 6. Pipeline of 3ZOC30 instructions.

destination is a register in the register file. The source
operands can come from memory or from a register or, in
the case of two-operand instructions, can be part of the
instruction word.

A unique feature of the 320C30 is the set of instructions
in which operations execute' in parallel. This construct
permits a high degree of concurrency and execution of any
arithmetic or logical instruction in parallel with a Store
instruction. It also supports parallel multiplies and adds, as
well as parallel loading and storing of two registers. Paral­
lel multiply and adds lead to the peak performance of 33
Mflops. Executing the Store instruction at the same time
with another arithmetic operation essentially permits this
kind of data movement without a penalty. As an example,
the following instruction adds the contents of memory
pointed to by ARI (indicated by 'ARl) to register RO
(treating them as floating-point numbers) and places the
result in register R 1. In parallel with that process, the
original contents of R I are stored in the memory location
indicated by AR3.

ADDF
STF

*ARI,RO,RI
RI,*AR3

When executing a branch instruction, the pipeline must
be flushed since the path followed after the branch is data
dependent; As a result, a regular branch instruction is more
costly than other instructions, taking four cycles to com­
plete. This overhead may be unacceptable in some time­
critical applications. To alleviate this probl~m and to offer
more flexibility to the programmer, the 320C30 contains
a set of delayed branches that complement the set of
standard branches. In a delayed branch, the three instruc­
tions following the branch instruction execute whether the
branch is taken or not taken. As a result, the delayed branch
ends up taking only one cycle to execute. The same
approach can be used even when there are less than three
such instructions, by adding NOPs (no operations). The
branch will still take less than four cycles.

The greatest cost of branching occurs during the execu­
tion of loops. In looping, a counter is decremented and
compared to zero at the end of the loop. If it is not zero, a
branch is taken to the beginning of the loop. The 320C30
offers a special arrangement that implements loops with no

4 5 6 7

Execute I
Read I Execute I
Decode I Read I Execute I
Fetch I Decode I Read I Execute I

I Fetch I Decode I Read I

40 The TMS320C30 Floating-Point Digital Signal Processor

User-friendly development tools
offer extra support:

an optimizing C compiler and
a DSP operating system.

overhead. The two instructions RPTB (repeat block) and
RPTS (repeat single) realize this arrangement. The format
of the RPTB instruction is:

RPTB LABEL

(put instructions here)

LABEL (last instruction)

Associated with the repeat-block construct are three of
the 12 control registers in the register file. One register
indicates the beginning of the block, the second indicates
the end of the block, and the third acts as the repeat counter.
The assembler automatically assigns values to the first two
registers. They contain the address of the instruction
immediately below RPTB, and the address of LABEL
respectively. Users should initialize the repeat counter
before entering the loop. In terms of execution time, this
arrangement behaves as if the loop were implemented with
straight-line code.

The instruction RPTS has the format

RPTS count

and it repeats the following instruction "count" times. It
differs from RPTB in that it

• applies to only one instruction;
• does not refetch the instruction for every execution, but

keeps it in the instruction register thus freeing the buses for
data transfers, and

• is not interruptible.

Table 2 on the next page is a sample of the instructions
available on the 320C30. Although we included a rich set
of instructions for both DSP and general-purpose process­
ing, the perceived size of the instruction set is much
smaller. The reason is that a symmetry exists between
integer and floating-point instructions, between instruc­
tions with two or three operands, and between single and
parallel instructions. For instance, addition is represented
by ADD!, ADDF, or ADDC in the case of adding integers,
floating-point numbers, or adding with a carry. The three­
operand instructions have the same form, with a 3 ap­
pended at the end (ADDF3). All of the multiplier and ALU
operations can be performed in parallel with a Store in­
struction, and such instructions take the form of the follow­
ing example:

ADDF3
STF

*ARO,Rl,R2
RO,*ARI

Furthermore, two loads or two stores can execute in
parallel, as is also the case with a multiply and an add or a
multiply and a subtract. The design of the instruction set
has been guided by a desire to ease programming efforts.
The execution results of an instruction are always available
for use in the instruction that follows.

Besides the regular arithmetic and logical instructions,
the 320C30 includes instructions to handle the software
stack, internal and external interrupts, and branches and
subroutine calls. Conditional loads and calls make the
programming more compact and efficient, while special
instructions (called interlocked instructions) can be used in
multiprocessor environments.

Development tools and support
The newer DSP devices offer increased processing

power that permits the implementation of more compli­
cated and demanding algorithms. However, as the com­
plexity of the algorithm increases, the task of debugging
the implementation becomes more difficult. The 320C30
addresses this problem by providing user-friendly devel­
opment tools and offering extra support in the form of an
optimizing C compiler and a DSP operating system.

The asse"lbler translates assembly-language source
files into machine-language object files. Source files can
contain instructions, assembler directives, and macro di­
rectives. Assembler directives control various aspects of
the assembly process such as the source-listing format,
symbol definition, and method of placing the source code
into sections. Macro directives permit a concise represen­
tation of groups of instructions that occur frequently.

The linker combines object files into one executable
object module. As it creates the executable module, the
linker performs relocation operations and resolves external
references. The linker accepts relocatable COFF (Com­
mon Object File Format) object files, created by the assem­
bler, as input. It can also accept archive library members
and output modules created by a previous linker run.
Linker directives allow the user to combine object-file
sections, bind sections or symbols to specific addresses or

'within specific portions of 320C30 memory, and define or
redefine global symbols. An associated archiver can create
macro or objeci-file libraries.

The software simulator is a very important tool for
debugging 320C30 programs. Its interface consists of a
screen broken into windows that display the internal regis­
ters, the reverse-assembled program, and a versatile win­
dow where memory, breakpoints, and a wealth of other
information can be displayed. The same interface (modi­
fied to accommodate some special features) is also used
with the hardware emulator. The major features of the
simulator include:

• Simulation of the entire 32OC30 instruction set and the

The TMS320C30 Floating-Point Digital Signal Processor 41

Table 2.
Instructions for the 320C30.

Instruction Description Instruction Description

Load and store instructions
LDE Load floating-point exponent POP Pop integer from stack
LDF Load floating-point value POPF Pop floating-point value from stack
LDFcond Load floating-point value conditionally PUSH Push integer on stack
LDI Load integer PUSHF Push floating-point value on stack
LDIcond Load integer conditionally STF Store floating-point value
LDM Load floating-point mantissa STI Store integer

Two-operand instructions
ABSF Absolute value of a floating-point NORM Normalize floating-point value

number
ABSI Absolute value of an integer NOT Bitwise logical-complement
ADDC t Add integers with carry OR t Bitwise logical-OR
ADDF t Add floating-point values RND Round floating-point value
ADDI t Add integers ROL Rotate left
AND t Bitwise logical-AND ROLC Rotate left through carry
ANDN t Bitwise logical-AND with complement ROR Rotate right
ASH t Arithmetic shift RORC Rotate right through carry
CMPF t Compare floating-point values SUBB t Subtract integers with borrow
CMPI t Compare integers SUBC Subtract integers conditionally
FIX Convert floating-point value to integer SUBF Subtract floating-point values
FLOAT Convert integer to floating-point value SUBI Subtract integer
LSH t Logical shift SUBRB Subtract reverse integer with borrow
MPYF t Multiply floating-point values SUBRF Subtract reverse floating-point value
MPYI t Multiply integers SUBRI Subtract reverse integer
NEGB Negate integer with borrow TSTB t Test bit fields
NEGF Negate floating-point value XOR t Bitwise exclusive-OR
NEGI Negate integer

Program control instructions
Bcond Branch conditionally (standard) IDLE Idle until interrupt
BcondD Branch conditionally (delayed) NOP No operation
BR Branch unconditionally (standard) RETIcond Return from interrupt conditionally
BRD Branch unconditionally (delayed) RETScond Return from subroutine conditionally
CALL Call subroutine RPTB Repeat block of instructions
CALLcond Call subroutine conditionally RPTS Repeat single instruction
DBcond Decrement and branch conditionally SWI Software interrupt

(standard)
DBcondD Decrement and branch conditionally TRAPcond Trap conditionally

(delayed)

t Two- and three-operand versions

42 The TMS320C30 Floating-Point Digital Signal Processor

key peripheral features;
• Command entry from either menu-driven keystrokes

(menu mode) or from line commands (line mode);
• Help menus for all screen modes;
• Quick storage and retrieval of simulation parameters

from files to facilitate preparation for individual sessions;
• Reverse assembly allowing editing and reassembly of

source statements;
• Multiple execution modes;
• Trace expressions that are easy to define;
• Trace execution that can display designated expression

values, cache memory, and the instruction pipeline; and
• Breakpoints that can occur on address read, write, or

both, on address execute, and on expression valid.

Perhaps the most important trend with the newer DSPs
is the availability of high-level-language compilers. The
presence of C and Ada compilers in the 320C30 is not an
accident since the 320C30 was designed with a compiler in
mind. We expect this path to a high-level language to make
the porting of application programs from large computers
much easier. The algorithm can be developed almost
entirely on a large computer and then converted to the
320C30 assembly language by compilation.

The C compiler for the 320C30 has exceptional effi­
ciency,2 which makes a good C program almost as effec­
tive as the assembly-language program. The C compiler
will be sufficient for most applications. The exception is
time-critical applicaiions. In such cases one can use the fact
that most DSP algorithms spend the vast majority of the
execution time on a small section of the code. (Researchers
often mention the 90/1 0 rule: 90 percent of the time is spent
on 10 percent of the code.) Under these circumstances, the
user can optimize execution by creating very fast assem­
bly-language routines that implement the time-critical
sections, and call them from C as regular C functions. To
achieve this, we define the C function interface very
precisely so that users can create their own routines. The C­
compiler package comes with a library of general-purpose
mathematical, interface, and I/O functions.

Besides this method of optimizing the performance of
the C language, two more methods can be used. The first
one is based on the fact that the output of the compiler is an
assembly-language program. The user can edit this pro­
gram and optimize it by rearranging the instructions. The
second method is to use the "asm" directive supported by
the C compiler. The arguments of this directive are passed
to the output of the compilation without any alteration so
that the user can insert assembly-language instructions into
the middle of the C program.

A key part of the 320C30 development environment is
Spox, the first real-time operating-system for a single-chip
DSP. Spox, developed by Spectron Microsystems, extends
the core C language with a library of standard I/O routines
and, most importantly, a DSPmath package. One of Spox' s
unique features is that it provides users with software
objects that are especially suited for DSP. Some of these
objects are vectors, matrices, filters, and streams. The math

Perhaps the most important
trend with the newer DSPs is
the availability of high-level­

language compilers.

package and these software objects are carefully designed
to take full advantage ofthe capabilities of the 320C30.
Spox also supports multitasking, thus allowing the user to
easily implement the more complex control structures that
are becoming essential for DSP systems.

By providing a complete software development envi­
ronment that includes compilers and operating systems
along with the more-traditional tools such as assemblers
and linkers, we allow the user to move from system
conception to system implementation in the shortest pos­
sible time.

The next level of development tools includes the hard­
ware emulators for debugging target hardware or deter­
mining the performance of an algorithm on the 320C30
device itself. The XDS 1000 is a real-time, in-circuit emu­
lator/software development tool based on the 320C30.
Besides these tools from Texas Instruments, other compa­
niesoffer related support, such as the PC-based develop­
ment board by Atlanta Signal Processors and the develop­
ment platform of Spectron Microsystems for PCs and Sun
workstations.

Applications
Certain features of the 320C30 such as its high speed,

versatile architecture, and rich instruction set, make it easy
to implement very demanding algorithms. The large
memory space makes the device suitable for application
areas such as image processing in which memory address­
ing is one of the prime considerations. And the C compiler
makes it easy to construct algorithms with complicated
logic. .

. General nsp algorithms. Almost every OSP applica­
tIOn needs to perform some kind of filtering, the first
application considered for a DSP device. Digital filters are
categorized as FIR (finite-length impulse response) and
IIR (infinite impulse response) filters,'" or, equivalently,
as filters that have only zeros or both poles and zeros. Each
of these categories can have either fixed or adaptive coef­
ficients.

The 320C30 implements FIR filters very efficiently. For
instance, let an FIR filter have an impulse response h[O],
h[11, ... , h[N Xl], and let x[nl represent the input of the
filter at time n. Then, the following equation gives the
output y[n1 with the equation:

yin] = h[O] X x[n] + h[l] X x[n - 1] + ... +

h[N - 1] X x[n - N + 1]

The TMS320C30 Floating-Point Digital Signal Processor 43

Typical Calling Sequence:

load ARc)
load ARl
load RC
load BK
CALL FIR

Data Memory Organization~

Impul se
response

Low +------------+
address I h (N-l)

h(N-2)

+------------+ +------------.+
x (n-1) x (n-2)

Hi gh +------------+ Newest +------------+ +------------+
address h<O) input x(n) x(n-1) :---+

+------------+ +------------+

The physical address for the start of the input samples mLlst be on
a boundary wi th the LSBs set to zero according to the length of the
buff er. The poi nter to the input sequence (x) is incremented and
assumed to be moving from an older input to a ne er input~ At the
end of the subroutine AR1 will be pointing to the position for the
nei:t input sample. .

Argument Assi gnments:

Argument : Function
---------+-----------------------
ARO Address of h (N-1)
AR1 Address of x (N-1)
RC ; Length of fi 1 ter - 2 (N-2)
B~~ : Length of f i 1 ter (N)

Regi sters used as input: ARO, AR1, RC, BK
Registers modified: RO, R.2, ARO, AR1, RC
Register containing resLtlt: RO

Prografll sIZe: 6 words

ExecLltion eycl es: 11 + (N-l)

; ===========""====================""'=="'""'-.;::=-'-=====================::==cc========

.global FIR
; initialize Rl):
FIR MPYF3 *ARO++(1),*AR1++(1}'l.,RO h(N-1) * x(n-(N-l» -) RO

LDF I).O,R2 initialize R2.

f i 1 ter (1 <= 1 < N)

RPTS RC setup the repeat single.
MPYF3 *AR()++(t) ,*ARl++(1)X,RO h(N-1-i) * x(n-(N-l-l)) -> RO

:: ADDF3 RO,R2,R2 multiply and add operation

ADDF . RO,R2,RO add last product

return sequence

RETS ; return

end

.end

Figure 7. FIR filter implementation on the 32OC30.

44 The TMS320C30 Floating-Point Digital Signal Processor

Typical Calling Sequence:

load R2
load ARC)
load ARt
load IRO.
load IRI
load BK
load RC
CALL IIR2

Data Memory Organization:

Filter Initial delay Final delay
coefficients node values node values

Low +------------+ Newest +------------+ +-------.:..----+
address I aiW) delay d(O,n) dCO,n-l) :----+

+------------+ +_ ... _---------+ +------------+
I b2(O) d(O,n-U dCO,n-2): circular

queue
+------------+ oldest +------------+ +------------+ I

al (0) delay d (O,n-2) d(O,n) 1----+

bl (0)
+------------+

bO(O)
+------------+

+------------+
a2CN-l)

+------------+
b2 (N-I)

al (N-l)

bl (N-I)
Hi gh +------------+

address I bO<N-l)
+------------+

+------------+ +------------+
Empty Empty

+------------+ +------------+

+------------+ +------------+
deN-1,n) : d(N-l,n-l> :----+

+------------+ +------------+
: d(N-l,n-1> I I d(N-l,n-2) t circular

queue
+------------+ +------------+ I
I d(N-l,n-2): d(N-l,n) :----+
+---------~--+ +------------+

Empty Empty

The physical address for the start of each circular queue of delay node
values must be on a boundary with the LS8s set to zero according to thE"

; length of the buffer. The BK <block size) register must contain the {Conlinued on page 26)

Figure 8. Implementation of N biquads on the 320C30.

Two features of the 320C30 facilitate the implementa­
tion of the FIR filters: parallel multiply/add operations and
circular addressing. The first feature pennits a multiplica­
tion and an addition to execute in one machine cycle, while
the second makes a finite buffer of length N sufficient for
the data xl n J. Figure 7 shows the arrangement of the data
and the assembly code for an FIR filter. Note that the filter
takes one cycle of execution per tap.

The transfer function of the IIR filters contains both
poles and zeros, and its output depends on both the input
and the past output. As a rule, these filters need less
computation than a FIR filter of similar frequency re­
sponse, but they have the drawback of being sensitive to
coefficient quantization. Most often, the IIR filters are
implemented as a cascade of second-order sections, called
biquads. To implement an IIR filter consisting of Nbiquads,
let al Ii], a2li] be the numerator coefficients of the ith bi­
quad and bO[i], b I Ii], b2111 the denominator coefficients of

the same biquad. Also, letx[n] be the input andy[n] be the
output of the IIR filter. In canonic fonn, the following C
code implements the N biquads:

y[O.nj = x[nj;
for (i=O; i<N; i++){
d[i.nj = a2[ij*d[i.n-2j + al[ij*d[i,n-Ij + y[i-I,nj;
y[i,nj = b2[ij*d[i,n-2j + bl[ij*d[i,n-Ij +

bO[ij*d[i,nj;
}
y[nj = y[N-I,nj;

Figure 8 shows the memory arrangement and the code
for this implementation on the 320C30.

In addition to the fixed-coefficient filters, the 320C30
can also implement very effectively adaptive filters (with
three cycles per updated tap).

Fourier transfonns are another important tool often used
in DSP systems. The purpose of the transfonn is to convert
infonnation from the time domain to the frequency do-

The TMS320C30 Floating-Point Digital Signal Processor 45

value 3. The result y(n) is placed in RO. At the end of the prografll.
AR1 points to the new d(O,n-2) so that it is set when the new sample
comes in.

~.rql..!lnent ?"$si Clnment s:

Argument : FunctIon
---------+-----------------------
R2 Input sdmple x (n)
ARO Address of filter coeffIcients (0.2(0»
AR1 Address of delay node values (d (O,n-2»
BI< BK .= ::
IRO IRI) = 4
JR1 IRl = 4*N-4'
RC Number of biquads (N) - 2

Registers used as input: R2, ARO, AR1, IRO, IR1, BK, RC
Registers modified: RO, R1, R2, ARO, AR1, RC
Register containing result: RO

Program size: 17 words

Execution cycles: 23 + 6N

; ==:::::::;;::0=====:::===,""""========= ... ::11=0::::=.,""::1=
.global I JR2

;
IIR2 MPYF3 *ARO, *AR1,··RO

MPYF3 *++ARO(1) , *AR1-- (1) 7.,

MPYF3 *++ARO(l) , *ARt, RO
I: ADDF3 RO, R2, R2

MPYF3 *++ARO(l) , *AR1--(Ui!.,
:t ADDF3 RO, R2, R2

MPYF3 *++ARO (1), R2, R2
:t STF R2, *AR1-- (1) 'l.

RPTB LOOP

MPYF3 *++ARO(l) , *++ARI (IRO) ,
:t ADDF3 RO,R2,R2

MPYF3 *++ARO(1) , *AR1--(U7., .. AODF3 Rl,R2,R2

MPYF·3 *++ARO (1) , *AR1, RO .. ADDF3 RQ, R2, R2

MPYF3 *++ARO(l) , *AR1-- (1) 7.,
:: ADOF3 RO, R2, R2

STF R2, *AR1-- (1) %
;
LOOP MPYF·3 *++ARO(I) , R2, R2

flnal 5ummatlon

AOOF RO,R2
ADOF3 R1,R2,RO

NOP *AR1--(IRll
NOP ,*AR1--(1)%

return sequence

RETS

end

.end

RI

RO

RO

RI

RO

a2 (O) * d (O,n-2) -) RO
b2(Q) * d(O,n-2) -) R1

at (0) * d <O,n-l) -> RO
first sum term of d(O,n).

b1 (0) * d (O,n-1) -) RO
second sum term of d (O,n).

bO(O) * d<O,n) -> R2
store d (O,n); point to

d (0,n-2).

I loop for 1 <:= i < N

I a2(i) * d (i ,n-2) -) RO
first sum term of y(i-l,n)

b2(i) * d(i,n-2) -> Rl
second sum term of y(i-l,n)

al (i) * d (i ,n-1) -> RO
first sum term of dU ,n).

bl(i) * d(i,n-l) -> RO
second sum term of d (i ,n).

; store d (i ,n); pOint to
d (i ,n-2).

bO (i) * d (i , n) - > R2

first sum term of y(N-l,n)
I second sum term 0+ y <N-1 ,n)

return to + i rst b i quad
point to d (O,n-1>

, return

Figure 8 (confd.)

46 The TMS320C30 Floating-Point Digital Signal Processor

main. Computationally efficient implementation of Fourier
transforms are known as the fast Fourier transform
(FFT).3.5 Table 3 shows the timing for different FFTs on
the 320C30. The code for these FFTs, as well as the
routines listed in Table 4, appear in the TMS320C30 User's
Guide.·

The 320C30 has many features that make it well suited
for FFTs, such as the high speed of the device, the floating­
point capability, the block-repeat construct, and the bit­
reversed addressing mode. For instance, the FFT shown in
Figure 9 on the next page can be implemented in code that
can be entirely contained in the 64-word cache of the
320C30.'

Telecommunications and speech. Telecommunica­
tions and speech applications have many requirements in
common with other DSP applications, but they also have
some special needs. For instance, telecommunications
applications interfacing to TI carriers sometimes need to
convert between a linear signal and one compressed by !!­
law or A-law formats. Such a conversion can be realized
with hardware by adding a peripheral to the DSP peripheral
bus. This is the approach taken in some members of the
TMS320 first generation of devices. An alternative way is
to do the same function with software.

In speech applications, digital filters are often imple­
mented in lattice form. Depending on the application, both
FIR and IIR filters are realized this way, although some­
times the terminology lattice filter and inverse lattice filter
is used respectively.

Graphics and image processing. In graphics and im­
age processing applications DSPs perform operations on
two-dimensional signals, and matrix arithmetic takes on
particular significance. In the 320C30 matrix arithmetic
can be decomposed into a series of dot products, which can
be very effectively implemented using constructs similar
to the FIR filter implementation discussed earlier. Addi­
tionally, the large memory space of the 320C30 allows
processing of large segments of data at a time.

Benchmarks. We have implemented several general­
purpose and applications-oriented routines for the 320C30
and include these in the User's Guide.· Table 4 lists some
of these routines with the necessary cycles and the memory
requirements for the program.

T he last five years have seen a tremendous growth
in the utility of digital signal processors. This
growth has been fueled, at least in part, by the

ever-increasing level of performance and ease of use of
general-purpose DSPs. The TMS320C30 represents the
newest generation of DSPs. But, the end of this trend is not
yet in sight. Rather, we expect the trend of higher levels of
performance and greater ease of use to continue. For DSPs,
the next five years look bright indeed.

Table 3.
Timing of an FFT on the 320C30.

Number of Radix-2 Radix-4 Radix-2
points (complex) (complex) (real)

FFT timing (ms)
64 0.167 0.123 0.075

128 0.367 - 0.162
256 0.801 0.624 0.354
512 1.740 - 0.771

1,024 3.750 3.040 1.670

Code size
(Words) 55 176 86

The code size does not include the sinel
cosine tables. The timing does not include bit
reversal or data I/O.

Table 4.
Program memory and timing

requirements for 320C30 routines.

Cycles
(best easel

Application Words worst case)

Inverse of a floating-point
number 31 31

Integer division 27 27/58
Double-precision integer

multiplication 24 20/24
Square root 32 35
Dot product of two vectors 10 8 + (N - 1)
Matrix times vector

operation 10 2 + R(C + 9)
FIR filter 5 7 + (N - I)
IIR filter (one biquad) 7 7
IIR filter (N) 1 biquads) 16 19+6N
LMS adaptive filter 9 8 + 3(N - 1)
LPC lattice filter 11 9 + 5(P - 1)
Inverse LPC lattice filter 9 9 + 3(P - 1)
/L-law compression 16 16
)L-law expansion 13 11116
A-law compression 18 18
A-law expansion 15 14/21

N = length of appropriate vector
P = length of lattice filter
R = number of rows of a matrix
C = number of columns of a matrix

The TMS320C30 Floating-Point Digital Signal Processor 47

GENERIC PROGRAM TO DO A LOOPED-CODE RAOIX-2 FFT COMPUTATION IN 320C30.

THE PROGRAM IS AOAPTED FROM THE FORTRAN PROGRAM IN PAGE 111 OF
REFERENCE [5]

AUTHOR. PANOS E. PAPAM I CHALI S
TEXAS INSTRUMENTS

.GLOBL N

.GLOBL M
• GLOBL SINE
.SSS INP,1024

• TEXT

INITIALIZE
.WORD
• SPACE

FFT 51 ZE
LOG2 (N)

JULY 16, 1987

ADDRESS OF SINE TABLE
MEMORY WITH INPUT/OUTPUT DATA

STARTING LOCATION OF THE PROGRAM
RESERVE 100 WORDS FOR VECTORS, ETC •

FFTSIZ
LOGFFT

. SINTAB

• WORD
.WORD
.WORD
• WORD

FFT
100
N
M
SINE
INP INPUT

FFT. LOP
LDI
LSH
LDI
LOI·
LSH
LOI
LOI
LOI

FFTSIZ
@FFTSIZ,IR1
-2,IR1
O,AR6 >

@FFTSI Z , I RO
1,IRO
@FFTSIZ,R7
1,AR7
1,AR5

COMMAND TO LOAD DATA PAGE POINTER

IR1=N/4, POINTER FOR SIN/COS TABLE
AR6 HOLOS THE CURRENT STAGE NUMBER

IRO=2*Nl (BECAUSE OF REAL II MAG)
R7=N2
INITIALIZE REPEAT COUNTER OF FIRST LOOP
INITIALIZE IE INDEX (AR5=IE)

; OUTER LOOP
L[JOF': NOP *++AF,6 (1 j

@INPUT • A~';
R/,AF:O,I'~K •.
Af,/ ,Re
1.RC

CURRENT FFT STHGE
ARO POINTS TO X(I)
AR2 POIN1S TO A (li

LOI
ADDI
LOI
SUBI RC SHOULD BE ONE LESS THAN DESlFiED ..

BUTTERFLY WITHOUT TWIDDLE FACTORS
RPTB BlK1
ADDF *ARO,*AR2,RO RO=XlI)+XIL>
SUeF *AR2++, *ARO++ ,Rl Rl =X (I) -X (L>
AODF *AR2,*ARO,R2 R2=Y (I) +Y (U
SUBF *AR2,*ARO,R3 R.3=Y(I)-Y(U
STF R2, *ARO-- Y (I) =R2 AND •••

II STF R3, *AR2-- Y <U =R3
ELK! STF RC/ *AR(I+ + (I RO) X (I) :=R() AND •••
:: STF Rl,*AF,2++lIP(I) X(L)",-Rl AN[· ~lF:(J,2 AR(I,2 + 2.-Nl

; IF THIS IS THE LAST STAGE, YOU ARE DONE
CMPI @LOGFFT,AR6
BZD END

; MAIN INNER LOOP
LDl 2,ARl
LOI @SINTAB,AR4

INLOP: ADOI AR5,AR4
LOI AR1.ARCt
ADDI 2,ARl
ADDI @INPUT,ARO
ADDI R7,ARO,AR2
LOt AR7,RC
SUBt 1,Re
LOF *AR4,R6

I GENERAL BUTTERFLY
RPTS BLK2
SUBF *AR2, *ARQ ,R2
SUBF *+AR2 t *+ARO, R 1
MPYF R2,R6,RO

I: ADOF *+AR2,*+ARO,R3
MPYF Rl ,*+AR4 <IRl> ,R3

INIT LOOP COUNTER FOR INNER LOOf'
INITIALl ZE IA INDEX (AR4=IAi
IA=IA+IE; AR4 POINTS TO COSINE

I NCRnlENT I NNER LOOP COUNTER
(X(I> ,Y(l» POINTER
(X(L),YCL» POINTER

I RC SHOULD BE ONE LESS THAN DES I RED *
; R6=SIN

R2=X(I)-X(L)
R!~Y(j)-Y(Ll

RO=R2*SIN AND •••
K$=Y (I) +Y (L>

J R3""Rl *COS AND •••

Figure 9. Example of a radix·2, decimation·in·frequency FFT.

48 The TMS320C30 Floating-Point Digital Signal Processor

II

II

BLK2
AND •••
II

STF
SUBF
MPYF
ADDF
MPYF
STF
ADDF
STF

STF

CMPI
BNE

R3,*+ARO
RO,R3,R4
Rl,R6,RO
*AR2, *ARO 1 R3
R2, *+AR4 (IRl) ,R3
R3,*ARO++(IRO)
RO,R3,RS
R5, *AR2++ (IRO)

R4 t *+AR2

R7,ARl
INLOP

Y'!)=Y(!)+Y(L)
R4=Rl*CaS-R2*SIN
R(J=Rl*SIN AND. ~.
R3=X <I)+X (L)
R3=R2*COS AND •••
X (I) =X (I) +X (L) AND ARO=ARO+2*Nl

; RS ... R2*COS+Rl*SIN
X (L) aR2*CaS+Rl*SIN I INCR AR2

; LOOP BACK TO THE INNER LOOP

LSH
LSH

1,AR7
1,AR5

I INCREMENT LOOP COUNTER FOR NEXT TlME
IE=2*IE

LDI R7,IRO
LSH -l,R7
BR LOOP

END NOP
.END

Figure 9 (tont'd.)

References
I. K.-S. Lin, G.A. Frantz, and R. Simar, "The TMS320 Family

of Digital Signal Processors," Proc. IEEE. Vol. 75, No.9,
Sept.1987,pp.1143-1159.

2. R. Simar and A. Davis, "The Application of High-Level
Languages to Single-Chip Digital Signal Pr~essors," Proc.
19881nt'l. Con! Acoustics, Speech, and Signal Processing,
Apr. 1988, pp. 1678-1681.

3. A. Oppenheim and R. Schafer, Digital Signal Processing.
Prentice Hall, Englewood Cliffs, N.J., 1975,585 pp.

4. L. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing, Prentice Hall, 1975, 762 pp.

5. C.S. Burrus and T.W. Parks, DFTIFFT and Convolution
Algorithms, John Wiley & Sons, New York, 1985,232 pp.

6. TMS320C30 User's Guide, Texas Instruments, Dallas, Tex.,
1988.

7. P. Papamichalis, "FFT Implementation on the TMS320C30,"
Proc. 1988 In!' I. Con! on Acoustics, Speech, and Signal
Processing, Apr. 1988, pp. 1399-1402.

Panos Papamichalis is a senior member of the technical staff and
a section manager in the Texas Instruments DSP Applications
Group. He is also an adjunct professor for the Electrical and
Computer Engineering Department at Rice University in Houston.
Author of Practical Approaches to Speech Coding, his interests
include digital signal processing with applications to speech

NI=N2
N2=N2/2
NEXT FFT STAGE

processing and telecommunications.
Papamichalis received his engineering degree from the School

of Mechanical and Electrical Engineering, National Technical
University of Athens. His MS and PhD degrees in electrical
engineering come from the Georgia Institute of Technology in
Atlanta. He is amemberofthe Institute of Electrical and Electronics
Engineers and Sigma Xi.

Ray Simar, Jr. is a group member of the TI Semiconductor
technical staff and the principal architect and program manager of
the TMS320C30. He has supported the TMS320 family of digital
signal processors.

Simar holds a BS degree in bioengineering from Texas A&M
University, College Station, and an MSEE from Rice University.
He is a member ofTau Beta Pi, Phi Eta Sigma, and Phi Kappa Phi.

Questions concerning this article can be directed to Panos
Papamichalis, Texas Instruments, Inc., PO Box 1443, MIS 701,
Houston, TX 77251-1443.

The TMS320C30 Floating-Point Digital Signal Processor 49

50 The TMS320C30 Floating-Point Digital Signal Processor

Part II. Digital Signal Processing Routines
4. An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

(Panos Papamichalis)

5. Doublelength Floating-Point Arithmetic on the TMS320C30
(AI Lovrich)

6. An 8 x 8 Discrete Cosine Transform Implementation on the TMS320C25
or the TMS320C30
(William Hohl)

7. An Implementation of Adaptive Filters with the TMS320C25
or the TMS320C30
(Sen Kuo ami Chein Chen)

8. A Collection of Functions for the TMS320C30
(Gary Sitton)

51

52

An Implementation of FFT, nCT,
and Other Transforms on the

TMS320C30

Panos Papamichalis

Digital Signal Processor Products-Semiconductor Group
Texas Instruments

53

54 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

This report describes the implementation of several Fast Fourier Transforms (FFTs)
and related algorithms on the TMS320C30. The TMS320C30 is the first device in the
third generation of 32-bit floating-point Digital Signal Processors (DSPs) in the Texas
Instruments TMS320 family. The algorithms considered here are the complex radix-2 FFT,
the complex radix-4 FFT, the real-valued radix-2 FFT (both forward and inverse
transforms), the Discrete Hartley Transform (DHT), and the Discrete Cosine Transform
(DCT). These transforms have many applications, such as in image processing, sonar,
and radar.

The introduction briefly describes transforms and their implementation on the
TMS320 family of processors. Next, the different kinds of FFTs (including the real FFT),
the closely-related Hartley transform, and the Cosine transform are described and com­
pared. This is followed by a description of the TMS320C30 features that permit efficient
implementations of these algorithms. Then, specific implementations, transforms, and
TMS320C30 C Compiler facts are outlined. Finally, the report discusses some implemen­
tation issues, and the appendices list actual TMS320C30 code for performing transforms.

The powerful architecture and instruction set of the TMS320C30 permit flexible
and compact coding of the algorithms in assembly language while preserving close cor­
respondence to a high-level language implementation. The efficiency of the architecture
and the speed of the device make faster realization of real and complex transforms possi­
ble. With the availability of a C compiler, these routines can be put in C-callable form
and used as faster versions of FFT C functions.

Introduction

The Fast Fourier Transform (FFT) is an important tool used in Digital Signal Pro­
cessing (DSP) applications. Its development by Cooley and Tuckey gave impetus to the
establishment of DSP as an independent discipline. The well-structured form of the FFT
has also made it one of the benchmarks in assessing the performance of number-crunching
devices and systems.

In recent years, because of the popularity of this signal-processing tool, there have
been efforts to improve its performance by advances both at the algorithmic level and
in hardware implementation. Researchers have been developing efficient algorithms to
increase the execution speed of FFTs while keeping requirements for memory size low.
On the other hand, developers of VLSI systems are including features in their designs
that improve system performance for applications requiring FFTs. In particular, single­
chip programmable DSP devices, currently available or under development, can realize
FFTs with speeds that allow the implementation of very complex systems in realtime.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 55

The Texas Instruments TMS320 family consists of five generations of programmable
digital signal processors. The TMS32010 introduced the first generation, which today en­
compasses more than twelve devices with various speeds, interfacing capabilities, and
price/performance combinations. FFT implementations on the TMS32010can be found
in the appendix of the book by Burrus and Parks [1].

The second-generation TMS320 devices (the TMS32020, the TMS320C25, and their
spinoffs) enhanced the architecture and speed capabilities of the first generation. Examples
of FFT programs implemented oli the TMS32020 can be found in an application report
in the book Digital Signal Processing Applications with the TMS320 Family [2]. Such pro­
grams are easily extended to the TMS320C25 because of the code compatibility between
devices.

The architectural and speed improvements on the processors from one generation
to the next have made the FFT computation faster and the programming easier. These
advantages have reached a new high level in the third generation. The TMS320C30 is
the first device in the third generation, and this report examines implementation of the
FFT algorithms on it. The fourth generation (TMS320C4x) is a new set of floating-point
devices, while the fifth generation (TMS320C5x) is a continuation of the fixed-point devices.
Since software compatibility is maintained within the fixed-point and the floating-point
devices, the existing FFT implementations will also be applicable to these new generations.

The Fourier Transform of an analog signal x(t), given as

X(w) = r 00 x(t) e-jwtdt
j - 00

(1)

determines the frequency content of the signal x (t). In other words, for every frequency,
the Fourier transform X(w) determines the contribution of a sinusoid of that frequency
in the composition of the signal x(t). For computations on a digital computer, the signal
x(t) is sampled at discrete-time instants. If the input signal is digitized, a sequence of numbers
x(n) is available instead of the continuous-time signal x(t). Then, the Fourier transform
takes the form

00

X(dw) = .E x(n) e-jwn (2)
n=-oo

56 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

The resulting transform X(dw) is a periodic function of w, and it needs to
be computed for only one period. The actual computation of the Fourier transform of a
stream of data presents difficulties because X(dw) is a continuous function in w. Since
the transform must be computed at discrete points, the properties of the Fourier transform
led to the definition of the Discrete Fourier Transfonn (DFT), given by

X(k)

N-l

E
n=O

_ j27rkn

x(n) e N (3)

When x(n) consists of N points x(O), x(I), ... , x(N-l), the frequency-domain
representation is given by the set of N points X(k), k=O,I, .. . ,N-I. Equation (3) is often
written in the form

N-l

X(k) E x(n) wr;: (4)
n=O

where W ': = e - j 27r:nk / N. The factor WN is sometimes referred to as the twiddle factor.

A detailed description of the DFT can be found in references [1,3,4]. The computational
requirements of the DFT increase rapidly with increasing block size N, having an impact
on the real-time system performance. This problem was alleviated with the development
of special fast algorithms, collectively known as Fast Fourier Transform (FFT).With an
FFT, the computational burden increases much less rapidly with N, and for any given
N, the FFT computational load, measured in terms of required mUltiplications and addi­
tions, is smaller than a brute-force computation of the DFT.

The definition of the FFT is identical to the DFT: only the method of computation
differs. To achieve the efficiency of an FFT, it is important that N be a highly composite
number. Typically, the length N of the FFT is a power of 2: N = 2M , and the whole
algorithm breaks down into a repeated application of an elementary transform known as
a butterfly. If N is not a power of 2, the sequence x(n) is appended with enough zeroes
to make the total length a power of2. Again, references [1,3,4] contain a detailed develop­
ment of the FFT. Reference [2] also discusses the same topic.

An Implementation of FFT, DCT, and Other Transfonns on the TMS320C30 57

Different Forms of the FFT

Over the years, researchers have developed different forms of FFT for more effi­
cient computation. Special cases, such as those in which the input is a sequence of real
numbers, have been investigated, and even more sophisticated algorithms have been
developed. The general form of the FFT butterfly is given in Figure 1.

P 0 • P+Q w~

Q --_�i...,L.--------to 0 --.~ P-Q W ~
wk

N -1

Figure 1. Radix-2 Butterfly for Decimation in Time

If the inputs to the butterfly are the two complex numbers P and Q, the outputs will
be the complex numbers P' and Q', such that

P' = P + Q w~ (5)

and

Q' = P - Q W~ (6)

The quantities P, Q, and P', Q' represent different points in the array being trans­
formed, and they mayor may not occupy adjacent locations in that array. In an in-place
computation, the result P' will overwrite P, and Q' will overwrite Q. W k represents again

N

the twiddle factor, and its exponent is determined by the location of the corresponding
butterfly in the FFT algorithm.

Figure 2 shows an alternate form of the same FFT butterfly.

Figure 2. Alternate Form of Radix-2 Butterfly for Decimation in Time.

58 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Although the notation is now less descriptive, it creates a clearer picture when several
butterflies are put together to form an FFT. Using the first notation, Figure 3 is the
flow graph of an 8-point FFT example.

x(O) X(O)

x(1) X(4)

x(2) X(2)

x(3) X(6)
WO

N
x(4)

WO
X(1)

N
x(5) X(5)

WO
N

x(6) X(3)
WO

N
x(7) X(7)

-1 -1 -1

Figure 3. Example of 8-Point FFT with Decimation in Time.

Note that the input sequence x(n) is in the correct order, while the output X(k) is
scrambled. Actually, this scrambling occurs in a very systematic way, called bit-reversed
order: If you express the indices of a scrambled sequence in binary and you reverse this
number, the result is the order that this particular point occupies. For instance, X(3) oc­
cupies the sixth position in the output (when counting from the zero position). In binary
form, 310 = 0112, and if bit-reversed, you get 1102 = 610, which is the position that
X(3) occupies. It turns out that the third position is occupied by X(6), and to restore the
correct order at the output, you need only to swap these two numbers.

An Implementation of FFT. DCT. and Other Transforms on the TMS320C30 59

The same procedure can be repeated with all the scrambled numbers not occupying
the position that their index suggests. If the input sequence x(n) is rearranged to appear
in bit-reversed form, the output X(k) appears in the correct order, as shown in Figure 4.

x(O)
WO

X(O)

N
x(4) X(1)

x(2) X(2)
WO

N
x(6) X(3)

x(1) X(4)
WO

N
X(5) x(5)

x(3) X(6)
WO

N
X(7) x(7)

-1 -1 -1

Figure 4. Alternate Form of 8-Poiut FFT with Decimation in Time. The Input Is in
Bit-Reversed Order and the Output Is in the Correct Order.

Since the only difference between Figures 3 and 4 is a rearrangement of the but­
terflies, the computational load and the final results are identical. In terms of implementa­
tion, this rearrangement means that the nesting of the two innermost loops in the FFT
routine is interchanged.

The butterflies and the FFT configurations presented thus far implement the FFT
with a decimation in time. This terminology essentially describes a way of grouping the
terms of the DFT definition; see Equation (3). An alternative way of grouping the DFT
terms together is called decimation infrequency. Figures 5 and 6 show the same example
of an 8-point FFT: Figure 5 with the input in correct order and the output in bit-reversed
order, and Figure 6 vice-versa, and using the decimation in frequency (DIF).

60 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 .

x(o)
Wo

X(O)

N
x(1) X(4)

x(2) X(2)
WO

N
x(3) X(6)

x(4) X(1)
WO

N
x(5) X(5)

x(6) X(3)
WO

N
x(7)

-1 -1 -1
X(7)

Figure 5. Example of an 8-Point FFT with Decimation in Frequency.

x(o) X(O)

x(4) X(1)

x(2) X(2)

x(6) X(3)
WO

N
x(1)

wO
X(4)

N
x(5) X(5)

WO
N

x(3) X(6)
WO

N
x(7) X(7)

-1 -1 -1

Figure 6. Alternate Form of 8-PointFFT with Decimation in Frequency. The Input
Is in Bit-Reversed Order and the Output Is in the Correct Order

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 61

Pictorially, the difference between decimation in time and decimation in frequency
is that the twiddle factor appears at the input of the butterfly in the first, and at the output
in the second. Otherwise, the two methods are identical in terms of results. However,
depending on what is the most convenient order of getting the twiddle factors and where
the longest-span butterfly appears, you may prefer one method over the other.

The butterfly shown in Figure 1 (or Figure 2) is the smallest element in a radix-2
FFT. The radix of the FFT represents the number of inputs that are combined in a butter­
fly. The Fast Fourier Transform is usually explained around the radix-2 algorithm for
conceptual simplicity. If, however, higher-order radices are used, more computational
savings can be achieved. These savings increase with the radix, but there is very little
improvement above radix 4. That's why the radix-2 and radix-4 FFTs are the most com­
monly used algorithms.

In radix-4 FFT, each butterfly has 4 inputs and 4 outputs, essentially combining
two stages of a radix-2 algorithm in one. Figure 7 shows this combination graphically.

A A1 A'

A ~

B B1 B' B· B'

C C1 C' C C'

D D'

D D1 D'

Figure 7. Butterfly for Radix-4, Decimation-in-Time FFT.

62 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Although four radix-2 butterflies are combined into one radix-4 butterfly, the com­
putationalload of the latter is less than four times the load of a radix-2 butterfly. Ex­
amples of radix-4, 16-point FFTs are shown in Figures 8 and 9 for decimation in time
and decimation in frequency, respectively.

0 0

4

2 8

3 12

4

5 5

6 9

7 13

8 2

9 6

10 10

11 14

12 3

13 7

14 11

15 15

Figure 8. Example of a 16-Point, Radix-4, Decimation-in-Time FFT.

An Implementation ofFFT, DCT, and Other Transforms on the TMS320C30 63

0 0

4

2 8

3 12

4

5 5

6 9

7 13

8 2

9 6

10 10

11 14

12 3

13 7

14 11

15 15

Figure 9. Example of a 16-Point, Radix-4, Decimation-in-Frequency FFT.

These configurations take the incoming sequence in order and produce the frequency­
domain result in digit-reversed form. It is a simple matter to rearrange the FFT and have
the input in digit-reversed form and the output in order.

Digit reversal is similar to bit reversal, except that the number whose digits are re­
versed is written in base 4 (equal to the radix) rather than base 2. For example, the output
value X(14) in a 16-point, radix-4 FFT occupies position eleven (again starting from zero)
because 1410 = 324 and, reversing the digits of the number, 234 = 1110. To restore the
output to the correct order, the contents of locations with digit-reversed indices should
be swapped. However, since the TMS320C30 has a special bit-reversed addressing mode,
it is desirable to have the output of the radix-4 computation in biHeversed rather than
digit-reversed form. This is accomplished quite simply if, in each radix-4 butterfly, the
two middle output legs are interchanged. That is, whenever the output of the butterfly
is the four numbers A', B', C', and D', instead of storing them in that order, store them
in the order A', C', B', and D', as shown in Figure 10.

64 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

A A' A ~

B B' B C'

C C' C B'

0 0' 0 0'

(a) (b)

Figure 10. Radix-4 Butterflies. (a) Regularly-Ordered· Output, (b) Bit-Reversed
Output.

References [5, 6] explain why this simple rearrangement puts the result in bit-reversed
order.

Features of the TMS320C30

The TMS320C30 is the first device introduced in the third generation of the TMS320
. Digital Signal Processors [7,8]. Ithas many architectural features that permit very effi­

cient implementation of algorithms. Some of those features pertinent to the FFT implemen­
tation are discussed in this section.

The two most salient characteristics of the TMS320C30 device are its high speed
(60-ns cycle time) and floating-point arithmetic. The higher speed makes the implementa­
tion of real-time application easier than in earlier processors, even when the other architec­
tural advantages are not considered. Each instruction executes in a single cycle under mild
pipeline restrictions. The device automatically takes care of any potential conflicts. The
pipeline should be observed Closely (e.g., using the trace capability of the simulator) only
if code optimization for speed is required.

The noating-point capability permits the handling of numbers of high dynamic range
without concern for overflows. In FFT programs, in particular, the computed values tend
to increase from one stage to the next, as discussed in reference [2]. Then, the fixed-point
arithmetic will cause overflows if the incoming numbers are large enough and no provi­
sions are made for scaling. All these considerations are eliminated with the floating-point
capability of the TMS320C30. The TMS320C30 performs floating-point arithmetic with
the same speed as any fixed point operation; no performance is sacrificed for this feature.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 65

There are eight extended-precision registers, RO-R7, that can be used as ac­
cumulators or general-purpose registers, and eight auxiliary registers, ARO-AR7, for
addressing and integer arithmetic. For many applications, these registers are sufficient
for temporary storage of values, and there is no need to use memory locations. This is
the case with the radix-2 FFT algorithm, where no locations are required other than those
for the transformation of incoming data to be transformed. Also, arithmetic using these
registers greatly increases the programming efficiency. The two index registers, IRO and
IR 1, are used for indexing the contents of the auxiliary registers ARO-AR 7, thus making
the access of the butterfly legs and the twiddle factors easy.

A powerful structure in the TMS320C30 is the block-repeat capability that has the
form

LABEL

RPTB LABEL
put instructions here
last instruction

Whatever occurs after the RPTB instruction and up to the LABEL is repeated one·
time more than the number included in the repeat counter register, RC. The RC register
must be initialized before entering the block-repeat construct. The net effect is that the
repeated code behaves as if it were straight-line coded (no penalty for looping), with pro­
gram size equal to the one in looped code. In this way, the FFT butterfly, being the core
of the program, can be implemented in a block-repeat form, thereby saving execution time
while preserving the clarity of the program and conserving program space.

A bit-reversed addressing mode is available to eliminate the need for swapping
memory locations at the beginning or the end of the FFT (depending on the FFT type).
When you use this addressing mode, you access a sequence of data points in bit-reversed
order rather than sequentially, and you can recover the points in the correct order during
retrieval of the data instead of spending extra cycles to accomplish it in software.

Implementation of Radix-2 and Radix-4 Complex FFTs

Because of the powerful architecture and the instruction set of the TMS320C30,
the assembly language program follows closely the flow of a high-level language pro­
gram; this makes it easy to read and debug. It also keeps the size of the program small
and reduces the requirements for program memory. Appendix A presents an example of
code for a Radix-2 complex FFT, while Appendix B is a radix-4 complex FFT. The pro­
gram memory requirements for these programs (as well as others to be discussed later)
are given in Table 1.

66 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Table 1. Program Memory Requirements for the Core of the FFT and Hartley
Transforms

Routine Type Program Size

Radix-2, complex FFT 50 words

Radix-4, complex FFT 170 words

Radix-2, real FFT 68 words

Radix-2, real inverse FFT 76 words

Hartley transform 71 words

The numbers in the table correspond only to the core program and do not include
the sine/cosine tables for the twiddle factors, any input/output, or any bit-reversing opera­
tions. Note also that they are independent of the FFT data size.

The data memory requirements are, of course, dependent on the FFT size. The max­
imum length of a complex, radix-2 FFT that can be implemented entirely on the internal
memory of the TMS320C30 is 1024 points. In the present implementation, the 1024-point
radix-4 FFT requires a few more locations (about 7) than are available on-chip.

The code (provided in the appendices) has been written to be independent of the
FFT length. The length N, together with the sine/cosine tables for the twiddle factors,
should be provided separately to maintain the generic nature of the core FFT program.
An example of a file with the sine/cosine tables for a 64-point FFT is given in the Appen­
dix F. Note thatthe FFT size and the number of stages are declared .global in both files
(i.e., the main routine and the file with the table) so that the core program gets the actual
values during linking.

To reduce the storage requirements of a sine/cosine table, a full sine and a cosine
cycle are overlapped. The table stores 5/4 of a full sine wave, with the cosine table start­
ing with a phase delay of 114 cycle from the sine table. This table size is larger than ac­
tually needed, and it is selected merely for testing convenience of the algorithms. The
minimum table size for a radix-2 complex FFT includes 112 of a full sine wave, and 112
of a full cosine wave. If these two half waves are combined using the above quarter-cycle
phase delay, the minimum table size for this kind of FFT is 3/4 of a full sine wave. For
instance, for a 1024-point FFT, the table can be the first 768 points of a sine wave, where
a full cycle would be 1024 points. In the case of a radix-4 complex FFT, the minimum
table size should include 3/4 of a sine and 3/4 of a cosine wave. Overlapping these re­
quirements, we get the minimum table size of a radix-4 algorithm to be one full sine wave.

An example of a linking file is also included in Appendix F to show how the dif­
ferent segments are assigned. For a complete description of the assembler and linker, consult
the corresponding manual [6].

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 67

The timing of the FFT routines was done using the cycle-counting capability of the
TMS320C30 simulator. For the conversion of the number of cycles into seconds, a cycle
time of 60 ns was used. The timing refers only to the core FFT computation, ignoring
read-in and write-out requirements, since such requirements are application-dependent.
Also, no bit reversal is counted (although it may be included in the program), since it
is performed as part of the read-in or read-out. Table 2 gives the timing for the different
FFT routines and for the Hartley transform.

Table 2. FFf Timing in Milliseconds

Radix-2 Radix-4 Radix-2 Radix-2
Transform Hartley

Complex Complex Real Real
Size Transform

FFT FFT FFT Inverse FFT

64 0.165 0.123 0.077 0.085 0.081

128 0.370 - 0.174 0.193 0.181

256 0.816 0.624 0.387 0.434 0.403

512 1.784 - 0.857 0.964 1.132

1024 3.873 3.040 1.879 2.124 2.430

1024 2.366

For the complex FFTs, the radix-4 algorithm reduces the execution time by 20-25%
compared to radix-2, depending on the FFT size. The last entry in this table represents
the timing of the radix-2, DIT routine generated at the University of Erlangen [18] and
given in Appendix A. These numbers are typically used for benchmarking.

Implementation of Real FFT

The development of FFT algorithms is centered mostly around the assumption that
the input sequence consists of complex numbers (as does the output). This assumption
guarantees the generality of the algorithm. However, in a large number of actual applica­
tions, the input is a sequence of real numbers. If this condition is taken into consideration,
additional computational savings can be achieved because the FFT of a real sequence
demonstrates the following symmetries: Assuming that the FFT output X(k) is complex,

X(k) = R(k) + j /(k) (7)

and that the sequence has length N, R(k) and I(k) should satisfy the following relations:

68

R(k) = R(N-k), k = 1, ... , N12-1
/(k) = -/(N-k), k = 1, ... , N12-1
/(0) = /(NI2) = O.

(8)
(9)

(10)

An Implementation of FFT. DCT. and Other Transforms on the TMS320C30

In other words, the real part of the transform is symmetric around zero frequency,
while the imaginary part is antisymmetric. Similar conditions hold if the transform is ex­
pressed in terms of magnitude and phase.

The savings are due to the fact that not all points need to be computed. Since the
not -computed points do not need to be saved either, there are also storage savings. An
efficient algorithm for real-valued FFTs is described in [10]. This algorithm was im­
plemented in the present study in such a way that, given the sequence of N real numbers
x(O), x(1), .. . ,x(N-I), the resulting FFT, consisting of complex numbers, is stored as
R(O), R(I), .. . ,R(NI2), I(NI2-I), I(NI2-2), ... ,/(1). R(k) and I(k) represent the real and
imaginary parts of the complex number X(k). Figure 11 shows the memory arrangement
for the FFT. Note that the input to the real FFT should be bit-reversed, but the bit rever­
sal can be done as the data is brought in. With this arrangement, an N-point FFT uses
exactly N memory locations. If the full array X(k) is needed, the following relations should
be used:

X(O) = R(O)
X(k) = R(k) + j I(k), K = 1, ... , NI2-I
X(NI2) = R(NI2)
X(k) = R(N-k) - j I(N-k), k = NI2+ 1, ... , N-I

x(O)

x(1)

x(2)

- BIT- REAL --. --II ... REVERSAL FFT -

-

x(N-2)

x(N-1)

.. ...

Figure 11. Memory Arrangement of a Real FFT.

R(O)

R(1)

-

R(N/2)

I(N/2-1)

1 (N/2-2)

-

1(1)

(11)
(12)
(13)
(14)

It is expected that, in most signal processing applications, there will be no need to
reconstruct the full X(k) array and that the output shown in Figure 11 will be sufficient
for any further processing.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 69

Appendix C contains TMS320C30 routines implementing a radix-2 real FFT and
its inverse. The implementation of the forward transformation is based on the FORTRAN
programs contained in [10]. The inverse transformation assumes that the input data are
given in the order presented at the output of the forward transformation and produces a
time signal in the proper order (i.e., bit-reversing takes place at the end of the program).
Viewed another way, the inverse real FFT operates as shown in Figure 11 but with the
arrows reversed (and inverse FFT taking the place of the FFT).

The timing for the real-valued FFT (both forward and inverse) is included in Table
2, and the corresponding program sizes are shown in Table 1. As you can see, the real­
valued FFT is considerably faster than the corresponding complex FFT because not all
the computations need be performed. Furthermore, there are data storage savings because
only half the values must be stored. As a result, the maximum length of real-valued FFT
that can be implemented on the TMS320C30 without using any external memory is 2048
points. Of course, if all the values are needed, they can be recovered using the symmetry
conditions mentioned earlier. To achieve the efficiencies of real FFT and not use any ex­
tra memory locations during the computation, the decimation-in-time method is applied
[10]. Decimation in time requires the bit-reversal operation in the forward transform to
be performed at the beginning of the program rather than at the end. The reverse is true
for bit-reversing in the inverse transform.

The Discrete Hartley Transform

Another transform that has attracted attention recently is the Discrete Hartley
Transform (DHT)[ll, 12]. The DHT is applicable to real-valued signals and is closely
related to the real-valued FFT. Comparison of references [10] and [12] describing the
implementation of the two algorithms on FORTRAN programs shows that their implemen­
tation on the TMS320C30 should be similar. And indeed, this is the case.

The DHT pair is defined for a real-valued sequence x(n), n = 0, .. . ,N-l, by
the following equations:

N-l

H(k)

x(n) = _1
N

~ x(n) cas(27Tk n / N), k=O, ... , N-l
n=O

N-l

~
k=O

H(k) cas(27Tk n / N), k=O, ... , N-l

(15)

(16)

where cas(x) = cos(x) + sin(x). The DHT demonstrates a symmetry that is convenient
for implementations: The same program can be used for both the forward and the inverse
transforms, and the result is correct within a scale factor. Also, the real FFT and the DHT
can be derived from each other [12].

70 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

A radix-2 Hartley transform was implemented on the TMS320C30, and the cor­
responding code is included in Appendix n. This code follows the structure of the real
FFT in Appendix C. Tables 1 and 2 show the program memory requirements and the
timing for the execution of Hartley transforms of different sizes. The sine/cosine table
sizes are the same as in the case ofa real FFT.

The Discrete Cosine Transform

The Discrete Cosine Transform (DCT), since its introduction in 1974 [13], has gained
popularity in speech and image processing applications because of its near-optimal behavior.
This discussion is based on the paper by Lee [14]. The nCT code was developed and
implemented by Paul Wilhelm of the University of Washington.

If x (n), n=O, .. . ,N-l is a time-domain signal and X(k) is the corresponding nCT,
x(n) and X(k) are related by the following equations:

N-I
x(k) = ~ E

N n=O

N-I

x(n) = E
k=O

e(O) = 11 -J 2

e(k) x(n) cos (2k + 1)1I"n
2N

e(k) X(k) cos (2k + I)1I"n

2N

e(k) = 1, for k '* 0

(17)

(18)

(19)
(20)

Appendix E shows an implementation of the nCT based on the paper by Lee [14].
The appendix contains the algorithms for both the forward and the inverse transformations
and an example of a table for a 16-point nCT. Note that, because of the structure of the
algorithm, the cosine table needed contains actually the inverses of the cosines (within
a scale factor), and it is not stored in the natural order. Instead, it is generated by the
following C pseudocode:

for [k= 2, i=O; k= N/2; k* = 2]
'for O=kl2; j<N/2; j+ =k](

cos_table[i + +] = 1/[2*cosO*pi/[2*N]]];
cos_table[i + +] = 1/[2*cos[[N-jJ*pi/[2*N]]];

J
cos_table[N-2] =
cos_table[N-1]

cos[pi/4];
2/N;

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 71

The last entry to the table is not part of the cosine itself; it is a constant that is used
by the algorithm, and it is placed at the end of the cosine table for convenience.

Table 3 shows the timing of the forward and inverse transforms for different transform
lengths. The difference in the timing between the forward and the inverse transforms is
due to the fact that more time was expended to optimize the performance of the inverse
transform. Since four of the smallest butterflies were done simultaneously in the center
program loop, the minimum permissible array size to be transformed is 8.

Table 3. DCT Timing in Milliseconds

Transform Forward Inverse

Size Transform Transform

16 0.023 0.020

64 0.105 0.088

128 0.230 0.193

256 0.502 0.416

512 1.094 0.905

1024 2.378 1.982

Other Related Transforms

In addition to the FFT types mentioned earlier (complex, real, decimation-in-time,
decimation-in-frequency, etc.), newer forms of the FFT have been developed to reduce
the computational load. One of the latest in the literature is the Split-Radix FFT. The Split­
Radix FFT [16] has the lowest number of multiplies and adds of any known algorithm.
It achieves this efficiency by combining certain radix-2 and radix-4 butterflies, but, as
a result, the classical concept of FFT stages' is lost. The new structure uses a rather
complicated indexing scheme, which is the price paid for the reduced mUltiplies/adds.
Since, on the TMS320C30, multiplies/adds are not more expensive computationally than
any other operation, the indexing scheme wipes out the gains of the reduced arithmetic.
Actually, an implementation of the split-radix FFT showed it to be slower than the radix-2
FFT, one of the main reasons being that the block-repeat structure could no longer be
used effectively.

Very often, there is a question on what the different benchmark numbers mean. A
useful comparison of execution times for different algorithms on different machines has
been made [17]. Table 4 presents a small segment of the resulting information that is relevant
to the present discussion: the timing in seconds for the radix-8, mix-radix, and split-radix
algorithms that were implemented on various machines. Different operating systems and
compilers have been used, as shown. The execution times of Table 4 should be compared
with the 0.001879 s that it takes to implement a 1024-point, radix-2, real FFT on a
TMS32OC30. As can be seen, the TMS320C30 compares favorably to all the other machines
investigated.

72 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Table 4. Execution Times in Seconds for a 1024-Point Real FFT. The Numbers Should
Be Compared with 0.001879 s of a 1024-Point Real FFT on the TMS320C30

Machine Radix-8 Mix-radix Split-radix

VAX 750 UNIX 8S04.2 f77 0.3634 0.3902 0.3021

VAX 750 UNIX 8S04.2 f77 -0 0.2376 0.2948 0.2089

VAX 750 UNIX 8S04.3 f77 0.2545 0.2600 0.2371

VAX 750 UNIX 8S04.3 f77 -0 0.1825 0.2127 0.1672

VAX 785 UL TRIX f77 0.1046 0.1107 0.1101

VAX 785 ULTRIX f77 -0 0.0796 0.0943 0.0811

VAX 785 VMS FOR/NOOPTM 0.0767 0.0871 0.0975

VAX 785 VMS FOR/OPTM 0.0539 0.0641 0.0633

VAX 8600 VMS FOR/OPTM 0.0217 0.0243 0.0235

MICROVAX VMS FOR/NOOPTM 0.1671 0.1846 0.1864

MICROVAX VMS FOR/OPTM 0.1299 0.1527 0.1419

OEC-10 TOPS-1 0 FOR/NOOPTM 0.0940 0.1184 0.0991

OEC-10 TOPS-1 0 FOR/OPTM 0.0885 0.1110 0.0845

COC 855 FTN5,OPT = 0 0.0277 0.0319 0.0338

COC 855 FTN5,OPT = 1 0.0277 0.0316 0.0337

COC 855 FTN5,OPT = 2 0.0182 0.0171 0.0151

COC 855 FTN5,OPT = 3 0.0180 0.0173 0.0150

SUN 3/50 UNIX 8S04.2 f77 - 0 -f68881 0.2518 0.3365 0.2103

SUN 3/50 UNIX 8S04.2 f77 -f68881 0.2806 0.3897 0.2802

SUN 3/50 UNIX 8S04.2 f77 - 0 0.7586 1.047 0.6955

SUN 3/50 UNIX 8S04.2 f77 0.7476 1.029 0.7033

SUN 3/160 UNIX 8S04.2 f77 0.6037 0.6895 0.5660

SUN 3/160 UNIX 8S04.2 f77 -pfa 0.0983 0.1060 0.0946

SUN 3/260 UNIX 8S04.3 f77 0.3689 0.4126 0.3390

SUN 3/260 UNIX 8S04.3 f77 -0 0.3530 0.4142 0.3297

Pyramid 90X UNIX 8S04.2 f77 -0 0.2053 0.2244 0.1416

Pyramid 90X UNIX 8S04.2 f77 0.2206 0.2457 0.1326

HP-1000 21MX-E FTN7X 0.9400 1.248 0.9478

Apple MAC Microsoft FOR 2.6670 3.1600 2.8260

AST PC Microsoft FOR 1.5040 2.0800 1.4630

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 73

The TMS320C30 C Compiler

The C compiler for the TMS320C30 permits easy porting of high-level language
programs to the DSP device. If the CPU loading of a particular application is not very
high, the C compiler can create programs that run on the TMS320C30 in real time. If,
however, the result is non-realtime, it may be necessary to use assembly language for
more efficient coding.

In most cases, only a portion of the code needs to be written in assembly language.
Typically, there are a few code segments where the device spends most of the time and
which, when optimized in assembly language, yield the necessary performance
improvement. By following the conventions outlined in the run-time environment of the
C compiler [15], you can write these time-critical routines in assembly language and call
them in a C program. This is also true for the FFT routines. In appendices A, B, and
C, the radix-2, radix-4, and real FFT routines mentioned earlier are also put in a C-callable
form by adding the necessary interface at the beginning and the end of the code. The tables
with the sines and cosines are again assumed to be supplied during link time.

Issues in FFT Implementation

There are many ways of actually implementing the· FFT code (and the other
transformations), taking into consideration the different possibilities of program locations,
the data locations, the ways of input and output, etc. Since it is impractical to cover every
possible case, this report has concentrated on a configuration in which the use of external
memory is minimized. With the source code and additional explanations provided, you
should be able to customize the FFT implementation for a particular application.

Use of External Memory

In these implementations, only on-chip memory was used, and that's why the
maximum transform size considered was 1024 points long (2048 for a real transform).
Often, though, applications call for use of external memory for program or data or both.
When external memory is used, the structure of the code does not change at all; it is only
the timing that may be affected.

Fast external memory can be selected so that no wait states are necessary. But even
when there are no wait states, accessing external memory may impose some limitations.
For instance, you can make only one external memory access in a full cycle, but you can
make two accesses of internal memory in each cycle. Also, because of mutliplexing of
the busses, pipeline conflicts may arise if both program and data are placed on the same
external port. Resolution of such conflicts causes extra cycles for the execution. The section
on pipelining in the TMS320C30 User's Guide explains in detail what kind of potential
conflicts may occur.

74 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

To minimize or avoid such conflicts, there are some simple steps that the designer
can take. The TMS320C30 has three separate memory areas (one on-chip, one accessed
by the primary bus, and one accessed by the expansion bus) that can be combined. For
instance, the program can be placed on the expansion port and the data on the primary
port. Or the data can first be brought into internal memory and then operated upon.
Alternatively, the program may be relocated to internal memory. A related approach is
to use the cache. All the transforms are implemented as loops that are executed many
times. If you activate the on-chip cache after the first access of the code, the instructions
execute from the cache instead of the external memory.

If there are additional conflicts, they can typically be resolved by some rearrangement
of the code. For instance, consecutively writing to external memory takes two cycles per
write. If, however, a write is followed by some internal operation, then the second cycle
of the write is transparent, and the actual cost is one cycle.

Bit Reversal

The TMS320C30 has a special form of the indirect addressing mode for the bit­
reversing operation that is required at the beginning or the end of an FFT. Through this
addressing mode, the scrambled data are accessed in their proper order. This addressing
mode works as follows:

Let ARn (n=O .. 7) be the auxiliary register pointing to the array with scrambled
data. The index register IRO contains a. number equal to one-half the size of the FFT.
Then, after every access of the data, ARn is incremented by IRO using the construct

* ARn + + [IRO]8

This causes the contents of ARn to be incremented by the contents of IRO, but if
there is a carry in this incrementing, the carry propagates to the right instead of to the
left. The result is the generation of the addresses in a bit-reversed order. The bit-reversed
addressing mode works correctly if the array with the data is aligned in memory so that
the first memory address is a multiple of the FFT size. This can be achieved if the first
memory address has zeros for the last M bits, where M = iog2N, with N being the FFT
size. For example, in the case of a 1024-point FFT, the last 10 bits of the memory address
of the first datum should be zeros.

In the implementation of the complex FFT, the output is complex even when the
input is real. So, there is a need to consider both the real and the imaginary parts of the
data array. The above description of the bit-reversed addressing mode assumed that the
real and the imaginary parts are stored as separate arrays in the memory. In this case,
each of the arrays (real or imaginary parts) can be accessed as described. However, in
most cases (including this report), the real and imaginary points alternate in the same array.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 75

In this arrangement, the following simple modification achieves the same goal: set IRO
equal to N instead of N12, and access the N points of the transform. At every access, the
auxiliary register is pointing to the real part of the FFT. The imaginary part is located
in the next higher location, and it can be easily accessed.

With the bit-reversed addressing mode, the unscrambling of the data can take place
when the FFT result is accessed for further processing or for 110. It is possible, though,
that certain applications demand the reordering of the data in the same array. Such a
rearrangement can be done very simply for a complex FFT with the following code.

: DO THE BIT-REVERSING EXPLICITLY

*

LDI
SUBI
LDI
LDI
LDI

@FFrSIZ,RC
1,RC
@FFrSIZ,IRO
@INPUT,ARO
@INPUT,AR1

RPTB BITRV
CMPI AR1,ARO
BGE CONT
LDF *ARO,RO

II LDF *AR1,R1
STF RO,*AR1

II STF R1, * ARO
LDF * +ARO,RD

II LDF * +AR1,R1
STF RO, * + AR1

II STF R1,* +ARO
CONT NOP * ARO + + [2]
BITRV NOP * AR1 + + [IRO]B

: RC = FFr SIZE
; RC SHOULD BE ONE LESS THAN DESIRED #
; IRO = FFr SIZE

; EXCHANGE LOCATIONS- ONLY
IF AROAR1

EXCHANGE REAL PARTS

EXCHANGE IMAGINARY PARTS

Note that ARt is pointing to the bit-reversed version of the address contained in
ARO. For real-valued FFT, or for FFTs that store the real and the imaginary parts in
separate arrays, the real-FFT routine in Appendix C contains a modified example of the
above code.

Use ofDMA

If the signal to be transformed arrives as a continuous stream of data, the DMA
could be used to collect the new data while the data already collected are processed. In
this case, the data source address of the DMA points to the memory location correspond­
ing to a serial port, or to another port associated with an external device. The destination
is a memory space designated for storage.

76 An Implementation of FFT, DCT, and Other Transforms on the TMS320c:30

There are two ways to use such buffers. One possibility is to designate one buffer
as the temporary storage and the other buffer as the working area. When the storage buffer
receives the necessary amount of data, the data is transferred to the working area, and
the DMA starts refilling the storage buffer. Alternatively, the two buffers are considered
equivalent: when the processor finishes processing and outputting the data from one and
the DMA has filled the other, the two buffers switch functions; i.e., the DMA starts filling
the first buffer while the CPU is processing the data in the buffer just filled.

Test Vector

For testing purposes, a vector with 64 (quasi-random) data points and the
corresponding FFT values is given in Appendix F. In this way, if any of the routines is
implemented, the test vectors can be used to verify the correct functionality of the routines.
Together with the test vectors, Appendix C gives a sine/cosine table for a 64-point
transform, and the linking file for such a transform.

Summary

This report examined implementations of fast transforms on the Texas Instruments
TMS320C3x floating-point devices. The transforms considered were several forms of the
FFT, the Discrete Hartley Transform, and the Discrete Cosine Transform. Because of
the powerful architecture of the device, the implementation was done easily and efficiently.
It was shown that a TMS32OC30 executes the FFTs several times faster than large computers
such as V AX and SUN workstations. With the availability of the C compiler, these routines
can be put in C-callable form and be used to compute the corresponding transforms
efficiently.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 77

Appendices

Appendices A to F contain the TMS320C30 assembly language programs for the
different algorithms considered. The contents of the appendices are as follows:

78

Appendix A: Radix-2 Complex FFT.
composed of

AI: Generic Program to Do a Looped-Code Radix-2 FFT
Computation on the TMS320C30.

A2: ffL2 - Radix-2 Complex FFT to Be Called as a C
Function.

A3: Complex, Radix-2 DIT FFT - R2DIT.ASM.
A4: Complex, Radix-2 DIT FFT - R2DITB.ASM.
A5: TWIDIKBR.ASM - Table with Twiddle Factors for a FFT

up to a Length of 1024 Complex Points.

Appendix B: Radix-4 Complex FFT.
composed of

BI: Generic Program to Do a Looped-Code Radix-4 FFT on the
TMS320C30.

B2: fft_4 - Radix-4 Complex FFT to Be Called as a C
Function.

Appendix C: Radix-2 Real FFT.
composed of

CI: Generic Program to Do a Radix-2 Real FFT Computation
on the TMS320C30.

C2: fft~l - Radix-2 Real FFT to Be Called as a C Function.
C3: Generic Program to Do a Radix-2 Real Inverse FFT

Computation on the TMS320C30.

Appendix D: Discrete Hartley Transform.
composed of

DI: Generic Program to Do a Radix-2 Hartley Transform on the
TMS320C30.

Appendix E: Discrete Cosine Transform.
composed of

EI: A Fast Cosine Transform.
E2: A Fast Cosine Transform (Inverse Transform).
E3: FCT Cosine Tables File.
E4: Data File.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix F: Test Vectors, 64-Point Sine Table, Link Command File.
composed of

Fl: Example of a 64-Point Vector to Test the FFT Routines.
F2: File to Be Linked with the Source Code for a 64-Point,

Radix-4 FFT.
F3: Link Command File.

The flrst three appendices contain the code for the radix-2, complex radix-4, and
real radix-2 FFT transformations. These routines are given in both the regular form and
in a C-callable form. Furthermore, the contents of a rue with the twiddle factors are given,
as well as an example of a link command me for a 64-point FFT. Note that the source
code of these routines can be downloaded from the TI DSP bulletin board (BBS) by calling
(713) 274-2323. For questions regarding the BBS, call the TI DSP hotline at (713) 274-2320.

Acknowledgements

Mr. Raimund Meyer and Mr. Karl Schwarz (Lehrstuhl fur Nachrichtentechnik,
University of Erlangen) provided the fast routines of Appendix A to do l024-point, radix-2,
DIT FFT. Mr. Paul Wilhelm of the University of Washington provided the routines for
the Fast Cosine Transform (FCT) together with the related explanations and the test vector
in Appendix E. Their contributions are gratefully acknowledged.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 79

References

[1] Burrus, C. S., and Parks, T.W. DFTIFFTand Convolution Algorithms, John Wiley
and Sons, New York, 1985.

[2] Lin, K. -S., Ed. Digital Signal Processing Applications with the TMS320 Family,
Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

[3] Oppenheim, A. V. and Schafer R.W. Digita.l Signal Processing, Prentice-Hall,Inc.,
Englewood Cliffs, New Jersey, 1975.

[4] Rabiner, L. W., and Gold, B. Theory and Application of Digital Signal Processing,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[5] Burrus, C.S. "Unscrambling for Fast DSP Algorithms," IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-36, No.7, pp. 1086-1087,
July 1988.

[6] Papamichalis, Panos E., and Burrus, C.S."Conversion of Digit-Reversed to Bit­
Reversed Order in FFT Algorithms," Proceedings of 1989 IEEE International
Conference on Acoustics, Speech, and Signal Processing, May 1989.

[7] Third-Generation TMS320 User's Guide, Texas Instruments, Inc., Dallas, Texas,
August 1988.

[8] Papamichalis, Panos E., and Simar, Ray Jr. "The TMS320C30 Floating-Point Digital
Signal Processor," IEEE Micro, Vol. 8, No.6, pp. 13-29, Decemberl988.

[9] TMS320C30AssemblyLanguage Tools User's Guide, Texas Instruments Inc., Dallas,
Texas, July 1987.

[10] Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burrus, C.S.- "Real-Valued Fast
f/ourier Transform Algorithms", IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-35, No.6, pp. 849-863, June 1987.

[11] Bracewell, R.N. "The Fast Hartley Transform," Proceedings of IEEE, Vol. 72,
No.8, pp. 1010-1018, August 1984.

[12] Sorensen, H.V., Jones, D.L., Burrus, C.S., and Heideman, M.T. "On Computing
the Discrete Hartley Transform," IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-33, No. 4,pp. 1231-1238, October 1985.

[13] Ahmed, N., Natarajan, T., and Rao, K.R. "Discrete Cosine Transform," IEEE
Transactions on Computers, Vol. C-23, pp. 90-93, January 1974.

[14] B. G. Lee, "FCT - A Fast Cosine Transform," Proceedings of 1984 IEEE
International Conference on Acoustics, Speech, and Signal Processing, pp.
28A.3.1-28A.3.4, March 1984.

[15] TMS320C30 C Compiler Reference Guide, Texas Instruments Inc., Dallas, Texas,
December 1988.

80 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

[16] Sorensen, H.V., Heideman, M.T., and Burrus, C.S. "On Computing the Split-Radix
FFT," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-34, No.1, pp. 152-156, February 1986.

[17] Sorensen, H.V.and Burrus, C.S. "Computer Dependency of FFT Algorithms",
Proceedings of ASILOMAR, 1987.

[18] Schuessler, H.W., Meyer, R., and Schwarz, K. "FFT Implementation on DSP
Chips-Theory and Practice," Proposal for the 1990 IEEE International Conference
on Acoustics, Speech, and Signal Processing.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 81

82 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix A. Radix-2 Complex FFT

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 83

00
~ ADDI R7,ARO,ARl , AR2 POINTS TO XIU > LDI AR7,RC

GENERIC PROGRAM TO 00 A LOOPED-CODE RADIX-2 FFT CMUTATION ON TIE SUBI I,RC , RC S1Dl.IJ IE CK LESS TIWl IESIRED • "CI
TMS32OC30. "CI

FIST LOG' ~

= THE PROGRAM IS TIl<EN FRc.1 HI' BURRUS L PARKS B1Xl<. P. III. TIE lCOII'lEXI
RPTB

Q.
DATA RESIlE IN INTERNAl remy. TIE Cl)1PUTATION IS DCK IN-PLACE, BUT TIE BLKI
RESULT IS MOVED TO IiNlH£R PEMORY SECTION TO DEMONSTRATE THE B1T-R!:VERSED ADDF tARO, *AR2, RO , RO=l1IltllU ~
ADDRESSING. THE TWIDDLE FACTffiS ARE Slf'PLiED IN A TABLE PUT IN A .DATA SUBF tAR2++, fARO++, R 1 , RI=l1IJ-XIU > ·;ECTJON. THIS DATA IS InUIED IN A SEPARATE FILE TO PRESERVE THE GEl£RIC ADDF *AR2, *ARO, R2 , R2=YllltYIU

::... NATURE OF THE _AM. FCIl THE SAPE PLmlSE, THE SIZE DF TIE FFT N AND SUBF 1M2, "ARO, R3 , R3=Y1II-YIU I-"

LOG21NI ARE DEFIt£D IN A .GlOBL DIRECTIVE AND SPECIFIED DURING LINKING. STF R2,4MO-- , Y 1II=R2 AND ...
.

;:,

~
.. STF R3, *AA2- YIU=RJ ("j~

AlJTHffi: PANOS E. PAPAI1ICHAUS BLKI STF RO, IMO++(IRO) : XII I=RO AND ... Q ~ 'tj TEXAS INSTRUMENTS JULY Ib, 1987 " STF RI,*ARZttlIROI XIU=RI AND ARO,Z = ARO,2 t 2t'NI 3 = ~ ~
~ .GLOBL FFT , ENTRY POINT FOR EXECUTION IF THIS IS TIE LAST STAGE, YOU ARE OONE "CI ""i
'" a ;:, .GlOBL , FFT SIZE ~
is .GlOBL M , LOO2INI CMPI @lOGFFT , ARb

a.~ 6' .GlOBL SINE : ADDRESS DF SINE TABLE B10 END
.... ""i

;:, Q Q
.s;, IN? .USECT "IN", 1024 , r£~Y WITH INPUT DATA MAIN INNER LOOP =(JQ

.BSS OUTP,I024 , tEI10RY WITH IlJTPUT DATA ""i

~
LDI 2,Ml , INIT LOOP COUNTER FOR H~ER LOOP Q = • TEXT LDI @SINTAB,AR4 , INITJALIZE IA INlEX IAR4=IAI = 3 .'"-3 IIt.OP: ADDI ARS,AR4 , IA=IAtIE, AR4 POINTS TO COSINE -tl INITIALIZE LOI ARI,ARO ="-

(j ADDI 2,ARI , It«:REIIEHT INNER LOOP aJ..MER ~ Q
.'"-3 • WORD FFT , STARTING LOCATION OF TIE PROGRAM ADDI @It-f'UT,ARO , IWI, YIIII POINTER

1-30 ADDI R7,ARO,ARl , 11IU,YIUI POINTER
l:l • SPACE 100 , RESERVE 100 WCIlOS FCIl VECTffiS, ETC. LDI AR7,RC ~Q ;:,
l:l.. SUBI I,RC , RC S1Dl.IJ DE Il£ LESS TIWl IESIRED • 00=
a FFTSIZ • WORD LDF tAR4,Rb , Rb=SIN

~t"'" S- LOGFFT • WORD

'"
SINTAn • WORD SINE SECOND LOOP QQ INPUT • 10m IN? ("jQ

~
OUTPUT • WOOD ruTP RPTB BLK2 ~"CI

I:l SUBF tAR2, *ARO, R2 , R2=l1IJ-XIU Q~
;:, fFT: LOP FFTSIZ , CDI'IW/JJ TO LOAD DATA PAGE POINTER SUBF t+AR2,I+ARO,Rl , RI=YIJ I-YIU Q.
~ MPYF Rl,Rb,RO , RO=R2<SIN AND ... I

<::> LOI tFFTSIZ,IRl AODF HAR2, HARO,R3 , R3=YllltYIU ("j
~ "

LSH -2,IRI , IRI=N/4, POINTER FCIl SIN/COS TABLE MPYF Rl, <tAR41 IRI I ,R3 ; R3=Rl<COS AND ... Q

"" LDI 0, ARb : ARb IOJIS TIE ru<RENT ST AllE IlJIIBER " STF R3,HAAQ , YlJI·YlJltYIU Q.
<::> LDI tFFTSI Z, IRO SUBF RO,R3,R4 , R4=RI<COS-Rl<SIN ~
;:,

LSi< I,IRO : IR(looZ<NI lBECAUSE OF REALIlMAGI MPYF Rl,Rb,RO , RO=R1+SIN AND ... :=0 S- LDI tFFTSIZ,R7 , R7=N2 " ADDF <AR2, tARO, R3 , R3=XlIJtXIU

'" LOI l,AR7 , INITIALIZE R£PEAT crurrER OF FIRST MPYF Rl, <tAR41 IRII, R3 , R3=R2tCOS AND ••• =
~

, LOOP " STF R3,IAAO++(IRO) , X1II.11IItXIU AND _Ot2<NI Q.
LOI 1,AR5 , INITIAlIZE IE INlEX I~IEI ADDF RO,R3,R5 , R5=R2tCOStR1+SIN ~

~ BLK2 STF R5, <AR2ttIIROI , XIU=R2tCOStR1+SIN, INCR AR2 AND ... I

tv "HER LOOP " STF R4,HAR2 YIU=RltCOS-fl2<SIN N
0 ~ [3 LOOP: NOP H+AR6(1) , CLIlRENT FfT STAGE CMPI R7,ARI ~
0 LDI @INI'JT , ARO , ARO POINTS TO X1II BNE IILOP , LOOP BACK TO THE IIKR L1ll'

~

:l:.
;:s

3'
';l
1i>
3
~
is
~.

~
=ii
.'-l

tl
(":l
.'-l

~
~
~ ..,
~
§
~ c
~
'"
§
So
~

~
~
N
C o
C

00
VI

END'

Bl1RY

"

SELF

LSI! I,AR) I~ LOO" ro..tffER FOO I£XT TIlE

LSI! 1,AR5 IE=2flE
LOI R),IRO , NI=H2
LSI! -1,R) , N2=N2/2
!Ill L()(J> , 1£11 FFT ST~

STORE RESllT OOT USIMl Bl1-REVERSED ADDRESSIMl

LOI @FFTSlZ,Re , RC=N
SUBI I,Re , RC SIIlllI IE !IE LESS THAN lESIRED •
LOI @FFTSlZ,IRO , IRO=SIZE ~ FFT~
LOI 2,IRI
LDI fiNPlIT,ARO
LDI to.J1PIJT,ARI

RPTB 8!TRY
L~ HAROtll,RO
LDF 1/IRO++(!ROIB,RI
STF RO,HARlIll
STF RI,.IIRI++IIRll

!Ill SELF , IlRAtOl TO ITSELF AT TI£ END
.END

00 ... NAI'E:
0-

ffU --- RADIX-2.C!l'If'LEX FFT TO BE CAlL£D AS A C RKTlON. FP .set AA3 >
• SYtO'SIS: • GLOB!. _ffU ; ENTRY P\JINT FOR EXECUTION "C

INT ffUIN,~, DATAl • GLOB!. _Slne : ADOOESS {F SINE TAfU "C
INT N FFT SIZE: No2"~

~

INT ~ NlI1IlER {F STAGES = UlG2(NI . ass FFTSIZ.I =
FLOAT 'DATA ARRAY WITH I~ AND OOTPUT OATA .BSS LOGFFT,I Q.

.SSS Itf'UT,1 ~
• DESCRIPTION:

::.. G£N£RIC FlKTlON TO 00 A RADIX-2 FfT CM'UTATIOO ON TIE 32OC3O. • TEXT ~ ::: Tft: DATA rHlAY IS 2'N-U}(;, WITH REAL AND IMAGINARY VALUES ALTERNATHI3.

~
THE _ IS BASED 00 THE FORTRAN _ IN Tft: lltIlRUS AND PARKS SINTAB .~or-d _sine

BOOK, P. 111. ~

C
"'<:S INITlALlZE C FUtUIOO :::
" THE COMPlITATlOli IS OONE IN PlACE, AND Tft: ORIGINAL DATA IS [€STROYED.
::! BIT REVrnSAL IS Itf?LEI1ENTED AT THE END (F THE FOCTlON. IF THIS IS t{)T _fiL2: PUSH FP : SAVE [€OICATED REGISTERS =
~

r':l
::: NECESSARY, THIS PART CAN BE ClMNTED OJT. LDI SP,FP
is' PUSH R4

....
I 0

g. THE SINE/COSINE TABLE FOR Tft: TWIDIl.E FACTORS IS EXPECTED TO BE SlI'PlIED MH RS = :;:d
::: DURIND LINK TIlE, AND IT SfW..I) HAVE Tft: F!llOWING FORM!: PUSti' R6

<5;,
PUSHF R7 =

• GLOBAL PUSH AR4 Q.
~

• DATA PUSH AR5 ~
_swe .FLOAT VAlUE! = sinlOf2fpilNl PUSH ARb I

.'-3 • FLOAT VAlLE = sinU*2*pilNI PUSH AR7 N

t.:::? • FLOAT VALUE(5N/41 = sin! (5+N/4-11*2tpi/N) LOI t-FP(21,RO ; ~ ARGUMENTS TO LOCATIONS ~TQHNG ~
(j 0
.'-3

STI RO,!f'FTSIZ ; Tft: NMES I N THE PROOW1 9 THE VALUES VALUEI, VALUE2, ETC., ARE Tft: SAllE WAVE VALUES. FOR AN Lal .-FPi3I, RO

\:l N-P\JINT FFT, H£RE ARE N+N/4 VALUES FOR A FLU AND A IlUARTER PERIOD {F STI RD. !LOGFfT "C
:::

THE SINE WAVE. IN THIS WAY, A FULL SINE AND COSINE PERIOD ARE AVAILABlE LDI f-FP(41,RO -\:l.. ~

a IS/.f'ERlt1POSEDI. STI RO.!INPUT ~

Sf. STACK STROCTIJlE tf'ON THE CALL: INITlALlZE FFT ROUTINE ~
~ +---------+ ~

~
-FP(41 DATA LDI !FFTSIZ ,IRI ~ ., -FP131 LSH -1.IRI ; IRI=N/4, POINTER FOR SIN/COS TABLE

::: -FP(11 N LDI O,AAb ; ARb lO..DS Tft: crnRENT STAGE llJl10CR
~ -FP(11 : RETlIIN AOOR LDI !FFTSIZ.IRO

0
C -FPIOI ruJ FP LSH I.IRO ; lRO=2.NI (BECAUSE {F REAlII~GI 0=
~ +------+ LDI @fFTSIZ,R7 ; R7=N2 ~

'" LDI I,AR7 ; IN ITI AL IZE REPEAT ClWTER {F FIRST

C REGISTERS USED: RD, RI, R2, R3, R4, R5, Rb, R7, ARC, ARI, AR2, AR4, AR5 LOCI' ~
::: ARb, AR7, IRO, IRI, RS, RE, fit LD! 1,AA5 ; INITIALIZE IE INDEX (AR5=IEl = Sf. --~ AUTHOR: PANOS E. P~MICHALIS (J.ITER LOOP ~

~
TEXAS INSTRUIENTS OCTOOCR 13, 1987 Q.

LOOP: NaP H+AR6(1) ; crnRENT FFT STAGE = ~ HHHffftUfHHnH**ffHff-HHHUHtttHHHHU.UHHHHHft-HIf.UfH LDI @INPUT.ARO ; ARO POINTS TO XlI I ~

tv ADDI R7.ARD,AR2 ; AR2 POINTS TO X(ll

0 LDI AR7, R(=
0 SUBI 1,RC ; fit S!Ulll BE ONE LESS HWI ~SIREO •

~
0

~
;:,

~
"i:5 r
is
gO

~
~
,:--l

o
(j
,:--l

§
I::>..
C)
So
'" ...
~
§
~
~

~
'" §
So
'"
~
~
N
C o
C

~

FIST LOW

RPTB ILKI
AIlIF tMO, tAA2, RO , ~XIII+XILl
SUBf fAR2tt, tMO++, Rl , RI~XIII-XILl
ADIIF tAR2, tARO, R2 , ~YIII+YILl
SUBf 1M2, fAAO, R3 , R3=YIII-YILl
STF R2,+ARO- , YIII~2 AND, ••
STF R3, tAA2- YILI~3

ILK! SIF ROt fMQH(lROJ , XIII~O AND ...

" STF RI, tAA2++ I lRO I XfLI~1 AND ARO,2 ~ ARO,2 + 2+NI

IF THIS IS TI£ lJIST STAGE, YW ARE IXH:

Cl'l'1 @l.OGFfT,AR6
BZD END

MAIN II*R LOOP

LDI 2,ARI , INIT LOOP COUNTER Foo Itf£R LOO'
LDI tsINTAB,AR4 , INITIALIZE IA INDEX IAR4~IAI

INLOP: ADDI AR5,AR4 , IA=IA+IE, AR4 POINTS TO COSINE
LDI ARI,ARO
ADDI 2,ARI , INCREIIENT Itf£R UXP CWNTER
ADDI ~ltflJT ,ARO , IXIII,YIIiI POINTER
ADDI RI,ARO,AR2 , IIILl,YILlI POINTER
LDI ARI,RC
SUBI I,RC , RC SIUUI BE ONE LESS THAN [(SIRED I
LDF +AR4,R6 , R6--$IN

SECOND LOOP

RPTB BLK2
SUBf tAR2, tARO, R2 , R2~XIII-XILI
SUBf HAR2, '+MO,Rl , RI~YIII-YILl
II'YF R2,R6,RO ,~tSIN AND ...
ADDF f+AR2, t-tARO,R3 R~YIII+YILI

IIPYF RI, HAR4IIRII,R3 , ~I+COS /MI ...
STF R3,HMO Y1I1~YIII+YILl

SUBf RO,R3,R4 , R~I tCOS-R2tSIN
ItPYF RI,R6,RO , ~ltSIN AND ...
ADDF tAR2,tMO,R3 R3=X III +X III
IIPYF R2, HAR41 IRII,R3 , R3=R2tCOS AND ...
STF R3,tARO++llROI XIII~XIII+XILI AND ~ARO+2tNI
ADDF RO,R3,R5 , ~tCOS+RI+SIN

I1LK2 STF R5, +AR2++1 IROI , XILI~tCOS+R1tSIN, INCR AR2 AND ...

" STF R4, HAR2 Y ILI~RI tCOS-R2+SIN

CIIPI RI,ARI
lINE INLOP , LOO' BACK TO TI£ Itf£R LOO'

LSH I,AR7 INCREI£NT LOW CW'ITER Foo NEXT TH£

LSH 1,AR5 IE~2tIE

LDI RI,IRO
LSH -1,R7
DR LOW

00 THE BIT -R!:VERSING OF THE WTPUT

END: LDI ~FTSIl,RC

SUBI I,RC
LDI ~FTSIl, IRO
LDI IltflJT,ARO
LDI !INPUT,ARI

RPTB B!TRV
CMPI ARO,ARI
IIGE CONT
LIF *ARO,RO
LDF tARI,RI
STF ROt "'ARl
STF Rl,fARO
LDF t+ARQ(1) ,RO
LDF HAA1(t),Rl

STF RO,t+ARlIll
STF RI, t+AROI I I

CONT II(p H+ARO(2)

BITRV NOP tARI++llROIB

NI~

~/2

NEXT FFT STAGE

~

RC SIUUI lIE (WE LESS THAN [(SIRED I
I~SIZE OF FFT~

R!:STQRE TI£ R!:GISTER VALUES AND R!:TURN

POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POPF R6
POP R5
POP R4
PIP FP
R!:TS

00
00

~
;:,

!?
"<::j

[
i:;

§'
~
~
.!"1
i:::l
<l
.!"1
$:l
;:,
$:l..

a s.
'" ...,

~
$:j
;:,

~ <:l

~
'"
~
s.
'"
~
~
N
C o
c

C(H'lEX, RADlX-2 DlT FFT R2DlT,ASII

GENERIC _ FIR A FAST LOCf'ED-CDIE RADIX-2 DIT FFT CMIITATIOO
00 TIE TI1S320C30

WRITTEN BY' RAIIUID I£YER, KARL SOIIARZ
LEHlSTlIL FOOl ~ICHTENTECHNIK
UNIVERSITAET ERLANGElHt£RNIIERG
CAOOlSTRASSE 7, D-1l520 ERlANGEN, FRG

19,07,89

THE ICOI'I'lEXI DATA RESIDE IN INTERNAL tEI'OOY. TIE COI1PUTATIOO IS 11M *
IN-PlACE, IlUT TIE RESlI.T IS !1OI'ED TO IWlTI£R tEl10RY SECTlIli TO
DEMONSTRATE THE BIT-REVERSED ADDRESSING.

FOR THIS PROORAII THE ~INIIDI FFTLENGTHIS 32 POINTS IlECIiJSE IF TIE
SEPARATE STAGES,

FIRST 1110 PASSES IIIlE REALIZED AS A FlU! BUTTERFLY LIXJ' SINCE TIE
rt.t.TIPLlESIIIlE TRIVIAL. THE rt.t.TIPLIER IS DIU USED FOR A LOAD IN
PARAlLEL WITH IW ADIIF IR SUBF.

HtlHHHHHHffHHHfHHffHtHHHUHHHffHHHfHHtHHHHHHHft

EXAIf'lE FOR A 1024-POINT FFT IEXCLUDING BIT REVERSALI'

I'CIIRY SIZE'
PROORAII
DATA ITWIDDLE FACTMSI

CYCLES PER BUTTERFL VI
STAGES 1 AND 2
STAGES 3 TO a
STAGE 9
STAGE 10

229 WOOOS
512 IIMIIS

8.25
a,5

A~AGE CYCLES/BUTTERFLY 7,275
TOTAL BUTTERFLYCYCLES = 37249
INITIALIZATION OVERHEAD = 2181 = 5,55, (F TOTAL TItE
TOTAL NIJ1BER OF INSTRUCTION CYClES = 39429
TOTAL TIME FOR A 1024 POINT FFT 2.36 os IEXCLUDING BIT

RE~I

HUtHtHftHHIHnHHfHltftfHfHHtfftttftHHltlHHffHHfHfHltftfH

HtU UtfHHtHH' HtHttH ... HfHHtHHHHHfHHttlHHHHffffH

THIS _ IIOJIlES F!l.L~ING FILES'

THE FILE 'llIIDIKBR,ASII' COOSISTS IF TWIDDLE FACTMS

TIE TWIDDLE FACTMS IIIlE SHRED IN BIT1If.IIERSED IRIEl AND WITH A TAa.E
LENGTH IF N/2 IN = FFTLENGTHI,
EX1<'I'LE' SOOWN FIR N=32, WNlnl = COSI2IPItn/NI - j>SINI21PItn/NI

ADIRESS COEFFICIENT
RUoNIO)) = COSI2*PItO/321 = 1

-!(WNIO)) = SINI2*PIt01321 = 0

R{WN(4)) = COSI2*PI*4/321 = 0,707
-!(WNI4Il = SINI2*PI*41321 = 0.707

12 R{WNI3IJ = COSI21P!J3/321 = 0,831
13 -!(WNI3)) = SINI2IPI*3/321 = 0.550
14 R{WNI7Il = COS I 21PI>7I32 I = O,I9:i
15 -!(WNI7I) = SINI2*PI*7/321 = 0.981

WHEN GENERATED FOR A FFT LENGTH IIF 1024, TIE TABLE IS FOR ALL
AVAILABLE FFT IIF LESS OR EIllW. LENGTH,

THE ~ISSING TWIDIILE FACTMS IWNII,WNII, I ARE GENERATED BY USING
THE SYMTRY WNIN/4+nl = -J*WNlnl. THIS CIW lIE EASILY REALIZED BY
CHANGING R£AL - AND It1AGINARY PART IIF THE TWIDIILE FACTMS AND BY
NEGATING THE NEW REAL PART.

TO CHIWGE THE FFT LENGTH, OOL Y THE PA/WETERS IN TIE I£AIEl (F

TWIDIKBR.ASII AND THE INPUT AND ()JTM ~CTOR LENGTHS NEED TO lIE
ALTERED.

ttffttftHtftfftU-ttfHHffHHffHfHffHIHHflHfHflfllfHfHffHfHlfIHI

f Ail: + j Al --- AR'- t j AI/
/ +

\ /
\ /
/ \

/ \
/ \ +

DR + J BI --- I cos - j SIN I -------------------- DR' + j BI'

f TR = ~ f cos t 81 f SIN
* TI = DR * SIN - Bl * cos

AR'= AA + TR
* AI'=AI-TI

DR'= AR - TR
f 81/= AI + Tl

ftfftHHftftfHHfHtHHfHfHffHftHHfHffHfHtHfHHffffHff-HfffHftf

~ a
~
~ .
n

J
~
~
N
~
~

3
I

~
~ .
>
~

~ FIRST 2 STAGES AS RADlX-4 IlJTTERflY
;:,

.,lobil m
~ .globil N FILL PIPELllE

"i:5 .globil IfW.B

~ .globl! N'lIERT ADIJ' 1M2,<ARO,R4 R4=AR+CR
.;:! .global ~TCI£L SUBF 1M2, tAROtt ,RS RS=AR-CR

~ .global " ADIJ' IMI, tAR3, Rb Rb=M+IIR

~ _global SINE SUBf tARl ++. IM3++ I R7 R7=M-IIR

~.
ADIJ' Rb,R4,RO AR'=RO=R4+Rb

.BSS 111'.2048 INPUT IlECTCll lENGTH = 2N IIEPENDS II'YF tAR3++,1M7,RI RI=OI, I1R'=RJ=R4-Rb
;:,

IJj NI " SUIIf Rb,R4,RJ

~ .BSS OOTP,2048 OOTPUT IlECTCll lENGTH = 2N 1_ ADIJ' RI,tARI,RO ; RO=BI +01, AR' =RO

-~
IJj HI " STF RO,.fAR4++

SUIIf RI,lMltt,RI ; RI = 51 - DI , BR' = R3
.tixt " STF RJ,tAR5++

ADIF RI,RS,R2 ;CR'=R2=R5+RI
t:1 FFTSIZ .lIiord N II'YF t+AR2,1M7,RI ; RI=CI, M'=RJ=RS-RI
C) FG4Il2 ,word N'lIERT-2 " SlIIIF RI,RS,RJ
-~ FG4"3 .lIIord INIERT -3 AIIIJ' RI,tllRO,R2 ; R2=AI +CI, CR' =R2
I:> FGSt12 .word ~TCHEL-2 " STF R2,lM2ttIlRII
;:, FG2 .lIIord fWolB SlIIIF Rt, tMO+-t I R6 ; Rb=AI -CI, M' =RJ
~ FG2I13 ."ord fWolB-3 " STF RJ,lMbtt

~ LOOm .word " ADIF RO,R2,R4 ; AI' = R4 = R2 + RO
SINTAB .lIIord SIIE

'" SINT"I ,lIIord SIIE-I RADIX-4 IIJTTERFLY UXP ..,
~

SINTP2 .word SIIE+2
INPUT .1II0rd INP RPTB IlKI

I:> INPUTP2 ,word 111'+2 II'YF 1M2-, 1M7, RO ; RO = CR , IBI' = R2 = R2 - ROI ;:,

~ (UJTPUT .lIIord OOTP :: SUIIf RO,R2,R2
c:::; II'YF IMI tt, tAR7, RI ; RI = IIR , ICI' = RJ = Rb + R71

~ ARO AA + Al J: ADIF R7,Rb,RJ
ARI SR + HI ADIF RO,<ARO,R4 ; R4 = AR+ CR , IAI' = R41

§ AA2 CR ... CI ... CR' t CI~ :: STF R4,1M4tt
M3:DR+OI SUBf RO, _ARO++,R5 ; R5 = AR - CR , IBI' = R21

S- AR4 : AR' + AI' " STF R2,tAR5++

'" ARS , SR' + HI' SlIIIF R7,Rb,R7 ; 101' = R7 = Rb - R71

~
ARb : M' + 01' ADIJ' RI,tAR3,Rb ; Rb = M + BR , 101' = R71
AR7 : FIRST TWIDIl£ FACTCll = I " STF R7,tAR6++

~ SUIIf RI, tM3tt, R7 : R7 = M - BR , ICI' = R31

N
FFT: I.lf' FFTSIZ LDAD PAGE POIHTER :: STF R3, IM2tt

C LOI fFG2,IOO lRO = N/2 = IJ'FSET BETWEEN INPUTS AIIIJ' Rb,R4,RO ;AR'=OO=R4+Rb

0 LDI fSIHTAB,AR7 AR7 POINTS TO TWIDOLE FACTCll I II'YF tAR3tt, 1M7, RI ; RI=DI, BR' =R3=R4-Rb
LOI IINPUT,IIRO IIRO POINTS TO AR :: SUIIf Rb,R4,R3 C ADDI lRO,IIRO,ARI ARI POINTS TO IIR ADIF RI,tARI,OO ; 00 = BI + DI , AR' = 00
ADDI IRO,ARI,AR2 AR2 POIHTS TO CR :: STF RO,1M4tt
ADDI lRO,AR2,AR3 AR3 POINTS TO M SUIIf RI,lMltt,RI ; RI = BI - DI , I1R' = R3
LOI ARO,AR4 AR4 POIHTS TO AR' :1 STF R3, 1M5++
LOI ARI,ARS ARS POINTS TO I1R' ADIF RI,RS,R2 ;CR'=R2=R5+RI
LDI AR3,ARb ARb POINTS TO M' II'YF ttAR2, 1M7,RI ; RI = CI , M' = R3 = RS - RI
LOI 2.IRI ADMESS OFFSET :: SUIIf RI,RS,R3
LSH -I,IRO lRO = H/4 = lUUIER OF R4-BUTTERflIES ADIF RI,<ARO,R2 ;R2=AI+CI,CR'=R2
LOI lRO,RC

" STF R2, IM2ttllRIl
SUBI 2,RC SUIIf RI,_,Rb ; Rb=AI -CI, M' =R3

" STF R3,tM6++

00
\0

8 8LKI ADIIf RO,R2,R4 ; AI' = R4 = R2 + RO " STF R2,IM3++
llll AR5,RC

nEAR PIPELINE fHIHfnHfHHt+4ftf+fH'UH.H.HtffHtfHtH tHHH ... UHHH

SUIlf RO,R2,R2 ; BI' = R2 = R2 - RO FIRST BUTTERFLY-TYPE;
ADIIf R7,Rb,R3 ; CI' = R3 = Rb + R7
STF R4,IM4 ; AI' = R4 , SI' = R2 TR = BR • cos + BI • SIN
STF R2,tAR5 TI=BR'SIN-BI'1lIS
SUIIf R7,Rb,R7 ; DI' = R7 = Rb - R7 AR"= AR + TR
STF R7,IMb ; DI' = R7 , CI' = R3 AI'= AI - TI
STF R3,'-AR2 BR'= AR - TR

~ BI'= AI + TI ;:,

~ THIRD TO lAST OF STAGE 2 t:tlHHtHtHHHffHfH+HHt+HH .. fHHH-If .. HHHHfHfffHfff'.HtH
'tj

" RPTB IIfLY!
::l llll fFG2,IRI
~ llll IRO,AR5 If'YF t+AR!, RO, R5 ; RS = BI • SIN, IAR' = RSI ;:,
is SUBI 1,AR5 " STF RS, tAR2++

~. llll I,ARb SUIIf RI,RO,R2 ; IR2 = TI = RO - RII
;:, If'YF IMI,R7,RO ; RQ = BR • cos , IR3 = AI + TIl

STLH LDI !SINTAB,AR7 ; POINTER TD TlIIDILE F~TOR " ADDF R2,'ARO,R3
.Q, llll O,AR4 ; mru> ctUlTER SUIIf R2, 'MOH ,R4 ; IR4= AI - TI , BI' = R31

~
llll @INPUT,ARO ; LI'PER REAl BUTTERFLY I tf'UT " STF R3, IM3++
LDI ARO,AR2 ; LI'PER REAL BUTTERFLY OOTPUT ADIIf RQ,RS,R3 ;R3=TR=RQ+RS

~ ADDI IRQ,ARO,ARJ ; LOIER REAl BUTTERFLY OOTPUT If'YF tARltt,Rb,RO ; RO = BR • SIN, R2 = AR - TR

tl llll AR3,ARI ; LOIER IIfAL BUTTERFLY INPUT " SUIlf R3, 'ARO,R2
LSI! I,ARb ; rnJBLE mru> ctUIT If'YF IMI++,R7,RI ; RI = BI • cos , IAI' = R41 (j LSI! -2,AR5 ; HALF BUTTERFL Y ~T

" STF R4, IM2++ ~ LSI! 1,AR5 ; CLEAR LSB IIFLYI ADIIf IMO++, R3, RS ;RS=AR+TR,BR'=R2
I:l LSH -I,IRQ ; HALF STEP FR01 LI'PER TO LOIER REAl

" STF R2,IM3++ ;:, PART I:l..
LSH -I,IRI SWITCH MR TO NEXT mru> a ADDI I,IRI ; STEP FR01 CUI IttAGlNARY TO NEN REAl

S. VALl.(SUIIf RI,RO,R2 ; R2 = TI = RQ - RI ~ L!F IMI++,Rb ; IllItIY LOAD, IlLY FOR AOOOfSS UPDATE ADOF R2, tARO,R3 ; R3 = AI + TI , AR' = RS ...
~

:: L!F tAR7,R7 ; R7 = cos
" STF RS,IM2++

SUIIf R2, tAROHURIl ,R4 ; R4 = AI - TI , BI' = R3 \:l GRLI'PE :: STF R3, IM3++URII ;:,

~ NOP IMI++URII ; AOOOfSS UPDATE c:; FILL PIPELINE ; ARC = UPPER REAl BUTTERFLY INPUT If'YF tARl-,R7,RI ; RI = BI t cos , AI' = R4
~ ; ARI = LOIER REAl BUTTERFLY INPUT

" STF R4, tAR2HlIRII

'" ; AR2 = lI'PER REAl BUTTERFLY OOTPUT If'YF 'ARI,Rb,RQ ; RQ = BR • SIN
c:; ; ARJ = Lc.ER IIfAL BUTTERFLY OOTPUT If'YF t-ARl++,tM7++,RO ; R3 = TR = RI - RQ , RQ = BR • cos ;:, ; TI£ IttAGlNARY PART HAS TO F(ll(ll

" SUIIf RQ,RI,R3
S. L!F H+AR7,Rb ; Rb = SIN I1PYF IMI++,Rb,RI ; RI = BI • SIN, R2 = AR - TR
~ If'YF IMI-,Rb,RI ; RI = BI • SIN

" SUBF R3, tARO,R2

~ " ADIIf H+AR4,RO,R3 ; W1I1Y ADIIf FOR ~TER lPOATE ADIIf IMO++,R3,RS ;RS=AR+TR,BR'=R2
MPYF IMI,R7,RO ;RQ=BR.cos

" STF R2, IM3++

~ I1PYF tARt++, tAR7--, RO ; R3 = TR = RO + RI , RO = BR • SIN llll AR5,RC
N " ADDF RO,RI,R3
C If'VF 'ARI++,R7,RI ; RI = BIt cos , R2 = AR - TR

a " SUIIf R3, tARO,R2

C ADIIf tARO++,R3,RS ;RS=AR+TR,BR'=R2

~
~

"(5
~
;;J
~
IS
~.
;:

~
~
:--J
o
("J
:--J
§
"'-

~
'" ..,
~
" ;:
s, c
~
'" §

~
~
~
tv
a a a

\0 -

H**Ufn***H.H·fftU**Hf-lHftHffHffHfHf .. fHfHt*HffUf"Hf-l H+IH""

SECOND BUTTERFLY-TYPE:

TR = BI • COS - SR < SIN
II = BI • SIN + DR .. cos
IIR'=AR+TR
AI'= AI - TI
SR'= AR - TR
BI'= AI + TI

f*+.HHUH·UfHHHHHHHHtHHfHHfHUHffHfHfUH+HHHHHHTHH

RPTB BFLY2

MPYF f+ARl,R7,R5 ; 115 = BI < COS , (IIR' = 1151
STF RS, tAA2++
ADlIF RI,RO,R2 ; (R2 = TI = RO + RII
MPYF tARI,Rb,RO , RO = 00 I SIN, (R3 = AI + TIl
ADDF R2, IAIlO,R3
SUBF R2,IARO+t ,R4 ; (RI = AI - TI , BI' = R31
STF R3, tAR3++
WBF RO,R5,R3 ;TR=R3=I15-RO
MPYF *ARl++,R7,RO ; RO=OO.COS, R2=AR-TR
SUBF R3, .ARD,R2
MPYF fARl++,R6,Rl ; RI = BI • SIN, (AI' = RII
STF R4,IAR2+t

BfLY2 ADDF *ARQ++ • R3. R5 ; I15=IIR+TR, 00' =R2

" STF R2. fAR3++

CLEAR PIPELINE

AOOF Rl,RO,~l R2=TI=RO'RI
ADIIF R2, <ARD,R3 R3=AI+TI
STF RS, *AR2++ AR'=R5
CMPI ARb,AR4
BHED GIlUPPE , 00 FOLLOWING 3 INSTRUCTIONS
SUBF R2, .fARO++! IRt) ,R4 , RI = AI - TI , BI' = R3
STF R3, 1M3-ttl IRI)
L!IF H+AR7,R7 R7 = cos
STF R4, *AR2H(JRI) AI' = R4
N(f> *ARl++!IRlJ BRANCH HERE

END OF THI S BUTTERFLY GROUP

C'lP1 I,IRO ; JLIt' OUT ,AFTER LD(NI-3 STAGE
BNZ snn

SEW'ID TO LAST STAGE

LDI ~INPlJT,ARO UPPER Itf'UT
LDI ARO,1IR2 Lf'PER OUTPUT
ADD! IRO,ARO,IIRI UlER Itf'UT

"

"

LDI
LDI
LDI
LDI

FILL PIPELINE

IIRI,1IR3
ts1NTP2,1IR7
5,IRO
fFG8I12,RC

I. BUTTERFLY' 0('()

ADDF
SUBF
ADDF
SUBF

.ARO, .ARI,R2
tAAt ++, fARO ... , R3
tARO,'ARI,RO
fAAl++,*A/lO++,Rl

2, BUTTERFLY' ."()

LMIl OUTPUT
POINTER TO TWIDlLE FACTOR
OISTiVU IIETI£EN TWO GRIlPS

1IR'=R2=IIR+OO
OO'=R3=AR-OO
AI' = RO = AI + BI
BI' = RI = AI - BI

ADDF fARO, IAIlI,Rb ; IIR' = Rb = AR + 00
SUBF <ARIH,*ARO++,R7 ; 00' = R7 = AR - 00
ADDF .ARO,IAIlI,RI ; AI' = R4 = AI < BI
SUBF tARIHIlROI,IAROHIIROI,RS; BI' = 115 = AI - BI
STF R2,IAR2++ ; (AR' = R21
STF R3,IM3+t ; IBW = R31
STF RO,tAR2++ ; (AI' =RO)
STF RI, 1AIl3H ; (81' = Rli
STF R6,tAR2++ ; ARf = Rb
STF R7, tAR3H ; 00' = R7

, STF R4,-tAA2++(JRO) ; AI' = R4
STF 115, 1AIl3++IIROI ; BI' = 115

3. BUTTERFLY: .rM/4

ADIIF
SUBF
ADDF
SUBF

tARo ... , '+ARl, R5
IARl,fARO,R4
IftRl++,IARO--,Rb
tARl t+, 1AIl0++, R7

4. BUTTERFLY' 1<'1114

AR' = 115 = IIR + BI
AI' = Rl = AI - 00
BI' = Rb = AI + 00
00' = RT = AR - BI

ADLf HARI,H+ARO,R3 ; AR' = R3 = AR + SI
LIF +-ART,RI ; RI = ° IFoo INNER LW'I
LOF IAIlI++,RO ; RO = 00 (FOR INlIER LOO"I
SUBF IAIlIHIIROI,IARO++,R2; 00' = R2 = IIR - BI
STF R5,IIIR2++ (AR' = 1151
STF R7,tAR3++ 100' = RTI
STF R6,fM3H (81' = Rbl

5. TO M. BUTTERFLY:

APTB BF2£ND

LDF «-AR7++,R7 ; RT = cos , ((AI' = RIll
STF RI, tAR2++
LIF tAR7++,Rb ; Rb = SIN, 100' = R21
STF R2,tAR3++

\0
tv rl'VF f+ARI,Rb,RS , RS = BI • SIN, (AR' = R31 " SUBF R3, 'ARO,R2

" STF R3, tAR2++ HF2END rl'VF tARI++(IROI ,Rb, RI , RI = 01 • SIN, R3 = AR + TR
ADlF RI,RO,R2 , (R2 = TI = RO + Rll " ADlF tARO++, R3, R3
rl'YF 'ARl,R7,RO , RO = DR • COS , (R3 = AI + TIl
ADDF R2,+ARO,R3 a.EAR PIPELINE
SUBF R2, 'ARO++(JROI ,RI , (R4 = AI - TI , BI' 0 R31
STF R3,tM3++ilROI STF R2, fM3++ , DR' = R2 , AI' 0 R4
ADDF RO,RS,R3 ,R3=TR=RO+RS " STF RI,tAR2++
rtPVF fARl++,Rb,RO ,RO=DR'SIN, R2=AR-TR ADDF Rl,RO,R2 ,R2=TI=RO+Rl
SUHF R3,.ARO,R2 ADIF R2, +ARO,R3 , R3 = AI + TI , AR' = R3

;.,. rtPYF tARI++,R7,RI , RI = BI • COS , (AI' = RII
" STF RJ,I-M2++

;::
" STF R4,tAR2++(IROI SUBF R2, +ARO,R4 , RI = AI - TI , 01' 0 R3

~
ADIF +ARO++, R3, RS ,RS=AR+TR,DR'=R2 :: STF R3,tAR3

" STF R2,tAR3++ STF R4,+AR2 , AI' = R4 ':j
~ rtPYF +tARI,R6,RS , RS 0 BI + SIN, (AR' 0 RSI LAST STIa ;:;:
'" " STF RS,tAR2++
;:: SUBF RI,RO,R2 , (R2 = TI = RO - RII LDI tINPtiT,ARO ; UPPER II~UT
Ei rwYF tARI,R7,RO , RO = DR + COS , (R3 = AI + TIl lOI ARO,AR2 ; UPPER ClJTPUT

5° " ADDF R2, .ARO,R3 lOI tINPtiTP2,ARI ,LMR IIf'UT
;:: SUHF R2, fARO++,R4 , (R4 = AI - TI , BI' 0 R31 lOI ARI,AR3 , LMR ClJTPUT

~ " STF R3, t-AR3++ LDI ts I NTP2, AR7 , POINTER TO TlUDIH FACTORS
ADDF RO,RS,R3 ,R3=TRoRO'RS lOI 3,IRO , GR«P OFFSET

~ I1PVF ~l++,Rb,RO ; RO = DR + SIN, R2 = AR - TR lOI @FG4r12,RC

" SUBF R3,+ARO,R2
.'"-3 rl'YF tAR I ++1 IROI ,R7,RI , RI = BI • COS , IAI' = R41 FILL PIPELINE

tI " STF RI, tAR2++

C) ADDF tARO++, R3, R3 ,R3=AR+TR,DR'=R2 I. BUTTERFLY' ."0
.'"-3 " STF R2. tAR3++

DDF tARO, tAR I ,Rb ,AR'oR6=AR+DR
1:> II'VF f+ARI,R7,RS , RS = BI • COS, IAR' = R31 SUBF fAA 1 ++ • *ARO++ • R7 ,BR'=R7=AR-DR ;::
;:,. " STF R3, 'lM2++ ADDF tARO, tARI, R4 , AI' = R4 = AI + BI

a SUHF RI,RO,R2 , 1R2 = TI = RO - RII SUHF tARI++1 IROI, tARO++l IROI,RS , BI' = RS = AI - 01

s- II'YF tARI,Rb,RO , RO = DR + SIN, 1R3 0 AI + TIl

'" " ADDF R2, .ARO,R3 2. BUTTERFLY: w"tt/4 ... SUHF R2, +ARO++I IROI, R4 , IR4 = AI - TI , BI' = R31

~ " STF R3, tM3++{lRO) ADDF f+ARI,+ARO,R3 ,AR'=R3=AR+BI
1:> SUBF RO,RS,R3 ,R3oTR=RS-RO LDF <-AR7,RI , RI = 0 IFOO INf'ER LOiJ'I
;:: rtPVF t-Ml++,R7,RO ,RO=DR'COS, R2=AR-TR :: LDF tMl++,RO , RO 0 DR IFOR IIH:R LOiJ'I "3, " SUHF R3,+ARO,R2 SUHF tAR1++(IRO). fARO++ ,R2 , DR' = R2 = AR - BI c:;

II'YF tARl++,Rb,Rl , RI = BI + SIN, IAI' = R41 STF Rb, tUt2++ , IAR' = Rbi ~ " STF R4,+AR2++IIROI STF R7,+AR3++ , IDR' = R71
'" ADDF fAAO++,R3,RS , RS = AR + TR , DR' = R2 STF RS, iM3++(IROI , IBI' = RSI c:;

" STF R2, IM3++ ;::

s- 3. TO M. BUTTERFLY:
II'VF f+ARI,R7,RS , RS = BI • COS, IAR' = RSI

'" " STF RS, tAR2++ LDF +AR7++,R7 , R7 = COS , IAI' 0 R41

~ ADDF RI,RO,R2 , 1R2 = TI = RO + Ril :: STF RI, +AR2++IIROI
II'YF +ARI,R6,RO , RO = DR • SIN, 1R3 = AI + TIl LDF +AR7++,Rb , Rb = SIN, IDR' = R21

~ " ADDF R2, +ARO,R3 :: STF R2, +AR3++
tv SUBF R2, fARO++,R4 , IR4 = AI - TI , ylLi = BI' 0 R31 rl'YF f+ARI,Rb,RS , RS = BI • SIN, IAR' = R31
0

" STF R3, tAR3++
" STF R3,+AR2++ 0 SUBF RO,RS,R3 ,R3=TR=RS-RO ADDF RI,RO,R2 , 1R2 = TI = RO + RII

0 rtPVF tARl++,R7,RO ,ROoDR+COS, R2=AR-TR rtPYF tARI,R7,RO , RO = DR + COS , 1R3 = AI + TIl

~
;:s II ADIF R2,<ARO,R3 SIF RI,IMI

~
SUIIF R2, fMOttl IROI,R4 , (R4 = AI - TI , BI' = R31 .. SIF R3,IAR3++(JROI END: NIP

'G ADIF RO,R5,R3 ,R3=TR=RO+R5 NIP

~ rlf'YF IMltt,R6,RO , RO = BR • SIN, R2 = AR - TR NIP

~
II SUIIF R3,'ARO,R2 NIP

If>YF IMltt(JROI,R7,RI , RI = BI • COS , (AI' = R41
!:i .. SIF R4,1AR2++(IROI SELF BR SELF
~. ADIF IARO++,R3,R3 ,R3=AR+TR, BR' =R2 .tnd § .. STF R2,_

~ If>YF _I, R7, R5 ; R5"::: BI :I COS ,iAR' = R3J

~
.. SIF R3,1M2tt

SUIIF RI,RO,R2 , 1R2 = TI = RO - Rll
If>YF IMI,R6,RO , RO = BR • SIN, 1R3 = AI + TIl

t:l .. ADIF R2,<ARO,R3

(") SUlF R2, tAROttilROl, R4 , IR4 = AI - TI , BI' = R31

-...., .. SIF R3,1M3tt (JROI
SUIIF RO,R5,R3 ,R3=TR=RO-R5

I:l If>YF IMltt,R7,RO ,RO=BRt.COS, R2=AR-TR ;:s
!:l.. .. SUIIF R3,<ARO,R2

0 lFLEND If>YF tARltt(JROI,R6,RI , RI = BI t SIN, R3 = AR + TR

So .. ADIF tARO++ ,R3,R3

'" ... Il.EAR PIPELINE

~ SIF R2,lAR3tt , BR' = R2 , IAI' = R41 § .. SIF R4,1M2++(JROI
~ ADIF RI,RO,R2 ,R2=T1=RO+RI
~ ADIF R2,<ARO,R3 ,R3=AI+T1,AR'=R3

~ .. STF R3,I-M2++
SUIIF R2, <ARO,R4 , R4 = AI - TI , BI' = R3

§ II SIF R3,1AR3
STF R4,tAR2 , AI'= R4

So
'" END IF m

~ BIT REVERSAl

~
LOI I!FHSIl,IRO N

C LOI 2,IRI a LOI @INPUT,ARO
C LOI !OUTPUT, ARI

LOI I!FFTSIl,RC
SUBI 2,RC

LDF ttAROlll,RO
Rf'TB BlTRY
IN ~++IIROlb,Rl

SIF RO, _1 (I I
BITRV LDF ttAROUl ,RO .. SIF RI,IMl++lIRIl

\0 LDF tARO++(JROlb,RI
W .. STF RO,_11l1

'2

~
;:::

3'
"i:5

~
~
E;

§"
~
~
• "-l

i::l
(J
:-l
I:l
;:::
I:l..

o
S.
'" ...,

~
I:l
;:::

~ <::i

~
~
s.
'"
~
~ w c a c

ftfHff fflHHftH .. HffffHU .. UHt .. HHftIHHf .. Hf .. HffHffHf+fH

APPENIIIlM

COIfl.EX, RADIX-2 DIT FFT R2DITB.ASIt

GEl£RIC PROOlJII1 FOO A FAST L~IE AADIl-2 DIT FFT OO'PUTATIOO
OOTIETIIS32OC:Jl

II!ITTEN BY: AAIP'I.NIJ IEYER, KARL SCIlWlI
LE!flSTIIL FLER _IDfTENTEOflIK
~IVERSITA£T ERLI'o'«N-ItE!NII
CAlERSTAASSE 7, 0.8520 ERIJIt«N, FRG

24.07.89

TIE 1000000XI DATA RESIlE IN INTEANAI. 1EIOlY. TIE C(lf'UTATION IS WoE
IN-PLACE, BUT TIE RESULT IS tiMlI TO AMlTIER HEI100Y SECTION TO
WKJNSTRATE TIE BIT-RE<ElSED ADDRESSIt«i.

FOO THIS PROGRAI! TIE "INIIU1 FFT lfNGTH IS 32 POINTS IECAUSE IF
THE SEPARATE STAGES.

FIRST Till PASSES ARE R£Al.IZED AS A FlUl BUTTERFLY LIXP Situ TIE
I1lI.TlPLIES ARE TRIVI~. TIE I1lI.TlPLIER IS ONLY USED FOO A LOAD IN
PARALLEL WITH AN ADDF 00 SUBF •

tfHtHHHHHfHffHnHHHfHHtHfHHfHtfHHtfHffHffHHHffHlfHff

EXAI'I'LE FOR A 1024-POINT FFT (WITH BIT REVERSAL) :

I£IIORY SIZE :
PROO
DATA

CYCLES PER BUTTERFLY:

231 WOODS
512 WOODS

4
8

STAGES 1 AND 2
STAGES 3 TO 8
STAGE 9
STAGE 10

8.25 •
10.5 (DUE TO EIT. IEI100Y WAITS) •

AVERAGE CYCLES/BUTTERFLY 7.475
TOT~ BUTTERFLYCYCLES = 38272
INITIALIIATIOO OVERI£AD = 2185 = 5.4 Z DF TOT~ TIlE
TOT~ NlIIIER IF INSTROCTIOO CYCLES = 40457
TOTAL TIlE FOR A 1024 POINT m 2.42 .5 IINCLUDIt«i BIT

REVERSIL) •

fHHffH-+ H .. HfoHHHfHIt .. HHHffHttH.HHHHHH-tHH fHfHHff

H ... Hff 'Hff ... UHHfHlfffftHfff+HttfHfHHfHfHHtfffHfHHHHHH

THIS PROOlJII1 IIUJDES FOLLOWIt«i FILES:

THE FILE 'TWIDIKIIR.ASIt' COOSISTS DF TWIDIl.E FACTOOS

THE TWIDIl.E FACTOOS ARE STORED IN BIT REVERSED ORDER AND WITH A TABLE •
LOOTH IF N/2 (N = FFTlfNGTHI.

EXAffl.E: SHloIN Foo N=32, lIol(n) = COS(2*PItn/N) - j*SINC2tPIt-n/N)

ADDRESS COEFFICIENT
o R{WNIO)) = COSI2.PltO/32) = 1

-I(WNIO)) = SINI2tPltO/32) = 0
R{ljNI4)) = COSI2tPl.4/32) = 0.707

-I(WNI4)) = SINI2tPl'4/321 = 0.707

12 R(Wlmll = COS(2'P!t3/32) = 0.831
13 -I(WNI3)) = SIN(2tPl'3/321 = 0.550
14 R{1IH17Il = COSI2'PIt7/321 = 0.195
15 -I(WNl7Il = SINI2tPl'7/32) = 0.981

III£N G8£AATED FOO A FFT lfNGTH IF 1024, TIE TABLE IS Fill ~L
AVAILABLE FFT OF LESS OR EI!.JAI.. LEt«iTH.

TIE MISSING TWIDIl.E FACTOOS IWNO,WNO, I AIlE GENERATED BY USING
TIE S¥MTRY WN(N/4+n) = -J'WNlnl. THIS CAN IE EASILY R£Al.IlED, BY
C>WIDING REAL- AND IMGINARY PART OF TIE TWIDIl.E FACTOOS AND BY
NEMTING TIE NEW REAL PART.

TO CIIAN(£ TIE FFT LENGTH ONLY TIE PAAAI£TERS IN TIE IEAIEl IF
TWIDIKBR.ASI1 AND THE IIf'UT AND OOTPUT VECTOO LENGTHS NEED TO BE
~TERED.

fHftIHHfffHffHfHUHffHfff+ffH4HfHIIHUffHfftfffHHf.fHffHfo+H.

f AR + j AI ------------------------------------ M' + j AI'

I
\ I
I \

/ \

It

I \ +
• SR + j BI -- I cos - j SIN) ------------------- SR' + j BI'

f TR = BR f COS + SI * SIN
f TI = BR f SIN - BI f cos
f AR'= AR T TR
• AI'= AI - TI
• SR'= AR - TR
f Bl'= Al + TI

'H+UHffHHfflU.HfHfHHflltfHHHHHffHIHffHtHIIH'IIHHHHHHt

~
'i = c::I.o
~

~
~ c

~
~
'" r;
c::I.o
~
~
::3

~
I

~
>
~

::..
;::

~
.global FFT FIRST 2 STAGES AS RADlX-4 BUTTERFLY

.global H

"*
,glob.1 IfW.B FILL PIP£W£

.global NVIERT ;:! ,glob.1 NACHT£L ADDF 1AR2, <MO, R4 R4=AIl'CR
~
;:: .global " SUBF 1AR2, .ARO++ , RS RS=AIl-CR

Ei .global SIN!: ADDF <Ml,<M3,R6 Rb=M:+BR

~. SUBF tAR1++, *AR3++,R7 R7 = III - IIR
;:: ,bss ltf',2048 I"'UT I'ECToo LENGTH = IN IW'ENDS ADIF Rb,R4,RO AIl'=RO=R4.R6

~
ON HI I1PYF fAR3tt, -tAR7, Rl RI = DI , IIR' = R3 = R4 - R6

.bS5 OOTP,2048 OOlI'UT I'ECTIll LEIf3TH = IN 1!EP9IDS " SUBF Rb,R4,R3

Sl ON HI ADLl' RI,'IIRI,RO ; RO=BI'Dl, All' =RO

" STF RO, fAR4++
_"-l .text SUBF Rt, fARt ++, Rt ; RI = BI - DI , IIR' = R3

i::) • " STF RJ,IARS++

(j FFTSIZ ,!IIord H ADLl' Rl,R5,R2 ; CR' = R2 = RS • Rl

_"-l FG4M2 .word NVIERT-2 II'YF ttAR2,tM7,Rl ; RI = CI , 00' = R3 = R5 - RI
FG4"3 .word NVIERT -3 .. SUBF Rl,R5,R3

~ FGBM2 ,word NACHT[L-2 ADLl' Rl,'IIRO,R2 ; R2 = Al t CI , CR' = R2 ;::
I:l.. FG2 .word ~B " STF R2,<M2++IlRII

a FG2I13 .word ttiAUl-3 SUBF Rt, IMO++, Rb ; R6 = AI - CI , Ill' = R3

S- LooFFT .lIIord " " STF R3,IARb++

~
SINTAB ,!IIord SINE ADDF ~~,R2,R4 ; AI' = R4 = Rl • RO .., SINT"I .word SINE-l

~ SINTP2 ,word SINE'2 RADJX-4 lIJTTERFLY LOOP

$:I INPUT ,word Iii'
;:: INPUTP2 .liIord IhP+2 APTB BLKI

~ OUTPUT .word WTP MPYF fAFU--. tAR7 ,RO ; RO = CR , IBI' = R2 = Rl - ROI
~ wm .\IIord WTP.l " SUBF RO,Rl,Rl
~ MPYF IARlt+,fM7,Rl ; RI = BR , ICI' = R3 = R6 • R71

'" AIlO'AIl'AI " ADDF R7,R6,R3
~ AIlI , IIR' BI ADLl' RO, 'IIRO,R4 ; R4 = All • CR , IAI' = R41 ;::

AR2 : CR .. CI + CR~ + CI I .. STF R4,tAR4++
S- AIl3 : III • DI SUBF RO, IARO++, R5 ; RS = All - CR , IBI' = RlI
~ AIl4 : All' • AI' .. STF R2,IARS++

~
AIlS : IIR' • BI' SUBF R7,R6,R7 , IDI' = R7 = Rb - R71
IIRb : DR' • Dl' ADLl' RI,'AIl3,Rb , R6 = III • IIR , IDI' = R7l

~ AIl7 , FIRST TWIDDLE FACToo = I " STF R7, IMb++
N SUBF Rt, fAR3++, R7 ,R7=Ill-IIR,ICI'=R31
c:> FFT: W' FFTSIZ LOAD PAGE roINTER " STF R3, tAR2++

0 LDI 1FG2,IRO IRO = N12 = IFFSET B£TlEEN lli'UTS ADLl' Rb,R4,RO ; All' = RO = RI + R6
c:> LDI !SINTAB,AIl7 AIl7 roINTS TO TWIDDLE FACToo 1 MPYF tAR3++, <M7 ,RI , RI = DI , IIR' = R3 = RI - Rb

LDI @IIf'UT,1IRO IIRO roINTS TO All " SUBF R6,R4,R3
ADDI lRO,AIlO,AIlI AIlI roINTS TO IIR ADDF Rl,+AIll,RO ; RO = BI • DI , All' = RO
ADDI IRO,AIlI,AR2 AR2 roINTS TO CR " STF RO, <MI++
ADDI lRO,AR2,AR3 AR3 roINTS TO III SUBF RI, fARl++,Rl , Rl = BI - Dl , IIR' = R3
LOI AIlO,AIl4 AIlI roINTS TO All' .. STF R3, fAR5t+
LOI ARl,AR5 AIlS POINTS TO 1lR' ADDF Rl,RS,R2 ; CR/ :; R2 :: R5 + RI
LDI AR3,AIlb ARb rolNTS TO Ill' MPYF f+AR2, *AfU ,R1 , RI = CI , 00' = R3 = R5 - Rl
LDI 2,IRI ADmfSS IFFSET .. SUBF Rl,R5,R3
LSH -1,IRO lRO = N/4 = IUIlIER Ll' R4-lIJTT£RfLIES ADLl' Rl,'ARO,R2 ; Rl = AI • CI , CR' = Rl

\0
LDI lRO,RC .. STF Rl,IAR2++IlRll

UI SUBI 2,RC SUBF R1, 'ARO++, Rb ,R6=AI-CI, Ill' =R3

~ I: STF Rl,W6++ LDI AR5,RC

IlJCI ADIF RO,R2,R4 , AI' = R4 = R2 + RO
FIRST IlITTERflY-TYPE:

a.EAR PIPEl.INE
TR = BR I COS + Bit SIN

SUIIF RO,II2,II2 , BI' • 112 = 112 - RO TI = BR I SIN - Bit COS - R7,R6,Rl , CI' = Rl = 116 + R7 AR'= AR + TR
STF M,_ , AI' = M , BI' = 112 AI'= AI - TI

:: STF 112,_ BR'= AR - TR
SUIIF R7,R6,R7 , DI' • R7 = R6 - R7 BI'= AI + Til

~ SIF R7,<AR6 , DI' = R7 , CI' = Rl
::s :: STF Rl,<-AR2 RPTB !FlY!

~ T1iIRD TO lAST-2 STAGE If'YF _1,R6,R5 ; R5 = BI t SIN I tAR'· c R5J

" :: STF R5,iM2++

~ LDI 1FG2,IRI SUIIF RI,RO,R2 , 1112 = TI = RO - RII
LDI IRO,AR5 If'YF WI,R7,RO ; RO = lit f COS , (R3:1 AI + TI)

~ SUBI 1,AR5 :: ADIF R2,'MO,R3

is LDI 1,AR6 SUBF R2,fARO++,R4 , IR4 = AI - TI , BI' = Rl)

5" :: SIF Rl,<AR3++
::s_ SllfE LDI tsINTAB,AR7 , POINTER TO 1lI1D1lf FACTOR ADIF RO,R5,Rl ;R3=TR=RO+R5

~
LDI O,AR4 , CRKP CWIIER If'YF WI++,R6,RO ,RO=BRISIN,R2=AR-TR
LDI 111I'UT,ARO , lI'fER lSI. IlITTERFlY III'UT II SUIIF R3,'ARO,R2

~
LDI ARO,AR2 , lI'fER lSI. IlITTERfl Y OOTPUT If'YF WI++,R7,RI , RI = BI I COS , IAI' • R4)
ADDI IRO,ARO,ARJ , u.ER lSI. IlITTERFl Y OOTPUT II STF R4,<AR2++
LDI ARJ,ARI , u.ER REIL IIJTTERflY III'UT !FlYI - WO++,Rl,R5 ,R5=AR+TR,BR'=R2

t:l LSH I,AR6 , 1l1LlILE CRKP ClUIT .. STF 112,_

(J LSH -2,AR5 , W4I.F IllTTERfl Y ClUIT

."-'l LSH 1,AR5 , CLEAR LSB SIIITOI MR TO NEXT CRKP
LSH -I,IRO , W4I.F STEP FIlII lI'fER TO u.ER lSI.

§ PART SUIIF RI,RO,R2 ,R2=TI=RO-RI

$:l.. LSH -I,IRI - II2,<ARO,Rl ,Rl=AI+TI, AR' =R5

c:> ADDI I,IRI , STEP FlU! ILD IItAGINARY TO NEW lSI. :: STF R5,<AR2++
YIIUE SUBF 112, IARO++IIRII ,R4 , R4 • AI - TI , BI' = Rl

So LDF WI++,R6 , DUtIff LOAD, MY FOR AIlDiESS lPDATE .. SIF Rl, <AR3++IIRII
'I> ., .. LDF <AR7,R7 , R7=COS HOP WI++IIRII , ADalESS lPDATE

~
If'YF WI-,R7,RI , RI • BI I COS , AI' • R4

!RPPE .. SIF R4, <AR2++IIRII § If'YF WI,R6,RO ,RO=BRISIN

~ FILL PIPEl.INE , ARO = lI'fER lSI. IlITTERFlY III'UT If'YF tARl++,'M7++,RO , Rl = TR = RI - RO , RO = BR I COS
c::s , ARI = LI¥R lSI. IlITTERFlY III'UT II SUBF RO,Rl,Rl
~ , AR2 = lI'fER lSI. IlITTERFl Y OOTPUT If'YF Wl++,R6,Rl ,Rl=BItSIN,R2=AR-TR

'" , ARJ = LI¥R lSI. IlITTERFlY OOTPUT II SUIIF Rl,<ARO,II2

§ , TI£ IItAGINARY PART IMS TO FlUlII - _,Rl,R5 ,R5=AR+TR,BR'=R2
LDF f++AR7,R6 ,R6=SIN II SIF R2,IAR3++

So If'YF WI-,R6,Rl , Rl = Bit SIN LDI AR5,RC
'I> .. ADIF ++W4,RO,Rl , IUIIY ADIF FOR CWIIER lfDATE

~
If'YF Wl,R7,RO ,RO=BRICOS SECOND IIJTTERFLY-TYPE:
If'YF Wl++,W7-,RO ,Rl=TR=RO+Rl, RO=BR.SIN

~ .. - RO,RI,R3 TR=BllCOS-BRISIN
tv If'YF Wl++,R7,RI , Rl • Bit COS , 112 = AR C TR TI=BIISIN+BRICOS
C .. SUIIF Rl,<ARO,II2 AIl'= AR +·TR a ADIF _,Rl,RS ,RS=AR+TR,BR'=R2 AI'= AI - TI
C .. STF 112,_ BR': AR - TR

SlIIIF fARI++,tIIRO++,RI , 91' = RI • A[- 91
~ 8['= AI I TJ ;:: 2, IlUTTERfLY: lO"O

~ RPT9 IIfLY2
~ ADlf tARO, fARI,R6 ,AR'=Rb=ARIBR
;;;- If'YF HARI,R7,AS , AS = 9[f COS, IAR' = ASI SUIIf tARt ++, tMO++, R7 : BR' = R7 = AR - BR

:: I: STF AS,lAR2ff ADlf tARO, fARI,R4 , AI' = R4 = AI I 91

!il AJIlF Rl,RO,R2 : 1R2 = TJ = RO I Rll SUIIf fARIIII IROI ,tIIRO++ I IROI ,AS , 91' = AS = A[- 91

S If'YF fARI,R6,RO , RO = BR f SIN, (R3 = AI I TIl STF R2,tAR2++ , (AR' = R21 ...
" AIlIlF R2, tARO,R3 ;: STF R3,fAR3ff , IBR' = R31 -. Q SlIIIF R2,fMO++,R4 , IR4 = AI - TJ , 91' = R31 STF RO,tM2++ , (A!' = ROI

;::
STF R3,tAR3ff " STF Rl,fAR3ff , (91' = Rll

"
~ SlIIIF RO,AS,R3 ,TR=R3=AS-RO STF R6, fM2++ ,AR'=Rb

~
If'YF fAR1+l, R7, RO ,RO=BRtCOS,R2=AR-TR " STF R7, fAR3H , BR' = R7

" SlIIIF R3,.MO,R2 STF R4,IAR2IHIROI ,AI'=R4
If'YF fARl ff ,R6,Rl , Rl = 91 f S[N, IAI' = R41 " STF AS, tAR3ff([ROI , 9[' = AS

tl
II STF R4,lAR2ff
IIfLY2 ADlf fAROff ,R3,AS ,AS=ARITR, BR'=R2 3. IlUTTERfLY: W"ft/4

<"'l II STF R2,fAR3ff
,:--l AIlIlF fAROff, t+AR1 ,AS , AR' = AS = AR I 91

I:> CLEAR PIPELIlE SUIIf fARl,tARO,R4 ,AI'=R4=A[-BR

~ ADIf' fARlff, tARO-- ,R6 , BI' = Rb = AI I BR
ADlf Rl,RO,R2 ;R2=TJ=ROIRI SUBF +ARll1,tIIRO++,R7 ;BR'=R7=AR-91

~ AJIlF R2, tARO,R3 ,R3=Alln

" STF R5,IAR2++ ; AR' = RS 4, BUTTERfLY; W"ft/4
~ O'f[AR6,AR4
~

BlED GfilPPE , 00 Rl.I.~INl 3 INSTROCTJONS ADlf HARl,tIlARO,R3 , AR' = R3 = AR I B[
SUIIf R2,tIIRO++URll,R4 , R4 = AI - n , 8[' = R3 LIf' t-AR7,RI ; RI = 0 IFOR IIftR UXI'I

§ " STF R3, tAR3ffURll " LIf' fARlff,RO , RO = BR IFOR lItER LOOPI

~ LIf' fHAR7,R7 ;R7=COS SUIIf fARlffUROI, tAROtl, R2 ;BR'=R2=AR-91
c::;

" STF R4, IM2++(IRll ; A[' = R4 STF R5,fAR2++ , IAR' = RSI

~ NOP fARlIIURIJ ; BRAI«li I£RE " STF R7,fAR3ff ; IBR' = Rll

"" STF R6,*M3++ ; 191' = RbI
Q END ~ THIS IlUTTERFLY GROUP
;:: S, TO", BUTTERfLY:

So O'fl 4,IRO ; .J.If' OOT AFTER lO(NI-3 STAG:
~ aNZ STLfE RPT9 IIf2END

~ S£COHD TO LAST STAG: LDF fAR7ff,Rl ; R7 = COS , IIA[' = R4ll

~ " STF R4,IAR2ff

N LD[!INPUT,ARO ; lPPER [NPUT LDF fAR7ff,Rb ; R6 = SIN, IBR' = R21
<::> lOl ARO,AR2 , lPPER OOTl'\JT " STF R2,fAR3ff

Q ADD[[RIl,ARO,ARI , L~ [NPUT If'YF HARI,R6,AS , AS = 91 f SIN , IAR' = RJI

<::> lOl ARI,AR3 ; L~ OOTPUT " STF R3,fAR2ff
LD[IS I NTP2, ARl ; PO[NTER TO TW[Dll.E FACTOR ADlf RI,RO,R2 ; (R2 = TJ = RO I Rll
lOl S,IRIl , DISTANCE IIETIEEN TIIIJ OROOPS If'YF fARI,R7,RO ; RO = BR t COS , (R3 = A[I TIl
lO[!FGIlIt2,RC " AIlIlF R2,tARO,R3

SUIIf R2,.ARQ++<IROI,R4 ; IR4 = A[- Tl , B[' = R31
FILL PIPELINE " STF R3, tAR3ffUROI

ADDF RO,AS,RJ :R3=TR=RO+R5
1. BUTTERFLY' 0('() If'YF fARl++,R6,RO , RO = BR f SIN, R2 = AR - TR

" SlIIIF R3,tARO,R2
ADlf tARO, fARl ,R2 ; AR' = R2 = AR + BR If'YF fARlff,R7,RI , Rl = BI f COS , IAI' = R41
SUIIf tARl++, tAROt+ ,R3 ,BR'=R3=AR-BR " STF R4,iAR2++UROI

\0 ADlf tARO, fARI,RO ,AI' = RO = AI + 91 -...I

10 AIlIF tMO++,R3,R5 ,R5ollR+TR,IIR'=R2 " STF R3,'M3
00

:1 STF R2,_ STF R4,t11R2 , AI' = R4

II'I'F t+ARI,Rt.,R5 , R5 = BI I SIN, tllR' = R51 LJST STAG: WITH INTEOOIlED BIT IIf\.£RSAl

STF R5,tIIR2++
SlIIF RI,RO,R2 , tR2' TI =RO - RII LDI IINPUT,ARO , IJ'PER IIf'UT

II'I'F tllRl,R7,RO ,RO=lIRlros, tR3=AI+TII LDI lOOTPUT, AR2 ; RB1. OOTPUT !!!

ADIF R2,tMO,R3 LDI IINPUTP2,1IR1 , UIER INPUT

SlIIF R2, tARO++,R4 , tR4 = AI - TI , BI' ," R31 LDI 1OOlP1,AR3 ; IMGlNARY OUTPUT !!!

II STF R3,_ LDI ISINTP2;1iR7 , POINTER TO TWIDIl£ FACTORS - RO,R5,R3 ,R3=TR=RO+R5 LDI IFFTSIZ,IRO , BIT IIf\.£RSAl
;l.. II'I'F tllRl++,Rt.,RO ,RO=IIRISIN, R2=IIR-TR LDI 3,IRI , GRIU' OFFSET
;:

:: SlIIF R3,tMO,R2 LDI IFtl4II2,fIC

~ II'I'F tllRl++t1ROI,R7,RL , RI • BI I ros , tAl' = R41
'I::i n STF R4,tAR2++ Fill PIPELIIE

W - tARO++,R3,R3 ,R3=IIR+TR,IIR'=R2
r: STF R2,_ I, WfTERFLY: 0"0

~
is II'I'F t+ARI'R7,R5 , R5 = BI I ros , tllR' = R31 ADIF tMO,tllRI,R6 , IIR' = Rt. = IIR + IIR

g' :: STF R3,tAR2++ SUBF tllRl ++, tARO++ ,R7 ,1IR'=R7=IIR-1IR
SlIIF RI,RO,R2 , tR2 = TI =RO - RII SUBF tllRI,tMO,R4 : BI' = R4 = AI - BI
II'I'F tllRl,R6,RO ,RO=IIRISIN, tR3=AI+TII AOOF tllRl++tlRI l,tIIRO++t IRII,R5 , AI' = R5 = AI + BI

~ I: ADIF R2,tMO,R3

~
SUBF R2, tIIRO++lIROI ,R4 , tR4' AI - TI , BI' = R31 2, WfTERFLY: 0"11/4

If STF R3,_tlROI
SUBF RO,R5,R3 ,R3=TR=R5-RO UBF t+ARI,tMO,R3 , IIR' = R3 = IIR - BI

tl
II'I'F tllRl++,R7,RO ,RO=lIRlros, R2=IIR-TR LDF t-AR7,RI , RI = 0 IFOR IMlER LOOPI

:: SUBF R3,IARO,R2 " LDF tllRl++,RO , RO = IIR tFOR IMlER LOOP)
(') II'I'F tllRl++,R6,RI , RI = BI I SIN, tAl' = R41 ADIF tARl ++tlRII, IAROt+, R2 ,1IR'=R2=IIR+BI
!""'l :f STF R4, tAR2++tlROI STF R6,I~++(IRO)b , tllR' = 1161
I:l AIlIF tIIRO++ , R3, R5 ,R5=IIR+TR,IIR'=R2 " STF R5,tIIR3++tlROlb , IAI' = R51

S. :I STF R2,_ STF R7,1AR2++tlROlb , tllR' • R71

C II'YF t+ARI,R7,R5 ,R5=Bllros,IIIR'=R51 3. TO K. BUTTERFLY:
S- :: STF R5,tAR2++
<1> AIlIF RI,RO,R2 , ,tR2=T1=RO+RII PTB BFLEND ...
~

II'I'F tllRl,R6,RO , RO = IIR I SIN, tR3 = AI + TIl

" - R2,tMO,R3 17 CYCLES IF FFT SIZE (1024 IU: TO TI£ USE OF INTERNAL IEIDlY FOR BIT
s::\ SUBF R2, tARO++ ,R4 , tR4 = AI - TI , ytLl = BI' = R31 1If\.£RSAl, 21 CYCLES IF m SIZE = 1024 IU: TO TI£ USE OF EXTEANAI. IEItORY ;:
~ n STF R3,tAR3++ FOR BIT IIf\.£RSAl
<:i SlIIF RO,R5,R3 ,R3=TR=R5-RO

~ II'I'F tllRl++,R7,RO ,RO=lIRlros, R2=IIR-TR LDF tllR7++,R7 , R7 = ros , tlBI' = R4))

" SlIIF R3,tMO,R2 " STF R4, tllR3++IIROIB

g BF2ElCI II'I'F tllRl++tlROI,R6,RI , RI = BI I SIN, R3 = IIR + TR LDF tllR7++,R6 , R6 = SIN, tllR' = R21
:: ADIF tMO++,R3,R3 " STF R2, tAR2++IIROIB

S- KPYF ttIlRI,R6,R5 , R5 = BI I SIN, tllR' = R31
<1> CLEAR PlPELIIE " STF R3, tllR2++IIROIB

~
AOOF RI,RO,R2 , 1R2' TI = RO + RII

STF R2,tAR3++ , IIR' = R2 , AI' = R4 II'I'F tllRI,R7,RO , RO = IIR I ros , tAl' = R3 = AI - TIl

~ " STF R4,tAR2++ " SlIIF R2,tMO,R3

N AOOF RI,RO,R2 ,R2=T1=RO+RI ADOF R2, iARO++tIRII,R4 , tBI' = R4 = AI + TI , AI' • R31

C AIlIF R2,tMO,R3 ,R3=AI+T1,IIR'=R3 " STF R3, tllR3++IIROIB

Q :: STF R3,tIIR2++ AOOF RO,R5,R3 ,R3=TR=RO+R5

C SlIIF R2,tMO,R4 I R4 = AI - TI , BI' = R3 II'I'F tARl++,A6,AO , RO = IIR I SIN, IIR' = R2 = IIR + TR

~
;::

" ADIF R3,IMO,R2

~ rl'YF tMI++IlRlI,R7,RI ; RI = BI I cos , IBI' = R41

"t:l " STF R4, tM3ttilROIB

~ WBF R3, fARO++ ,R3 ; Ill' = R3 = All - TR , All' = R2
;:'l " STF R2, tM2++<1ROIB

~ rf>YF .tMI,R7,RS ; RS = BI • COS , 11Il' = R31 Ei
::;<. " STF R3, tM2++<1ROIB

§ SIIBF RI,RO,R2 "- ; IR2 = 11 = RO - RII
rl'VF tMI,R.,RO , RO = III I SIN, IAI' = R3 = Al - TIl

<Q., " SIIBF R2,IMO,R3

~
ADIF R2, IARO++<1Rll ,R4 ; IBI' = R4 = Al • Tl , AI' = R31

" STF R3, tM3++<1ROIB

_'-l SIIBF RO,RS,FtJ ,R3=TR=RO-RS
I'I'VF *ARl++,R7,RO , RO = III I COS , All' = R2 = All + TR

tl " ADIF R3,IMO,R2
(J BFLEND rl'VF tMl++IIRII,Rb,RI , Rl = BI • SIN, BIt' = R3 = All - TR
~ " WBF R3, tMO++, R3

::,
;:: CLEAR PIPELINE
I:>...
C) STF R2,IAR2++(lROIB , All' = R2 , IBI' = R41

S- " STF R4, tM3tt<1ROIB
'I> ADlIF RI,RO,R2 ;R2=Tl=RO+Rl
""t WBF R2,IMO,R3 , AI' = R3 = Al - Tl , Ill' = R3

~ " STF R3,IAIl2
::, ADIF R2,IMO,R4 , Bl' = R4 = Al + 11 , AI' = R3
;::

" STF R3, tM3++<1ROIB
~ <:> STF R4,IAIl3 , BI' = R4

~ END IF FFT
'" <:> END: NlP ;::

S- NlP

'I> N(f>

~
NlP

SELF III SELF
~ .end
tv
<::::>

0
<::::>

~

§

~
~
'tj

~
~
is

§'
.Q.,

~
."-,l

tl
(J
,:--l

~
a
So
'"
~
§
~ Cl

~
§
So
'"
~
~
~
Q
c::.

HH .. HHH*nHfHfUHHHUHfHfffHffHHHfHHHfHHfftfffHffH-IftH

IIPPfNDlX A5

TITLE: llIlD1KBR.ASII

TABlE WITH llIIDIl.E FOCT~ Foo A FFT LP TO A LENGTH (F 1024 CIl'f'lEX
POINTS.

FILE TO lIE L1N<ED WITH TI£ so.m COlE : R2DIT.ASII 00 R2DITB.ASII

WRITTEN BY : RAI~IHJ IEYffi AND KARl SCHIARZ
WIlSTlJL Fl£R tw1CIfUCHTEHTECHNIK
~I'lERSITAEr ERI.A'aIHIJERNI

14.07.89

LENlTH (F llIIDIl.E FOCToo TABlE : 512 REAL VALl£S 1=1024 ml

ffHHfflfHfffHfHHHffHffHfll-HfHHfHHH*HHHfH"HHffHHHfUHH

.global

.global

.global

.global

.globa.l

.global

0 .set
nhalb .set
nvitrt .set
nachtel .set

sine
0

nhalb
nviert
naeMe I

1024
512
2Sb
128

II .set 10 ,
, ANOTHER EXAII'LE (F m -tOOTH 0 = 32:

m-tOOTH 0

0/2
0/4
o/B
NJ1IIER (F STAGES = Idlol

, IlII.Y TI£ FIRST 16 VALLES (F TI£ TAILE ARE tIEEIED

'0 .set
fnhalb .set 16
fnviert .set B
toacbtel .set 4 .. .set 5

.dita

S1n!

. float I. OOOOOOOOOOOOOOet<lOO

.float O. OOOOOOOOOOOOOOet<lOO

.float 7.07IOb7B11B6548t-«)1

.float 7.07lOb7BIIB6548t-D01

.float 9.i3879';32511287.-«)1

.float 3. B26B34323650911e-«)1

.floit 3. B26834323650911e-«)1

.float 9.23879';32511287.-«)1

.float 9.B07B52B040323Ot-«)1

. fl,., 7. 11432195745216f-OOI

.n"t 7.0275474445722'5<-«)1

.fl .. t 0.1350041>4915452.-003

.float 9.99981175282601.-«)1

> :g
~ = ~
~

~ .
~~
~~
~"""" = ~
"0"""

o~
~ ~
~>
~ 00

~~
-I
=-~
Q ~
....,C"

"""­=~

~~
(1~

9 ~
'a ~.
~ ~
~ ~
-c;"
s. ~ = ~ ~~
• Q

""S
til

8'
""S

~

Appendix B. Radix-4 Complex FFT

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 101

§

~
~

"G
~ :=
~
is" go
;:s

<Q.,

~
~
.'""l

t
~
~ ...
~
§
~ c::;

~
g
So
~

~
f:2
N
C a c

HfHHffHfHlffUHUIHHHHHffffffHHHHHfHfffffffHftHfHHfHHI ,
APPENDIX BI

GCNERIC _ TO !Xl A LOOPED-CODE RADlX-4 FFT IXfI'UTATl(w (W TIE
TIIS320C30.

THE PRiJGRAII IS TAKEN FRIl1 THE IIlIlRUS AND PARKS 1100(, P. 117. TIE ctH'I.EX
DATA RESIl£ IN INTERNIi..~, AND THE IXfI'UTATl(W IS IIIH: IN-PLJ¥:E,

THE TWIDCl..E FACTalS ARE SlPPLIED IN A TAILE PUT IN A .DATA SECTl(w, THIS
DATA IS IN:lUl£D IN A SEPARaTE FILE TO PRESERVE TIE OENERIC NAME IF THE
PROORA/t. FOR THE SAlE PlIlPOSE, THE SIZE IF TIE FFT NAND LOO4IN) ARE
!£FINED IN A .Il.OIIL DlRECTl¥E AND SPECIFIED MlNO LIN<INO,

IN OROER TO HAVE THE FItR RESULT IN BIT-RE¥ERSED ORl£R, THE 00 MIDDlE
BRANCHES IF T)£ RADIX-4 BUTTERFLY ARE INTERCHANOED MlNO STIllAGE. t«JTE
THIS DIFFERENCE lIEN CIJI'ARINO WITH T)£ _ IN P. 117 IF THE IIlIlRUS
AND PARKS 1100(.

AUTHOR' PANOS E. PAPAItICHALIS
TEXAS INSTRlI£NTS AlXiUST 23, 1987

fHHUHHfIHHH:lHHfUIHHHHUffHHHftH*UHHHfftftHfH*HfHfH

,
IIf>

TEItP
STORE

.GLOIIL FFl

.il.OIIL N

.GLOIIL "

.1l.01IL SINE

.USEeT 'IN',1024

• TEXT

INITIAlIZE

.WORD FFT

.SPACE 100

,WORD
.WORD
.IDlD
• WORD
• WORD
• WORD

.ass

. ass

.ass
• ass
.ass
.ass
.BSS

$+2

FFTSIZ
N

" SINE
IIf>

FFTSIZ, I
LOGFFT,I
SINTAII,I
INPUT,I
STAGE,I
RPTCNT, I
IEINDX,I

ENTRY POINT Fell EXECUTI(W
FFl SIZE
L0041N)
ADCIlESS IF SINE TAILE

• I'EIOOY WITH INPUT DATA

, STARTlNO LOCATl(w IF TIE PROORAII

, RESERVE 100 IDlDS Fell ¥ECTalS, ETC.

, BEGllfoIlNO IF TEIf' STORAGE AREA

FFl SIZE
L004IFFTSIZl
SINE/COSINE TABLE BASE
AREA WITH INPUT DATA TO PROCESS
FFT STAGE •
REPEAT COJlTER
IE INl£X Fell SINE/COSINE

FfT:

LOOP:

. ass

. ass
• ass

LOP
LOI
LOI
LOI

STl
LDI
STl
LOI
STI
LOI
STl

LOP
LOI
LOI
LOI
LOI
STl

LSH
LSH
LOI
STl

LSH
STl
ADDI
STl
SUBI
LSH

OUTER LOOP

LDI
ADDI
ADDI
ADDI
LOI
SUBI

FIST LOOP

RPTB
ADIF
ADDF
ADDF

LPCNT,I
JT,I
IAI,I

TEll'
tTEIIP,ARO
!STeIlE,ARI
tAROH,RO

RO. fARt++
IARO++.RO
RO, tAR1++
'AROH,RO
RO,fAR1++
'ARO,RO
RO,'AIlI

FFTSI2
IFFTSIZ.RO
IfFTSIZ,IRO
IFFTSIZ,IRI
O,AR7
AR7,tSTAGE

I,IRO
-2,IRI
I,AR7
AIl7, IRPTCNT

-2,RO
AR7,@IEINDX
2,RO
RO,M
2,RO
I,RO

!INPUT,ARO
RO,ARO,ARI
RO,ARI,AR2
RO,AR2,AR3
!RPTCNT,RC
I,RC

IILKI
*+ARO, f+AA2.Rl
t+AR3, 'tARI, R3
Rl,RI,R6

SEcoo-\.OOP mNT
JT mNTER IN _, P. 117
IAI INl£X IN _, P. 117

, INITIAliZE DATA LDCATlOO
, rowND TO LOAD DATA PAGE POINTER

, XFER DATA FRIl1 (WE I'EIOOY TO TIE
OTHER

, WI1ANIl TO LOAD DATA PAGE POINTER

@STAGE lIlLOS TIE CURRENT STAGE
NlI'IIIER

lRO=2'NI lBECAUSE IF REALIIIIAG)
IRI=N/4, POINTER Fell SIN/COS TAILE

, INITIALIZE REPEAT ro..MER IF FIRST
LOOP

, INITIAliZE IE INl£X

, JT=RO/2'2

, RO=N2

ARC POINTS TO XIII
ARI POINTS TO XlIIl
AR2 POINTS TO X1I2)
AR3 POINTS TO X1I3)

, RC SIlU.D BE (WE LESS THAN !£SIRED I

RI=Y11 l+YI 121
R3=YIIlI'Y(13)
R6=RI+R3

~ g
~
~

==
"""" .

~~
('D ('D

~;
== ::!. oof')
~~ == ~(JQ
~.,

=9
S"
~
~

~
"C
('D

9-
~ = Ii'
~
~
J:..

3
8

~ LDI @IAI,AR7
;:: SUBF *+M2,f+ARO,R4 R4=YII)-Y(J2) LDI @IAI,AR4

~
STF R6, ttARO YlIloRl<fi3 ADDI @5INTAB,AR4 , CREATE COSIlE INIIOX AR4
SUBF RJ,RI RloRl-R3 ADDI AR4,AR7,AR5 't3 LDF tAR2,R5 R5=XII2) SUBI I,AIr.i , IA2=IAI+IAH ~

" LDF t+ARI,R7 R7=mll ADD! AR7,AR5,AR6 ;: ADDF tAR3, tAR I ,R3 R3=XiIIl+X(13) SUBI I,ARb , 1A3=1A2+IAH "" ;:: ADIF R5,tARO,RI , RI=IIIl+XII2)
is' " STF RI, ttARl , VllIloRl-RJ seCOND LOOP

5° ADIF R3,RI,R6 ,_I<fi3
;:: SUBF 115, tARO,R2 , R2=XII l-X ([2) RPTB I1LK2

<Q., " STF R6, tARO++<lRO) , XII)oRl<fi3 ADIF HAR2, ttARO,RJ , R3=V<ll+VII2)
SUBF RJ,RI , RloRl-R3 ADDF nAR3 Ml,R5 , R5=VI1Il+V(13)

~ SUBF 1M3, fM1,Rb , R6=XI11 l-X1!3) ADDF RS,R3,R6 , R6=R3+RS
SUBF R7, ttAR3, RJ , -fl3=VIIIl-V<l3) '" SUBF HAR2,*tMO,R4 , R4=VII)-YI12) ."-'l " STF RI, tARl++<lRO) , XllI)oRl-R3 SUBF R5,R3 , R3=R3-RS

i::1 SUBF R6,R4,RS , R5=R4-R6 ADIF IAR2, fMO,R1 , RI=IIIl+XII2)
(J ADIF R6,R4 , R4=R4+R6 ADDF tAR3,tARI,R5 , R5=XIIIl+XII3)
."-'l STF RS, t-+AR2 , m2)oR4-R6 N'YF R3, HAR5I1RIl, R6 , R6=R3tC02

" STF R4, t+AR3 , VII3)oR4+R6
" STF Rb, .tARO , YII)oR3+RS

!:l 5tH RJ,R2,RS , R5=R2-R3 '" ADIF RS,RI,R7 , R7oR1+RS ;::
!:l. ADIF R3,R2 , R20R2<fi3 '" SUBF .AR2 , tARO ,R2 , R2=XIIl-XII2)

0 I1LKI STF 115, tAR2++1 lRO) ; X<I2)::ft?-R3 ! ~! SUBF RS,R1 , RloRl-RS

S. " STF R2,tAR3++IIRO) ; X(J3)~+R3 ! '! If'YF RI,tAR5,R7 , R7oRltSI2

"" " STF R7, tARo++ I lRO) , lI11oRl+RS ... IF THIS IS TIE LAST STAGE, YW IilE OONE SUBF R),R. , R6=R3tC02-RI'SI2

~ SUBF HAR3, f+ARl, RS , R5=YIII)-YI13)
:::i LDI !STAGE,AR) If'YF RI, .. AR5(JRIl ,R7 , R7oRltC02
;:: ADDI 1,AR7

" STF Rb, .tARl , VI1I)oR3tC02-flltSI2
~ CI1PI @LOGFFT,AR7 If'YF R3,*M5.R6 , R6=R3'SI2 C

BID END ADIF R7,R6 , R6=R1tC02+R3tSI2 ~ STI AR7,@5TAGE , Ci.IlRENT m STAGE ADDF RS,R2,RI , R10R2+RS
'" SUBF R5,R2 , R20R2-RS g ItAIN Itt£R LOOP SUBF tAR3, tARl ,115 , R5=X 1IIl-X 113)

~JBF RS,R4,R3 , R30R4-llS
S. LOI 1,AR7 ADIF RS,R4 , R4=R4+RS

"" STI AR7,fIAI , INIT IA1 lNOEI If'YF R3, HAR41 IRI), R6 , R6=R3tCOl

~ LDI 2,AR7
" STF Rb,tAR1++(IRO) , XIIll=RItC02+R3tSI2

STI AR7,@LPCNT , INIT UXP C!X.tITBl FOO IIf£R LOOP If'VF RI,tAR4,R7 , R7oR1'SlI
~ INLCP: SUBF R7,Rb , R6=R3tCOl-RItSlI
tv LDI 2,ARb , INCREIIENT IIf£R LOOP CWNTER N'VF RI, ttAR4IIRIl ,Rb , R6=RltCOl
C ADDI I!LPCHT ,ARb

" STF Rb,ttAR2 , m2)=RJtC01-RltSlI a LDI @LPCNT,ARO ItPYF R3, tAR4,R7 , R70R3'SlI
C LDI @IA1,AR7 ADDF R7,Rb , R6=R1'C01+R3tSlI

ADDI fIElHOX,AR7 , IA1=IAI+IE ItPYF R4, .tARbllRll ,Rb , R6=R4tC03
ADDI @1tf'UT,ARO : IXIIl,VII)) POINTBl " STF Rb,tM2++(IRO) , XII2)oRltCOI+R3tSlI
STI AR7,@IAI If'YF R2, tARb,R7 , R7oR2'S13
ADDI RO,ARO,ARI , IXIIIl,VIII)) POINTBl SUBF R7,Rb , R6=R4'C03-R2tSIJ
sn AR6, I!LPCHT IIPVF R2,.tARbIlRll,R6 , R6=R2tC03
ADD! RO,ARl,AR2 ; U(I2),Y<I2)) POINTER " STF R6,++M3 ; Y(l3)=R4*C03-R2+S13
ADDI RO,AR2,ARJ , 1I(I3),VI13)) POINTER If'IF R4, 'ARb,R7 , R7oR4tSI3
LDI !RPTCNT,RC ADDF R7,R6 , R6=R2tC03+R4tSI3 - SUBI I,Re , RC SIIJlU) !If M LESS THAN IESlREO • BLK2 STF Rb, tAR3++IIRO) , XI!3)oR2tC03+R4'SI3

0 Clf'1 @JT,ARb IF LPCNT=JT, GO TO
IJ,) BlD SPCL Sl'ECIAl OOTTERFLV

-i aPl ILf'CNT,RO STI AR6,tlEltill
II III.OP ; LID' BlICK TO TIE INNER LID' lOl RO,IRO ; NI'IQ
8ft COO LSH -3,RO

ADDI 2,RO
Sl'ECIIil. 1lImIIFlY FIIIIFJ STI RO,IJT ; JT'lQI2+2

SUBl 2,RO
SI'CI. LDI IRI,M4 i..SH I,RO ; N2=H2/4

LSH -I,M4 ; POINT TO SIN(451 8ft LOOP ; NElT FFT STAlE
AIIII tSINTAB,M4 ; CllEATE COSINE INIIEl M4>C021

STORE RESll T .OUT USIM> BIT -i£VERSEII _1M>

~
RP18 IILJ(3

;:,; AIlIF IM2,_,RI RI=XIII+1tI21 END: LDI tFFTSlZ,Re :Re=N

~
SIIF tM2,_,R2 R2-11l1-X 1121 SUBI I,Re ; Re SIWJI BE ONE LESS THAN IESIRED •
AIlIF <+IIR2,<+MO;Rl R3=YIII+YII2I lOl ImSlZ,lRO ; IRO=SIZE IF FFT=N

't:i SIIF <+IIR2,_,R4 R4aYIII-Y1121 LDI 2,IAI
~ - tM3,tMI,RS RS=XCIII+Xml LDI tlNPUT,ARO := SlIIF RI,RS,Rt. R6oA5-RI LOP STIR

'" ;:,; - RS,RI RI=RI+RS lOr tSTlR,AftI
S AIXF <+M3,_I,RS RSoYIIII+Y1131

g" SIIF RS,Rl,R7 R7=RH5 RP18 BITRV
AIXF RS,Rl R3=R3+RS L!F _(II,RO

.a. stF Rl,_ YIII- I! LDF tARO++IlROIB,RI
:l S1f RI,IARO++IlROI XIII=RI+RS SITRV STF RO,_IUI

~
SIIF tMl,tMI,RI RI.11II1-X 1131 ;: STF RI, IMI ++IIRII
SIIF <+M3,_I,Rl R3=YCIII-yml
S1f R6,ftM:l YCIIloR5-ftl SELF 8ft SELF ; IIRAIOI TO ITSElf AT TIE EtII

t::I :: STF R7,tMl++IlROI ; XCIII>113-R5 • END

~
AIlIF Rl,R2,RS ; R50R2+R3
SIIF R2,Rl,R2 ; R2=-R2+R3 !!!
SlIF RI,R4,Rl ; 1l3oR4-R1

l AIlIF RI,R4 I R4=R4tRl
SlIF RS,Rl,RI ; RI>113-R5

C II'YF tM4,RI ; RloRltC021

S- AIlIF RS,Rl ; R3=R3+RS

'" II'YF _,Rl ; R3=R3tC02I ., .. S1f RI .. <+11R2 ; YII21-(Rl-RSltC02l

~ SIIF R4,R2,RI ;Rl~'11

~
II'YF _,RI ; RI=RltC021 .. S1f Rl,tM2++IIROI ; XII2I-(R3+RSltC02l
AIIF R4,R2 ; R2-R2+R4 !!!

C II'YF _,R2 ; R2=-R2tC021 ! ! !

~ IILJ(3 S1f RI,<+M3 ; Y(I3)-(R4-R2ltC02l !!'
II STF R2,tM3++IIROI ; X(3)-(R4+R2)tC021 III

§
S- aPl ILf'CNT,RO

'" l1'li III.OP ; LOOP BlICK TO TIE INNER LID'

~ coo LDI 1RPTCNT,M7
~ LDI IIEINDX,AR6
N LSH 2,AR7 I IIOIEI'BIT REPEAT CWI1ER fill NEXT
C ; TIlE
Q STI AR7,WTOO
C LSH 2,AR6 ; IE=40IE

~ > ;:: •
~

Ii'PEIIIIl B2 fP .SET AR3 'C
'C

'i:l tw1E: ffU - RADIl-4 COI'l.£I m TO IE ClUED AS A C FlKTl(Jj. • GUll. .IFT_4 ,ENTAY POINT FCIl EIECUTI(Jj ~

~ = . [Loa. _SINE , AOCIlESS OF SINE TAIU ~
~

SYIO'SIS: ..
int fft_4lN, ft, DATAl ,BSS FFTSlZ,1 ~

is int N FFT SIZE: No4Hf1 .BSS LOGFFT,I =:t. int IU1lIER OF STAGES = LOO4INI .BSS Itf'UT,1 t:= § flod Idatl ARRAY WITH Itf'UT AN) OOTPUT DATA ~
~ • TEXT

lESCRIPTl(Jj:
~::;

~ GENERIC FlKTI(Jj TO 00 A RADIH m COI'UTATl(Jj (Jj TNE TIIS320C30. SINTAB .!IIord _SINE
TNE DATA ARRAY IS2tNo-l(JjG, WITH REAL AN) llIAGINMY VALI£S AlTER- e -,:--l NATlMl. TNE _ IS BASED (Jj TNE FIIHRAN _ IN TNE lUlRUS INITIAlIZE C FlJI:Tl(Jj a I~ t::I AN) PMKS BOO<, p, 117,

(J _ffU: PUSH FP , SA\£ lEDlCATED REGISTERS c· I
,:--l IN CIlDER TO HA\£ THE FINAL RESllT IN BIT-R£\£RSED CIlDER, TI£ TWO LOI SP,FP = ~ ftID!l£ IIRAIDES OF THE RADIX-4 IIUTTEflfLY ARE INTERCHIIHGfD IIIJIIMl PUSH R4
~ STCIlAGE. NOTE THIS DIFFERENCE WI£N COII'ARIMl WITH THE PROGRAII (Jj PUSH R5 ~ ;::
I:l... p, 117. TI£ CM'UTATl(Jj IS OONE IfH>LACE, ANI! TNE CIlIGlNAL DATA IS PUSHF Rb ~

lESTRDYED. BIT IIE\£RSAL IS IIflEIIENTED AT THE END OF THE FlKT!(Jj. PUSHF R7
..

C ~
S- IF THIS IS NOT NECESSARY, THIS PART CAN IE ClXXENTED OOT. THE PUSH AR4 I

'" SINE/COSlNE'TAIU FCIl TNE TWID!l£ FACTCIlS IS EIPECTED TO IE StPPLIED PUSH AR5 '~ .,
IIIJIII«) LUt< TlIE, ANIIIT SHWl) HA\£ TI£ FI1WIIMl FCIlMT: PUSH ARb

~ PUSH AR7 n
I:j ,globoI .sine 0
;:: • dati LOI <-FP121,RO ; ~ ARGlI'ENTS TO LOCATlCWS ftATCHl1«) e ~ .sine .floit 'l'lht.1 = sin(Ot2lpilNI ST! RO,IfFTSlZ ; TNE twES IN TNE _ c "e.
~

.floit vllut2 ;: 5il'l(1'2Ipi/N) LOI .-FPI3I,RO
ST! RO,@lOGFFT ~ .'float vi,lue(5N/41 = sinl 15tN/4-1)12Ipi/N) LOI f-FP(41,RO

<::> STl RO,!Itf'UT ;::

~ S-
TI£ VALlES vII ... l, .11 •• 2, ETC., ARE TNE SINE WA\£ VAlI£S. FCIl AN
N-POINT m,' THERE ARE N+N/4 VALlES FCIl A All ANII A QlWlTER PERIOD INITIALIZE FFT ROOTlNE

'" OF THE SINE WA\£. IN THIS WAY, A FLU SINE AND alSlNE PERIOD ARE ~
~ AYAILAIU IStftRllI'OSElIl. .BSS STAGE,! , FFT STAGE I

.BSS RPTCNT ,I , REPEAT al.WTER -~ STACK STIUTLII£ lI'IJN TI£ ClU: .BSS IEINDI,! : IE INtEl FCIl SINE/alSllE 0
N +--------+ .BSS LPCNT,! , SECINH.IXP al.WT t:= C -fP141 DATA .BSS JT,! , JT COltITER IN _, P. 117

Q -fP131 ft .BSS IA1,1 , IAI INtEl IN PROORAII, P. 117 ~

C -fP121 N n -fP1ll : fIETIRj AOCIl LOI IfFTSlZ,RO
!. -fPIOI OLDFP LOI IfFTSIl,IRO

+-------. LDI IfFTSIl,IRI -~ LOI O,AR7 ~
REGISTERS USED: RO, RI, H2, Rl, R4, R5, R6, R7, MO, ARI, ARl, ARl, AR4, STl AR7,!!STAGE , !!STAGE IO.lS TI£ aRlEN! STAGE

Nr.>, M6, M7, IRO, IR1, RS, RE, RC - ~
LSH I,IRO , lRO=2tNl llECAlISE OF REAL/lllAGl rIl

li.rnaU I'iINOS E. PAPMIC»1l1S LSI! -2,IRI , IRI"ij/l, POINTER FCIl SIN/COS TAlIlE
TEXAS [NSTRU£IITS OCTOBER 13, 1987 LOI I,AR7 ~ - STl AR7,IRPTOO ; INITIALIZE REPEAT COltITER OF F[RST g H'Htf.fHtH tH •• HH ... fHH' fHfHHtHH .. ffftHtff LOOP n

-~ LSII -2,RO
STI M7,tlEIlIX I INITIALIIE IE INDEX ItAIM IIf8 LOOP
AIIII 2,RO
STI RO,M I JT=RO/2+2 LDI I,M7
SUBI 2,RO STJ 1IR7,tIAI I INIT IAI INDEX
LSII I,RO I RO=II2 LDI 2,M7

STJ M7,1LPCNT I INIT LOOP CIlNrER FtJl IIf8 LOOP
IIJTER LOOP 11t.(J>:

LDI 2,ARl> I ItcmENT IIf8 LOOP COlJjTER
LOOP' ADDI IlKNT,IIR6

~ LDI tINPUT,ARO I ARO POINTS TO XCII LDI ILPCNT,ARO
:: ADDI RO,ARO,IIRI I IIRI POINTS TO XliII LDI IIAl,M7

1i' ADDI RO,IIRI,IIR2 I IIR2 POINTS TO X1121 ADDI IIEIf()X,1IR7 I IAl=IAl+IE
ADDI RO,IIR2,IIR3 I IIR3 POINTS TO 11131 ADDI IINPUT,ARO I CXCII, YIIII POINTER 'i;i LDI IRPTCNl,RC STJ 1IR7,tIAI ;;;-

l!I SIIII I,RC I RC SID.lII lIE (IE LESS !HAN lESlRED • ADDI RO,ARO,IIRI I (XIIII,YUIlI POINTER
<10 STJ ARl>,tLPCNT :: FIST LOOP ADDI RO,lIRl,lIR2 I CXIl2I, YU211 POINTER
is ADDI RO,IIR2,IIR3 I 111131, YII3I1 POINTER

g" RPTB IlJ(I LDI IRPTCNl,RC
ADIF

_, t+IIR2,Rl
I Rl=YUI+YII2I SUBI I,RC I RC SID.lII lIE (IE LESS !HAN lESIRED I

~
ADIF ++ARl. -+MI ,R3 I R3=YIIII+Y(131 Cl'PI M,ARl> I IF LPOiT=JT, 00 TO
ADIF R3,Rl,R6 ; _1+R3 BiD 5I'CL SPECIAL BUTTERFLY

.~
SUB' t+IIR2, _,R4 ; R4=YCII-YU21 LDI IIAl,M7
STF R6,_ ; YIII=RI+R3 LDI tlAl,IIR4
SUB' R3,Rl ; Rl=RI-R3' ADDI ISINTAB,IIR4 ; CREATE COSIIE INDEX 1IR4

t1 LDF +IIR2,R5 ; R5=X1I21 ADDI 1IR4,1IR7,AR5

~
:J LDF ttARl,R7 ; R7=YIIlI SUBI 1,AR5 ; 1A2=IAl+IAI-1

ADIF tAR3,tMl,R3 I R3-XIIlItXII3I ADDI 1IR7,AR5,1IR6
ADIF R5,_,Rl ; RI=XIII+1II21 SIIII 1,ARl> ; IA3=IA2+IAl-I

§ :: STF Rl,t+AR1 ; YIIII=RI-R3
~ ADIF R3,Rl,R6 ; _1+R3 SECOND LOOP

C SUB' R5,_,R2 I R2=XIII-!II2I,

So :: STF R6, tMO++llROI I XCII=RI+R3 RPTB IlJ(2

<10 SUB' R3,Rl I Rl=Rl-R3 ADIF ftAR2.I+MO,R3 ; R3=YIII+YII21 SUB' tAR3, tMl,R6 ; R6=X III I-! 1131 ADDF ++IIR3,I+llRl,R5 I R5=YIIlItY(131

~ SUB' R7,ttAR3,R3 ; -R3=YIIlI-YU31 '" ADDF R5,R3,R6 I-
s::; .. STF Rl,tllRl++IlROI ; XlIlI=RI-R3 SUB'

t+IIR2, _, R4 ; R4=YUI-Y(121

~ SUB' R6,R4,R5 ; R5=R4-R6 SUBF R5,R3 ; R3=R3-R5
AIIIF R6,R4 ; R4=R4+R6 ADDF +IIR2,_,Rl ; Rl=XCII+1II21 0
STF R5,t+AR2 ; YU21=R4-R6 ADIF +AR3, +ARI,R5 ; R5=XIIII+XII3I

~ J: STF R4,ttAR3 ; YU31=R4+R6 IIPYF R3, ++AR5I1RIl, R6 ; _3+CD2
SUB' R3,R2,R5 ; R5=R2-R3 ! ! ! .. STF R6,t+ARO ; YCII=R3+R5

is ADDF R3,R2 ; R2=R2+R3 !! ! ADDF R5,Rl,R7 ; R7=Rl+R5
IlJ(I STF R5,IIIR2++IIROI ; XU2}=R2-R3 !!! SUBF tllR2,+ARO,R2 ; R2=XIII-! 1121

So .. STF R2, tM3++IIROI ; X(3)=R2+R3 !!! SUBF R5,Rl ; Rl=Rl-RS
<10 IIPYF RI,'AR5,R7 ; R7=Rl+SI2

~ IF THIS IS 11£ LAST STAGE, YIIJ lIRE lXJE .. STF R7,tllRO++llROI • XIII=RI+R5
SUB' R7,R6 ; R6=R3+CD2-Rl'SI2

~ LDI tsTAGE,M7 SU8F ttM3, HAR1, R5 ; R5=YIlIl-YIl3I
tv ADDI 1,M7 IIPYF Rl,'+AR5I1RIl,R7 ; R7=Rl'C02
C Cl'PI ILOOFFT,M7 .. STF R6,t+AR1 ; Y(IlI=R3+CD2-RI+sI2
Q BiD END IIPYF R3,'AR5,R6 ; R6=R3'SI2
C STI 1IR7,ISTAGE ; aReIT m STAGE ADDF R7,R6 ; _I +CD2+R3'SI2

~ AD!}" RS,R2,RI ; RI=R2+RS ::: SUBF RS,R3,RI ; RI=R3-RS

~
SUBF RS,R2 ; R2=R2-R5 I1PYF .AR4,RI ; RI=RI>C021
SUBF >AR3, >ARI,RS ; RS=XIIIl-l{!31 AD[/' RS,R3 ; R3=R3+RS "i::l SIJBF RS,R4,R3 ; R3=R4-RS I1PYF *AR4,R3 ; R3=R3>C021

" ;:; ADIJ" RS,R4 ; R4=R4+RS STF RI, f+AR2 ; YII2I=IR3-RSI'C021

'"
l'I'YF R3, ++AR4IIRII ,Rb ; Rb=R3+C01 SIIBF R4,R2,RI ; RI=R2-ll4 ,,,

::: " STF Rb,>ARI+t(IROI ; XIIIl=RI'C02+R3'SI2 l'I'YF .AR4,RI ; RI=R1+C021 IS l'I'YF RI,>AR4,R7 ; R7=RI'SII
" STF R3, *AR2++(lRO) ; X 1121=IR3+RSI+C021 :::to SIJBF R7,Rb ; Rb=R3*COI-RlfSIl AD!}" R4,R2 ; R2--R2+R4 ", C ::: I1PYF RI, ++AR411RIl ,Rb ; Rb=RI+CDl I1PYF .AR4,R2 ; R2=R2+C021 ",

~ " STF Rb, .+AR2 ; YII21=R3'C01-Rl'SII BLK3 STF RI, 'tAR3 ; y(!31=-IR4-R21+C021 ,,,
I1PYF R3, >AR4,R7 ; R7=R3'SIl

" STF R2. +AR3++IlROI ; 1Il3)=IR4+R21'C021

~ AD[/' R7,R6 ; Rb=RlfC01f.R3tSII
l'I'YF R4, ++ARbllRl I ,Rb ; Rb=R4'CQ3 Cl'I'I I!I.PCNT, RO ."'-l

" STF Rb, 'AR2++IIROI ; XI121=RI,COI+R3'SI1 BFD I,,-OP ; LOO' BACK TO THE IIf£R LW'

tl l'I'YF R2, +ARb,R7 ; R7=R2'S13

(j SIJBF R7,R6 ; Rb=R4'CQ3-R2'SI3 CONT LDI @APTCNT,AR7
_"'-l I1PYF R2, ++ARbIIRIl ,Rb ; Rb=R2'CQ3 LOI @IEINDX,ARb

" STF R6,HAR3 ; y(!31=R4'CQ3-R2'SI3 LSH 2,AR7 I~MENT REPEAT C[WTER FOR ~XT
i:l l'I'YF R4, 'ARb,R7 ; R7=R4'SI3 TIlE :::
i:l.. ADDF R7,Rb ; Rb=R2fC03+R4+SI3 STI AR7, !RPICHI

(;) lJL)(2 STF Rb, IAR3++(IRQ) ; XI131=R2+C03+R4'SI3 LSH 2, ARb ; IE=4'IE

S- ST! ARb,mINDX

'" Cl'I'I I!I.PCNT,RO LOI RO,IRO ; NI=N2 BP Irt..OP ; LW' BACK TO THE INNER LW' lSH -3,RO

~ BR CONT ADDI 2,RD
i:l STI RO,M ; JT=N2I2+2
::: SPECIAL IIJTTERFLY Foo W=J SUBI 2,RD
~ LSH I,RO ; N2=N2/4 C

SPCL LOI IRI,AR4 BR LOOP ; ~XT FH STAI£ ~ LSH -1,AR4 ; POINT TO SINI4S1

'" ADD! @SINTAB,AR4 ; CREATE COSI~ INDEX AR4=C021 [(I THE BIT-REVERSING OF THE OOTPUI
C :::

END: LDI !fFTSIZ,Re Re=N RPTB BLKJ
S- AlJ[/' >AR2,>ARO,RI ; RI=XI!)+l{!21 SUBI I.Re Re SIO.lD BE OOE LESS 1fW< DESIRED ,

'" SUBF 1AR2, -IARQ, R2 ; R2=XII1-X1121 LDI !fFTSlZ,IRO lRO=SIZE Of FFT=N

~ AODF HARZ, HMO,R3 ; R3=YIlI+YI121 LOI @INPUT,ARD
SUBF HAR2, HARO,R4 ; R4=YIIJ-Y1121 LDI @INI'UT,ARI

~ AD[/' 1M3, *ARt ,RS ; RS=XIIIl+l{!31
tv SUBF RI,R5,Rb ; Rb=RS-ll1 RPTa BlTRV
0 AD!}" RS,RI ; RI=RI+RS eMPI ARO,ARI a AD[/' HARJ, ++ARI, R5 ; RS=YIIII+YII31 BGE CONT
0 SUE<!' RS,R3,R7 ; R7=R3-RS L!}" 'MO,RO

AD[/' RS,R3 ; R3=R3+RS LDF >ARI,RI
STF R3, HMO ; YIlI=R3+R5 STF RO, *ARI
STF RI, -tM{)t+(IROl ; XI!I=RI+RS STF Rl,fMO
SUBf .AR3,>AR1,RI ; RI=XIlII-X(j3J LDF HARQ(1) ,RO

SUBF HAR3, ++ARt, R3 ; R3=YIIII-YI131 " LDF HARHlI,Rl
STF Rb,HARl j Y(I1I=R5-Rl srF RO,HARt(l)

STF R7,>ARJ++IIR()1 ; XIIII=R3-RS SIF RI,t+AROI11
AD!}" R3,R2,RS ; RS=R2+R3 CONT NOP f+tAf(O(Zl

SlJBF R2,R3,R2 ; R2=-R2+R3 !!! BITRV NOP 'ARI++llROIB - SlJBF Rl,R4,R3 : R3=R4-ll1 0
-...I ADDF Rl,R4 ; R4=R4+Rl RESTffiE Tf'E REGISTER VALl£S AND RETLIIN

108 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix C.Radix-2 Real FFT

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 109

- CllPI MI,AAO , XCfWt)E LOCATI ()IS CIt. Y > 0 BGE CONT , IF AAO{MI "0 Pl'PENDlX CI
LLf 'MO,RO "0

GENERIC PROORAII TO 00 A RADlX-2 RfAL FFT COIf'UTATION ON TlE TI1S32OC30 .. LLf lIARl,RI ~
STF RO,lIARl :=

THE PROGRAM IS TAKEN FROM HE PPI'ER BY SORENSEN ET AL, cUE 1987 ISSUE .. STF Rl,*MO =-
OF THE TRIV<SACTIONS ON !\SSP, CONT tfl' tMO++ ~.

BITRV tfl' tAR1 H(1ROIB
THE lREALI DATA RESIlE IN INTERNAL ~Y. TlE COMPUTATION IS lXJiE ~
IN-I'lACE. HE BIT REVERSAL IS lIOI£ AT TIE BEGINNItIJ Lf HE PROJRII/1. LENGTH-00 lIUTTERFLIES ~

~
tINPUT,M~ , AAO POINTS TO X!ll ;: THE TWIDDLE FACTffiS ME SlI'PLIED IN A TABLE PUT IN A .OATA SECTION. THIS LDl ~~

~
DATA IS INCLUlIED IN A SEPMATE FILE TO PRESEJM: TIE f£NERIC NATOOE OF THE LDI lRO,RC , REPEAT N/2 TItlES
PROGRAM. FOR TIE SAllE MPDSE, THE SIZE OF THE FFT N AND Lffi21NI ARE SUBI I,RC , RC SOOlUI BE 01£ LESS THAA lIESIRED I Q ~

'G :3 :=
~

DEFINED IN A .GLOBL DIRECTlVE ANO SPECIFIED IDlING LINKING. TIE LENGTH OF ~

~
THE TABLE IS N/4 + N/4 = N/2. RPTB BLKI "0 ..,

ADDF HARO, *ARO++, RO , R(FXlll+X(J+11 a
~ ~ ;: AlJTti(IR: PAN~; E. PAPAMICtlAlIS SUBF tARO,*-ARO,Rl , RI-X(! I-X(J+()

i:i TEXAS INSTRlJMENTS SEPTEMBER 8, 1987 BLKI STF RO,*-AAO ; xn)=X(I 1+x{I+lI a~
~. .. STF RI,lIARO++ , X(!+II-X(1)-X!l+(),
§ • (;LOft FFT , ENTRY POINT FOR EXECUTION Q Q

~
.GLO~. N : FFT SIZE FIRST PASS Lf TIE 00-20 LOCI' ISTAGE K-2 IN 00-10 LOCI'I :=trQ
.GLOBL M ; LOO2(NI Q

..,
~ .GLOBL SINE : AO!lfl£SS Lf SINE TABLE LDI @INPUT,ARO , AAO POINTS TO X (1) := 9 LDI 2,IRO : lRO-1ofl2
.'"-l INP .USECT "IN",I024 , tlEtIJ<Y WITH INPUT DATA LOI eFFTSIZ,RC -:r-
\:j .BSS OOTP, 1024 , tlEMORY WITH OOTPUT DATA LSH -2,RC ; REPEAT N/4 TIMES ~ Q
<'l SUBI I,RC , RC SOOlUI BE 01£ LESS THAN lESlRED I

.'"-l • TEXT ~~
RPTB BLK2 a:: Q s::, INITIALIZE ADLf HARO{ IRO), *MO++(IRO),RO , R(FX(1)+XII+21 ;:: 00= :::.. SUBF tARO, .-AAOIIROI,RI ; RI-XIII-XII+21

a • wORD fFT , STMTItIJ LOCATION Cf TlE PROGRAM NEGf t+AAO,RO , R(F-m+31 ~~
So .. STf RO, '-AROI lROI ; X(I)=X(J)+X{i+2J == ~ • SPACE 100 , RESERVE 100 WORDS fOR VECTORS, ETC • BLK2 STf Rl,*r:iKl++(JRQI , m+21-m)-X (J+21

O~ STF RO, HARO , x(!+31--Xll+31

::? FFTSIZ • WOOO

\:i LOGfFT • WORD MAIN LOOF IFFT STAGESI =~ ;:: SINTAB • WORD SINE
~ INPUT • WORD INP LOI eFFTSIZ,IRO ~ 0 OUTPUT .WOOO ClJTP LSH -2,IRO ; lRO-INDEX FOR E
~ ~

LOI 3,R5 ; R5 IIlLDS TIE ClIlRENT STAGE NltIlIER !. '" FFT: LOP FfTSIZ ; Clit'MND TO LOAD DATA PAGE POINTER LOI I,R4 : R40N4
0 LOI 2,R3 , R30Ia

~ ;::
00 TIE BIT -REVERSING AT THE BEGINNltIJ LOOF LSH -I,IRO , EoE/2

So LSH I,R4 ; N4=2ftt4 ~
~ LDI I!fFTSIZ.RC ; RC=N LSH 1,R3 , N2020m ~

~
SUBI I,Re ; Re SHOOLD BE ONE LESS THAN lIESlRED I
LDI eFFTSlZ ,IRO INNER LOCI' 100-20 LOCI' IN TIE PROGRAM I

t:i LSH -I,IRO , lRO=AALF TIE SIZE Cf FFT-N/2

N LDI @INPUT,AAO LOI tINPUT,AR5 , AR5 POINTS TO X!II
C LOI @INPUT.ARI INLOP LDI lRO,AAO a .. ADDI @SINTAB,AAO , AAO POINTS TO SIN/COS TABLE

C RPTS Sl1RV LOI R4,IRI , IRI0N4

~
;: N(p

~
LDI IIRS,ARI MlP
ADOI I,ARI , ARI POINTS TO I III I=XIl+JI

~ LOI ARI,AR3 END BR END ,BRANCH TO ITSELF AT 11£ END

:! ADDI R3,AR3 , AR3 POINTS TO XU31=XIl+J+N21 ,END

~
LDI AR3,AR2
SUBI 2,AR2 , ril2 POINTS TO 11121=XIl-J+N21

is ADOI R3.M2,AR4 , ril4 POINTS TO XII41=XII-J+N1I
~.

§ LOF 'IIRS++IIRII,RO , RO=XUI

~
ADOF HIIRSIIRII,RO,RI , RI=XUI+XIl+N21
SUBF RO, mARSIlRI I ,RO , RO=-XIlIHIl+N21

~ " STF RI,HIRSIlRlI , XIlI=XIIi+XIl+N21
NEGF RO , RO=XIl I-XI I +H21
NEGF Ht-M5(1RU,Rt , RI=-XII+N4+N21

tI " STF RO,'M5 , XIl+N21=XIII-XII+N21

(J STF RI,'IIRS , XII+N4+N21=-KIl+N4+N21

."-l
INNERIIOST LOOP

I:>
;:
I:>.. LOI @FFTSII,IRI

a LSH -2,IRI , IRI=SEPARATION BETIEEN SIN/COS TBLS

S. LDI R4,Re

'"
SUBI l,Re , REPEAT N4-1 Tl~S ...

~ RPTB ILK3

s::i It'YF >AR3,>+ARQIIRII,RO ,RO=XII31'COS
;: If'YF fAA4, 'ARO,R1 , RI=XII41'SIN
~ I'I'YF >AR4,"AROIIRII,RI , RI=XI141.COS
<::i ROOF RO,RI,R2 , R2=XtI31'COS+XI141'SIN

~ "
It'YF 'AR3,>ARO++lIROI,RO , RO=X!l3I'SIN
SlJBF RO,RI,RO ; RO=-X(l3)ISINtX(J4)'COS !!!

<::i SUBF >AR2,RO,RI ; Rl=-XII21+RO I!! ;:
ADDF 'AR2,RO,RI : Rl=X(J2I+RO !!'

S. " STF Rl.fAR3++ ; X(I31=-X021+RO ! I!

'" ROOF >ARI,HZ,AI , RI=XII1I<il2

~ " STF RI,>AR4- ; X(l4)=X(J2>+RO !! I
SUBF R2,tARI,RI , RI=l(lIHl2

f:::i " STF Rl,IAR1++ , XIlIl=XilIl+R2
tv BLK3 STF RI, 'AR2- , XII21=XIlIl-R2
C a SUBI !INPUT,ARS

C ADDI R4.11RS , IIRS=I+NI
Cl'l'I @FFTSII,1IRS
SLID INLOP , LOOP BACK TO TI£ INNER LOOP
ADDI !ItflJT,1IRS
MlP
HOP

ADOI I,RS
Cl'l'1 !LIXHT,RS
BLE LOOP
N(p

I()p

- > -N /\'PENDIK C2 FP • SET M3 "I:S

NAI1E: .o..OIIl ..FFTJI!. ; ENTRY POINT FOR EXECUTION i
ilL< I --- RADIX-2 REAl. FFT TO BE CAllED AS A C FtKTlIlN. .0..011.. _SItE : ADOOESS OF SItE TAIl.E = ~

SYNCf'SIS: .BSS FFTSIZ.I ;;:l'
lnt ffLr\(N, !'t. data) • ass LCXJ'FT.I

int N FFT SIZE: N=2*'" .BSS IIPUT.I n
lnt PI ~BER OF STAGES = LOO21NI N

~ floit Idata. MAAY WITH IIf'UT AND 0U1l'IJT IiITA • TEXT .
::

~ ~
[(SCRIPTION: SINTAB .word _SINE

G£NERIC Fl))C!ION TO JJO A RADIK-2 FFT CMUTATION ON THE T11S32OO).
~ THE IiITA MAAY IS tHONG. WITH ONLY REAl. DATA. THE OUTPUT IS STORfD INITIALIZE C FtKTlON

~ IN TIE SME LOCATIONS WITH REAL AND IIIAGINARY POINTS RAND I AS

~
Fo..LOIIS: RIOI. Rill ••••• RINI2I. IINI2-lI ••••• 1111 ..FFT _RL: PUSH FP ; SA\{ mllCATED REGISTERS I LDI SP,FP

is THE PflOGRAI1 IS BASED ON TIE FORTRAN PROORAII IN THE PIIPER BY SORfNSEN PUSH R4 ~
5' ET AL., .WE 1987 ISSl{ OF TRMS. ON ASSP. THE CMUTATION IS 00'£ PUSH RS = :: IN-PLACE. AND THE ffilGINAL DATA IS IlESTROYED. BIT REVERSAL IS PUSH AR4 ~

~
II1PLE~NTED AT THE BEGINNING OF THE FtKTlON. IF THIS IS NOT PUSH AR5

....
~

N£(<:SSAAY. THIS PART CAN BE CI:fIIENTED OUT. I

~
LDI +-fPI21.RO ; It1VE ARWtENTS TO LOCATIONS ItATCHING N

THE SINE/COSINE TAiL£ Fffi THE TWIDILE FACTORS IS EXPECTED TO IE STI RO.@FFTSIZ THE~ IN THE_

~ SlI'PLlED WRING LIft(TI~. AND IT SIO.UI HAl{ THE FGLLOIIING FORItAr: LDI +-fPI31.RO

tl STI RO.tLCXJ'FT a-
II .glot-al _sine LDI +-FPI41.RO

,:-i ,dita STI RO.@INPUT ~
_sine .floit vahe1 = siniOI2f pi/NI ~ s:l .float vilue-2 = sinlllltpl/NJ JJO THE BIT REVERSING AT THE BEGIIfjING :: t-3 s:l..

<:)
.fluat value{NI2) = c.os((N/4)t2*pi/NI LDI IfFTSIZ.RC ; RC=N

S.
SUBI I.RC ; RC SIO.UI IE ONE L<:SS THAN IlESIRED I Q

""
TIE VALL€S v.luel TO v.I"INI41 ARE THE FIRST QUARTER OF THE SINE LDI IfFTSIZ.IRO = ., PERIOD AND; v.I"INI4+1I TO v.lu.INI2) ARE THE FIRST QUARTER OF THE LSH -I.IRO ; IRO=HALF TIE SIZE OF FFT=NI2 tD

~ COSltE PERIOD. LDI @IIf'UT.ARO n 1:1 LOI tINPUT.ARI
:: STACK STRUCTURE LfON THE CAW a-
~ +--------------+ IIPTB BITRV -<:::S -FP(4) DATA ClIPI ARI.ARO ; XCII1NGE LOCATIONS ONLY tD

~ -FP<3l " BGE CONT ; IF AROCARI ~

'" -FP(2) N LDf oARO.RO = <:::S -FPIIl : RETLIlN ADffi " LDf +ARI.RI til
:: -FP(O) 0..0 FP STF RO.+ARI = S. t--------------+ " STF RI.oARO n "" CONT IU' oARO++

~
REGISTERS USEO: RO. RI. R2. R3. R4. RS. ARO. ARI, ARl. AR4. AR5; IRO. BITRV IU' .AR1++IIROIB

~ IRI, RS. RE. RC

~ L<:NGTH-TWO BUTTERFLIES

~ tv AUTH(ll: PANOS E. PAPAIIICHALIS
C TEXAS INSTRIJ1ENTS OCTOBER 13. 1987 LDI !INPUT.ARO ARO POINTS TO XIIl a

LDI IRO.RC REPEAT NI2T1I£S
....
Q

C UfUU'U'.HUfffffU,ffffffffffffff.'HUH,fHfUfffH •• fffffU'HU'HH SUBI I.RC RC SIO.UI IE ONE LESS THAN IlESIRED I =

~
NEGF l++iIR5tIRll,RI RI=-Xtl+N4+N21 ;:

RPTS lUI STF RQ,+i1R5 Xt ItN2I=Xtll-XtltN21 .. rr ADOF HARO •• AROt+ ,RO ; RQ=XtII+xtl+11 STF RI,t-AR5 X tl +N4tN2I=-Xtl +N4+N21 '::l SUSF fARO, f-MO,Rl ; RI=Xtl I-Xtl +1 I
~ ilK! STF RO,f~ARO ; XtII=XtlltXtl+11 INt£JmOSTLOCf> ::! .. STF Rl,lIARQtt ; Xtltll=ltIHtl+11
~ LDI IFFTSll,IRI ti FIRST PASS OF TI£ 00-20 LW' tSTAG€ K=2 IN OO-IO-lW'1

LSH -2,IRI ; IRI=SEPARATION IIETIEEN SIN/COS TillS

g' lDI R4,Re
LDI @INPUT,ARQ ; ARQ POINTS TO Xtl I SUSI 2,Re ; REPEAT N4-I TII£S LDI 2,IRQ ; IRQ=2=N2

<Q., lDI tFFTSII,RC RPTB 1lK3

~
lSH -2,Re ; IiH'EAT N/4 TII£S It'YF tM3,ftARQtlRII,RQ ; RQ=Xt!3lfCOS SUSI I,Re ; RC SIU.lII lIE 0hE LESS THAN 1I:SIREO • It'YF fAA4, .ARQ;RI ; RI=Xtl41'SIN

It'YF 'AR4, ftARQt IRI I,RI ; RI=xtl41'COS RPTB IIlK2 .. ADOF RQ,RI,R2 ; R2=ltI3ItCO$+ltl4l'SIN i::l ADOF I+AROIIROI, 'AROt+IIROI, RO ; RO=XtlI+Xtl+21 II'YF 'AR3,tAAOt+IIRQI,RQ; RQ=XI!3I'SIN \) SUBF 'ARQ, f-MOtlROI ,RI ; RI=XtlI-XII+21
SUIIf RQ,RI,RQ ; RO=-XIl3)*S]N+X(l4}tCOS !! I ."-3 NEGF ++ARO,RO ; RQ=-Xtl+31
SUEIF fAR2,RQ,RI ; Rl=-XlI2)+RO !!! $:l .. STF RQ, f-ARQ tl RO I ; XIII=XtlI+1iI+21
ADOF fAR2,RQ,RI ; RI=X I 121+RQ .. , ;: IIlK2 STF Rl,fMQH(IRO) ; Xtl+21=XIIHtl+21 .. STF Rl,fM3H ; XIJ31=-X(2)+RO !!! $:l.. .. STF RO, HMO ; Xllt31=-Xtl+31
AOOF fARI,R2,RI ; RI=11ll 1+R2 0 .. STF RI, 'AR4- ; X(J41=XII2HRO !!! S- MAIN lOOP (FFT STAGES I
SUBF R2,fAAI,RI ; RI=XllIH12 '" .. STF Rl,lARl++ ; ltlll=ltl1l+R2 ...

~
LDI tFFTSII,lRO

1lK3 STF RI, iAR2-- ; XI121=XIllI-R2 lSH -2,IRO ; IRQ=INDEX F~ E
$:l lDI 3,RS ; R5 nos TI£ CLIlRENT STAG€ NLI1IIER

SUBI !INPUT,AR5 ;:
~ LDI I,R4 ; R4=N4

ADOI R3,AR5 ; AR5=ltNl <:j LDI 2,R3 ; R3=N2
CI1PI IFFTSIl,AR5 ~ lOOP lSH -I,IRQ ; E=E/2
!l.ED IILDP ; LW' BACK TO TI£ IHR LW' '" lSf! I,R4 ; N4=2fN4
ADDI !INPUT,AR5 g lSH I,RJ ; R2=2tN2
HOP

S- INNER lW' ([0-20 LOOP IN TI£ PROGRAIII fa'

'" ADDI 1,R5

~
lDI !INPUT,AR5 ; AR5 POINTS TO X tIl

C!l'1 eUGFT,R5 INlOP lDI IRO,ARO
!I.E lOOP

~ ADDI ISINTAB,ARO ; ARO POINTS TO SIN/COS TABLE

tv lDI R4,IRI ; IRI=N4
RESTORE TI£ REGISTER V~UES AND RETlIlN C a LDI AR5,ARI
POP AR5 ADDI I,ARI ; ARI POINTS TO X III I=Xtl+JI
POP AR4 C

lDI ARI,AR3
POP R5 ADDI RJ,AR3 ; AR3 POINTS TO Xtl3I=Xtl+J+N21
POP R4 LDI AR3,AR2
POP FP SUBI 2,AR2 ; AR2 POINTS TO X 112 I=Xtl-J+N2 I
RETS ADDI R3,AR2,AR4 ; AR4 POINTS TO Xtl41=Xtl-JtNl I

LOF -IM5++(lRU ,RO RO=X(J)

ADDF ftAR5IIRII,RQ,RI RI=Xt I I+XtltN21
SUEIF RO, f .. AR5(IRI I ,RO RQ=-Xtl 1+11 1+N21 - .. STF RI, f-AR5tlRI I X tIl =XI! 1+1iI+N21 - NEGF RQ RQ= Xtll-l tl tN2 I W

--~

~
li'

'15
~

§
is
g"
.a,

~
tl
~
,:-l

~
c
So
~
~

l
~
g
So
"'
~
~
N
C a c

f

APPENJUC3

GENERIC I'ROGIWI TO 00 A lWIIX-2 REIl. INIIERSE FFT CM'UTATlIII III TI£
TIIS32OC3O.

TI£ lREIl.I DATA RESIlE IN INTERIW. tEItORY. TI£ COIf'UTATlIII IS In£
IN-f'I.M:E. TI£ BIT REVERSIiL IS In£ AT TI£ IIEGlrtllNl IF TI£ I'ROGIWI. TI£
1tf'UT DATA ARE SraD IN TI£ FOLLOIIINl 0RlER:

REIOI. REIII REIN/21. 1"INl2-lI 1"111

TI£ T1IlDll£ FACTORS ARE !U'fLIED IN A TAIILE PUT IN A • DATA SECTlIII. THIS
DATA IS IMl.UDEO IN A SEPARATE FILE TO PRESER'IE TI£ IiElERIC NATIJlE IF TI£
I'ROGIWI. FOR TI£ SNIE _. TI£ SIZE IF TI£ FFT N AND L0G2INI ARE
lEFlNED IN A .WIIl. DIRECTIVE AND SPECIFIED WUNl LlNCINl. TI£ LEr«lTH IF
TI£ TAIILE IS N/4 + N/4 • N/2.

~TIDI: PANOS PIIPMIClW.IS
TEIAS INSTRtIIEIITS

.Ill.OBL IFFT
.• 1ll.OBL N

.1ll.OBL "

.1ll.OBL SIIE

.BSS INP.I024

.TEIT

INITIALIZE

,WORD IFFT

• SPACE 100

0ECaIIIER 21. 1988

ENTRY POINT FOR EIECUTIIII
FFT SIZE
L0G2INI
AllDRESS IF SINE TAIILE

, tEItORY WITH 1tf'UT DATA

, STARTINl LOCATlIII IF TI£ PROGRAIt

, RESERVE 100 WORDS FOR VECTORS. ETC •

'FFTSIZ .IOIIRII N

LOOFFT .1oIIRII "
SINTAB .1oIIRII SINE
1tf'UT .1oIIRII IMP

IFFH UIP FFTSIZ

IIIIN LID' IFFT STAGESI

U11
U11
U11
LSH
LDI
LSH

IrtlER LID'

I.IRO
3.R5
IFFTSIZ.Rl
-1.Rl
IfFTSIZ.R4
-2.R4

, COItIIHD TO LOAD DATA PAGE POINTER

, lRO=INlEX FOR E
, R5 IILDS TI£ CIIlRENT STAlE IUIIIER

, R3oilII2=N2

, R4=NII4=N4

LID' U11
U11
ADDI

INl.IP U11

..

LDI
ADDI,
LDI
ADDI
U11
SUBI
ADDI

NIP
AIIIF
SUIIF
STF
STF
LIF
NPYF
STF
LIF
NPYF
STF

INNERIIOST LID'

U11
LSH
U11
SUBI

RPTB
SUIIF
ADIF
NPYF

:: STF
ADIF
SUIF
NPYF

:: STF
SUIIF
NPYF

:: STF
NPYF
ADIF

1lK3 STF

SUBI
CNPI
BLTO
ADlII
LDI
ADDI

11tf'UT.AR5
lRO.1IRO
ISINTAB.IIRO
R4.IRI

AR5.ARI
I.ARI
ARI.AR3
Rl.AR3
ARl.AR2
2.AR2
Rl.AR2.AR4

, AR5 POINTS TO XUI

, IIRO POINTS TO SIN/COS TAIILE
, IRI=N4

, ARI POINTS TO 11lI1=XUM

, ARl POINTS TO 11131=XIl+J+N21

, AR2 POINTS TO 11121=llhl'N21
, AR4 POINTS TO 11141'IU-J+NlI

t++IIR5URlI , POINT TO IIl+N41
t-AR51 IRlI.f+IIR5URI I.RO
t+AR5URI I. f-ARSURI I.RI
RO.f-ARSURlI , IUI=IUI+XIl+N21
RI AR5URlI , IU+N2I-IIII-lU+N21
tAR5.RO
2.0.RO
RO. f-ARSURlI , IU+N4I=2tIU+N41
t++IIR5URlI.RI
-2.0.RI
RI.fAR5++URlI , XU+N4+N2I~XIl+N4+N2lf2

IFFTSIZ.IRI
-2.IRI
R4.RC
2.Re

1lK3
tAR2.tARI.RI
tAR2. tARI.RO
RI.f+llROIlRlI.RO
RO.tARI++
tAR3. tAR4.R2
tAR3._.R6
R2.fARO.R6
R6.tAR2-
R6.RO
R2.f+llROIIRlI.R6
RO,IAR3++
RI. tARO++I lROI.RO
R6.RO
RO.tAR4-

11tf'UT.1IR5
IfFTSlZ. AR5
Irt.OP
11tf'UT.AR5
lRO.ARO
ISINTAB. ARO

, IRI=SEPARATlIllIIETIIEEII SINICOS TBLS

, REPEAT N4-1 TINES

, RI=T1"IUlI-11121

RO=T1tCOS
1111 1=1111 1+11121
R2=T2=III3I+XIl41

, R6=T2tSIN
, 11121=XIl41-l1131

R6=T2tCOS
IU31=T1tCOS-T2tSIN
RO=T1tSIN

, XIl41=T1fSIN+T2tCDS

, LID' BACX TO TI£ IrtIER LID'

, IIRO POINTS TO SIN/COS TAIILE

f
~
Q .

n~ = t'D a :s
I'C t'D
== :I. ;-n
::.~
8ri5 = ...
:s 9 -:1"-
t'D =
~o
::::=
00=
~~ ==
Q~
=~

l
f
~

~
;:s IIIi: CIJjT ; IF ARO<Ml

~
ADDI I,RS UF tARO,RO
Cll'1 ILOIFFT,RS

" UF tMl,Rl
~ Il£D L(IJ> STF RO,IARI
~ LSI! 1,IRO E=E12

" STF Rl,tARO S! LSH -1,R4 _12 ClJjT 10' tMl>++
~ LSI! -1,R3 N2=N212 BITRV to' tARl++IIROIB
B go lAST PASS (F 11£ MIN L(IJ> END III END ; IIRIN:H TO ITSELF AT TIE END
;:s .END

~
LOI tINPIIT,ARO ; ARO POINTS TO XIII
LDI 2,IRO ; lRO=2=ft2

~
LOI tFFTSIZ,Re
LSH -2,Re ; REPEAT N/4 T1I£S
SUBI I,Re ; Re SIO..UI BE (J,(LESS 1lW1 DESIRED I

tl UF t+MOUROI,RO ; RO=XII+21 ("') IIPTB BLK2 !-i ADDF RO,fIIR(}++(IROI,Rl ; Rl=XIII+XU+21
!:> SUBF RO,t-AROIlROI,Rl ; Rl'XIII-XII+21 ;:s

" STF Rl,'-ARO(IRO) ; XIII=XIII+XU+21 s::..
a STF Rl,tARO++ ; XII+21=X!Il-X1I+21

:1 UF t-ARO,RI
So II'IF 2,O,Rl ; Rl=2.OtXCI+1I

"" .., STF Rl,t-AROIIROI ; XII+1I=2.OtXII+1I

~ " UF tARO++,Rl

I:i II'VF -2,O,Rl ; Rl=-2.OtXCI+31

~
BLK2 STF Rl,t-ARO ; XCI+31=-2.0tXCI+31
I: UF t+AROIlROl,RO ; RO=XII+4+21

C

~ LENGTH-Till MTERFLIES

g LOI @INPIIT,ARO ; ARO POINTS TO XIII
LDI IFFTSIZ,Re

So LSI! -1,Re ; REPEAT Nl2 T11£S

"" 51111 I,Re ; Re SIO..UI BE (J,(LESS THAN DESIRED I

~ IIPTB BLKI
.~ ADDF t+AAO, tARO++ , RO ; RO=XIIl+XH+1I

~ SUIIF tARO, t-ARO, Rl ; Rl=X!II-XII+1I
C BLKI STF RO,t-ARO ; XIII=X!Il+XCI+11

a I: STF Rl,tMOt+ ; X 11+1 l=XII l-X1I+1 1

C
00 TIE BIT REVERSING AT THE END

LOI IFFTSIZ,Re ; RC=N
SUBI I,Re ; Re SIO..UI BE (J,(LESS THAN DESIRED I
LOI IFFTSIZ,IRO
LSI! -1,IRO ; lRO=HALF 11£ SIZE (F m=N12
LDI IUfltJT,MO
LOI @INPIIT,ARI

.- IIPTB BITRV .- Cll'1 ARl,ARO ; XClMlE LOCATIIJj5 IJjLY VI

116 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix D. Discrete Hartley Transform

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 117

- ~ - APPENDIX Dl " UF tARl,Rl
00 STF RO, 'ARI

GENERIC PROGRA/I TO 00 A RADIX-2 IWULEY TRImF!JlI1 ~ TI£ TlIS32OC30, " STF Rl , tARO "t:S
~T 10' tARO++ ~

TIE PROGRAI1 IS TIlKEN FR01 TIE PAPER BY roRENSEN ET AL" OCT 1985 1SSl£ BITR'! 10' tARl++URO)B =
OF THE TAA'lSACTI~ ON ASSP.

Q.
LENGTH-TIll WTTERFLIES ~.

THE I REAL) DATA RESIDE IN INTERNAL t£I1OOY. TI£ COItPUTATlON IS DONE ~ IN-fLACE. TIE BIT-RE~ IS DONE AT TIE BEGINNlOO OF TIE PR01l~. lOl @INPUT,ARO ARO POINTS TO XU)
lOl lRO,RC REPEAT NI2 TII£S I-"

~ THE TWIDDLE FACTORS ARE stfPLIED IN A TAlilE PUT IN A .DATA SECTION. THIS SlIiII 1,RC RC 5HllD BE OlE LESS TIWI DESIRED I .
;:,: DATA IS IIQUDEO IN A SEPARATE FILE TO PRESERVE TIE GENERIC NATLIIf OF TIE Q ~
~

PIlOGRAl1. FOR TIE SM PURPOSE, THE SIZE OF TI£ FHT N AND LlmlNI ARE RPTB BLKl = ~
~

DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED OOUtIJ Llrt<IOO. TIE LENGTH OF AIU HARO, tARO++, RO ; RO=Xllltl(J+1I -= THE TABLE IS NI4 t NI4 = N/2. SlIIIF tARO, t-ARO, Rl ; Rl=XU)-lU+1) =-~
;:! BLKI STF RO,HIRO ; XU)=xtI)+xII+1I ~ '"1

'" AUTHOR; PANOS PAPAIIICHALIS DECEl!BER 11, 1988 " STF Rl, tARO++ ; XII+II=xtII-XU+1I
.,..

;:,: TEXAS INSTRlI£NTS
~r':)

is FIRST PASS OF TIE 00-30 LOOP ISTAGE K=2 IN 00-20 LOOP) ~::p :::to .il..0!Il FHT ; ENTRY POINT FOR EXECUTION ~
;:,: .GLOBL N ; FHT SIZE lOl @INPUT,ARO ; ARO POINTS TO XIJ) ~ci5
..:;, .GLO!Il " ; L0G2IN) lOl 2,IRO ; lRO=2=N2 N'"1

.GLOBL SINE ; ADMESS OF SINE TABLE lOl eFHTSIZ,RC

~a ~ LSH -2,RC ; REPEAT N/4 TI~S

:-J .BSS INP,1024 ; ~tQlY WITH INPUT DATA SlIiII 1,RC ; RC 5HllD BE OlE LESS TIWI DESIRED •

~-
tl • TEXT RPTB BLK2 =Q
(j AIU HAROI lRO), 'ARO++I lROI, RO ; RO=XIJ)+XIL2)

~ --., INITIALIZE SlIIIF f'ARO,*-MO(IROI,Rl ; Rl=XIJI-XIL2)

I:l
STF RO, HIROURO) ; X(JI=X(JI+x(L2) Q

;:,: • WORD FHT ; STMTlOO LOCATION OF TI£ PROGRAI1 " UF HARO,RO ; RO=XIL4) ~
I:l.. AODF RO, t-ARO,Rl ; Rl=XIL3)+XIL41

~
• SPACE 100 ; RESERVE 100 WORDS FOR VECTORS, ETC. " STF RI, tARO++ ; XIL2I=IIJI-XIL2) t= SlIIIF RO,H.ROURO),Rl ; Rl=XIL31-XIL4)

'" FHTSIZ • WORD " STF Rl, H.ROURO) ; XIL3)=IIL3)tXIL4) Q.
.... LOGFHT • WORD " BLK2 STF Rl,tARO++ ; XIL4)=XIL3l-XIL4) ~.

~ SINTAB • WORD SINE I

I:l INPUT • WORD INP ~IN L()(J> IFHT STAGES) N
;:,:
..;, FHT< LOP FHTSIZ ; Wl'MD TO LOAD DATA PAGE POINTER lOl eFHTSIZ,IRO ~ ~

~
LSH -2,IRO ; lRO=INDEX FOO E

'"
00 TIE BIT REVERSIOO AT TIE BEGINNlOO lOl 3,R5 ; R5 f«.DS TIE ClIlRENT STAGE tuIBER '"1

lOl 1,R4 ; R4=N4 -~ ~
;:,: LDI eFHTSIZ,RC ; RC=N lOl 2,R3 ; RJoII2

S-
SUBI 1,RC ; RC SIIllD BE ONE LESS TIWI DESIRED • LOOP LSH -l,IRO ; E=E/2 '-<i

'"
LOI eFHTSIZ,IRO LSH 1,R4 ; N4=2'N4 ~
LSH -l,IRO ; IRO=HALF TIE SIZE OF FHT=NI2 LSH 1,R3 ; N2=21N2

~ LDI @INPUT,ARO
'"1
~

~
lOl @INPUT,ARI INNER LOOP 100-30 LOOP IN TIE PROGRAII) = [IJ

N RPTB BHRY lOl @INPUT,AR5 ; AR5 POINTS TO XIJ) ~ C CMPI ARl,ARO ; XCHANGE LOCIITI~ (H.y INlOP lOl lRO,ARO a '"1
BGE CONT IF ARO<ARI ADDI tsINTAB,ARO ; ARO POINTS TO SINlCOS TAlilE :3 C LDF tARO,RO LDI R4,IRl , IRl0N4

:l:..
IIl£ LOCI' ;::

!?
LDI IIR5,ARI
AIIDI I,ARI ; ARI POINTS TO XILII=XlJ+1-11 END III END ; IIRAIDt TO ITS£LF AT TI£ EHD

'ti LDI ARI,AR3 ,END
~ ADDI RJ,AR3 ; AR3 POINTS TO XIL31=XlU+N21
i1! LDI AR3,AR2

'" ;:: SUBI 2,AR2 ; AR2 POINTS TO XIL2I=XlJ-I+I+1121
is ADDI RJ,AR2,AR4 ; AR4 POINTS TO X!L41=11L2+1121

§' LDF tAR5++IIRlI,RO ; RO=IIJI

.s;, AIIDF <+IIR5!1RII,RO,RI ; RI=XlJI+IIL21
SUBF RO,u-tAR5(IRl),RO ; RO=-XlJ)+IIL2)

.~
" STF RI,'-IIR5!1RlI ; IIJ)=XlJI+IIL2)

NEGF RO ; RO=IIJHIL21
STF RO,f1iR5 ; IIL2)=XIJHIL2)

0 " LDF f+AR5!1RlI ,RO ; RO=llL41

t"l
AIIDF RO,'-IIR5IIRlI,RI ; RI=XIL31+IIL41

.'-3 SUBF RO, '-AR51 IRII ,RI ; RI=IIL31-lIL4)

" STF RI,'-IIR5!1RlI ; XIL31=IIL31+IIL41
i:l STF RI, .fIiR5lIRli ; IIL41=X!L3HIL41
;::
i:l..

INNI'III1OST LOCI'

~ LDI @FHTSIZ,IRI

'" .., LSH -2,IRI ; IRI=SEPARATIDN IIETlEEN SIN/COS TBLS

~
LDI R4,Re

!:\
SUBI 2,Re ; REPEAT N4-I TIlES

;::

~ RPTB IlK3
'l If'YF tAR3,f+AIlO!lRlI,RO ; RO=XIL31.COS

~ If'YF fAR4,fMO,Rl ; RI=XIL41.SIN
If'YF tAR4, f+AIlOI IRII ,RI ; RI=IIL411COS

'l " ADDF RO,RI,R2 ; R2=IIL3IICOS+XIL4lfSIN=T1
;:: If'YF tAR3,'ARO++IIROI,RO ; RO=IIL31.SIN
S. SUBF RI,RO,RO ; RO=IIL31'SIN-1II41ICOS=T2

'" SUBF RO,'AR2,RI ; RI=IIL2H2

~
AIIDF fAR2,RO,RI ; RI=IIL2)+T2

" STF RI,'AR4-- ; XIL41=IIL21-T2

~ AIIDF tARI,R2,RI ; RI=XlL1I+T1

N " STF RI,'AR2-- ; XIL2)=XIL21+T2
c;:, SUBF R2,tARI,RI ; RI=IIUHI a :: STF Rl,*ARl++ ; XlU)=IIL1l+T1

c;:, BLK3 STF RI, tAR3++ ; XIL31=XlUHI

SUBI fINPUT,ARS
ADDI R"J,1IR5 ; AR5=I+NI
Clf'I @FHTSIZ,1IR5
IlTD INLOP ; LOCI' BACK TO TI£ lIfER LOCI'
ADDI fIIf'UT,1IR5
Ia
N(p

..... AIIDI 1,R5
Clf'I KOO'HT,RS I,C)

120 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix E. Discrete Cosine Transform

An Implementation of FFT. DCT. and Other Transforms on the TMS320C30 121

- OOTSllLLOOP. ; TIll IIUTT9FlIES ME CALCU.AlED AT t-l
t-l IIPf'ENIIX EI ftlllllU.lD'l I 11£ SME T1~.

A FAST COSIIE TRAIISFORII LIF 1AR2,R2 ; GET LIIER HIU IF EACH IlUTTERFLY.
B LIF IM3,Rl ; I THIS ALLIIIS Fa! IQIE PMfLLEL

!lASED IJI TIE ALGaUM OOTLIIED IIY IIYElNl GI LEE IN HIS ARTIQ.E, FCT - A ; ~LAml
FAST COSIIE TRANSFORII, PUllLISIEII IN 11£ PROCEEDINGS IF 11£ IEEE INTER- SUllF3 1M3, tAR4,RI ; SIIInw;y SECOCI IlUTTERFLY !lATA.
NATlIIW. CIJFEREM:E IJI N:OOSTICS, SPEECH. AND SIGNM. PIIlCESSING, SM SUIIF3 lAR2.tARI,RO 5IIi1lW:T FIRST IlUTTERFLY !lATA.
DlEoo, CA, 19-21 IIARCH 1984. P 211A.3/1-4 YIL. 2, ICHI9$I-5/84/~I. 1I'YF3 RI,<++AR7,RI nTiPLY 2ND 5IIi1lW:T11IiI RESULT IIY

:: AIIIIF3 Rl,tAR4,R3 COSIIE aEFFICIENT. ADD SECOII

~
LEE'S AU~IUM HAS BEEN IIIDIFIED TG ALLIJI NATlRIL OIlER T1~ _IN IlUTTEllFLY DATA. > COO'FICIENTS RATHER THAN 11£ LESS _ INPUT SUGGESTED IN HIS ARTIQ.E. If'Yf3 RO,<-M7,RO nTiPLY 1ST SlllTRACTlIIiI RESULT IIY ;:s

AlllF3 R2,tARl,R2 COSINE COO'FICIENT. AlII FIRST "C
~

..
THE FRElW«:Y _IN aEFFICIENIS ME IN lilT RMRSE IIIIER. THIS IS AN IN IlUTTERFLY DATA. "C

'e PLACE CALCULATlIJI. STF RI, tAR2++URIIX ~ 2ND nTiPLY AEStlT IN LIIER !! W II STF R3,tAR4++URIIl HIU IF IIUTTERFL Y. SA',{ 2ND
"moll PAUL WllJ£LIt • ADDIllIIiI IN lfI'ER 2ND IIUTTERFL Y • ~ ~ END_CSlTER..LIIP'

is tr:lgl.btl FCT ; FAST COSIIE TRANSFORII ENTRY POINT. STF RO, tAR3++URlll ; ~ 1ST nTiPLY IN UIER HIU IF C· .gl.btl " ; LOOTH IF DATA ENTRY. .. STF R2, tARl++C1Rlll 0 2ND IIUTTERFL Y. ~ 1ST A1111T101 I-' ;:s
• g,.b., COS-TAII o TAIILE IF COSIIE aEFFICIENTS. IN IfPER 1ST IlUTTERFLY •

~ .glob., aEFF o TAIILE IF INPUT DATA. >
. ~

END IF CSIT9 LIIP IF FIRST LIIP SERIES •
• text I'!!j

ADDI3 IRO,MS,ftC o lI'IIATE REPEAT ClIMER Fa! IEXT IIUICK =
tl

FCTSllE ... ord ft 0 REPEAT. ~ _COS • .ord COS_TAlI AIIIIF3 tAR3++ ,1AR2-,RO o lI'IIATE DATA POINTERS.
<J ..DATA .word com CllPI ARl,AR2 o HAI'E IlUTTERFLIES BEEN COIf'l.ETD? n :-'l • lIGTD ftlDllLLIIP o lB.AYED IIRANCH, IF I«IT. C
[Fcn AlllF3 *ARl++,-tlR4- , RO o lI'IIATE FINAL TWG POINTERS Fa! IEXT III

LDI IFCTSIZE,MO o LIIAD DATA LOOTH. 0 REPEAT. 5° LDI IfCTSIIE,IIK o SET IIUICK SIZE Fa! CIRCU.M ADDI 2,ART o lI'IIATE COSINE aEFFlCIENT POINTER.
0 AlDIESSING. IR OIOOH,ST , SET REPEAT 1tW:. IFASm THAN USING ~

S- o
LDI LllATA,AR6 . , LDAG DATA POINTER. , RPTII WHEN START All) END AlDlESS 1-3 '" ., LDI LCOS,M7 , LDAG COSINE TAIILE POINTER. , ME STILL 00001 ""I

~
LDI MO,IRI o INITIALIZE nlEx REGISTERS Fa! FIRST § LDI -I,IRO , IlUTTERFLY SERIES. DELAY IIRANCH FID1 HERE TG ftlllllLLLOOP.

!il LDI M6,MI , INITIALIZE DATA POINTERS. III

~ ADDI3 AR6,MO,AR2 LSH -I,IRI , lI'DATE INDEX REGlsm. IDIVllE IIY 21 ~ c::; SIIII 1,AR2 LDI M6,ARI , AEINITIALIZE DATA POINTERS. ""I
~ LSH3 IRO,MO,ARl ADDI IRO,AR6,AR2 a '" LDI 1,AR5 o INITIALIZE 2'S POWER ClIMER. ADDI IRI,AR2

§ ADDI Mb,ARl o FINISH DATA POINTER INITIALIZATlIIiI. CllPI 2,IRI , IS FIRST IlUTTERFLY SERIES COftPLETE?
ADDI3 IRO,ARl,M4 IIGTD OOTSIlLLlIP o lB.AY IIRANCH, IF I«IT.

S- ADDI3 IRO. MS, ftC , ftC SIO.LD lE·1IiIE LESS THAN CIUIT LSH 1,AR5 o n TlPL Y 2'S POWER ClIMER IIY 2.

'" lESlREG. SIJIII3 IRO,M4,ARl o CONTlIt£ AEINITIALIlING DATA

~
, POINTERS.

FIRST LIIP SERIES ADDI3 IRO,MS,ftC , SET REPEAT CWITER FIR REPEAT IIUICK.

~ THIS LIIP SERIES lIlES ALL 1I£IIUTTERFLY STAGES EXCEPT 11£ FINAL 1IiIE. END IF FIRST LGOP SERIES. tv
C
@ RPTII END_CSlTER..LIIP FINAL IlUTTERFLY STAGE LIIP.

C

::...
;:, INCLUDES LAST BUTTERfLIES ~ FIRST STAGE OF BIT REVERSE ADDITIONS.

~ LDI 4.IRI ; INITIALIZE INDEX REGISTER. "t5
~ ADDI 1,AR3 ; SET LP DATA POINTERS.

:'l LSH -l,ARS

'" ADDI 3,AR4
;:, ADDI3 IRO,ARS,RC ; INITIALIZE REPEAT Ill.WER.
is tf>YF3 fM7, HAR7, R4 ; CALClLATE 12/~ltCOSIPI/41.
~. U.E.-} ISQRT1211/~ THIS VALl(IS
;:, CALLED, S, IIEL~.)

~ RPTB END_2ND_LOOP ; Til:) WTTERFLIES ARE CALClLATED PER

Sl
LOOP.

SUBF3 1M2, *AA1,RO ; SUBTRACT 1ST WTTERfLY DATA. ."'l
SUBF3 tllR4, 'AR3,RI ; SUBTRACT 2ND WTTERFLY DATA.

tl tf>YF3 RO,R4,RO ; ~LTIPLY 1ST SUBTRACTI~ RESlLT
(J .. ADOF3 IM3t+(IR1), tAR4++(IRl) ,R3 ; BY S. ADD 2ND WTTERFL Y
• "'l DATA.

I:> I1PYF3 R1,R4,R1 ; MTIPLY 2ND SUBTRACTI~ RESULT
;:, .. AD(f3 .AR1 ++(IRl), 1M2tt(IRl) ,R2 BY S. ADD 1ST IIJTTERFLY
i:l.. DATA.

a I1PYF3 R3, HAR7 ,R3 ; MTIPLY 2ND ADDITION RESllT BY

So .. STF RO, .-AR21 IR1 I 7071. SAVE 1ST SUBTRACTI~ IN

'" LOWER 1/2 OF 1ST WTTERfLY. ..,
I1PYF3 R2, HAR7,R2 ; tt.LTlPLY 1ST ADDITI~ RESlLT BY

~ .. STF R1,H1R411R11 .7071 SAVE 2ND SUBTRACTIOO IN
l:l LOWER 1/2 OF 2ND BLTTERfLY. ;:,

AD(f3 R3,R1,R3 ; ADD 2ND SUBTRACTIOO ILl. TIPL Y TO 2ND
~ Cl ADDITI~ IlJLTlPLY.

~ STF R2,H1RlIIR11 ; SAVE 1ST ADDITION MTIPLY IN lPPER

'"
112 OF IIJTTERFL Y •

Cl ;:, END_2ND_LOOP:

So STF R3, H1R31 IR1 I ; SAVE 2ND ADDITION tRTPLY IN lPPER '"
~

112 OF lPPER IIJTTERfLY.

~
END OF FINAL BUTTERfLY STAGE LOOP.

tv BIT REVERSE ADDITION LOOP SERIES. <::>
[$ THIS LOOP SERIES DOES ALL OF TIE BIT REVERSE ADDITIONS AT THE END OF FAST <::> COSINE TRANSfIlRl1.

LOI 2,IRO ; INITIALIZE INDEX REGISTERS ~ DATA
LDI !\Ro,ARl POINTERS FOR FINAL ADDITI~
ADDI 4,AR1 SERIES.
LDI ARl,AR2

'LDI B,IR1

•
LASUlJTSIDE_LOOP: .-N LDI AR2,AR4 ; Ll'DATE POIIITERS ~ WJNTERS.

W LSH -l,ARS

LDI ARS,RC ; SET LI' REPEAT m.wER.
AD(f3 >AR2++IIROIB,'AR4++f1ROIB,RO ; DATA POINTER LPDATE.
LDI AR1,R4 ; USE INITIAL !\R1 VALl(AS IIfi:R LOOP

SUBI
to'
LDI

RPT8

LASLlNSIDE_LOOP:

1,RC
fAR4++tIROIB
AR2,!\R3

END_INSIDE

CONTRQ.

; CONTINLl lPDATlNG POINTERS.

; Till ADDITIONS ARE 10£ IN EACH LOOP.

AD(f3 tllR1,tllR2++f1R111,RO; ADD FIRST Till DATA.
ADOF3 'AR3, 4AIl4++1IR1Il, R1 ; ADD SECOND Till DATA.
STF RO, '!\R1 ++1 IR1 I, ; SAVE FIRST ADDITIOO.

END_INSIDE:

STr Rl,.tAR3++iIRll% ; SAVE SECOND ADDITIOO.

END OF INSIDE LOOP FOR LAST LOOP SERIES.

AD(f3 tllR1++IIROIB,>AR2++f1ROIB,RO ; LPDATE DATA POINTERS •
ADOF3 'AR3++f1ROIB,'AR4++f1ROIB,RO
AD(f3 tllR3++1 IROIB, tllR4++1 IROIB,RO
ADDF3 fARl++(IROIB, *AR2++(IR01B,RO
C~PI R4,AR4 ; IS THIS LOOP Clft'LETE'
IlNED LASLlNSIIiU.OOP ; DELAYED IIlAI«:H, IF NOT.
LDI ARS,RC ; SET LP REPEAT m.wER.
SUBI 1,RC
OR 0100H,ST ; SET REPEAT ~DE.

IIlANCH DELAYED TO LASUNSIDLLOOP.

RPTB LAST..BLOCK ; SIt<£ THERE ARE AN ODD ~ OF
AD(f3 tllR1,>AR2++f1RlIl,RO ; ADDITIONS, TIE FINAL (l£S ARE

10£ ~.

LAST..BLOCK:

STF RO,fARl-++(IR1)Z

END (f LAST REPEAT II.OCK.

LSH
ADDI
Ctf'1
OOTD
LDI
LDI
LSH

1,IRO
IRO,R4
1,ARS
LASLOOTSI[E_lOCF'
R4,AR2
R4,AR1
1,IR1

; SAVE ADDITI~.

tRTlPLY IRO BY 2.
LPDTEE IIf£R LOOP CONTRQ REGISTER.
ARE CALCl.I.A TI ONS COtf'LHE ,
[£LAVED BRANCH, IF NJT.
IN'DATE DATA POINTERS.

; tRTlPLY IR1 BY 2.

DELAYED IIlAI«:H TO LASUlITSIDLLOOP.

~

~
;::

~
't:j

!f
~
I:i
§.
~
~
.:--l
\::l
(J
.:--l

~
~
~
§
~
~

~
~
;:;.
~

~
~
N
C o
C

END IF LAST l.O(p SERIES.

IU.TIPLY COEfFICIENT ZERO BV .5, IF ttJT ZERO.

LIf'
BEQD

LSH

_,RO .
!M*T..5TOOE

24,AR5

SUBI3 ARS, _,ARI
10'

SET ZERO ~ IF 1/IR6 = O.
IF COEFFICIENT IS ZERO, !M*'T 00

THIS.
USE INTEIlfR !'ATH Fill FLOAT DIYIIE

BV 2.

IELAYED IIlANCH FmI I£RE IF VALlE IS ttJT TO BE STOOED.

511 ARI,I/IR6 ; STOOE, IF EXPOIENT WASN'T -128.

!M*L51ORE'

!lETS

~
§"

"i5
~ ;;
~
is
§.

<Q.,

~
tl
(")
,:--i
I:l

~
a
So
'" ...
~
I:S
;:,
~ c

~
§
So
'"
~
~
tv
C a c

..-
D:

t

Iff'EIIIlIX E2

A FAST COSINE TRANSFIlRII UIfIERSE TRANSFlRIl

lI1SED 00 1l£ ALOOUTItt OOTLINED BY BYElNl GI LEE IN HIS ARTla..E, FCT - A
FAST COSINE TRANSFIRI, PIIUSIED IN 1l£ PROCEEDII«lS IF 1l£ IEEE Inte.­
MlTI __ COOFERfII:E !II ACOUSTICS, SPEECH, AND SIGNAL PROCESSlltl, SIIH
DIEGO, CA, 19-21 IWICH 1984, P 281\,3/HIKl. 2" ICHI95H/84/O<lOO-0299l.

LEE'S ALGORITHII HAS 1IEEN IIlDIFlED TO ALl.IlI NATURAl. IIIIER TIlE lUtAIN
ClEFFICIEHTS.

TIE FllEQl£NCY lUtAIN ClEFFICIEHTS ARE IN BIT REVERSE IIIIER. THIS IS AN IN
PLACE CAl.CWITI!II.

IiJTHOl: PAUL WlUELII

.global

• global
• gl.b.l
.global

• text

IFCT

" COEFF
COS_TAB

IIfIERSE FAST COSINE TRANSFIRI EHlRY
POINT.

l.OOTH IF ARRAY TO BE TRANSFORlED •
TAlIl£ IF COSINE C(EFFIClEHTS •
TAlIl£ IF ARRAY DATA TO BE

TRANSFORlED.

FCTSIZE ••• rd " -DATA .lIIord
_cos ,word
t

IFCT:
LOI
LOI

LDI
LOI
ADOI
SUBI
LOI
l.SH
LOi
LOI
ADOI

C(EFF
COS_TAB

IfCTSlZE,ARO
IfCTSllE,lI(

UlATA,AR6
LCOS,AR7
ARO,AR7
2,AR7
ARO,IRO
-2,IRO
ARO,IRI
ARb,ARI
IRO,ARI

LOAD ARRAY SIZE.
!.DAD 1Il0Cl< SIZE FOR CIRCWIR

ADDRESSIIIl
!.DAD POINTER TO DATA TAlII..E.
LOAD POINTER TO COSINE TAlIl£.
POINT TO LAST COSINE YALIE IN TAlIl£.

, INITlALIZE INlEX REGISTIRS FOR BIT
REVERSED ADOlTl!ll SEIlI£Nl:.

, INlTlALIZE DATA POINTERS.

START IF BIT REVERSED ADDlTl!ll LOOP SERIES.

OOTSII('

ADOI

LOI
LOI
SUBI

lRO,ARI

ARI,AR2
IRO,RC
2,RC

T!P IF OOTSII(LOOP FOR BIT REVERSED
ADDlTlOO.

lI'DATE DATA POINTERS AND REPEAT
COoMER.

NOP tAR2+t IlRO 1 B
ADIF3 tMI++IlROlB, *AR2++IlROlB,RO ,FIND FIRST SI.II. IItAKES
LOI ARI, AR3 "IDlLE LOOP ftORE EFFICIENTl
LDI AR2,AR4
LOI ARI,AIlS
ADIF3 tM3++UROlB,*AR4++IlROlB,RI, lUtIY ADD TO LfDATE

, POINTERS.
l.SH -I,IRO , IPDATE INlEl R£GISTER.

RPTB END_CENTER , TOP OF INNER ftOST LOOP.
t

"!DOLE: , TOP IF "IDlLE LOOP.

!.OF
ADDF3
STF

tAR3,RJ , GET IJ'PER HALF IF SEC!WD ADDlTlON.
tARI,*AR2++IlROlB,RI ,DO FIRST ADOlTl!ll.
RO,tMI++IIROlB , STORE ADDlTlON DONE 1l£ LAST LOOP OR

WIEN INlTlALlZATI!II lIAS DONE ABOVE
END_CENTER'

:1

:1

"

ADDF3
STF

RJ,tAR4++IlROlB,RO ,DO SEC!WD ADDITION;
RI,<AR3++IIROlB , STORE FIRST ADDlTl!ll.

END IF INNER rIIlST LOOP.

ADDF3

LOF
!.OF
ADDF3
STF
ADIF3

LOI
CftPI
SlED
l.SH
SUBI
OR

tAR3++IIRIlI,<AA4++IlRIlI,R2 ,lUtIY ADD TO LfDATE
, POINTERS.

tAR3++UROlB,RJ , GET YALI£ FOR LAST ADDlTl!ll.
*AR2++IlROlB,R2 , lUItY ADD TO lI'DATE POINTER.
R3,tM4++IIROlB,RO ,DO LAST ADDITlON.
RO, tMI++IlROlB , STORE tEXT TO LAST ADDlTl!ll.
tARI++IIR1l1,tAR2+tIlRllX,R2 ,lUtIY ADD TO LfDATE

lRO,RC
ARI,AIlS
"IDlLE
I,Rt
2,RC
OIOOH,ST

POINTERS.
IPDATE REPEAT to.MER.
IS "IDlLE LOOP C!lI'lETE ?
IF NOT, DO I(l.AYED BRANCH.

, SET REPEAT lIIE.
ISTART/STOP ADDRESSES STILL !»(l

InAY BRANCH FROft IERE TO "IDlLE.

CftPI
BOTD
lDI

ADOI
lSH

I,IRO
OUTSII(
ARb,ARI

lRO,ARI
~I,IRI

I(lAY BRANCH FROft HERE TO OUTSII(.

IS OOTSIl£ LOOP C!lI'lETE ?
IF NOT, DO I(l.AYED BRANCH.
PREPARE TO LfDATE POINTERS AT TOP IF

lOOP.

, IPDATE INlEX REGISTER.

END IF BIT R£YERSED ADDITION LOOP SERIES.

START OF CENTER IlJTTERFlY LOOP.

~
~
~
~
>

r
('i

~
;
1-3

~
8' e
~
~

~
~

i
8'
!

.....
N ENIUENTER_Lru':
0'1

THIS LOOP INCUJIES TlE LAST BIT REVERSED ADDITION STAGE, TIE FIRST
IIIJTTERFLY, AND TlE COSINE InTlP\.ICATlOOS FOO THE SECOND IIIJTTERFLY STF Rl,*M4++{IRll% : STIllE LOWER fW.F OF 4TH BlJmRFLY.

SERIES. STF R4, fAR3#(JRm : STIllE LOWER fW.F OF 3RD IIIJTTERFLY.

SUBI 3,AR2 : ll'DATE DATA POINTER FOO THIS LOOP. END OF CENTER BUTTERFLY Lru'.
LDI B,IRI : INITHILIZE INDEX REGISTER.
LDI I'/lO.RC : INITIALIZE REPEAT COUNTER. START NEXT TO LAST LOOP SERIES.
LSH -3,RC
LDF fAR7--,R7 : GET COSINE P1/4. THIS SERIES OF LOOPS DOES ALL IIIJT TIE LAST IIIJTTERFLY STAGE. Iil TIE

~ SUBI I,RC COSINE COEFFICIENT InTlPLlCATlOOS ARE DONE, INClUDII«3 TI£ InTl-
;:: LDI RC,AR5 , SAVE REFEAT COlMER FOO LATER USE. PLICATIONS FOO TlE LAST IIIJTTERFLY STAGE. (THIS _ FUll 1il(l(S FOO

~
FAST EXECUTION.)

Rl'TB END_CfNTEILLru' , FCffi IlUTTERFLlES ARE DONE EACH CYCLE
"tj THRO.Gi THIS Lru'. SUBI 2,AR7 , ll'DATE COSINE C((FF1CIENT POINTER.
~ SUBI I,AR4 , ll'DATE DATA POINTER.
:=! ADDF3 *+AR2, *AR2,R4 , BIT REVERSED ADDITION FOR 2ND LDI ARS,RC , RELIIAD REPEAT ro..tmR.

'" ;:: BUTTERFLY. LIF fAR7-, 115 , GET COSINE COEFFICIENTS.
is tf>YF3 'ARl,R7,1I5 ,COSINE PI/4 T1I£S LOWER fiIU OF 1ST LDF tAR7--,R4
g. IIIJTTERFLY.
;:: It'YF3 R7, R4, RO , COSINE PI/4 T1I£S LOWER HALF OF 2ND Rl'TB END_NTL , TWO IlUTTERFLlES ARE CALaJ..ATED PER

..Q.,
BUTTERFLY. CYQE _ TI£ INNER LOO' •

" ADIF3 fAR4,'-AR4,R3 , BIT REVERSED ADDITION FOO 4TH

~ BUTTERFLY. NTLLOOP:
ADIlF3 115,HIRI,R4 , ADD ll'PER HALF OF 1ST IlUTTERFL Y.

."-l It'YF3 HAR7,R3,Rl , COSINE PI/4 T1I£S LaER HALF OF 4TH SUBF3 'AR4,tAR3,Rb , SUBTIW:T LOWER fiIU OF 2ND

tI IlUTTERFLY. IlUTTERFLY.

(J " ADIF3 RO, tAR2,R2 , ADD UFPER HALF OF 2ND BUTTERFLY. ADDF3 fAR4,tAR3,R7 , ADD UFPER HALF OF 2ND IIIJTTERFL Y •

,;--l SUBF3 115,HIRI,1I5 , SUBTRACT LaER HALF OF 1ST I1PYF3 R5,Rb,RO , ItLTlPLY UFPER HALF OF 2NDIIIJTTERFLY
BUTTERFLY. BY COSINE c((FFICIENT.

I:l !f'YF3 t-AR7, R2, RO , inTI PLY UPPER HALF OF. 2ND IIIJTTERFL Y
" ADIF3 *AA2, 'ARl, R2 , ADD UFPER fiIU OF 1ST IIIJTTERFL Y • ;::

I:l. , BY COSINE C((FFIEIENT. It'YF3 R4,R7,Rl , inTI PLY LOWER HALF OF 2ND IlUTTERFL Y

() " SUBF3 RO, 'AR2,R2 , SUBTRACT LIllER HALF OF 2ND BY COSINE COEFFIEICENT.

S. BUTTERFLY.
" SUBF3 fAR2, fARl,R3 , SUBTRACT LaER HALF OF 1ST

STF R4,HIRI , STIllE ll'PER fiIU OF 1ST IlUTTERFLY. BUTTERFLY.
'" ; STIllE I.I'F£R fW.F OF 2NDIlUTTERFLY. ...,

" STF 115, fARl++(JRlll , STORE LOWER fiIU IF 1ST BUTTERFLY • STF RO,'!Il3#(IR1lX

~ STF RQ, ttAR2 , STIllE LOWER HALF OF 2ND IlUTTERFLY.
" STF R2, tAR(++(IR1I4 , STORE UFPER fiIU OF 15T BUTTERFLY.

I:l It'YF3 tAR3,R7,R4 , COSINE PII4 111£5 LaER HALF OF 3RD
;:: IIIJTTERFLY. END~TL:

~ rt'YF3 tAR7,R2,RO , 1tL1IPLY LOWER fiIU OF 2ND BUTTERFLY O·
BY COSINE CIEFFICIENT STF Rl,tM4++(IRllx' , STIllE L()j£R HALF OF 1ST IlUTTERFLY.

~ " SU9'3 Rl, t-AR4,R3 , SUBTRACT LOWER fiIU OF 4TH
" STF R3, tAR2tt(IRIIl , STIllE LOWER fiIU OF 2ND IIIJTTERFLY.

'" IIIJTTERFLY.
0 ADIF3 R4, .-AR3,R5 , ADD UFPER HALF OF 3RD BUTTERFLY. END OF CENTER Lru' OF NEXT TO LAST SERIES. ;::

It'YF3 'AR7,R3,Rl , InTlPLY ,lItER HALF OF 4TH BUTTERFLY

S. , BY COSINE C((FFICIENT LDI ARS,RC , RELIIAD REPEAT ClWTER.

'" " ADIlF3 Rl, t-AR4,R3 , ADD UPPER fiIU OF 4TH IIIJTTERFLY. LIF foPfl..7-,R5 , GET NEIl COSINE COEFFICIENTS. (FYI-

~
SUBF3 R4, HIR3,R4 , SUBTRACT LOWER fiIU OF 3RD LDF fAR7--,R4 TI£ LAST T1I£, THIS WILL FETCH

IIIJTTERFLY. FRIl1 I'ElU!Y BELOW TlE COSINE

~ rt'YF3 t-AR7,R3,Rl , inTI PL Y UFPER fiIU OF 4TH IIIJTTERFL Y TABLE.)
tv BY COSINE COEFFICIENT. Clf'1 ARl,!Ilb , HAS "IDDLE Lru' BEEN iXl'fUTED ?

a " STF Rl, '-AR4 , STORE UFPER HALF OF 4TH BUTTERFLY. BNED NTLLOOP , IF I«3T, BRAI£H DELAYED. a STF RO, '!Il2#(IRl), , STIllE ll'PER HALF OF 2ND IIIJTTERFLY. ADIF3 tAR4#, tAR3-, RO , rut1Y ADOS TO ll'DATE DATA POINTERS.
a " STF R5, *-AR3 , STORE UPPER fiIU OF 3RD BUTTERFLY.

::a.. ;::r AIIII'3 tM2++,IMI-,00

~
til OIOOH,ST I SET REPEAT IU£. (STMT/STIP

'1:i
ADIilESSES lIRE STILL 0000.)

~ ;: II!fIIDI IaAY FRQI lIRE TO NTLl.OIP.

~ LDI AR3,MI , IJ'MTE DATA POINTERS.
is' AIIll3 IRI,IIRI,AR3

§" LSH I,IRI , Ll'DATE IlIlEX REGISTER.
Cll'1 IRI,IIRO , IS THIS LOIP SfRIES COft£TE ?

~
IIGED NTLUlII' , IF NlT, II!fIIDI IaAYED.
AIIll3 IOO,AR3,AR4 , IJ'MTE DATA POINTER.

~
LSH -1.1IR5 , Ll'DATE REPEAT CWIIER.
LDI AR:i,RC

C. IaAYED II!fIIDI FRQI lIRE TO NTL..LOOP.

(')
END IF lilT TO LAST LOll' SfRIES • • "-l

§ STIIRT IF TIE LAST LDIP.
~

~
11£ LAST LOll' IS 11£ LAST llITTERFI.Y STMlE WITIIlIT 11£ COSINE ClEFFICIENT
IU.TlPlICATICIlS, IItICH IIA\£ AI..REMIY IlEEN WE.

~ LDI 2,IRI , INITIALIIE IIIlEX REGISTER.

~ AIlDI3 IOO,IIR2,AR4 , INITIALIIE DATA POINTERS.

§ SIIII3 IOO,IIRI,AR3
LDI 1IRO,1I: , INITIALIZE REl'£AT CWIIER.

~ LSH -2,Re <:S

~
SIIII I,Re

RPlB ElLLAST ..LOOP , TWO llITTERFI.lES lIRE IDE F(I! EACH g , cvru: _ 11£ LOII'.

So L<F tAR4,RO I GET IIALI£ FtII LOIER IIII.f IF 2t«l

" , llUTTERFl Y.

~ AIU3 tM2,tARI,RI , AIIl IfPER IIII.f IF 1ST llUTTERFl Y.
SlIIF3 tM2,IMI,R2 , SlIITRACT LOIER IIII.f IF 1ST

~ , IlIlTEIIfLY.
N AIU3 RO,IMl,R3 , AIIlIfPER IIII.fIF 2t«llllTTERFl.Y.
C II STF RI, tARI-URIl , sTalE IfPER IIII.f IF 1ST llUTTERFlY.

Q SlIIF3 RO,IMl,R4 I SlIITRACT LOIER IIII.f IF 2t«l
C , IlIlTEIIfLY.

:: STF R2, tAR2++URI) , ST(I!E LOIER IIII.f IF 1ST llUTTERFl Y.
STF R3,IIIR3-URll I STtIIE IfPER IIII.f IF 2t«llllTTERFl.Y •

•
ElLLAST ..LOOP'

STF R4,IAR4++URll I STtIIE LOIER IIII.f IF 2IIlllUTTERFlY.

END IF LAST LOII', All) JINERSE COSINE _IRI. - RETS
~ .• ft'

128

Appendix EJ. FCT Cosine Tables File

* * APPEND IX E3

* * FCT COSINE TABLES FILE

* f TO BE LINKED WITH FCT SOURCE CODE FOR 32 POINT FCT.

* f COEFFICIENTS ARE 1/(2 * COS(NfPI/2M», WHERE N IS A NUMBER FROM 1 to
* M-l. M IS THE ORDER OF THE TRANSFORM.
f

f FOR A 32 POINT FCT, N IS IN THE FOlLOWING ORDER:
* 1, 15, 3, 13, 5, 11, 7, 9,
f 2, 14, 6, 10,
* 4, 12,
f 8

* * THE LAST VALUE IN THE TABLE IS 21M.

*
*

*
M

*

* COS_TAB

.global COS_TAB

.global M

.set 16

• data

.float 0.5024193
• float 5.1011487
.float 0.5224986
• float 1.7224471
.float 0.5669440
.float 1.0606777
.float 0.6468218
.float 0.7881546
.float 0.5097956
• float 2.5629154
.float 0.6013449
.float 0.8999762
.float 0.5411961
.float 1.3065630
.float 0.7071068
.float 0.1250000
.end

An Implementation of FFr, DCT, and Other Transforms on the TMS320C30

Appendix E4. Data File

:~

* APPENDIX E4
:*

* DATA FILE
~.

.glc.bal COEFF

* • data

* COEFF
.float 137.0
.float 249.0
.float 105.0
.float 217.0
• float 73.0
.float 185.0
• float 41.0
.float 153.0
.float 9.0
.float . 121.0
.float 23:3.0
.float 89.0
.float 201.0
.float 57.0
• float 169.0
.float 25.0
.end

An Implementation of FFI', DCT, and Other Transforms on the TMS320C30 129

130 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix F. Test Vectors, 64-Point Sine Table, Link Command File

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 131

- > w 0.5598
IV IIPPENDrx Fl 0.9160 "C

0.1402 "C
£XAPf'lE OF A 64-fOINT IlECTOR TO TEST ThE FFT ROOTihES 0.7054 t!>

0.0178 = X; 0.2611 e:
0.1358 ~

0.2113 0.0503 ~
0.0824 0.5782
0.7599 0.2432

I--' .
~ 0.0007 0.9448
~ 0.8096 0.5876 tfj

~
0.8474 0.7250 ~

0.4524 0.2849 ~
't:j

0.8075 a
~

0.6707
0.4832 0.8642 "C

'" 0.6135 0.1943 -~ 0.2749
t!>

is 0.8807 64-POINT FFT CORRESPIHIIt«; TO IlECTOR X Q

5' 0.653S
~

~ 0.4899 Y = ~

~
0.7741 Q\

~
0.9626 30.3774 .,.
0.9933 1.7780 - 2.5S84i I

_"-l O.83bO -1.0376 - 2.3999i ~ 0.7469 -1.0123 + 2.4889i

tl 0.0378 0.6594 t 2.3639i
....

(J 0.4237 -1.5228 - 0.7527i = -_"-l 0.2613 -3.8171 - O.205Qi -<
s::. 0.2403 -2.7096 + l.284li

~ 0.3405 2.1622 - 1.68b3i t!>

s::... 0.1167 0.2879 + 1.867li
n -a O.62'j() -1.5479 + I.6298i Q

S. 0.5510 -O.b36b - O.l176i ...
'" 0.= 2.2902 + 1.5S49i -.... 0.4943 -2.4837 - 0.5842i Q

~ 0.0365 -1.733S + 0.073Si ~
$:l 0.2260 -0.2180 - 0.4726i
~ 0.8159 -0.2104 + 0.4897i

t!>

S.
tll

Cj 0.2284 -1.7473 - 1.0213i -
~ 0.= 0.1233 - 2.3915i -0.0621 -0.6415 - 1.1144i =-
Cj

0.7075 -2.7719 - 0.4802i t!>

~ ').2408 -o.OOb3 - 0.3885i ~

S. 0.6907 -0.7163 + l.5682i ~

'"
(1.1062 O.32IB - 1.3316i ~
0.2640 -0.7823 + I.OW7i

~ 0.7034 -o.2S53 + 2.B270i ~
~

0.4021 -1.OBI3 - 2.78bli Q
0.6553 3.4869 + 1.94B5i = tv 0.9700 3.0352 + 1.3B5Si

C -0.0380 3.2099 + 2.3564i
....

a 0.0900 -1.9511 - 0.7714i =
C 0.2560 I.B755 + 0.28b7i

t!>
tll

::....
;,:

~
't;j

~
~
;,:
S
~.
;,:

~
~
,:""3

\:)
(j
,:""3
I:>
;,:
""-
a
So
~ ..,
~
!:l ;,:
~

<::>

~
Co

<::>
;,:

So
~

~
~
N
0

Cl
0

>-'
W
W

-1.5474
1.87SS - 0.2Ilb7i

-I. 9511 + O. nl4i
3.2099 - 2.3504i
3.0352 - 1.3855i
3.4&9 - 1.9485i

-1.0013 + 2.7S61i
-0.2553 - 2.8270i
-0.7823 - 1.0607i
0.3218 + 1.3316i

-0.7163 - 1.:ib82i
-0.0063 + 0.388Si
-2.7719 + 0.4802i
-0.6415 + 1.1I44i
0.1233 + 2.3915i

-I. 7473 + 1.0213i
-0.2104 - 0.4897i
-0.2180 + 0.4726i
-1.7338 - 0.0738i
-2.4837 + 0.5842i
2.2902 - 1.5549i

-0. b3bb + 0.1I76i
-1.5479 - 1.6298i
0.2879 - 1.1lb7li
2.1b22 + 1.6863i

-2.7096 - 1.2841i
-3.8171 + 0.205Oi
-1.5228 + 0.7527i
0.6594 - 2.3639i

-1.0123 - 2.4889i
-1.0376 + 2.3999i
1.7780 + 2.5584i

.... > W . float -0.555570
~ .f1od -0.634393 :g APPENDIX F2

.flo.t -0.707107

FILE TO BE LINKED WITH TIE SWlCf COlE All A M-1'OINT. RADIX-4 m. .flo.t -o.n30IO rD
.11 .. t -0.831470 = .globl SII£ .flod -0.881921 ~ .gl.bl N .11 .. t -0.923880

.globl . float -0.956940

~ .float -0.980785

N .set M .flo.t -0.995185

::to. " .set I> .float -1.000000
;:s .float -0.995185 ~~
~ .dota .float -0.980785

"G
.float -0.956940 ~:

~
SII£ .float -0.923880

.Hoat 0.000000 .float -0.881921 I 0

'" .flool 0.098017 .float -0.831470 01:00= ;:s .fl .. t 0.195090 .float -O.moiO
is' .fl •• t 0.290285 .float -0.707107 ~~ §' .flo.t 0.38U83 .fl.oI -0.634393

.flo.t 0.471397 .float -0.555570 ~
.:;, .float 0.555570 .floit -0.471397 . =

.float 0.1>34393 .float -o.38U83 r:
.~ .fl .. t 0.707107 .fl •• t -0.290285 Q.

.fl •• t O.moIO .float -0.195090

.fl .. t 0.831470 .float -0.098017 :r;
tl .fl •• t 0.881921 . fl .. t 0.000000
(J .fl .. t 0.923880 .float 0.098017 ~
."'l .flo.t 0.956940 .fl .. t 0.195090

.fl .. t 0.980785 .float 0.290285 -§ =-.float 0.995185 .float 0.3821>83 rD
l:l.. aJSII£ .float 0.471397

0 .fl .. t 1.000000 . float 0.555570 rI.l
S- .flod 0.995185 • float 0.634393 8
'" .fl .. t 0.980785 • float 0.707107float 0.956940 .floit O.moIO ~ ~ . float 0.923880 .float 0.831470
I:i .float 0.881921 .float 0.881921
;:s • .float 0.831470 .float 0.923880 n
~ <:l . float 0.773010 .float 0.956940 0

~ .float 0.707107 .float 0.980785 Ii"
'"

.flo.t 0.1>34393 .flo.t 0.995185

§
.float 0.555570 a' .float 0.471397

S-
.fl .. t 0.38U83

.,
.float 0.290285 ~ '" .fl .. t 0.195090

~ • float 0.098017 0\
.fl .. t 0.000000 01:00

~
I

.flOit -0.098017 ~ tv .11 .. t -0.195090
C • float -0.290285 Q

....
.fl .. t -0.382683 it C .f10i.t -0.471397

Appendix F3. Link Command File

* * ApPEND! X f:3

*
l!-

I!- LINK COMMAND FILE
,~

I!- DO NOT TYPE IN THESE FIRST SEVEN LINES
-0 12opt64. out
12fopt.obj
sin64.obj

SECTIONS
{

}

• text: {}
.data : {}
IN 809800h : { 12fopt.obj(IN) }
.bss 809COOh: {}

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 135

136 An Implementation of FFT. DCT. and Other Transforms on the TMS320C30

Doublelength Floating-Point
Arithmetic on the TMS320C30

AI. Lovrich

Digital Signal Processor Products-Semiconductor Group
Texas Instruments

137

138 Doublelength Floating-Point Arithmetic on the TMS320C30

In the past, extended-precision arithmetic has been implemented only on fixed-point
processors. The introduction of the TMS320C30 Digital Signal Processor (DSP), a floating­
point 33-MFLOP device, enables us to represent multilengthfloating-point math in terms
of singlelength floating-point math. Extended-precision arithmetic allows designers to have
more accuracy in their applications. Some of these applications include digital filtering,
FFTs, image processing, control, etc.

This application report describes how to extend the available precision of floating­
point arithmetic on the TMS320C30. Our emphasis is on implementing an efficient exten­
sion of the available precision while minimizing both the execution time and the memory
usage.

The structure of this report is'as follows: The first section describes the TMS320C30
DSP floating-point number representation. The second section discusses doublelength
arithmetic and some basic definitions. The third section discusses the algorithms used along
with the TMS320C30 implementation. An analysis of the error introduced by the algorithm
is presented in the fourth section. The last section provides an insight into generating C­
callable functions from assembly language routines. Finally, the appendix provides the
source listings for the extended-precision arithmetic.

Floating Point Format

The TMS320C30 supports three floating-point formats [1].

• Short floating-point format, used to represent immediate operands, con­
sisting of a 4-bit exponent and a 12-bit mantissa.

• Single-precision format, used for regular floating-point value representa­
tion, consisting of an 8-bit exponent and a 24-bit mantissa.

• The extended-precision format, used with the extended-precision registers,
consisting of an 8-bit exponent and a 32-bit mantissa.

For the extended-precision algorithms to work properly on the DSP, it is important
to start from the highest-precision floating-point format available in the system that is
used for basic floating-point operations. The single-precision format is of particular in­
terest in developing the TMS320C30 code for extended-precision floating-point opera­
tions. Therefore, a working knowledge of the properties of this format is essential for
the concepts presented in this application report.

Doublelength Floating-Point Arithmetic on the TMS320C30 139

In the single-precision format, the floating-point number is represented by an 8-bit
exponent field (e) in two's complement notation, and a two's complement 24-bit mantissa
field (j) with an implied most-significant nonsign bit. Bit 23 of the mantissa indicates the
sign (s), as shown in Figure 1.

f

Figure 1. Single-Precision Floating-Point Format of the TMS320C30

Operations are performed with an implied binary point between bits 23 and 22. When
the implied most-significant nonsign bit is made explicit, it is located to the immediate
left of the binary point after the sign bit. We show the implied bit explicitly throughout
this application report for clarity. The floating-point number x is expressed as follows:

x = if s = 0;
if s = 1;
if e = -128, s = 0, andf= 0

The range and precision available with the TMS320C30 single-precision floating-
point format are illustrated by the following values:

Most Positive: x = +3.4028234 x 10+38

Least Positive: x = +5.8774717 X 10-39

Least Negative: x = -5.8774724 X 10-39

Most Negative: x = -3.4028236 X 10+38

Doublelength Floating-Point - The Basics

The techniques used to develop doublelength results in this application report re­
quire a singlelength floating-point system and arithmetic that satisfy certain conditions.
The TMS320C30 implementation takes the singlelength system as the highest floating­
point precision system available. The algorithms'presented do not require a doublelength
accumulator with respect to the singlelength system used. The extended-precision formats
available are used to control the truncation or rounding of the single-precision results.

The doublelength arithmetic presented here increases precision of a given floating­
point operation without the need for a doublelength accumulator. ,Using this method, the
result of the floating-point operations on two single-precision numbers can be determined
exactly. If x and yare two such numbers and the desired operation is addition, the result
can be represented as a pair of floating-point numbers z and zz. The z value represents

140 Doublelength Floating-Point Arithmetic on the TMS320C30

the most significant portion of the floating-point operation, while zz represents the least
significant portion of the floating-point operation.

As an example, consider the result of the exact addition of two floating-point numbers
x and y that are expressed in the single-precision format of the TMS320C30:

x = 217FFFFFh
Y = OC7FFFFFh

(decimal: 1.71798682 x 1010)

(decimal: 8.19199951 x 103)

The values are represented in the TMS320C30 binary equivalent as follows:

x = 233 x 01.111 1111 1111 1111 1111 11l1b
y = 212 X 01.111 1111 1111 1111 1111 11l1b

Addition of two floating-point numbers requires aligning the two variables x and y [1]:

x = 233 X 01.111 1111 1111 1111 1111 11l1b
y = 233 X 00.000 0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1000b

As can be seen in this example, most of the precision available for y will not be
available to carry out the addition. Maintaining full precision for floating-point addition
requires extra mantissa bits beyond the 24 bits available on the DSP. Since the need for
such precision is rare, software methods are used to represent the result of the operation
as a floating-point number pair (z,zz). In our example, the exact result is represented as
follows:

z = 234 X 01.000 0000 0000 0000 0000 00l1b
zz = 209 X 01.111 1111 1111 1111 1111 1000b

The corresponding hexadecimal representation of (z,zz) is shown below:

z = 22000003h
zz = 097FFFF8h

(decimal: 1.71798753 X 1010)

(decimal: 1.0239995 X 103)

Some definitions are basic to the development of concepts in this report. First is
the definition of the floating-point operations over a system R. The system contains all
the possible floating-point numbers that the single-precision format of the TMS320C30
can represent. All the floating-point arithmetic is carried out in base 2. Therefore, R can
be represented as follows on the TMS320C30:

R = [xix = m(x)2e(x), Im(x) I <224, -128<e(x)<127}

A floating-point operation is faithfitl if the result of the operation flex *y) equals either:

The largest element of R that is smaller than or equal to (x * y) or

The smallest element of R that is larger than or equal to (x * y)

where * represents one of the following floating-point operations: +, -, x, +. In other
words, faithful refers to truncating the floating-point operation result. The floating-point

Doublelength Floating-Point Arithmetic on the TMS320C30 141

multiplier on the TMS32OC30 saves the upper 40 bits of the mantissa in one of the extended­
precision registers [1] and drops the least significant byte of the result. By this definition,
the floating-point multiplication on the TMS320C30 is faithful. Since the algorithms re­
quire the floating-point result to be in single-precision format, the floating-pointmultiplica­
tion on the DSP must therefore be followed by a second truncation step. Saving the contents
of the extended-precision register to a memory location or masking off the low 8 bits results
in truncation.

A floating-point operation is optimal if for all x and y, the result of fl(x * y) is an element
of R nearest to (x * y). In other words, the round-off error should not exceed one-half
of the last remaining bit position. This is commonly referred to as rounding.

The results of floating-point operations on the TMS320C30 are stored in the extended­
precision registers [1]. The extended-precision register adds 8 bits of precision to the
floating-point arithmetic result. Execution of the RND (round) instruction forces the result
of the floating-point arithmetic to be optimal. When you round the result of the addition
or subtraction operations on the TMS320C30, these floating-point operations become
optimal.

Implementing Doublelength Floating-Point Arithmetic

This section presents the algorithms used in implementing doublelength arithmetic .
in pseudo-code for a number of fundamental floating-point operations. The basic idea of
doublelength arithmetic can be extended to multiplelength precision, given· that the start
of the implementation is based on the highest precision available on the system. Therefore,
to achieve quadruplelength results, the same algorithm can be applied to doublelength
values, and so on. The implementation is based on the theoretical results presented in
Reference [2].

Exact Singlelength Addition

In this discussion of the algorithm used to carry out exact addition and its implemen­
tation on the TMS320C30 DSP, the term exact refers to performing an operation on two
floating-point numbers, x and y, and obtaining a doublelength floating-point number pair
(z,zz) to represent the result. In this implementation, we have not accounted for floating­
point exponent overflow or underflow. For this algorithm to produce a correct result, the
floating-point addition and subtraction must be optimal.

142

The purpose of exact addition is to find a term, ZZ, that satisfies Equation (2).

Z+zz=x+y

Equation (2) can be rewritten as

zz = y - (z - x)

(2)

(3)

Doublelength Floating-Point Arithmetic on the TMS320C30

Equation (3) can be expanded into Equation (4).

w = z - x
zz=y-w

(4)

In particular, Ixl > Iyl must be valid for Equation (4) to be valid. Implementation
of Equation (4) on the TMS320C30 always generates the exact correction term zz if the
result of floating-point addition operation is made optimal. This requirement guarantees
that the result of single-precision floating-point add and subtract belongs to system R. By
swapping the x and y values 'when Ixl < IYI, the condition for obtaining an exact result
is met.

The algorithm requires that x and y be normalized. Normalization guarantees that
the floating-point number has only one sign bit, and that sign bit is followed by nonsign
bits [1]. Floating-point addition on the TMS320C30 assumes that the operands are nor­
malized.

The TMS320C30 assembly code for obtaining the doublelength sum of two
singlelength floating-point numbers x and y is shown in Appendix A. First, the values
for x and yare interchanged when Ixl < Iyl. When you add x and y values, the number
with the smaller exponent, y, is shifted repeatedly until the exponents of x and yare equal
and their mantissas are aligned. We have now calculated the singlelength number,z, that
satisfies Equation (2). Since the floating-point addition on the TMS320C30 is made op­
timal by rounding, the extra precision is, in effect, dropped. The extra precision value,
zz, is obtained by implementing Equation (4). Figure 2 is a graphical representation of
the implemented algorithm. The figure also shows the relationship between doublelength
number pair (z,zz) and singlelength floating-point numbers and their representation on
the TMS320C30.

Doublelength Floating-Point Arithmetic on the TMS320C30 143

FaA' 24

'I x f(x) -e(X~

y I e(y) I f(y)

x+y

z

zz f2(normalized)

Figure 2. Exact Singlelength Addition

The same algorithm can be used to implement exact floating-point subtraction on
the DSP. This is accomplished by negating the second operand and performing an exact
addition.

Doublelength Addition .

A natural extension of exact singlelength addition and subtraction is its application
to doublelength arithmetic. Figure 3 shows an algorithm for implementing doublelength
addition on the DSP. Using this algorithm, you can add two doublelength numbers (x,xx)
and (y ,yy) and represent the result as a doublelength number (z,zz).

The algorithm requires forming a doublelength number (r,rr) that represents an ex­
act addition of x and y. Generating a second number, s = «rr + yy) + xx), results in
a number pair (r,s) that approximates the addition of (x,xx) and (y,yy). Finally, an exact
addition of rand s generates a doublelength number (z,zz) that has the same value as (x,xx)
+ (y,yy).

To obtain exact results for addition and subtraction, subtraction and addition must
be optimal; this is guaranteed by following each subtraction or addition instruction on
the DSP with a round instruction. .

144 Doublelength Floating-Point Arithmetic on the TMS320C30

; Calculate the doublelength sum of (x,xx) and (y,yy),
; the result being (z,zz)

r = x + y;
if (abs(x) >abs(y»

s = x - r + y + yy + xx;
else

s = y - r + x + xx + yy;
z = r + s;

. zz = r - z + s;

Figure 3. Doublelength Addition

Exact Singlelength Multiplication

The exact singlelength multiplication is shown in Figure4. The algorithm requires
breaking the x and y mantissas into half-length numbers, referred to as head (hx,hy) and
tail (tx,ty) sections [2]. This algorithm requires addition and subtraction to be optimal
and multiplication faithful. The TMS320C30 DSP multiplication result is faithful if the
contents of the extended-precision register are truncated.

To split x and y into two half-length numbers, a constant value is needed that is
dependent on the number of available digits. The TMS320C30 device has t = 24 bits
of mantissa in the single-precision format. Equation (5) shows that head section hx is chosen
to be as near to the value of x as possible.

hx = round(m(x)2 -tl)2e(x) +tl (5)

Also, t1 is chosen to be approximately one-half of the available precision, or 12,
on the processor. This effectively breaks the mantissa into half-length ·values. Equation
(5) shows that hx is obtained by rounding and is defined to be an element of R[tl). The
tail section tx is easily obtained by subtracting hx from x. Since floating-point subtraction
can be made optimal on the TMS320C30, it follows that tx is an element ofR[tl - 1).
Setting the constant equal to 212 does not always satisfy Equation (5) when t is even. When
the constant is set to 212 + 1, the definition of Equation (5) is satisfied. The proof for
the above is given in Reference [2].

Doublelength Floating-Point Arithmetic on the TMS320C30 145

; Calculate the exact product of x and y, the result being
; a doublelength number (z,zz). This algorithm uses the
; following syntax when called from a user program as shown
; mult12 (x,y,z,zz);

p = x X constant;
hx = x - p + p;
tx = x - hx;

p = y X constant;
hy = Y - P + p;
ty = y - hy;

p = hx X hy;
q = hx X ty + tx X hy;
z = P + q;
zz = p - z + q + tx X ty;

Figure 4. Exact Singlelength Product

Doublelength Multiplication

The doublelength multiplication algorithm, shown in Figure 5, relies on the
singlelength algorithm discussed earlier. The algorithm generates a nearly doublelength
approximation of the output result (c,cc). Note that the exact singlelength mUltiplication
routine is used for this approximation. Exact addition is used to generate a doublelength
floating-point number that is the closest approximation to the actual result.

The doublelength product program implementation uses the TMS320C30 stack
capabilities to save some intermediate variables. These programs are written to be used
as callable functions or macros in your program. In either case, the stack pointer must
be set to a valid memory segment for proper code execution.

146

; Calculate the doublelength product of (x,xx) and (y,yy)
; the result being a nearly doublelength number (z,zz).
; Program uses exact singlelength multiplication, mult12 (.).

mult12 (x, y, c, cc);
cc = x X yy + xx X Y + cc;
z = c + cc;
zz = c - z + cc;

Figure 5. Exact Doublelength Product

Doublelength Floating-Point Arithmetic on the TMS320C30

Doublelength Quotient and Square Root

Figures 6 and 7 show the algorithm used in calculating the doublelength quotient
and doublelength square root routines. Singlelength multiplication is used to generate a
doublelength approximation of the quotient or square root values. As with doublelength
multiplication, exact addition is used to generate a doublelength floating-point result.

; Calculates the doublelength quotient of (x,xx) and (y,yy)
; the result being (z,zz)

c = x / y;
mult12(c, y, u, uu);
cc = (x - u - uu + xx - c X yy) / y;
z = c + cc;
zz = c - z + cc;

Figure 6. Doublelength Quotient

; Calculate the doublelength square root of (x,xx), the
; result being (z,zz)

if (x>O) [

else [

c = sqrt (x);
mult12 (c, c, u, uu);
cc = (x - u - uu + xx) x 0.5 / c;
z = c + cc;
zz = c - z + cc;]

z = zz = 0.];

Figure 7. Doublelength Square Root

Doublelength Floating-Point Arithmetic on the TMS320C30 147

Error Analysis

This section discusses and determines an upper bound for the error generated in
forming a doublelength result. The value of the doublelength number (z,zz) is equal to
z + zz. Singlelength addition, subtraction, and multiplication results are always exact.
In doublelength addition, any error introduced in the end result is generated by calculating
the zz term. An upper bound error magnitude has been calculated in Reference [2] and
is shown in Equation (6) as follows:

IE+ 1 ::5 [Ix +xxl + Iy +yyll x 22 - 2t = IZI x 22-2t (6)

where t = 24 for this system. This gives an upper bound of Izi X 2-46, or approximate­
ly Izl x 1.42 x 10-14. This translates to a theorical accuracy greater than 13 decimal
places. Table 1 shows an example of doublelength addition using the exact addition
algorithm previously described. The numbers in the left column represent TMS320C30
hexadecimal notation for the floating-point results, and (z,zz) is the decimal equivalent
of the doublelength output result. Appendix B shows a listing of C programs (exact) that
convert from TMS320C30 hexadecimal notation to decimal notation.

Table 1. Exact Singlelength Arithmetic Examples

Singlelength Addition

x = 217FFFFFh

y = OC7FFFFFh

z = 22000003h (z,zz) = 17179876351.9995117 (Exact)

zz = 097FFFF8h 17179876351.9995117 (DSP)

x = FC7C8923h

y = OA29A7E5h

z = OA29ABD8h (z,zz) = 1357.37010409682989 (Exact)

zz = EFA46000h 1357.37010409682989 (DSP)

Singlelength Multiplication

x = OF7FFFFFh

y = 21FFFFFFh

z = 30800000h (z,zz) = -_562949986975740 (Exact)

zz = 18800002h -562949986975740 (DS~

x = FC7CB923h

y = OA29A7E5h

z = 07277BF7h (z,zz) = 167.484236862815123 (Exact)

zz = EBA714FOh 167.484236862815123 (DSP)

148 Doublelength Floating-Point Arithmetic on the TMS320C30

The doublelength product, quotient, and square-root algorithms all have a small
relative error. The upperbound error magnitude for each is given in Equations (7) through
(9).

IExl=(lx+xxl x Iy+yyl) x 11 x 2-48

IE + I =(Ix +xxl Iy xyyl) x 21.1 x 2 -48

IE'" I = sqrt(lx + xxi) x 12.7 x 2 -48

(7)

(8)

(9)

Equation (7) establishes an upperbound of Izl x 3.9 x 10- 14, or approximately
13 decimal digits of accuracy for doublelength multiplication. Similarly, an upperbound
of Izl x 7.5 x 10- 14, or greater than 13 decimal digits for the doublelength square­
root algorithm, is established. Table 2 shows examples for each algorithm discussed, along
with the algorithm output and expected theorical output.

Doublelength Floating-Point Arithmetic on the TMS320C30 149

Table 2. Exact Doublelength Arithmetic Examples

Doublelength Multiplication

x = 22000000h

xx = 097FFFFEh

y = 21000001h

yy = 097FFFFEh

Z = 43000002h (Z,ZZ) = 1.47573996570139475 x 1020 (Exact)

zz = 2A7FFFFCh 1.47573996570139427 x 1020 (DSP)

x = 22000003h

xx = 097FFFF8h

y = OA29ABD8h

yy = EFA46000h

Z = 2C29ABDDh (z,zz) = 23319450552284.2434 (Exact)

zz = 13907DC2h 23319450552284.1250 (DSP)

Doublelength Quotient

x = 43000002h

xx = 2A7FFFFCh

y = 2C29ABDDh

yy = 13907DC2h

z = 1641205Ah (Z,ZZ) = 6328365.08044074177 (Exact)

zz = FC24BE20h 6328365.08044075966 (DSP)

x = 22000000h

xx = 097FFFFEh

y = 21000001h

yy = 097FFFFEh

Z = 007FFFFDh (z,zz) = 1.99999964237223082 (Exact)

zz = D3400000h 1.99999964237217398 (DSP)

Doublelength Square Root

x = 2C2BDDOOh

xx = 3907DC2h

Z = 61451A4h (Z,ZZ) = 4860114.04539400958 (Exact)

zz = FB39EF11h 4860114.04539400712 (DSP)

x = 21000001h

xx = 097FFFFEh

Z = 103504F5h (Z,ZZ) = 92681.9110722252960 (Exact)

zz = F7BC0784h 92681.9110722253099 (DSP)

150 Doublelength Floating-Point Arithmetic on the TMS320C30

Note that the results were obtained using the programs shown in Appendix B. The
C programs were created and compiled on a 80386-based microcomputer running under
MS-DOS 3.3.

How to Generate C-Callable Functions

The source listings for the extended-precision arithmetic presented in Appendix A
are optimized for execution speed and code size. These routines are designed to be used
as macros in a user program environment or, with a few adjustments, as a C function.

This section provides an overview of TMS320C30 C compiler calling conventions
necessary to create functions that can be added to the C compiler library. You need a
working knowledge ofC language to understand the terminology in this section [4, 5, 6].

The C compiler uses the processor stack to pass arguments to functions, store local
variables, and save temporary values. The C compiler uses two registers of the TMS32OC30
to manage the stack pointer (SP) and the frame pointer (AR3).

When a C program calls a function, it must

1.· Push the arguments onto the stack,
2. Call the function, and
3. Pop the arguments off the stack,

in that order.

On the other hand, the called C function must perform the following tasks:

1. Set up a local frame by saving the old frame pointer on the stack.
2. Assign the new frame pointer to the current value of stack pointer.
3. Allocate the frame.
4. Save any dedicated registers that the function modifies.
5. Execute function code.
6. Store a scalar value in RO.
7. Deallocate the frame.
8. Lastly, restore the old frame pointer [4].

The following code segment shows the singlelength addition routine modified to be
in C-callable form. Note that registers R4 through R7 and AR4 through AR7 are dedicated
registers used by the compiler. These registers must be saved as floating-point values.

single .set OFFh
fp .set ar3
x .set rO
y .set r1
z .set r2
zz .set r3

Doublelength Floating-Point Arithmetic on the TMS320C30 151

w .set
x1 .set
y1 .set

.global

.width

. text
_add12:

push
pushf
push
Idi
Idi
Idi
absf
absf
cmpf
Idflt
Idflt
dflt

addf3
rnd
subf3
rnd
subf3
rnd
pop
popf
pop
retsu
.end

r4
r2
r3
_add12:
96

fp
r4
r4
sp,fp
* -fp[2],rO
* - fp[3],r1
x,x1
y,y1
y1,x1
x,x1
y,x
x1,y

x,y,z
z
x,z,w
w
w,y,zz
zz
r4
r4
fp

; Save old fp

; Point to top of stack
; Load x into rO
; Load y into r1

Ixl > Iyl

;z=x+y

; Form w = z - x

; zz = y - [y - w]

; Restore fp

Conclusion

This report presented an implementation of extended-precision arithmetic routines
for the TMS320C30 DSP. The programs presented include singlelength floating-point ad­
dition, subtraction, and multiplication, which produce exact doublelength results.
Doublelength floating-point addition, subtraction, multiplication, division, and square root
were also presented. The doublelength floating-point routines all had a small relative er­
ror that appeared in the correction term zz. However, it has been shown that the accuracy
of the doublelength floating-point result is at least 13 decimal digits. Table 3 is a summary
of information about the routines contained in Appendices A and B. Execution times shown

152 Doublelength Floating-Point Arithmetic on the TMS320C30

in the table are given only for the routines in Appendix A. These times do not include
the call and return if the routine is implemented as a called function. They also do not
include any context saves and restores that may be required.

Table 3. Summary Information

Routine Mnemonic Appendix
Code Size Execution

(Words) (Cycles)

Singlelength Add _add12 A1 12 12

Doublelength Add _dbladd A2 25 25

Singlelength Multiply -"1ult12 A3 35 35

Doublelength Multiply _mult2 A4 51 51

Doublelength Divide _div2 A5 115 115

Doublelength Square Root _sqrt2 A6 163 163

Change Two Single-Precision

TMS320C30 Numbers to One

Double-Precision Result C30DBL B1

Change Two Double-Precision

TMS320C30 Numbers to a

Double-Precision Result C30DBL2 B2

References

[1.] Third-Generation TMS320 User's Guide (literature number SPRU031), Texas In­
struments, Inc., 1988.

[2.] Dekker, T.J., "A Floating-Point Technique for Extending the Available Precision",
Numer. Math. 18, 1971, pp 224-242.

[3.] Linnainmaa, S., "Software for Doubled-Precision Floating-Point Computations",
ACM Transactions on Mathematical Software, Vol. 7, No.3, Sept. 1981, pp
272-283.

[4.] TMS320C30 C Compiler (literature number SPRU034), Texas Instruments, Inc.,
1988.

[5.] Kernigan, B.W. and Ritchie, D.M., The C Programming Language, 2nd Revision,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[6.] Kochan, S.G., Programming in C, Second Edition, Howard K. Sams, Indianapolis,
Indiana, 1988.

Doublelength Floating-Point Arithmetic on the TMS320C30 153

Appendix A

154 . Doublelength Floating-Point Arithmetic on the TMS320C30

~
;::
<::!-
~

~
~

~
2
S·

()Q

~
~.

~
::I.
~
;;!
~ ... -. <"\

§
~
~

~
~
N
C a
C

....
VI
VI

HHHfHHHHfIIIIIIIIIlIIIIIIIHfHfHfHHHHfH ..

• FLH:THW IEF • -iddl2

• 00TIi00' Al Lovrich 2/211ffi
Texi.S InstruHnts, Inc.

· Entry Conditions:

• Upon entry (rO,1'1l contains Ix,y)

• Exit Conditionsl

• Upon exit 11'2,1'31 conti-ins Iz,zz),

• Registers Affected:

• rO, 1'1, r2, 1'3, 1'4

· Revision: Original

• Execution n.t: 12 cycles
H*tHHHH+HHHJ:HfHfffHfHfHHffHffHfHfHff

single .set Offh
.9101>01 ..iddl2
.set ,0
.set ,I
.set ,2

zz .set ,3

• .set ,4
xl .Sit ,2
yl .set ,3

. text
_iddI2.

absf x,xl
ibsf y,yl
capl yl,xl ; :xl) 1'1: ?
Idflt x,xl ; if not, exchuge x " y
1df1t y,'
Idllt xl,y

iddl3 x,y,z Iz=x+y
rod z
5ubf3 X,Z,III ;fol'."=z-x
,od

5ubf3 III,Y,ll ;zz=y-~

,od zz
retsu
.end

>
"= "= ~
= e:
~

>
~ .
rLJ. ...
= (JQ -~
t""
~

= (JQ -=-
> =-Q.

156

Appendix A2. Double Length Add

* * * * * * * ** * * * * * ** * * ** * ** * ** * * * * * * * * * * * * * ** * * * * * * * * * * * * * * I'UNCI·ION DEF: cit, I a(l(t

* AUHIOIl: AI Lovrici1 2/21/89
rexa~; In~;trumenls, Inc.

* Entry Concli-l ions:
Upon entry (rN,rt) contains (x,xx) and
(r?, r3) cont"i n (y, yy).

* r::xi t Condi-l ion:,:
Upon exit (r4,r!:;;) contains (l,Zl).

* neqi~;ter5 AffeGtecl:
rN, r 1, r2, r3, r4, rh, rf}, r7

* Hev i s ion: Or i ~J i na I
* ~::xecu1ion time: 2~) Gycles

* *** * * * 'Ie * ** * * * * * * '" * * * * * * * * ** * * ** * ** * * ** * * ** * *** * ** * * **
.~ll obal

· set
xx · set
y · set
yy · set
z · set
lZ · set
x1 · set
yl · set

· set
· se t

.Iexl
clbI a(ld:

absl
absf
011p"t
I (If I I
I elf! t
I clf I I
I ell I t
I (If 11
I elf It

adell3
rnc1

subf3
rncl
adell3
!""ncJ
adelt
rnd
aelelf
rnd

adelf'3
I"nd

subf3
I"nd
acldf3
rnd
retsu

.end

(lhl,,,ld
rN
rl
r2
1<3
r4
15
rG
(!

r6
r7

><,x'l
y, y1
y1, x1
x,x1
xx, y1
y,x
vy. xx
x1, y
y1, yy

x, y, r
r

r ,x.:;

y, s, s

yy, s

xx, s

s, r ,1

7. r, lZ

"l..l.

S, 17,7'1

zz

dWGk for txt) tyt
if not, exdl ...).rl~le (x,xx)
ancl (y,yy)

x + y

r +

r + y .f yy

r.f I YY I· xx

r + s

77

2/ Z + S

Doublelength Floating-Point Arithmetic on the TMS320C30

~
~
;:;.
:!J
~
~.

~
~.

::...
::!.
;:;.
~

~.
§
;:;.
~

~
~
N
C o
C

-Ul
.....:J

f Al.JTt('R: AI Lovrich 2/21189
Tens InstruHnts, Inc.

Entry Conditions:
Upon entry (rO,rlJ contains (x,y)

f Exit Conditions:
Upon exit (rO,rH contains (Z,IZ),

t Registers Affected:
rO, rl, r2, r3, r4, r5, NI, r7

f Revision: Original
f Execution TiH: 3S Cycles
HfHHfHftHHHHHfHfHHHHffHfHHHffH+tHf

,gl.bal 1112
single ... 1 om

• set rO
. set rl
, .. I r2

x • set r3
Ix .set r4
q .5et ,5
by .set r5
Iy • set r6

.set rO
zz .set rl
.Ieop .set r7

.text
.... 1112'

Idl 'constant, teap
.pyl3 I."p,x,p ; p = x • cons tint
andn single,p ; f1(.) is fiithful

subf3 PIX, hx Ihx=x-p
rnd hx

addl3 "",p,"" ;hx=x-p+p
rnd hx

s.bl3 hx,x, tx I tx =x-bx
rnd Ix

"py13 te.p,y,p ; p = Y I constant
indn single,p ; fHI) is faithful

subf3 p,y,hy ,hy=y-p
rnd hy
addl3 hy,p,hy ;hy=y-p+p
rnd hy

conshntl

subf3 hy,y,ly ,Iy=y-hy
rnd Iy

"py13 "",hy,p ;p=hXfhy
ando singJe,p ; fJl.> is faithful

.pyl3 hx, ty, tellP ;telp=hxfty
andn single, te.p ; f1(*) is fi.ithful
"py13 tx,hy,q ;q=txfhy
andn single,q ; f1 (f) is faithful
addl3 q, te.p,q ; q=hXfty+txfhy
rnd q

addl3 p,q,z ;z=p+q >
~

rnd z ~
I'D

subl3 l,p,ZZ ;zz=p-z = rnd zz Q.. •.
addl q,zz ;zz=p-z+q ~
rnd zz

~ .pyl3 txt ty, te.p ;telp=txfty
andn single, hap ; flit) is faithful
addl3 ZZ, hiP, zz ; zz=P-Z+q+tXfty
rnd zz 'J.l ..

= rttsu (JCl
,data -I'D

~
.11.al 4097 ; constant = 2"'124-2412)+1 I'D

= .end (JCl -=-
~ = --.. ~ -""d

u; HHffHHIHtfHfHffHHfHffHflfHHfffHffHUHf Idl Iconstant, tnp addl tup,cc 1 CC=X*YY+XX*Y+CC

00 • FlKTlOOIEF , -"ult2 apyl3 teap,X, p ; p = X f constant rod " ando single,p

• AI.JTtI(fi: Al LOYl"'ich 212118'1 IZ=C+CC
Texas InstruHots, Inc. subf3 p,x,hx ,hx=x-p

• Entry Conditions: rnd hx addl3 CC,C,1 ;z=c+cc
Upon entry (1'0,1'1> conhins (x,y), addl3 hx,p,hx ;hx=x-p+p rnd z
and (1"2,1'3) contains (xx,yy). rnd hx

• Exit Conditions: .. zz=c-z+cc
Upon exit (1'0,1'1) contiins (z,zz), subf3 hX,x,tx ;tx=x-hx

• Registers Affected: rnd tx subl3 Z,C,tZ ;zz=c-z
rO, 1'1, 1'2, 1"3, 1'4, 1'5, 1'6, 1'7 rnd zz

opyl3 tup,y,p ; p = Y f constant addl3 zl,ee,zz ;zz=c-z+cc > • Algorithl used: andn singlt,p rnd zz
lult12tx, y, c, cel; "C

"C cc=x*yy+xx.y+cq subl3 p,y,hy ,hy=y-p
retsu (t> z = c ... ee; rnd hy • data = zz=c-z+cq addl3 hY,p,hy ;hy=y-p+p constant: e: rnd hy .float 4097 ; conshnt = 2"(24-2412)+1 ~

~ • Revision; Original
.end · Execution TiIH': 51 cycles subf3 hy,y,ty ,tY'y-hy > ;;: HHHfHfffHflllllllll.llllllllllllffHHHffHffHf rnd ty ~ <:l" ,global 1t2

~

!f
single .set Offh apyf3 hx,hy,p ;p=hxfny ~ .set rO andn singie,p 0 ~ y .set r1

6-So p .set r2 lIjIyl3 hx, ty, teap ;tttp=hXfty
hx .Stt r3 -~ indn single. teap (t>

2 Ix • set r~ Ipyl3 tX,hy,q ;q=txlhy
q .set r5 ando single,q t"'4 ::l'. r5 (t> ;:. hy .set addl3 q, teap,q ;q=hxlty+txlhy

= ~ ty .set r' rnd

~ .set rO
q (JCI -zz .set r1 apyl3 tx, ty, teiP ; ttlp = tx I ty =-~. xx .set r2 andn single, teap

~ yy .set r3 addl3 p,q,e ;e=p+q ~ .set r~
rnd c = :I. cc .set r' -So -t .. pO .set r' ...

~ subf3 e, p,ee ;ee=p-e "C tellP .set r7 -'" rnd cc « ::l'. .ttxt addl ;ee=p-c+q
'"'

q,ee
... ult20 rnd cc c:> apyl3 x,yy, teapO ; teapO = ~yy addl teap,ee ; ec=p-c+q+txfty ;:.

udn single, teapO rnd cc So lIPyl3 y,xx, teap ; teap = ylxx

'" andn single,teap

~
addl te.pO. teap ; tHP = xfyy + ylxx I restore variables

rnd leap •
~ pushl telp ; (xiyy + y1xx) breik:

N popl teap ; XI¥y + ytxx

C
I ault12(x, y, e, cd a I cc=xlyt+xxfy+ec

C

~ HHIIIIIIIIIIIIIIIIIIIIIUII"IUllllfHHfHffHffH

;: I FlKTIIW IEF • _div2

~
~ 1iJTIKll' AI Lmich 2121m

§" Texas InstrUiltnts, Inc.

0<> Entry Conditions: S-
I Upon entry 11'0,1'0 contains Ix,y),

~ and (r2,r3) contains Cxx,yy),

15 Exi t Conditions:

g. I Upon exit (1'0,1'11 contains (Z,lZ),

I Regist.rs Affected:
0<> I 1'0, 1'1, 1'2. 1'3, 1'4, 1'5, r6, 1'7

~
S· I AlgoritM used: ... c=x/y;

~ I IlUltl2(c, Y. u, uu);
::I. I cc = I,x- u- uu +xx-c f yy) I y;

S- I Z = C + ee;
;:s I %z=c-z+cq

'" ~. Rtvision: Original <)

§
I Execution TiM: 115 Cycles
tHffHtHftfHHHHffHfHHflllllllllllllllllffHU

S- • globol _div2

'" single .5tt Offh

~
.s.t rO

y .s.t rl

~
p .5It r2
hx .5.t r3

N Ix .Stt r4 C a yl .stt r4
q .5et r5

C hy ,set r5
ty .5et r6

.5.t rO
zz • set rl
xx ... t r2
yy • set r3
tt.p .s.t r7
ttopl ... t r3
teap2 .s.t rl

.5.t r2
cc .5tt r3
u • set
uu .5.t zz

• tfxt
I

_div2'
pushf yy save yy - pushf xx Sivt xx

VI pushf Sive x
1.0

pushl ; SlY' Y

Ic·x/y;

Tht floating-point nUliber- v is stored in Rl. Rfttr th. coaputation is
(oepltted, IJv is also stor.d in R4.

I R.gist.t' us.d i.5 input! R1
to R'gisters lodifitd: RO, RI. R2, R3
f Register containing t'flulta R4 .
inv_f: ldf

.. bsf
1"1,1"3
rl

.. Extrict the exponent of v.

pushf
pop
iSh

rl
rO
-24,rO

; v is s .. ved for liter.
I The ilgorittw us.s V : lvl.

; The 8 Ws of Rl contiin thf expol'ltnt
, of v.

A ftw-cOMents on boundary conditions. If e I: -128, then v = O. 1bt
.. following x(OJ calculation yields Rl-: -128 - 1 = 127 and tht llgorit.
.. overflow lhd $l.turlte since x[OJ is llrg •• This SHIS rtlsoM.ble. If 127 •
• the RI = -127 - I = -128. Thus x[Ol = 0 ond this _ill (iuse tho olgoritha
.. to yield zero. Since the MnUSH. of v is illlllys~betWHn 1 this is also
f reasonible. As I result. boundlry conditions ire hUdled iutOlllticilly in
I i rnsoRible fuhion.

f x[O] forMtion given tbt exportfnt of v.

rtfgi
subi
uh
push
popf

rO
1,rO
24,rO
rO
rO

f Now the iteritions bfgin •

opyf3 rO,r1,r2
.. dn singlf,r2
subrf 2.0,r2
rnd r2
lIIIyf r2.rO
andn lin91e,rO

opyf rO.rl,r2
udn sing1t,r2
subr; 2.0,r2
rnd r2
opyf r2,rO
indn singl •• rO

; NOIII W MYe -.-1. the exporttnt of x[O].

; Now Rl :I x[O] :I 1.0" 2H(;-1).

; R2 I: Y f x[OJ

; R2 = 2.0 - V f x[O]

; Rl I: x[1] I: x[OJ f (2.0 - v f x[O])

; R2 = V f x[tJ

; R2 = 2.0 - V f x[1]

; RI = x[2l • x[l] • (2.0 - v • x[l])

f
Q..
~.

~
~
6--~
~
~
~
<
~

- 1"0,1'1,1'2 ;R2=vlx[21 8l "pyf ldl leonstant, tap
lAdn li0911,1'2 opyl3 t x.P I P • x • constant
subr 2.0,,2 ; -R2 =.2.0 .. Y • x[2]

udn singl",
,nd ,2
lI'yf 1'2,1'0 ;- Rl = x[3] = x[2] • (2~O - v • x[2])
iOdo singl.,rO .. bf3 p.x,hx I hx-x"p_

rnd hx
o,yf 1"0,1'1,1'2 ;R2:cv 1 x[31 oddf3 hx.p."" I hx=x-p.p
iOcin Sillglt,rO ,nd hx
subrf 2.0.,2 ; R2 = 2.0 -- v • x[31
.nd .2 •• bI3 hx,x, tx ;tx=x-hx

lI'yl 1'2,1'0 ; RI • x[41 = x[31 • 12.0 - v • x[311 .nd Ix

iOdn singl.,tO ; This liniliz.s '1'1'01' in the LS8 •• opyl3 top,y,p ; P •. y I eGnstlRt
lndn singt."

• For the tut itlr&tion w -us, the for-lIVldion: •• bI3 p.y.hy Ihy'y-p
x[51' Ix[41 • 11.0 - Iv' x[4]))1 + x[4] ,nd hy

oddl3 hy.p.hy Ihy'y-p+p

~
lI'yl 1'0,1'1,1'2 ; R2 = v • x[41 = 1.0 .. 01 .. =) I .nd hy
iOdo singll,r2

I:: Jubrf 1.0 •• 2 ; R2 - 1.0 - vsx[4] - 0.0 .. 01 ... =) 0 •• bI3 hy.y.ty IIY'y-hy 1:3-
~ .nd .2 .nd ty

~
lI'yl 1'0,1'2 ; R2 = x[41 • 11.0 - v • x[411

iO'" lingll,1'2 opyl3 !\x,hy,p I p-""'hy

S-
addf .2 •• 0 I R2 .•• [51 = Ix[41'1I.0-Iy",[4]I))+x[4] lndn singl."

~ .nd rO •• 1 ; Round sinct this is fol10111 by I fiFYF. lI'yl3 hx. ty. I ;I ·hx.ty

2 Indn lingl., ttlp
• Noll tho CUt .1 v < 0 i. hlndl,d. lI'yf3 lx.hY,q ;q-·tx'hy

~. .. dn singl',q .. ,I 1'1,1'2 Iddl3 q, t q lqahxtty+txfhy

~ Idl .3 •• 3 r This 5th condition flllS. rod q
ldln 1'2,1'1 ; If y < 0, lhoo RI = -ill

~. ~rfor. tx f ty operation Ind stort tht rtJult in tHp. This is to

~
Idl rl,t. ; MVt lly optilizt USf of rtgisttrs on tl\t cltvict.

::I. I rtstort vlritb1ts lI'y13 tx, ty,ttlp .t..,-tx.ty S-
;: III'" singlt, ttIP

~.
popl ; rtstor. y Iddl3 P.,q,u ;u·p+q
popl ; rtstort x rod

"l pu.hl ; SlY. x
g .vbl3 U,p,UU tUU·p-u

o,yl yl,x Ie;,; x I (tty) rod VI

S- tncin singlt,x oddl q,uu I uu·p-u+q
'1> .nd v.

~ • stv. vt.rilblts

~ puohl x ; SlY' e
N p •• hl yl ; SlY' lly
C
Q
C

I IUlU2le, y, u, uu)

~ popl yl restore lIy
popl c res tOte ,

S- popl t •• p testort x
i\' subl3 U, tNP,CC (c=x-u
i\' end cc
JJ subf UU,CC ;cc=x-u-uu

S. rnd cc
popl hap ; restore xx

~ oddl ttllP,CC ; cc =x - u - YU + xx

2 rnd cc

~.
popl ttlp ; restore yy
.pyl c, ttlp ; c • yy

~
indo single, tMP
subf tUp, ec ; cc=x-u-uu+xx-c*Y)

S· rod cc ... opyf yl,ec ; cc = (x - u - uu t xx - C f yy) I Y

• indn single,cc
:::So
S. IZ=C+CC

;:
~ oddl3 (,Ce,l IZ=C+C'

ri' rod

§ f zz=c-z+cc

S. subf l,C,ZZ. ;zz=c-z '"
~

rnd zz
aW ce,ll ; ZI = C - Z + CC

~
rnd zz

~ rehu C

Q • dati.
cOIls-h.ot;

C .floit 4091 ; conshnt- = 2"(24-24121+1
.end

-0'1 -

.... 11'1111 •• 1'11111.1111111111111111 •• 1111111111111.1.111 pu.hf X ;- SlVI Ie

~ I flll:TllII IEF I .sqrt2 ",yf 2.0.rO , add .. rounding bi t in the exponent
.. d. singl.lrQ

I li/liiii. Al ltYricb 2121189 pushf rO
lou Insu.ents, lac. pop rl

uh -25,1'1 I The 8 LSB. of RI conloi. 112 lho expo.
• EAtry Conditio.s •

Upon •• try (rO,rU cooloi •• (x, xx). t x[O] for.tion giwn tbt exponent of v.
Exi t Conditiensl

Upon txit (rO,rJ) contains (ztu), nogi rl
• Rlglsl.r. Afftcl.d' •• h 24,rl > rOt 1'1, .1'2, ,.3, r4, rS, 1'6, 1'7 push rl

"= popf rl I Noll rl • x[O] = 1.0 • 2HI ... /2).

"= Algorilla u .. d'
~ c ill 541"tex), • Gent"t. v/2. 1:1 IUtt12ec, c, u. UII), =-cc • (x - u - uu + xx) 10.:11 I CI ",yf O.25,rO ; vl2 and tlke rounding bit out.
~ z .e+ce, .. d. singl.,rQ

~
zz·c-z+cc,

~
• Now the iterdions begin.

I Revisionl Drigi 1
;: I Extculio. n ... 163 Cycl •• "pyf rl,rl,r2 I r2 = x[O] I .[0] ~ ~ IHIIIHH &odn single,r2 = ~ .globtl _.qrt2 lIIyf .o,r2 I r2 • (v/2) • • [0] I .[01 & ~ sinlle ... t Offb .. d • 5ing1.,r2 ;: -OQ .Ht rO 5ubrf 1.5,r2 ; r2 = I.S - (v/2) •• [01 • x[O]

~ S- y •• tt rl rnd r2
t"" ~

p •• ot r2
lIIyf .. 2,1'1 I rl •• 111 •• [01 • U.5 - (v/2) .. [01 ..

~
8

hx .Ht r3
andn singl',r1

~ Ix .Ht r4

~. q .Ht r5
lIIyf ,.1,rl,r2 I r2 •• 111 I .1Il -by .Ht r5
Indn lingl.,r2 1:1"

I If ... t r6
IIIYf .o,r2 I r2 • (v/2) •• tIl I .1Il (;I.l cl' .HI rO
Indn singlt,r2 i! a" zz ... t rl
sub"f 1.5,r2 ; r2' 1.5 - (v/2) •• 1Il •• 1Il xx .Nt rl
rnd r2 ~ ~ t.., .Nt r7
IIIYf r2,rl I rl •• [21 = .[n • U.5 - (v/2) .. IIl .. ::I. ... t r2
Indn singl',rl S- cc ... t r3

~ ;: .HI
lIIyf rl,rl,r2 I ,,2 • x(2] .. x[2] "' = ::to .. .Nt zz· indn sin'gl.,r2 -'"' cI .Ht .0
lIIyf .o,r2 ; r2 = (v/2) •• [2] I .[2] g .to.t .. d • singl.,r2

.sqrt2t subrf 1.5,r2 ; r2 = 1.5 - (v/2) •• [21 •• [2] S- r.d r2

"' C :II sqrtlx)
IIIYf r2,rl ; rl = x[31 •• [21 • U.5 - (v/2) .. [21 ••

~ Inda singl.,r!
I £letr.ct tH .. p t of v.

~ IIIYf rl,rl,r2 ; r2 • x[3] f x(3]
tv ldf rO,r3 ; Slye y. Indn singl.,r2 C retslt I rtturn if n_tr non-politivI lIIyf rO,r2 I r2 = (v/2) •• [3] I x[31 Q pu.hf xx I Slyt xx .. d. lingl.,r2
C

tl subl'f 1.5,r'2 , ,2 = 1.5 - (vJ2) 1 x[3] 1 x[3J opyf3 hx, ty, ttlJ) ;ttlp=hx+ty
<::> rod ,2

andn single, teap :::: opyf 1'2,1'1 , ,1 = x[4] = x[3J 1 11.5 - (vl2llx[3J" opyf3 tx,hy,q ;q=tx*hy <:l- andn single,r1
~ indo singl',q

~ oddf I"p,q 1 q=hxfty+txfhy
;: opyf ,..1,1'1,1'2 ; ,.2 .. x[4] .. x[4] rod q

<><> andn single,r2
S- "I'yf rO,r2 ; 1'2 = (v/2) f x(4] f x(4)

~
andn 5iogle,I'2 f perh". tx .. ty optrltion i.nd store the result jn hap.

<::>
subrf 1.5,,2 , ,2 = 1,5 - (v121 1 x[4J 1 x[4J ... This is to optiaize. use of registers on the device.

i::l rod ,2

S" apyf 1'2,1'1 ; 1'1 = x(5] I" x[4] f 11.5 - (vl2l*d41tx .pyf3 tX,ty,ttap ;telp=tx+ty

<><> Indo single, teap

;0 andn single, 1'1 .ddf3 p,q,u lu=p+q
Idf rl,rO rod u

g"
apyf 1'3,rO ; sqrt(vl froD sqrttvn(-U) subf3 u,p,Uu ;uu=p-u

~ andn 5i091e,1'0 rod uu
:::So oddf q,uu ;uu=p-u+q
S- f Slve variables rod uu
S! oddf telp,-tltI , uu=p-u+q+txfty

~. pushf ; save c = sqrtlxl ,nd uu

'" Idf x,y ; get ready for lultiplication

~ .. cc =.! X - U - Uti + xx I f 0.5 / c
... ault12(c, c, u, uul

S- popf c ; r.storf C

'" Jdf It:onstant, hip popf hip ; rutorf x

~
.pyf3 hlp,x,p ; p = x * constant subf3 u, hap,cc ;cc=x-u
.. dn single,p 'nd cc

~ subf uU,ce ;cc=x-u-uu
tv 5ubf3 p,x,hx ;hx=x-p 'nd cc
C ,nd hx popf telp ; restore xx
[3 oddf p,hx ;hx=x-p+p addf teap,cc ;cc=x-u-uu+xx
C ,nd hx ,nd cc

subf3 hx,x,tx ;tx=x-hx push! cc ; sa~e cc
,nd Ix pushf ; save c

lIflyf3 tup,y,p ; p = y " constant " The floating-point oueber v is stored in Rl. After tl'lt cOllputation is
andn single,p " coapleted, 1/~ is also stored in R4.

subf3 p,y,hy ,hy=y-p * Register used as input: R2
,nd hy " Registers lodified: RO, Rl, R2, R3
oddf3 hY,p,hy ,hy=y-p+p f Register containing result: R2
,nd hy

Jdf r2,r3 ; v is saved for later.
subf3 hy,y,ly ,Iy=y-hy .bsf ,2 ; The algoritt. uses v = :~:.
,nd Iy

lPyf3 hx,hy,p ,p=hx1hy
andn single,p -0'1

W

-~

i
l;;"

~
So
~

1-
~
~.

~
::!.
So

I·
g
So
<1>

~
~
N
C
Q
c

* Ext .. ct the .. p t .f v.

pushf
pop
uh

.2

.1
-24,.1 ; The 8 LS8s of RO contlin tltt exponent

I of y

• >dO] Foroati •• gi ... the oxp t .f v.

negi
Jlbi
iSh
posh
popf

.1
1,.1
24,.1
.1
.1

·li0ii the it.ratio .. begin.

opyf3 rl,r2,rO
.. d. iinglt,rO
sub.f 2.0,rO
•• d rO
opyl rO,.1
Indo single,r'

opyf rl.,2,"0
.. do singl.,rO
subrf 2.0,rO
•• d rO
opyl rO,.1
.. do single,rt

opyf rl,r2,rO
.. d. Jingl.,tO
slIbrf 2.0,rO
•• d rO
opyf to,r!
.. d. siftJ1t,rl

opyl rl,r2,rO
.. d. s11l91.,rO
sllb.f 2.0,.0
•• d rO
.,yl rO,.1

.. d. liD.I.,rt

; Nolil • hlve -.-1, the exponent of x[O]

; lioii RO •• [0] • 1.0 I 2H(-e-Il.

; Rl-v*x[Ol

; RI • 2.0 - v I .[0]

; RO • x[IJ = x[O] I (2.0 - v I x[Oll

,RI=.lx[IJ

; Rl·: 2.0 - V t xU]

, RO •• [2] •• Ul I (2.0 - v I .[Ill

,RI=v l .[2]

; RI = 2.0 - v I .[2]

, RO •• [3] = .[2] I (2.0 - v I .[2ll

,RI =vo.[3]

; RI-2.0-vI.[3]

I RO •• [41 •• [3] I (2.0 - • * .[3ll

For the lut it.ration WI UI' tH ferlMltationl
.[5] • (.[4] I (J.O - (v I .[4]))) + .[41

.pyf rl,r2,rO ; Rl -= y .. x[4] I: 1.0 •• 01 •• -> 1
tndo single,rO
subrf 1.0,rO ; RI • 1.0 - v * .[4] • 0.0 .. 01) 0
•• d rO
opy! rl,rO ; RI •• [4] * (1.0·- v * .[4ll
Indn singlt,rO
add! rO,.1 ; RO •• [5] • (.[4]*(I.o-(VOX[4llU+>[4]

•• d rl,r2 ; Round since this is follolftd by I. IFYF

NOIiI the cue of y < 0 is hlndltd.

ntgf r2,rO
Idl r3,r3 , This uts condition flags.
Idln rO,r2 ; Ifv(O, thtnR2a-R2

.. restore YII'ilblu

popf t •• p ; restore c
popf cc ; restore cc
opyf 0.5,ce ; cc • (x - u - au +)0() I 0.5
indo singl.,cc
opyl r2,tc ; cc = (x - u - uu + xx) .. 0.5 I c
indo singl',ee

I=C+C(

oddl3 t.I"ce,l ; z=c+cc
.nd

zz·c-z+cc

5ubf I, tap,ll I ZZ·C-Z

.nd zz
oddl CC,IZ ; zz·c-z+cc
.nd zz

!'thu
.ellto

constant:
• float 4'm , const .. t • 2"(24-24/2)+1
••• d

Appendix B

Doublelength Floating-Point Arithmetic on the TMS320C30 165

166 Doublelength Floating-Point Arithmetic on the TMS320C30

r
~

!
So
~
~
~.

~
S· ...
::to.

~
;:
~
r;'

~
So
'"
~
f.::i
N
<::> a
<::>

3/. C30DBL - ProgrD to operi.te on hlo single-precision AU_bel'S

in 13) for ... t ud produce a double-precision result 1/
linclude <Mth.h>
'include (stdio.h)

MinD
I

)

long double x, Y. z,
long int xl, yl;
int i, operation;
long int c30toe(1ong inU;

i=l;
dol
printfC-Type h.o C30 hex nuab.r5:\n-)1
printfl -x = .);
sClAH-XX·,b1);
printfC·y = .);
scanf('XX','YIl;
xl = c30tot(xl);
x = (long doublelilln .. t fltlxlll;
yl = c3Otoelyll,
y = (long double)(flfloat f)('Y1l I;
dol
p,;ntft'Addlll, SUbl21, lIpyl31, D;v141, Sq,t1511 "I;
scuf(·Xd-, '.ptrdion);

) wIli It (operation" :: operation)Sh

if (operation = 1) z = x + Y;
if (operation ZIi: 2) z = x - y;
if (operation lIZ 3) z = x I YI
if (operation = 4) z = x / YI
if (opetltion = 5) z II sqrt(x);
printfC-\nz II 1.1Slg·, z),

priatft-\n\nTypt in C30 hex result1\n-);
pr-intH·z := ·1;
scufr-XX·,bl)1
printfC·zz = -I,
SCIJlf('U' ,'YIl;
xl z c30toeCxlJ,
x = nong doubleH.Ulnt .)(Iotl));
yl = c30t .. lyll;
y • (long doubloltllfl .. t IIt'Yl)),
z=x+Y;
printff-'nz := 1.18L1-~ z);

printfC-\n\nTypt 0 to txU, ehe continue: -It
scanf ,-lit·, .ill

) IIIAn. (i != O}I

t-oo' /f C30TOE - routine to convert fro. a. c30 f)oding point nuaber to a.
~ nUlbtr in itee forMt. 80th input and output in hex. f/ .

long int caotoellong int xl
I
long int MntiSSi., sign;
long int exp;

sign = x II 0x00800000;
exp = x » 24;

/f fxp=-l28 corresponds to O. txp=-127 is dtnorlK' hed in iHtl
represent it lS O •• /

if (exp (= -127) return(O);

/f add i.phtd bit iftd sign-extend MntisSi */

HntisSi. = x " 0x007fHff;
if Isignl
Hntissl 1= OxffOOOOOO;

else
IM.ntissa. 1= 0x00800000;

/f convert MntisSl to signllgnitud. f/

if Csignl .antiSSl II -...ntisH;

/f adjust Kntissa if it Ml.5 -2.0.1/

if (Mntiua. = OxOl000000H
exp++;
HntiS5I = 0x00900000,

)

if (exp) 127> return(O); /. too large nuaber; return error 1/

/1 Hke exponent 127-txcess and return ieet nulbtr ./

exp += 127;
Mntissa = <M.ntissl "0x007fffff) I (Sign «8) : (exp « 23)1

return(Rntissa);
}

~
"CI
I'D = a
~

t:=
""""
9
~

t::'=
OIJQ = I'D
="~
;-~
I 0
~OO
I'D .. '
0, = tIllJQ .. , -o I'D = I

~~
I'D (')
til .. , = l!3,
~§

Z

~
~
S­
O ;

-~

r
~
J: s.
:?J
~
~.
~
l!'
::...
::I.
S.

§.
g
s.
"
~
~
~
Q
c

/. C3OIB.2 - P,., to o,.nt, on till dlubl • ..,reciliOil ntlHrl
i. C30 f t udpttd do.~I.., .. ci.lo It ./

Iinciudo <ath.~
Iloclll4o (stdio;b)

... i.n
I
long doubl. x, Y. I,
I ... int Xl, yl, xxi. yyl,
ilt it ope ti .. n;
10., i.t c30t .. n.., I.tl,
j-l,
dol
,.I.tfl 'Typo boo C30 n l\o·I,
print"'x· '},
.cutfl'U·,bll,
prhUC'xx· '1;
IcUf(-U;' ,bxU,
prittfC'y • I),

.... fI·U·.'YII,
priAtfC' " • II,
.clllfI·U· .,"11,
xl • c30tHlxll,
xxi • c30tHlxxll,
yl • c30tHlyll,
yyl • c30tHlyyll,
X' non, doubl.II'UI .. t '11 .. 111 •

no., d I.II.lfl .. t 111 ... 111,
y' non, doubl.II.lfl .. t 'II'YIII •

non, _1.II'lfl .. t '11,"111,
dol
p.i.tfl·MelIII. MI2I • ..,,131. 010141. Sq.tISII '1,
1ClIf1'1d' U .. I,) "il, (optrltio.<1 n optNtion)5);

if I ti II Z = x •)'l

if C ti •• -21 z'x-YI
if C ti 31 z· x "YI
if I U 4' I • x / YI
If lo ti 51 Z • Iq.tlxl,
ptintfll\u II. Lla.,I, z),

priatfl".'nTypo in C30 It''n·I,
prilltf(IZ • ·)1
scufC I U·,lrxl),
printfClu • III
.cull'U' .'YII,
xl • c30tMlxll,
x • non, d I.II.lfl .. t '11"111;
yl • c30tHlyll,
y' non, I.II.UI .. t 'II'YIIII
Z&x+Y1

)

printfC"nz ~ X.IL,', zl,

printfC'\n\nTypt.O to IXit, .1.1 continue I '),
scuF "Id' , .il;

} lihUe (i !- 0),

/. C30TOE - routint to convlrt frOll I c30 flOiting point nuMtr to I
nUllbet in itte F t. Both input In' output in hex •• /

long int c30tHn",g int x,
I
long int .ntilsl, sign;
long int bp;

sign. x • 0x0Q800000.

exp-x»241 I

/1 txpa"l28 corr •• pon's to O. • 127 is dtGoI'Ml il.d in ieul
rtpresent it u O. -,

if I.xp (. -1271 .. t •• nIOI,

/. odd i.,U.d bit IRd li, xt.nd .. ntis ... /

.. ntill'. x • 0x007fffff,
if Ili,n'
IlIItisn Ie OxffOOOOOO,

.IM
antiss, Ia: 0x00800000;

,- convert MIItin, to Jign1lgnitudt "

if hign) Mntissa I: ntissil

/. ,dj •• t ... ti .. , if It III -2.0 ./

if I ... ti ... = 0.0100000011
exp++1
antiss. s 0x008000001

)

if (exp > 127) Hturn(O); /_ too Ivg. n"r, rtturn error. _/

, .. me exponent 127-tXC.ss Ind return ieee nnller 1/

ox, ... 127,
... tis ... I .. ntis ... 0x007fffffl ; Isign «81 ; 1 ... « 231,

return(RAtisH);
)

>
~
= ~
~

e ,

n ;
!'~
g.~
;':19 ,=
l~
Fil' g.
g' 7'
~.~
t'I) ~
III .' E. ~, ... =

=
~
51
[
g­
O ;

8 x 8 Discrete Cosine Transform
Implementation on

the TMS320C25 or the TMS320C30

William Hobl

Digital Signal Processor Products-Semiconductor Group
Texas Instruments

169

170 An 8 x 8. Disl;r:ete; Cosine Transform Implementation
on the TMS320C25 or the TMS32OC30

Introduction

In the general class of orthogonal transforms, there exists one in particular, the
discrete cosine transform (DCT), that has recently gained wide popularity in signal pro­
cessing. The DCT has found applications in such areas as data compression, pattern recogni­
tion, and Weiner fIltering, primarily because·ofits close comparison to the Karhunen-Loeve
Transform (KLT) with respect to rate distortion criteria [1]. Although the KLT is con­
sidered to be optimal, there is no fast algorithm to compute it. Since there is no fast KLT
algorithm, the DCT is an attractive alternative.

For image coding, the DCT works well because of the high correlation among adja­
cent data samples (pixel values). Because of this correlation, the DCT provides near op­
timal reduction while retaining high image quality. In a comparative study [2], the DCT
was shown to outperform the Fourier, Hartley, and cas-cas transforms for image com~
pression, providing even more motivation for finding fast implementations.

A number of algorithms have been developed, most notably those of HOll [3] and
Lee [4], which generate higher-order DCTs from lower-order ones. This paper presents
two 8 X 8 DCT routines, one for the TMS320C25 and another for the TMS320C30, based
upon the routine in [3].

An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

171

The neT Algorithm

For a given real data sequence xO,xl, .. . ,xN-l, the discrete cosine transform is
given in [I] as

Zk = - ex(k) E Xn cos k = 0, I, . . . ,N - I ~ N-I (7r (2n+ I)k)

N n=O 2N
(Ia)

and its inverse is

~ N.-I (7r (2n+ I)k) xn = - E ex(k)Zk cos k = 0, I, ... ,N - I
N k=O 2N

(Ib)

I
where ex (k) = {2 for k = 0; otherwise, the transform is unitary. If Zo is scaled up

by 2, the DCT can also be written in matrix form as

z = ~T(N)X' (2)

where x and z are column vectors denoting the input and output data sequences, and T(N)
is the DCT matrix of order N. Actually, expanding the matrix (neglecting the factor of

.J J for the moment), a 4-point DCT appears as

Zo

Z2

172

I I I Xo
ex -ex ex -ex X2

(3 -(j -(3
(3)

(3 -(j -(3

An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

1
where 0(= .fl' (3 = cos (ID, and 0 = sin (~). Similarly, the 8-pt OCT can be

expressed as

Zo 1 1 1 1 1 1 1 1 Xo

Z4 0(-0(0(-0(0(-0(0(-0(x2

Z2 (3 -0 -(3 0 (3 -0 -(3 0 x4

Z6 0 (3 -0 -(3 0 (3 -0 -(3 x6

Zl).. P. -p -'Y -}.. -p. p 'Y x7
(4)

Z5 P. p -'Y }.. -p. -p 'Y -}.. X5

Z3 'Y -}.. P. p -'Y }.. -p. -p X3

Z7 p 'Y }.. P. -p -'Y -}.. -p. Xl

where}.. = cos (~), 'Y = cos (iID, p. = sin (iID, and p = sin (~). Note that

the input is no longer in natural order but has been rearranged according to the permutation
matrix P and the relation

x = Px,

where

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0
P

0 0 0 0

0 0 0 0

0 0 0 1

0 1 0 0

An 8x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

(5)

0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

0 0 0 0

0 0 0 0

173

Upon examination, the matrix T(N) in (4), which is the matrix T(N) with the rows and
columns rearranged, can be described more compactly as

T(N; [
. T (~)

15 (~)
(6)

since the upper half of the 8-point DCT is exactly the 4-point DCT matrix previously

generated. Using the results obtained in [3], the relationship between 15 (~) and

T (~) is a given as

(7)

where

K = RLRt,

R being the matrix that performs a bit reversal on the input data; L is the lower triangular
matrix

1 0 0 0 0 0 0 0

-1 2 0 0 0 0 0 0

1 -2 2 0 1 0 0 0

-1 2 -2 2 0 0 0 0
L

1 -2 2 -2 2 0 0 0

-1 2 -2 2 -2 2 0 0

1 -2 2 -2 2 -2 2 0

-1 2 -2 2 -2 2 -2 2

and Q = diag [cos (n + :)(;)L for n = 0,1, ., 7. The output vector z

is now in bit-reversed order. Signal flow graphs for 2-point, 4-point, and 8-point DCTs
are shown in Figure 1, with the multipliers defined as in (4).

174 An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

Xo Zo Zo " Xo Zo
Z2 " X, Z2
Z, " X2 -1

Z,

Za 2 " a X3 2-ptDCT Za
X, Z,

2:1 MUX 1:2DEMUX

(a) 2-Point (b) 4--Point

Zo " Xo Zo
.z, " X, Z,

- Z2 " X2 Z2

Zo " Xa Zo
.. " X. Z,

I' " X. Z.

-tJ " X. Z3
-y 4-ptDCT " X7 Z7

2:1 MUX 1:2DEMUX

(e) 8-Point

Figure 1. Signal Flow Graphs for 2-Point, 4-Point, and 8-Point DCTs

The structure of the algorithm looks very much like that of a Fast Fourier Transform
(FFT). since the most fundamental computation is a 2-point butterfly. This routine is actua1ly
a generalized case of the Cooley-Tukey FFT algorithm with the addition of the recursion
at the end. If the equations for the signal flow graph are written explicitly. the recursive
nature of the DCT becomes clear; for a 4-point DCT. we have

Zo = Zoo
Z2 = Z2.
Z1 = z],

Z3 = 2Z3 - Z],

An 8 x 8 Discrete Cosine Transform Implementation
on the 7MS320C25 or the 7MS320C30

175

and for the 8-point OCT,

Zo = ZO,

Z4 = Z4,

Z2 = Z2,

Z6 = Z6,

Z1 = Z],

Z3 = 2Z3 - Z],
zs = 2zs - Z3,
Z7 = 2Z7 - zs·

To create a unitary transform, each element in the vector should be multiplied by

the scaling factor # for both the forward and inverse transforms. The inverse

transform is obtained by completely reversing the direction of the signal flow graph; i.e.,
performing the bit-reversal first, then the recursions and the butterflies, and finally, the
data permutation.

For the two-dimensional case of interest, the OCT can be described in the form

z(k,I) = - a{k) a{l) E ~ x,m,n cos cos a 2 N-l N~ 1 (,) (11" (2m+ l)k) (11" {2n+ 1)0 (8)
N m=O n=O 2N 2N

x(m,n) = 1- NEI NEI a{k) a (l)z(k,I) cos (11" (2m+ l)k) cos (11" (2n+ 1)~ (8b)
N k=O 1=0 2N 2N)

1
where a (k) = ~ for k = 0, unity otherwise. Like the FFT, the OCT kernel is

separable, allowing the transform to be performed in two steps, first along the rows and
thenthe columns.

176 An 8 x 8 Discrete Cosine TTans/orm Implementation
on the TMS320C25 or the TMS32OC30

Implementation on the TMS320C25

The DCT algorithm may be carried out in one of two ways, either using

1. A matrix formulation, where the DCT coefficients are simply multiplied by
the data, or

2. The signal flow graph.

This routine uses a matrix formulation, which requires the sixty-four cosine
coefficients to be stored in an array in memory. The matrix formulation is based on the
following equation:

zo 1 1 1 1 1 1 1 Xo

Zl A- 'Y P, p -p -p, -'Y -A- Xl

Z2 fj 0 -0 -fj -fj -0 0 fj X2

Z3 'Y -p -A- -p, p, A- p -'Y X3

Z4 a -a -a a a -a -a a X4
(7)

Z5 p, -A- p 'Y -'Y -p A- -p, x5

Z6 0 -fj fj -0 -0 fj -fj 0 X6

Z7 p -p, 'Y -A- A- -'Y p, -p X7

where A- = cos (~), 'Y = cos (R)' p, = sin (~~, and p = sin (~) 16 .

The algorithm described above has been shown to be numerically stable for fixed­
point processors; however, to prevent serious data errors, truncation and roundoff must
be accounted for. A roundoff technique similar to the one in [6], is used to prescale the
matrix coefficients by (2 15 - 1). This product is then loaded into the accumulator with
a one-bit left shift, effectively dividing it by 215. After a mUltiplication is performed, the
32-bit value in the accumulator must be rounded to sixteen bits, where bits 13,14, and
15 are used to determine the value of the sixteenth bit. The TMS320C25 performs this
operation in a single instruction by adding 3000h to the accumulator product with a one­
bit left shift, as outlined in the code shown in Figure 2.

An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

177

*
*

*
DCTINI

*
*
*

T2

*

178

INITIALIZE MATRIX COEFFICIENTS AND ROUNDOFF VALUES INTO
INTERNAL BLOCK 0

LDPK RNDOFF
RSXM SIGN-EXTENSION MODE
SPM 1 LEFT SHIFT 1 BIT
LRLK AR1,COEFF COEFFICIENTS
RPTK EDATA-IDATA
BLKP IDATA,* +
LRLK AR1,RNDOFF VARIABLES
RPTK 10
BLKP EDATA,*+

SECOND SET OF COEFFICIENTS

LAR AR1,DST AR1 IS NOW DESTINATION
POINTER

MAR *+,AR2 WORK ON SECOND COLUMN
LAR AR2,SRC
LARK AR3,7
LT * + ,AR2
MPY C10
ZAC
RPTK 6
MAC C11, * +

LTA * + ,AR1
MPY C10
ADD RNDOFF
SACH *0+,AR3
BANZ t2,*-,AR2

Figure 2. TMS320C25 Code for Roundoff Routine

An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

After the multiplications are computed, the results are stored in another array area
in transposed order; thus, a separate routine for transposing the matrix is not needed. Once
the rows are transformed, the pointers for the input and output matrices are exchanged.
When the procedure is repeated, the output is stored as rows, completing the transform.
Appendix A contains a complete program listing for the forward transform on the
TMS320C25. To perform an inverse nCT, the table of cosine coefficients should be
replaced with those used for an inverse transform.

Implementation on the TMS320C30

The TMS320C30's increased speed and flexible addressing modes can reduce
execution time substantially. In using the FFT -like structure, extraneous multiplications
are removed, and because of the TMS320C30's ability to perform parallel
multiplication/additions, two butterflies can be computed at once. After an initial subtraction
is done, the coefficient multiplication can be executed in parallel with the addition of the
data. The TMS320C30's floating-point capability eliminates not only the problems of
roundoff error associated with fixed point processors but also the need for any truncation
routines.

Because the DCT size is fixed to eight points, there are only four locations that need
exchanging; this allows for a fast bit-reversal of the data. When using the TMS320C30's
extended-precision registers for temporary storage, the transfers can be done in-place.
These data transfers are also done in parallel, since two load or store operations can be
performed simultaneously. The code for performing the bit reversal is shown in Figure
3 below.

*
*
BITREV

II

II

II

II

CORRECT ORDER FROM BIT REVERSED TO NATURAL

LDF
LDF
STF
STF
LDF
LDF
STF
STF

*ARO,RO
*-AR2,R1
R1,*ARO
RO,*-AR2
*AR1,RO
*-AR3,R1
R1, *AR1
RO,*-AR3

ONLY FOUR LOCATIONS ARE
ACTUALLY SWITCHED

Figure 3. TMS320C30 Code for Bit Reversal

An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

179

Because of the amount of data shuffling that occurs, an eight-word scratch-pad vector
has been created with four permanent pointers set up at every other memory location.
This allows access to each element in the vector (by predecrement or pre increment
addressing) without requiring constant alteration of one or two pointer locations. Although
there is no overhead for looping on the TMS320C30, straight-line coding is used as much
as possible to increase performance.

You can transpose the DCT matrix in the same way as in the TMS320C25
implementation: namely, store the transformed row vector as a column vector in another
matrix and interchange the input and output pointers.

The complete routines for the forward and inverse transforms are given in Appen­
dix B.

Results

The execution times and memory requirements for the two routines are given in
Table 1. For the TMS320C30 implementation, the forward transform contains the scale
factor of 1, so the transform is not unitary. When the signal flow is reversed,

instructions accumulate and thetime required to perform the inverse transform actually
increases (see Table 1). This increase occurs because certain multiplications cannot be
performed in parallel with another instruction. The two times are identical on a TMS32OC25
because it uses a matrix routine to compute the transform.

Table 1. Execution Times and Memory Requirements

Device Memory Required Time Required
Program

TMS320C25 232 words*

232 words

TMS320C30 148 words**

155 words

* TMS320C25 wordlengths are 16 bits

* * TMS320C30 word lengths are 32 bits

180

'Data (f'S)

203 words 257.3 (forward)

203 words 257.3 (inverse)

136 words 99.4 (forward)

136 words 107.9 (inverse)

An 8 x 8 Discrete Cosine Transfonn Implementation
on the TMS320C25 or the TMS320C30

Summary
Two routines for a two-dimensional Discrete Cosine Transform are presented: one

for the TMS320C25 and one for the TMS320C30, with a development of the algorithm
given for clarification. This report also discussed the similarities of the DCT to the Cooley­
Tukey FFT algorithm and arithmetic shortcuts which can reduce the DCT's execution
time. Although these implementations use the most recent formulation, there is still room
for investigation into more efficient methods. Another approach that might prove fruitful
is to deal with the entire 8 x 8 array all at once, as suggested by Haque [7], rather than
transforming the array by rows and columns. However, both routines given in the
appendices provide fast, numerically stable solutions for applications requiring the DCT.

Acknowledgements

The author thanks Steve Ford for supplying the original code for the TMS320C25
implementation. Francois Charlot helped in modifying the code for the TMS320C25, as
well as in preparing this manuscript. Daniel Chen improved the performance of the code
for both the TMS320C25 and the TMS320C30.

References

[1] Ahmed, N., Natarajan, T., and Rao, K.R. "Discrete Cosine Transform," IEEE
Transactions on Computing, vol. C-23, pp. 90-93, January 1974.

[2] Perkins, M. "A Comparison of the Hartley, Cas-Cas, Fourier, and Discrete
Cosine Transforms for Image Coding," IEEE Transactions on Computing, yol.
36, pp. 758-760, June 1988.

[3] Hou, H.S. "A Fast Recursive Algorithm for Computing the Discrete Cosine
Transform," IEEE Transactions on ASSP, vol. ASSP-35, No. 10,
pp. 1455-1461, October 1987.

[4] Lee, B.G. "FCT - A Fast Cosine Transform," Proceedings of 1984 Conference
on ASSP, pp. 28.A.3.1-28.A.3.4, March 1984.

[5] Jayant, N.S., and Noll, P. Digital Coding of Waveforms, New York, Prentice­
Hall, 1984.

[6] Srinivasan, S., Jain, A.K., and Chin, T.M. "Cosine Transform Block Codec for
Images Using the TMS3201O," Proceedings of IEEE ISCAS '86, Cat. No.
86CH2255-8, vol. 1, pp. 299-302.

[7] Haque, M.A. "A Two-Dimensional Fast Cosine Tranform," IEEE Transactions
on ASSP, vol. ASSP-33, pp. 1532-1539, December 1985.

An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

181

- fff*IHfHlltfffHfHHfHffHHfHHtftHHffHHfHitffHfHfffHIHHHHff*
00 MAC COl,++ ; ACe = 0 ,PREG= XO • COO
IV

S X S 2D-OCT ALGORITHI1 FOR TI£ TI1S32OC25 LTA t+,AR2 ; INClUDE LAST PROru:T AND LOAD PREG
I1PY C_OO

THIS PROGRAM WILL PERFORM A TWO-DltlENSl(J.IAL OCT (}I EIGHT-BIT IMAGE DATA ADD RNIIOFF
AND NORI1ALllE T/£ DATA TO MIMIMIZE TRWCATION AND ROI.l'lOOFF. SACH <O+,1il3 ; STORE RESULT AND TRANSPOSE

BANZ n,<-,ARI

**fHHHffHIHfHHffHHHfHHlffHfHfHHtH-IH*HHHHUHHHffHHH SECOND SET OF COEFFICIENTS

. title 'SxS OCT' LAR ARl,DST ; ARI IS tI1W OESTlNATlON POINTER > 'CI MAR H,AR2 ; WOOl(ON SECOND COLUMN 'CI lAR AR2,SAC (D
RESET: lIRANCH TO OCT, AND SET ARP TO 0 , LARK 1il3,7 = LT ft,AR2 ~ .sect "RESET" I1PY UO ~

B OCTINI, ',ARI 12 ZAC
~ . text RPTK

INITIALIZE MATRIX COEFFICIENTS AND ROUNDOFF VALlES INTO INTERNAL BLOCK SO
MAC Cll, ..

I::' n • LTAS H,AR!
OCTlNI LDPK RNDOFF MPY UO 1-3

RSXM ; SIGN-EXTENSI(}I MODE
ADD RNDOFF > $PM 1 ; LEFT SHIFT 1 BIT SACH 10+, AR3 -~ LRLK ARl,COEFF ; COEFFICIENTS BANZ T2, +-,AR2 IJCl

0 ;:s RPTK EDATA-IDATA
""I BLKP IDATA,*< 00 THIRD SET OF COEFFICIENTS

X LRLK ARl,RNDOFF ; VARIABLES =-00 RPTK 10 LAR ARI,SRC ; ARI NOW SOURCE POINTER a
tl BLKP EDATA,H

lAR AR2,DST
8" ADAK 2 ; THIRD COLUIIII 1;;' I£RE IS THE OCT FUNCTION lARP 1 ; ACTIVATE ARI ""I C ()

;:s ~ +
lARK AR3,7 ;.

s.~ OCT lARK AR7,1 AR7: DIMENSI(}I-l
LT H (D

"' (')
LARK MO,S POINTER INCREI1ENT FOR DATA TRANSPOSITION

I1PY UO
1-3 CNFP "MAC" NEEDS 1 OPERAND IN PROGRAtI MEMORY

T3 ZAC ~ ~. RPTK ~ LOOP FOR DltlENSl(}IS
C21,ft 'JJ ~~ MAC

(M • LTA H,AR2 N ~~ DIMS .fqU I1PY UO Q

Q~ ADD RNDOFF n FIRST SET OF COEFFICIENTS SACH '0+,M3 N v,'i+,
BANZ T3,+-,ARI U1 C C ... ~ LARK M3,7 COUNT FOR 8 I-D OCT,

LAR ARl,SRC SOlIlCE ADORESS
FOURTH SET OF COEFFICIENTS 1t ~' lAR AR2,DST DESTINATION ADDRESS (FIRST COLUIIN)

LT H !REG = XO lAR ARl,DST

~~ I1PY C_OO ACe = 0 , PREG= xC • cOO
AOOK 3

~;:! T1 ZAC
lARP 2

1.A.i"' RPTK
lAR AR2,SAC N;:S
lARK 1il3,7 ciS a 15· LT H
I1PY c..30 C;:S

14 ZAC

RPTK RPTJ(

g 5t rIAC C31,1+ rIAC Cbl,ft

LTA H,ARt LTA ".AR2 s.00 If'y UO If'Y UO
!II X ADD RNDOFF ADD RNDOFF

~~
SACH '0+.AR3 SACH to+.AR3
BANI T4, ,AR2 BANI T7.".ARI

\.\l'" EIGHTH SET ~ ClEFFICIENTS
~~ FIFTH SET OF COEFFICIENTS

Q~ LAR ARI.SRC LAR ARI.DST
1.1,("') LAR AR2.DST AlJlI(7

C 1; AlJRI(4 LARP 2 ., -. LARP I LAR AR2.SRC

s.~ LARK AR3.7 LARK AR3.7
!II LT LT ..
~~ If'y C.40 If'y C.70

T5 lAC TO lAC

~~ RPTK RPTK b

~<:i rIAC C41,H rIAC C71.*

C~ LTA ".AR2 LTA H,ARI

Q~ If'y C.40 If'Y C.70

C.§ ADD RNDOFF ADD RNDOFF
SACH to+.AR3 SACH to+.AR3

!f BANI T5.".ARI BANI T8,f-,AR2

~ SIXTH SET OF COEFFICIENTS LOOP Foo NEXT DII1ENSIOII

S
LAR ARI.DST LAC DST CHANGE SOORCE AAlI DESTlNATlOll POINTERS. ::to

g AlJRI(5 lII10V SRC SO RESli. T ~ FIRST PASS BECOIES CffAAND
LARP 2 SACL SRC OF SECOIID PASS. FINIIL RESULT WILL BE IN
LAR AR2.SRC PICT
LARK AR3,7 LARP AR7 AR7 : DIIENSIOII CWlTER
LT It BANI DI/IS ARI LOOP FOR NEXT DlIENSIOII
I'I'Y C.SO •

Tb lAC STOP: CNFD
RPTK B , STOP t£RE
rIAC C51." • page
LTA H,ARI
If'Y C.SO DATAS • TABLES AND DECLARATlOllS
ADD RNDOFF
SACH fO.,AR3 .i.Sfct 'RC!lEF' .OFFOOh , THIS IS TO SET 1I' THE LABELS FOR A CNFP
BANI T6,f-,AR2 .labt1 IDATA • lICT COEFFICIENTS

COO .lIIord 5792 , FIRST ROW OF C((FFICIENTS
SEVENTH SET ~ COEFFICIENTS COl .word 5792 , 5792 = (114) • 2**('112) IN QI5 FORI1AT

CO2 .lIIord 5792
LAR ARI.SRC C03 .word 5792
LAR AR2.DST C04 ,word 5792
ADRK b COS .word 5792
LARP I COb •• ord 5792
LARK AR3.7 C07 ,IIUIrd 5792
LT * CIO .!liord B034 • SEcaGl ROW ~ COEFFICIENTS - If'Y C.bO Cll ,lIIord 6811

00 T7 lAC CI2 .word 4551
W

- CI3 .word 1598 .word 12288 ; RWOlfF FACTOR

~ CI4 • word -1598 1598 = (1/4) • SIN(Pl/lb) IN QI5 FORI1AT .word PICT ; AIDlESS IF PICT\H:

CIS .word -4551 4551 • (1/4) • SIN(3P1/1bl IN QI5 FORI1AT .lfOrd RESULT ; ADIIlE5S IF 1lESlX. T

Clb .word -0811 ball = (1/4) • COS(3P1116) IN QI5 FORI1AT ,lItOI'd 5792 ; COO ctEFFlCIEHT

CI7 ,lIIOrd -0034 0034 = (1/4) • COS(Pl/lb) IN QI5 FORI1AT ,word 0034 ; CIO ClEFFICIEHT

C20 .word 75b8 third row of coefficients ,lIIor6 7Sba ; C20 ctEFFICIEHT

C21 .1II01"d 3134 3134 = (1/4) • SIN(PIIS) IN QI5 FORItAT . ,word ball ; C30 ctEFFlCIEHT

C22 .word -3134 75b8 = (1/4) • COS(PI/S) IN QI5 FORI1AT . .,ord 5792 ; C40 ctEFFlCIEHT

cn .word -7Sba .lfOrd 4551 ; C50 ClEFFiCIEHT

C24 ,word -75b8 • .,ord 3134 ; C60 ctEFFlCIEHT

C25 ,word -3134 .lfOrd 1598 ; C70 ctEFFlCIEHT

C2b .tlord 3134
C27 ,lftIrd 7Sba DATA rfFlNITIONS

C30 oword ball ; FOURTH ROW [f CrfFFlCIENTS
C31 .word -1598 CrfFF .usect "COEFFS' ,b4 ; OCT COEFFICIEHTS (GOES INTO 00)

C32 ,lIIord -0034 ,BSS PICT,b4 ; PICTlIIE

C33 ,1II0rd -4551 ,BSS IlESlX.T,b4 ; 1lESlX. T, AFTER OCT

C34 ,lIford 4551 ,BSS RHIKFF,I ; RCUti)[ff FACTIJ!

C35 .1II0rd 9034 ,BSS SAC,I ; SIllIlCE ADDRESS FOR CURRENT OCT LOOP

C3b .lIIord 1598 ,BSS OST,I ; DESTlNATlOO AQ(J!ESS

C37 ,1II0rd -ball ,ass c..OO,1 ; COO ClEFFICIEHT

C40 ,1liioI'd 5792 ; FIFTH ROW [f COEFFICIENTS ,ass UO,I ; CIO ctEFFlCIEHT

C41 .word -5792 ,ass C-20,1 ; C20 ClEFFICIEHT

C42 .lIIord -5792 ,BSS C_lO,1 ; C30 CrfFFICIEHT

~ C43 ,lIIord 5792 ,ass C_40,1 ; C40 ClEFFICIEHT

C44 .word 5792 ,ass UO,I ; C50 CrfFFICIENT

00 C45 .word -5792 ,BSS c..bO,1 ; C60 COEFFICIEHT

X C46 ,word -5792 ,BSS C_70, I ; C70 ctEFFlCIENT

00 C47 .lIIord 5792

tl C50 .word 4551 ; SIXTH ROW OF COEFFICIENTS .end

1;;' CSI ,word -S034

C t') C52 ,lIIord 159S
:I ~ CS3 ,lIIord ball

s.f\ C54 ,word -ball

" n C55 ,lIIIord -1598
C56 ,\ford 0034

~ ~, C57 .1II0rd -4551

~~ C60 o!llord 3134 ; SEVENTH ROW OF ClEFFICIEHTS
COl ,lIIord -7Sba

~~ CO2 .word 75b8

9! C03 ,lIIord -3134
Cb4 .1II0rd -3134
CbS ,word 7Sba

C C COb ,lIIord -75b8 ., ~
COl ,lIIord 3134

lr~ ClO .1II0rd 1598 ; EIGHTH ROW [f CrfFFICIENTS
C71 ,lIIord -4551

~'"
en • 1liiOI'd ball

~~
C73 ,lIIord -9034
C74 .lIIord 0034

tv:l C75 .word -ball cS cn .word 4551 Q g, C77 ,lIIord -1598
C:I .libel £DATA ; END OF COEFFICIENTS TABLE

fHHHffflfffffffffHffffltHHffffHffHttHffHtfflfHHtHfHnHHHfHH TRlillSlI LDF <AR4++lllX, Rl , TRANSPOSE TIE ROWS
0 ~ STF R 1 , <ARb++ IlR II , INTO COLIffiS
;:s TITLE; 2-D DISCRETE COSH£ TRANSFORl!, IBx81 VERSION 1,0 LDF <AR4++lllX,Rl s.00 STF Rl, <ARb++ 1 IRll
<II X AUTHOR; WIlLIAII I«H. LDF <AR4++IlIX,Rl

~~
STF Rl, <ARb++ 1 IRII
LDF <AR4++IlIX,Rl

THIS PROORA/1 IS BASED ON A RECENT ALGORITIII PROPOS£JI BY HoSo I()IJ STF Rl,<ARb++IIRll
td~ ITRIiIISACTlONS CfI ASSP, VIII., ASSP-35, 1-lI, 10, OCTOBER 1987, PP. 1455- LDF <AR4++IIIX,RI
C~ 14011. STF Rl,<ARb++IIRll

n~ LDF <AR4++IllX,Rl > v,C"l
INPUT I1ATRIX IS STORED IN RAIl, lIND THE RESUJS MI: STORED IN TIE SAllE STF Rl,<ARb++IlRll 'CI lOCATlCfI. LDF <AR4++IllX,Rl 1 o ~ STF Rl, <ARb++IlRll ... -. tffftfttttHfHlHtHfUtHlHffHttHtHtHHHfHffHHtttHtftHtHtHHHI

LDF <AR4++lllX,Rl = s.~ " Q.
<II STF Rl, <ARb++IlRll

~.

~~
.BSS M,64 II LDF <AR5++1 IRll, RS
.BSS INF,64

CI::' ~~ .BSS SCR.8 , SCRATCHPAD I£IIORY BLKl SUBI OJ, ARb .
tdc .global COSTAS

0
C~

.global START LDI !SCRATCH,AR4 ("') .di.ta LDI lOUTPUT, ARS ; DO OCT ON COLIiI'/j 0-3 a~ LDI @INPUT,ARb , I'ECTMS
C~ _COS .Mord COSTAS LDI 7,Re ~ ~ INPUT .word INP

IJQ
~ OUTPUT .lIIord M LDI !RTN2,R4 , RETURN ADORESS OF SUBROUTI HE Q

SCRATCH .word 5CR RPTB BLK3 "'! ~ SCRlAST .Mord 5CR+7 BRD IICT =: is RTNI .word TRIVlSl LDI ARS,ARO , POINTS TO INPUT S-:=:o RTN2 .liord TRANS2 LDI ARS,ARI 0
[IJ ;:s . text ADDI I,ARl

8" 4 4
START LDI 7,Re TRANS2; LDF <AR4++IlIX,Rl "'!

LDI 2,IRO STF Rl,<ARb++IIRll e;. LDI S,IRI
" LDF 4AR4++IIIX,RI

~ LDI S,B!(, SET BUFFER lOOTH=8 STF Rl,<ARb++IIRll
LDP !!SCRATCH I: LDF <AR4++IlIX,Rl 0-3 LDI !SCRATCH, AR4 STF Rl,tMb++IlRlI a= lDI @ooTPUT,ARb , VARIABLE lOCATIONS II LDF <AR4++IllX,Rl C'I'.l LDI @INPUT,ARS , 00.05 IN'UT I1ATRIX STF Rl,<ARb++IIRII ~ lDF Q, 25, Rb ; CONSTANT 0.25

" LDF <AR4++IlIX,Rl N
LDF 2.0,R7 ; CONSTANT 200 STF Rl,<ARb++IlRll = ("') II LDF <AR4++IlIX,Rl

~ LDI !RTNl,R4 , RETURN ADDRESS OF SUBROUT I HE STF Rl,4ARb++IIRll = RPTB BU<1
" LDF <AR4++IlIX,Rl

BRD OCT STF Rl,<AR6++IlRll
LDI ARS,ARO , POINTS TO IN'UT

" LDF <AR4++IlIX,Rl
LDI ARS,ARI STF Rl,<ARb++IlRlI
ADDI I,ARl

" LDF <AR5++IlRll,RS

BU<3 SUBI OJ,ARb ; IICREIIENT POINTERS

- EHD IIR EHD ,END
00
VI

- SHUFFLE THE DATA ACroIDING TO PERMUTATION MATRIX P STF RI,+-M3
00 f " STF R2,<-ARI
0'\ OCT LDI AR4,AR2 ; POINTS TO OUTPUT STF RO,fAR3

LOI @SCRLAST,AR3 " STF R3,fARI
LOI !..COS,AR7 ; TABLE POINTER

SECOND GROUP OF BUTTERFLIES
LDF fAROHI IROI ,RO

:: LDF fARI++IlROI,RI LOF f-ARI,R2 ; THIS IS THE SAllE AS AIIOIIE EXCEPT THE
STF RO, fAR2HIlI ; GOING ~ " LDF fARI,R3 PO INTERS CllANGE

:: STF RI, fAR3--1l1 ; GOING UP SUBF3 <-ARI, f-MO,RI
LDF fAAOH(IROl,RO SUBF3 fARl, fARO,RO
LDF fARI++IIROI,RI i'PYF3 RI,fAR7++111 ,RI
STF RO, fAR2++ 111

" ADDF3 R3, fARO,R3
STF RI,fAR3-1l1 i'PYF3 RO,fAR7--111 ,RO
LDF fARO++1 lROI ,RO

" ADDF3 R2, f-ARO, R2
LDF fAR1++(IRO),Rl STF Rl,f-Ml
STF RO. fAR2+t(1)

" STF R2, f-ARO
STF RI, fAR3--11i STF RO,fARI
LOF fARO++1 lROI ,RO

" STF R3,fARO
LDF fARI++1 IROI ,RI LOF f-AR3,R2
STF RO, fAR2HIIi I: LDF fAR3,R3
STF RI, fAR3-111 SUBF3 f-AR3,f-AR2,RI

SUBF3 fAR3, fAR2, RO
IIlDIFIED FFT ALGClllTH1 i'PYF3 Rl.*AR7++(1l,Rl

~ " ADDF3 R3, >AR2,R3
tDI AR4,ARO ; POINT TO OUTPUT i'PYF3 RO,fAR7t+{1l,RO

00 ADDI I,ARO
" ADDF3 R2, f-AR2,R2

X LOI ARO,ARI STF Rl, f-AR3
00 ADDI 2,ARI ; SET UP POINTERS " STF R2,f-AR2

t;,
LOI ARI,AR2 STF RO, fAR3
ADDI 2,AR2

" STF R3,fAR2 !:;' LDI AR2,AR3 C <"')
;:s ~ ADDI 2,AR3 LAST SET OF BUTTERFLIES

s.~ LOF f-AR2,R2 ; THESE SECTIONS PERFORM LOF fARO,R2 ~ ('j
" LDF '>AR2,R3 ; TWO BUTTERFLIES AT ONCE

" LDF fARI,R3

~ ~, SUBF3 >-AR2, f-ARO, RI SUBF3 fARO,*"ARO,RI

~~
SUBF3 fAR2,fARO,RO ; POINTERS ARE SET AS FIllOWS: SUBF3 fARt, I-ARl, RO
i'PYF3 Rl,fAR7++(1),Rl ; i'PYF3 RI, fAR7,RI

~~ " ADOF3 R3,*ARO,R3 ; XIOI " ADDF3 R3, f-ARI,R3

Q~
MPYF3 RO,fAR7H III,RO ; XIII ARO MPYF3 RO,fIlR7,RO

" ADDF3 R2,f-ARO,R2 1121
" ADDF3 R2,f-ARO,R2

v.~ STF RI,f-AR2 XI31 ARI STF RI, fARO
C <::i

" STF R2, '-ARO XI41 II STF R2,f-ARQ ., ~ STF RO,fAR2 XI51 AR2 STF R3, <-ARI

~~ " STF R3,fARO 1161
" STF RO,fARI

"i5
LDF f-AR3,R2 XI71 AR3 LDF fAR2,R2

~~ " LDF fAR3,R3
" UF fAR3,R3

SUBF3 f-AR3,f-ARI,RI SUBF3 fAR2, f-AR2, RI
~~ SUBF3 fAR3,fARl,RO SUBF3 fAR3, f-AR3,RO
r-v;:S i'PYF3 RI,fAR7++111 ,RI i'PYF3 RI,fAR7,RI oS " ADDF3 R3,fARI,R3

" ADDF3 R3, +-M3,R3 a 6' i'PYF3 ROt fAR7++(1) IRO i'PYF3 RO,fAR7,RO
O;:S " ADDF3 R2,f-ARI,R2

" ADDF3 R2, f-AR2, R2

g :A. ;:s

s.00
!II X

~~
~ ~.
t-.)<')
ci;l
Q~
~g
.... to
So s·
!II !II

~~
~~
t-.)c:i

?5~
~1i'

'G
~

§
is
g"
;:s

-00
~

STF RI,*1IR2
STF R2, *-AR2
STF R3,HIR3
STF RD,*AR3

CORRECT IlUIER FROM BIT -REYERSED TO NATURAL

8ITREY LDF tARO,RO ; ONLY TWO LOCATlCfflllRE ACTUAlLY SWITCHED

" LDF f-AR2,Rl
STF RI.*IIRO
STF RO, *-AR2
LDF *ARI,RO

:: LDF *-1IR3,RI
STF RI.*IIRI
STF RO, AR3

CONTINUE WITH RECURSIVE ALGORITHM

RECURSE MPYF3 R7,*-1IR3,R2
I1PYF3 R7,*1IR3,RI
SUBF3 il-ARI.R2,R2 ; 2XI7l-X(3)
SUBF3 *ARI,RI,RI , 2XI8l-X(4)
STF RI, *AR3
STF R2, f-AR3

LASTLOOP MPYF3 R7, *ARI ,RO ; X(4)=2*XI4)
I1PYF3 R7, *AR2,RI , X(6)=2*XI6)
SUBF3 *AR0,RO,R2 , R2=2XI4l-X(2)
MPYF3 R7, 1M3, R3 ; R3=2*X(3)
STF R2,IARl
SUBF3 *ARI,RI,RI ; RI=2X(6)-x14)
SUBF3 RI,R3,R3 , R3=2XIBl-X(6)
STF RI,IM2
STF R3,*M3

SCALE FACTOR OF 121N)=D.25

MPYF3 R6, *1IR3,RO
STF RD, *AR3--(I)
I1PYF3 R6,*-AR3,RI
STF RI,*1IR3--(l)
I1PYF3 R6,*-AR3,RO
STF RO,tAR3--111
I1PYF3 R6,*-AR3,RI
STF RI, tAR3-- 1 II
MPYF3 R6, *-AR3,RO
STF RO, *AR3--(I) ; OK TO NOYE AR3
MPYF3 R6,*-AR3,RI
STF RI,*AR3--1II
MPYF3 R6, *-AR3, RD
STF RO, *AR3--11)
I1PYF3 Rb, *-AR3,RI
STF RI, tAR3

CORRECT X!O) IF NOOZERO

*
EXIT BUD R4 ; RETURN

LDF HIRO,RD
I1PYF3 *AR7,RO,RO ; MLU BY IIS1lRT(2)
STF RO,*-ARO ; STORE THE RESLI. T
.end

COSTAS .float 0.980785280403 LAMBDA
.float 0.555570233019 I1U
.float -0.195090322016 -NU
.float -0.831469612303 -GMIIA
.fT oat 0.923879532511 BETA
.float -0. 382683432365 -DELTA
. float 0.707106781188 ALPHA
.end

- HH**fHHI***HH**************HfU*ffHHH**fUfHffHIHffHHHHHfD4
" IJlF fAR4++(1II, Rl

00 • STF Rl,fAR6++(lRlI 00
TITLE: 2-D INVERSE DISCRETE CDSlNE TRANSFORM, (8xS) VERSION 1.0 tl IJlF fAR4++(IlX,Rl

STF Rl,fAR6++(lRlI
AUTHOR: ~ILLIAM HOHL

" LDF IAR4++(lJX,Rl
STF Rl, <AR6++!IRli

" lOF *AR4 t ·t(llX,Rl
THIS PROCllAM IS BASED ON A RECENT ALGORITHI1 PROPOSED BY H.S. IW STF Rl, fAR6++(lRlI
(TRANSACTIONS ON ASSP, VOL. ASSP-35, NO. 10, OCTOIieR 1987, PP. 1455- :: IJlF *AR4++(1II,Rl
146I). STF Rl,*AR6++(IRli

:1 lOF <AR4++(1II,RI
INPUT MATRIX IS STORED. IN RAM, AND THE RESULTS ME STORED IN THE SAME STF RI,<AR6++(lRI}
LOCATION.

" LDF fAR4tt(l)X,Rl
STF Rl, <AR6++ (lRll

H********II*******HH***************II**I************I**IHIIH*lIHHI*++*
" LDF IAR5+t(lRU,RS

.BSS OOT,64 BLKI SUBI 63, ARb
• ass INP,64
. ass SCR,S LOI @INPUT,AR6 , REALIGN POINTERS
.global COS-IAB lOI ~OUTPUT, M5
.global START lOI &RATCH,AR4
.d~ta lOI 7,RC · _COS ,\I!ord COS_TAB LOI @RTN2.R4 , RETURN ADDRESS (f SUBROUTINE

~ INPUT .'ilord INP RPTB BlJ(6
;:s OUTPUT .lIIor-d OOT Il!lD IDCT
00 SCRATCH .lIIord SCR lOI AR5,MO , POINT TO INPllT
X RTNI .lIIord TRANSI lOI ~_COS,AR7 , TABLE POINTER
00 RTN2 .lIlol'd TRANS2 ADOI I,ARO

. text
\:l • TRANS2: LOF IAR4++(11'l.,Rl 0;' START LOI 7,Re STF RI, *AR6++(lRlI (") C
~ lOI 2,IRO

" LDF *AR4tt ll)'/.,Rl ;:s

s.~
lOI S,IRI STF Rl,*AR6++IIRU
LOF 2.0,R7 , MULTIPLIER :: LOF *AR4tt(lJX,R1

'" \:l lOI 8,BK , SH ruFFER L£NGTH=64 STF RI, <AR6++(JRI)

~ ~. lOP @OUTPUT :: IJlF tM4++(U'l.,Rl
lOi MTPUT,AR6 , VARIABLE LOCATIONS STF RI,<AR6++«Rli

~'" LOI ~SCRATCH,AR4
" lOF .AR4++(IlX,Rl

~~ LOI @INPUT,AR5 , HOLDS INPUT MATRIX STF Rl,'AR6++(IRli

Q§ " IJlF fAR4++(U'l.,Rl
LDl @RTNl,R4 , RETURN ADDRESS OF SUBROOTI NE STF Rl,<AR6++(IRli

...,,~ RPTB BLKI
" LOF fAR4+t(UX,Rl C C BRO IOCT STF Rl,'AR6++(1R1l ..., ~ LDI AR5,ARO , POINT TO INPUT
" IJlF <AR4++(1II,Rl

1r~ LOI ~_COS,AR7 , TABLE POINTER STF Rl, <AR6++(1R1l
ADDI I,ARO :: LDF <AR5++(IRllRS '15

~~ TRANS!: lOF 'AR4++ (111., Rl BLK6 SUBI 63,M6

~'" STF Rl, 'AR6++(IRll
tv;:S END BR END , END cS
~ g' CORRECT X(O) IF NONZERO

IOCT LDI ARO,ARl If'YF3 4AR7++lll,R3,R3 , SKIP TO NEXT COEFF

§l ~ ADD! 2,ARt STF Rt,'ARt
LDI ARt , AJl2 " STF RO, fARO

S-Oo ADDI 2,AR2 STF R2,4AR2
<b X LDI AJl2,AR3 " STF R3,4AR3

~~
ADDI 2,AR3 LDF fARO,R2 , THESE SECTIONS PERFORM

" UF fARI,R3 , Till BUTTERFLI ES AT ONCE

1..1.>'" LDF '-ARO,RO SUBF3 tARO, 4-ARO, RO
Nq rlPYF3 fAR7,RO,RO , MLU BY t/SOOT(2) SUBF3 4ARt,'-ARt,Rt
C<b STF RO, '-flRO , STORE THE RESULT STF RO, 'ARO
Q~ MPYF3 Rl,*+AR7,Rl , -DELTA
1.1,0 BEGIN wITH RECURSION ADDF3 R3, 4-ARt ,RO

C 1; MPYF3 RO, .AR7,RO , BETA ... -. SUBF3 tAR3, *AR2,R2 , XI6HIS)
" ADDF3 R2, *-flRO,R2

S-~ SUBF3 R2, tARt,R3 , X14H16) STF R2, HRO
<b MPYF3 *AR3,R7,RO , 2XI8)-)RO

" STF RO, HRt
~~ :1 STF R2,*AR2 STF Rt,*ARt

~~ SUBF3 R3,*ARO,R2 , X12H14)
MPYF3 fAR2,R7,Rt , 2'XI6)-)Rt LDF *AR2, R2 I..I.>'§->

" STF R3,*ARl
" LDF *AR3,R3

~~ STF RO, *AR3 SUBF3 *AR2, *-AR2, RO

a~ " STF Rt,'AR2 SUBF3 *AR3, *-AR3,Rl

C.§
MPYF3 tARt,R7,RO STF RO,*AR2
STF RO, fARt MPYF3 Rt, ftAR7,Rt , -DELTA ON NEXT GROUP

~ " STF R2, fARO ADDF3 R3,HR3,RD
SECLOOP SUBF3 4-AR3,f-AAt,R2 , X13H17) MPYF3 RO,fAR7++IIRO),RO ,BETA ON NEXT GROUP

~ SUeF) 'AR3, 'ARt,R) , XI4HI81
" ADDF3 R2. *-AR2, R2

!:i MPYF3 R7, '-AA3, RO , 2'XI7) STF R2, *-AR2
::to " STF R2, I-ARt :1 STF RO,HR3
§l MPYF3 R7,.AR3,Rt , 2*X181 STF Rt, *AR3

" STF R3, *ARt
STF RO, '-AA3 SECOND GROUP OF BUTTERFLIES
STF Rt,*AR3

LDF f-ARt,R2 , THIS IS THE SA/1E AS ABOVE, EXCEPT THE
CORRECT ORDER FROM NATURAL TO BIT-REVERSED

" LDF *AIU,R3 , POINTERS CHANGE
f SUeF3 *-ARt,*-ARO,Rt
BITREV LDF *ARO,RO , ONLY TOO LOCATIONS ARE ACTUALLY SWITCHED SUeF3 *ARt, *ARO, RO

" LIlF *-AR2,Rl ADDF3 R3, 'ARO,R3
STF Rt;fARO ADDF3 R2,HRD,R2
STF RO, .-AJl2 STF Rt,'-ARt
LDF tARt,RO

" STF R2, '-ARO
LDF '-AR3,Rt STF RO,*ARl
STF Rt,'ARt

" STF R3, 'ARQ
STF RO, .-AR3

LDF '-AR3,R2
FIRST SET DF BUTTERFLIES

" UF fAR3,R3
SUeF3 '-AR3, ,-AR2, Rt

LDF IARO,RO SUeF3 'AR3, 'AR2,RO
LDF *ARt,Rt MPYF3 1AR7++11I,Rt,Rt , -NU
LOF I-AR2,R2

" ADDf3 R3, *AR2,R3
LDF fAR3,R3 MPVF3 1AR7++11l,RO,RO ,-IiAI1MA
MPYF3 1AR7,Rt,Rt , PERFORM TI£ ALPHA Mll T 's

" ADDF) R2, '-AR2,R2 - MPYFl *AR7,RO,RO MPYF3 R2,fM7++(U,R2 ; LAMBDA
00 MPYF3 tAR7,R2,R2 MPYF3 R3,*AR7,R3 ,MU \0

- STF Rl,'-AR3 .global COUAB

8 :: STF R2,'-AR2 .data.
STF RO,4AR3 COS_TAB .float 0.707106781188 ALPHA

" STF R3, +AR2 . float 0.923879532511 BETA
.float -0.382683432365 -DELTA

LAST SET OF BUTTERFLIES . float -0. 19509032L"Q16 -NU

.float -0.831469612303 -GAIi1A

LDF +-AR2,R2 .float 0.980785280403 LAMBDA
:: LDF 'AR2,R3 .float 0.555570233019 MU

SUEr3 *-AR2,f-ARO,Rl .end
SUEr3 'AR2, 4ARO, RO , . POINTERS ARE BET AS FIllOWS:
ADDF3 R3,'ARO,R3 , XIOI
ADDF3 R2,+-ARO,R2 ,XllI ARO
STF Rl,4-AR2 , XI21

:: STF R2,'-ARO ,Xl31 ARI
STF RO. 'AR2 , XI41
STF R3, 'ARO ,XISI AR2
LOF '-AR3,R2 ; XI61
LDF 'AR3,R3 ; XI71 AR3
SUBF3 lI-AR3,'-AR1,Rl
SUEF3 fAR3, fARl,RO
ADDF3 R3,4AR1,R3
ADDF3 R2,4-ARI,R2
STF RI,4-AR3

~ " STF R2, '-ARI
;:: STF RO,4AR3

00 " STF R3,fARl

X
00 SHUFFLE THE DATA ACCORDING TO PERMUTATION MATRIX P

~ LDI AR4,ARO , POINTS TO SCRJITCH

<:) ~ LDI AR4,ARI
;:: ~ ADD! I,ARI

s.~ LDI AR5,AR2 , POINTS TO HI'UT

~ <"'l LD! 7,AR3 , VECTOR
ADD! AR2,AR3,AR3

~ §, LDF +AR2++III,RO , GOING UP

~~ " LDF +AR3--11l ,RI , GOING DOWN
STF RO, +ARO++lIROI

~~ " STF RI, 4ARI ++IIROI

fJ§ LDF +AR2++I1I,RO

" LDr +AR3-11I,RI
v,~ STF RO, +ARO++IIROI
<:) <::)

" STF Rl, *AR1++(IRO) .., ~ LDF fAR2++(1) ,RO

~~ " LDF 4AR3--11l ,RI

"I:i EUD R4 ; RETURN HOlE

~~ STF RO, .AAO++(IRO)

~:! " STF Rl, *ARl++<IRO)

~~
LDF fAR2++{ l",RO

" LDF 4AR3--11I,RI
ciS STF RO, 'ARO++IIRO) a 6' " STF RI,+ARI++IIROI
c;:: .~nd

An Implementation of Adaptive Filters
with the TMS320C25
or the TMS320C30

Sen Kuo
Northern Illinois University

Chein Chen
Digital Signal Processor Products-Semiconductor Group

Texas Instruments

191

192 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

Introduction

A filter selects or controls the characteristics of the signal it produces by condition­
ing the incoming signal. The coefficients of the filter determine its characteristics and output
a priori in many cases. Often, a specific output is desired, but the coefficients of the filter
cannot be determined at the outset. An example is an echo canceller; the desired output
cancels the echo signal (an output result of zero when there is no other input signal). In
this case, the coefficients cannot be determined initially since they depend on changing
line or transmission conditions. For applications such as this, it is necessary to rely on
adaptive filtering techniques.

An adaptive filter is a filter containing coefficients that are updated by an adaptive
algorithm to optimize the filter's response to a desired performance criterion. In general,
adaptive filters consist of two distinct parts: a filter, whose structure is designed to per­
form a desired processing function; and an adaptive algorithm, for adjusting the coeffi­
cients of that filter to improve its performance, as illustrated in Figure 1. The incoming
signal, x(n), is weighted in a digital filter to produce an output, yen). The adaptive algorithm
adjusts the weights in the filter to minimize the error, e(n), between the filter output, yen),
and the desired response of the filter, den). Because of their robust performance in the
unknown and time-variant environment, adaptive filters have been widely used from
telecommunications to control.

din) ---------------,

1-.... __ .In)

FILTER
STRUCTURE

I----.... -~ ·yln)

ADAPTIVE
FILTER

Figure 1. General Form of an Adaptive Filter

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 193

Adaptive filters can be used in various applications with different input and output
configurations. In many applications requiring real-time operation, such as adaptive predic­
tion, channel equalization, echo cancellation, and noise cancellation, an adaptive filter
implementation based on a programmable digital signal processor (DSP) has many ad­
vantages over other approaches such as a hard-wired adaptive filter. Not only are power,
space, and manufacturing requirements greatly reduced, but also programmability pro­
vides flexibility for system upgrade and software improvement.

The early research on adaptive filters was concerned with adaptive antennas [1] and
adaptive equalization of digital transmission systems [2]. Much of the reported research
on the adaptive filter has been based on Widrow's well-known Least Mean Square (LMS)
algorithm, because the LMS algorithm is relatively simple to design and implement, and
it is well-understood and well-suited for many applications. All the filter structures and
update algorithms discussed in this application report are Finite Impulse Response (FIR)
filter structures and LMS-type algorithms. However, for a particular application, adap­
tive filters can be implemented in a variety of structures and adaptation algorithms [1,
3 through 9]. These structures and algorithms generally trade increased complexity for
improved performance. An interactive software package to evaluate the performance of
adaptive filters has also been developed [10].

The complexity of an adaptive filter implementation is usually measured in terms
of its multiplication rate and storage requirement. However, the data flow and data
manipulation capabilities of a DSP are also major factors in implementing adaptive filter
systems. Parallel hardware multiplier, pipeline architecture, and fast on-chip memory size
are major features of most DSPs [11, 12] and can make filter implementation more efficient.

Two such devices, the TMS320C25 and TMS320C30 from Texas Instruments [13,
14], have been chosen as the processors for fixed-point and floating-point arithmetic. They
combine the power, high speed, flexibility, and an architecture optimized for adaptive
signal processing. The instruction execution time is 80 ns for the TMS320C25 and only
60 ns for the TMS320C30. Most instructions execute in a single cycle, and the architec­
tures of both processors make it possible to execute more than one operation per instruc­
tion. For example, in one instruction, the TMS320C25 processor can generate an instruction
address and fetch that instruction, decode the instruction, perform one or two data moves
(if the second data is from program memory), update one address pointe~, and perform
one or two computations (multiplication and accumulation). These processors are
designed for real-time tasks in telecommunications, speech processing, image process­
ing, and high-speed control, etc.

194 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

To direct the present research toward realistic real-time applications, three adaptive
structures were implemented:

1. Transversal
2. Symmetric transversal
3. Lattice

Each structure utilizes five different update algorithms:

1. LMS
2. Normalized LMS
3. Leaky LMS
4. Sign-error LMS
5. Sign-sign LMS

Each structure with its adaptation algorithms is implemented using the TMS320C25
with fixed-point arithmetic and the TMS320C30 with floating-point arithmetic. The pro­
cessor assembly code is included in the Appendix for each implementation. The assembly
code for each .structure and adaptation strategy can be readily modified by the reader to
fit his/her applications and could be incorporated into a C function library as callable
routines.

In this application report, the applications of adaptive ftlters, such as adaptive predic­
tion, adaptive eqUalization, adaptive echo cancellation, and adaptive noise cancellation
are presented first. Next, the implementation of the three filter structures and five adap-,
tive algorithms with the TMS320C25 and TMS320C30 is described. This is followed by
the practical considerations on the implementation of these adaptive ftlters. The remainder
of the application report covers coding options, such as the routine libraries that support
both assembly and C languages.

Applications of Adaptive Filters

The most important feature of an adaptive filter is the ability to operate effectively
in an unknown environment and track time-varying characteristics of the input signal. The
adaptive ftlter has been successfully applied to communications, radar, sonar, control,
and image processing. Figure 1 illustrates a general form of an adaptive filter with input
signals, x(n) and d(n), output signal, y(n), and error signal, e(n), which is the difference
between the desired signal, d(n), and output signal, y(n). The adaptive ftlter can be used
in different applications with different input/output configurations. In this section we briefly
discuss several potential applications for the adaptive ftlters [15].

Adaptive Prediction

Adaptive prediction [16 through 18] is illustrated in Figure 2. In the general ap­
plication of adaptive prediction, the signals are x(n) - delayed version of original signal,
d(n) - original input signal, y(n) - predicted signal, and e(n) - prediction error or
residual.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 195

dln)--...... ------------,

DELAY

xln)
ADAPTIVE

FILTER yIn)

1--.......... eln)

Figure 2. Block Diagram of an Adaptive Predictor

A major application of the adaptive prediction is the waveform coding of a speech
signal. The adaptive filter is designed to exploit the correlation between adjacent samples
of the speech signal so that the prediction error is much smaller than the input signal on
the average. This prediction error signal is quantized and sent to the receiver in order
to reduce the number of bits required for the transmission. This type of waveform coding
is called Adaptive Differential Pulse-Code Modulation (ADPCM) [17] and provides data
rate compression of the speech at 32 kb/s with toll quality. More recently, in certain on­
line applications, time recursive modeling algorithms have been proposed to facilitate speech
modeling and analysis.

The coefficients of the adaptive predictor can be used as the autoregressive (AR)
parameters of the non stationary model. The equation of the AR process is

u(n) = al* u(n-l) + a2* u(n-2) + + am* u(n-m) + v(n)

where at. a2, , am are the AR parameters. Thus, the present value of the process u(n)
equals a finite linear combination of past values of the process plus an error term v(n).
This adaptive AR model provides a practical means to measure the instantaneous frequen­
cy of input signal. The adaptive predictor can also be used to detect and enhance a narrow
band signal embedded in broad band noise. This Adaptive Line Enhancer (ALE) provides
at its output yen) a sinusoid with an enhanced signal-to-noise ratio, while the sinusoidal
components are reduced at the error output e(n).

Adaptive Equalization

Figure 3 shows another model known as adaptive equalization [2, 9, 15]. The signals
in the adaptive equalization model are defined as x(n) - received signal (filtered version
of transmitted signal) plus channel noise, den) - detected data signal (data mode) or pseudo
random number (training mode), yen) - equalized signal used to detect received data,
and e(n) - residual intersymbol interference plus noise.

196 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

xln) ADAPTIVE
FILTER

yIn)

DATA TRAINING
,..------, MODE MODE ,-------,

~
SLICER

+

dIn)

PSEUDO
RANDOM
NUMBER

GENERATOR

Figure 3. Block Diagram of an Adaptive Equalizer

The use of adaptive equalization to eliminate the amplitude and phase distortion in­
troduced by the communication channel was one of the first applications of adaptive fIltering
in telecommunications [19]. The effect of each symbol transmitted over a time-dispersive
channel extends beyond the time interval used to represent that symbol, resulting in an
overlay of received symbols. Since most channels are time-varying and unknown in ad­
vance, the adaptive channel equalizer is designed to deal with this intersymbol interference
and is widely used for bandwidth-efficient transmission over telephone and radio channels.

Adaptive Echo Cancellation

Another application, known as adaptive echo cancellation [20, 21] is shown in Figure
4. In this application, the signals are identified as x(n) - far-end signal, d(n) - echo
of far-end signal plus near-end signal, y(n) - estimated echo of far-end signal, and e(n)
- near-end signal plus residual echo.

FAR-END
SIGNAL r---------I HYBRID I

xln) ----~~----+---9---__1Ir--­,

ADAPTIVE
FILTER

yIn)

ECHO
PATH

+

,
I , , , , , , , ,

eln) -41---4 ,.. __ '1--_ NEAR-END
, SIGNAL

I '
I ' L.. _________ I

Figure 4. Block Diagram of an Echo Canceller

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 197

The adaptive echo cancellers are used in practical applications of cancelling echoes
for long-distance telephone voice communication, full-duplex voiceband data modems,
and high-performance audio-conferencing systems. To overcome the echo problem, echo
cancellers are installed at both ends of the network. The cancellation is achieved by
estimating the echo and subtracting it from the return signal.

Adaptive Noise Cancellation

One of the simplest and most effective adaptive signal processing techniques is adap­
tive noise cancelling [1, 22]. As shown in Figure 5, the primary input den) contains both
signal and noise, where x(n) is the noise reference input. An adaptive filter is used to
estimate the noise in den) and the noise estimate yen) is then subtracted from the primary
channel. The noise cancellation output is then the error signal e(n).

The applications of noise cancellation include the cancellation of various forms of
interference in electrocardiography, noise in speech signals, noise in fighter cockpit en­
vironments, antennas sidelobe interference, and the elimination of 60-Hz hum. In the ma- .
jority of these noise cancellation applications, the LMS algorithm has been utilized.

SIGNAL
SOURCE

xln)

NOISE SOURCE

den)

ADAPTIVE
FILTER

"'-..---1" e(n)

yIn)

Figure 5. General Form of a Noise Canceller

Application Summary

The above list of applications is not exhaustive and is limited primarily to applica­
tions within the field of telecommunications. Adaptive filtering has been used extensively
in the context of many other fields including, but not limited to, instantaneous frequency
tracking, intrusion detection, acoustic Doppler extraction, on-line system identification,
geophysical signal processing, biomedical sign~ processing, the elimination of radar clutter,
beamforming, sonar processing, active sound cancellation, and adaptive control.

198 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

Implementation of Adaptive Structures and Algorithms

Several types of filter structures can be implemented in the design of the adaptive
. filters such as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). An adap­
tive IIR filter [1, 5], with poles as well as zeros, makes it possible to offer the same filter
characteristics as the FIR filter with lower filter complexity. However, the major pro­
blem with adaptive IIR filter is the possible instability of the filter if the poles move out­
side the unit circle during the adaptive process. In this application report, only FIR structure
is implemented to guarantee filter stability.

An adaptive FIR filter can be realized using transversal, symmetric transversal, and
lattice structures. In this section, the adaptive transversal filter with the LMS algorithm
is introduced and implemented first to provide a working knowledge of adaptive filters.

Transversal Structure with LMS Algorithm

Transversal Structure Filter

The most common implementation of the adaptive filter is the transversal structure
(tapped delay line) illustrated in Figure 6. The filter output signal y(n) is

N-l

y(n) = ~T(n)~(n) = E wi(n) x(n -i)
i=O

(1)

where ~(n)=[x(n) x(n-l) ... x(n-N+l)]T is the input vector, ~(n)=[wo(n) wl(n) ...
wN-l(n)]T is the weight vector, T denotes transpose, n is the time index, and N is the
order of filter. This example is in the form of a finite impulse response filter as well as
the convolution (inner product) of two vectors ~(n) and ~(n). The implementation of Equa­
tion (1) is illustrated using the following C program:

y[n] = 0.;
for (i = 0; i < N; i + +) [

y[n] + = wn[i]*xn[i];
[

where wn [i] denotes wi(n) and xn[i] represents x(n -i).

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 199

x(n) xln -1) xln-2)
Z-1 Z-1

Figure 6. Transversal Filter Structure

TMS320C25 Implementation

xln-N+ 1)
Z-1

The architecture of TMS320C25 [13] is optimized to implement the FIR fIlter. After
execution of the CNFP (Configure Block BO as Program Memory) instruction, the fIlter
coefficients wj(n) from RAM block BO (via program bus) and data x(n-i) from RAM
block Bl (via data bus) are available simultaneously for the parallel multiplier (see Figure 7).

PFC
Weights Data Buffer

80 B1 ARn

Program
• Data Bus

Bus T(16)

•
MULTIPLER

P(32)

•
ACC(32)

Figure 7. TMS32OC25 Arithmetic Unit (aftllr execute CNFP instruction)

200 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

The MACD instruction enables complete multiply/accumulate, data move, and pointer
update operations to be completed in a single instruction cycle (80 ns) if fIlter coefficients
are stored in on-chip RAM or ROM or in off-chip program memory with zero wait states.
Since the adaptive weights wj(n) need to be updated in every iteration, the fIlter coeffi­
cients must be stored in RAM. The implementation of the inner product in Equation (1)
can be made even more efficient with a repeat instruction, RPTK. An N-weight transver­
sal fIlter can be implemented as follows [23]:

LARP
. LRLK

RPTK
MACD

ARn
ARn,LASTAP
N-l
COEFFP,*- (A)

Where ARn is an auxiliary address register that points to x(n - N + 1), and the Prefetch
Counter (PFC) points to the last weight wN -1 (n) indicated by COEFFP. When the MACD
instruction is repeated, the coefficient address is transferred to the PFC and is incremented
by_ one during its operation. Therefore, the components of weight vector 'y!::(n) are stored
in BO as

Low Address

PFC ----

••••

w1(n)

HIgh Address

The MACD in repeat mode will also copy data pointed to by ARn, to the next higher
on-chip RAM location. The buffer memories of transversal fIlter are therefore stored as

Low Address

x(n)

x(n-1)

....
x(n-N+2)

ARn ____ x(n-N+1)

HIgh Address

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 201

In general, roundoff noise occurs after each multiplication. However, the
TMS320C25 has a 16 x 16-bit multiplier and a 32~bit accumulator, so there is no roundoff
during the summing of a set of product terms in Program (A). All multiplication products
are represented in full precision, and rounding is performed after they are summed. Thus
y(n) is obtained from the accumulator with only one roundoff, which minimizes the round­
off noise in the output y(n). Since both the tapped delay line and the adaptive weights
are stored in data RAM to achieve the fastest throughput, the highest transversal filter
order for efficient implementation on the TMS320C25 is 256. However, if necessary,
higher order filters can be implemented by using external data RAM.

TMS320C30 Implementation

The architecture ofTMS320C30 [14] is quite different from TI's second generation
processors. Instead of using program/data memory, it provides two data address buses
to do the data memory manipulations. This feature allows two .data memory addresses
to be generated at the same time. Hence, parallel data store, load, or one data store with
one data load can be done simultaneously. Such capabilities make the programming much
easier and more flexible. Since the hardware multiplier and arithmetic logic unit (ALU)
of TMS320C30 are separated, with proper operand arrangement, the processor can do
one multiplication and one addition or subtraction at the same time. With these two com­
bined features, the TMS320C30 can execute several other parallel instructions. These
parallel instructions can be found in Section 11 of the Third-Generation TMS320 User's
Guide [14]. Associating with single repeat instruction RPTS, an inner product in Equa­
tion (1) can be implemented as follows:

MPYF3
RPTS
MPYF3

II ADDF3
ADDF3

*ARO+ +(1)%,*ARl+ +(1)%,Rl
N-2
*ARO+ +(1)%, *ARI + +(I)%,Rl
Rl,R2,R2
Rl,R2,R2

; w[O].x[O]
; Repeat N -1 times
; y[] = w[].x[]

; Include last product

where auxiliary registers ARO and ARI point to x and w arrays. The addition in the parallel
instruction sums the previous values of Rl and R2. Therefore, Rl is initialized with the
first product prior to the repeat instruction RPTS.

Note that the implementation above does not move the data in the x array like MACD
does in TMS320C25. For filter delay taps, the TMS320C30 uses a circular buffer method
to implement the delay line. This method reserves a certain size of memory for the buffer
and uses a pointer to indicate the beginning of the buffer. Instead of moving data to next
memory location, the pointer is updated to point to the previous memory location.
Therefore, from the new beginning of the buffer, it has the effect of the tapped delay line.
When the value of the pointer exceeds the end of the buffer, it will be circled around
to the other end of the buffer. It works just like joining two ends of the buffer together
as a necklace. Thus, new data is within the circular queue, pointed to by ARO, replacing

202 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

the oldest value. However, from an adaptive filter point of view, data doesn't have to
be moved at this point yet.

TMS320C30 has a 32-bit floating point multiplier and the result from the multiplier is
put and accumulated into a 40-bit extended precision register. If the input from AID con­
verter is equal to or less than 16 bits, there is no roundoff noise after multiplication.
Theoretically, the TMS320C30 can implement a very high order of adaptive filter.
However, for the most efficient implementation, the limitation of filter order is 2K because
the TMS320C30 external data write requires at least two cycles. If the filter coefficients
are put in somewhere other than internal data RAM, the instruction cycles will be increased.

LMS Adaptation Algorithm

The adaptation algorithm uses the error signal

e(n) = den) -yen), (2)

where den) is the desired signal and yen) is the filter output. The input vector ~(n) and
e(n) are used to update the adaptive filter coefficients according to a criterion that is to
be minimized. The criterion employed in this section is the mean-square error (MSE)E:

E = E[e2(n)] (3)

where E [.] denotes the expectation operator. Ify(n) from Equation (1) is substituted into
Equation (2), then Equation (3) can be expressed as

E = E[d2(n)] + ~T(n)R~(n) - 2 ~T(n)£ (4)

where R = E[x(n)x T(n)] is the N x N autocorrelation matrix, which indicates the sample­
to-sample correlation within a signal, and ~ = E [den) ~(n)] is the N x 1 cross-correlation
vector, which indicates the correlation between the desired signal d(n)and the input signal
vector ~(n).

The optimum solution w* = [wo* Wl* ... WN-l*]T, which minimizes MSE, is de­
rived by solving the equation

OE
----= 0

o~(n)

This leads to the normal equation

R w* = £

Implementation of Adaptive Filter.s with the TMS320C25 or the TMS320C30

(5)

~6)

203

If the R matrix has full rank (i.e., R-1 exists), the optimum weights are obtained by

~* = R-1 ~ (7)

In Linear Predictive Coding (LPC) of a speech signal, the input speech is divided
into short segments, the quantities of Rand .Q are estimated, and the optimal weights cor­
responding to each segment are computed. This procedure is called a block-by-block data­
adaptive algorithm [24].

A widely used LMS algorithm is an alternative algorithm that adapts the weights
on a sample-by-sample basis. Since.this method can avoid the complicated computation
of R -1 and .Q, this algorithm is a practical method for finding close approximate solutions
to Equation (7) in real time. The LMS algorithm is the steepest descent method in which
the next weight vector w(n + 1) is increased by a change proportional to the negative gra­
dient of mean-square-error performance surface in Equation (7)

~(n+ 1) = ~(n) - u'V (n) (8)

where u is the adaptation step size that controls the stability and the convergence rate.
For the LMS algorithm, the gradient at the nth iteration, 'V (n), is estimated by assuming
squared error e2(n) as an estimate of the MSE in Equation (3). Thus, the expression for
the gradient estimate can be simplified to

o[e2(n)]

o~(n)
- 2 e(n) ~(n) (9)

Substitution of this instantaneous gradient estimate into Equation (8) yields the
Widrow-Hoff LMS algorithm

, ~(n + 1) = ~(n) + 2 u e(n) ~(n) (10)

where 2 u in Equation (10) is usually replaced by u in practical implementation.

Starting with an arbitrary initial weight vector ~(O), the weight vector ~(n) will
converge to its optimal solution ~*, provided u is selected such that [1]

204

1
0< u< ---­

Amax
(11)

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

where Amax is the largest eigenvalue of the matrix R. Amax can be bounded by

N-l
Arnax < Tr [R] = E r (0) = N r(O)

i=O
(12)

. where Tr [.] denotes the trace of a matrix and r(O) = E [x2(n)] is average input power.

For adaptive signal processing applications, the most important practical considera­
tion is the speed of convergence, which determines the ability of the filter to track nonsta­
tionary signals. Generally speaking, weight vector convergence is attained only when the
slowest weight has converged. The time constant of the slowest mode is [1]

1
t =----

UAmin
(13)

This indicates that the time constant for weight convergence is inversely propor­
tional to u and also depends on the eigenvalues of the autocorrelation matrix of the input.
With the disparate eigenvalues, i.e., Amax> > Amin, the setting time is limited by the
slowest mode, Amin. Figure 8 shows the relaxation of the mean square error from its in­
itial value EO toward the optimal value Emin.

Adaptation based on a gradient estimate results in noise in the weight vector, therefore
a loss in performance. This noise in the adaptive process causes the steady state weight
vector to vary randomly about the optimum weight vector. The accuracy of weight vector
in steady state is measured by excess mean square error (excess'MSE = E [E - Emin])'
The excess MSE in the LMS algorithm [1] is

excess MSE = u Tr[R] Emin (14)

where Emin is minimum MSE in the steady state.

Equations (13) and (14) yield the basic trade-off of the LMS algorithm: to obtain
high accuracy (low excess MSE) in the steady state, a small value of u is required, but
this will slow down the convergence rate. Further discussions of the charac1;eristics and
properties of the LMS algorithm are presented in [1,3 through 9]. The implementations
of LMS algorithm with the TMS32OC25 and TMS320C30 are presented next.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 205

X 10- 3 Initial Wo = 0.2. w, - 1.0

30.00

22.50

15.00

7.50

.00 I I I

64.75 128.50 192.25 256.00

Iteration

Figure 8. Learning Curve of an Adaptive Transversal Filter and an LMS
Algorithm with Different Step Sizes

206 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

Since u*e(n) is constant for N weights update, the error signal e(n) is first multiplied
by u to get ue(n). This constant can be computed first and then multiplied by x(n) to up­
date w(n). An implementation method of the LMS algorithm in Equation (10) is illustrated
as

ue(n) = u*e[n];
for (i=O; i<N; i++) [

wn[i] + = uen * xn[i];

TMS320C25 Implementation

The TMS320C25 provides two powerful instructions (ZALR and MPY A) to per­
form the update example in Equation (10).

• ZALR loads a data memory value into the high-order half of the ac­
cumulator while rounding the value by setting bit 15 of the accumulator
to one and setting bits 0-14 of the accumulator to zero. The rounding is
necessary because it can reduce the roundoff noise from multiplication.

• MPY A accumulates the previous product in the P register and multiplies
the operand with the data in T register.

Assuming that ue(n) is stored in T and the address pointer is pointing to AR3, the
adaptation of each weight is shown in the following instruction sequence:

LRLK ARl,N -1
LRLK AR2,COEFFD
LRLK AR3,LAST AP+ 1

MPY *-,AR2
. ADAP ZALR * ,AR3

MPYA *-,AR2
SACH *+,O,ARI
BANZ ADAP,*-,AR2

; Initialize loop counter
; Point to wN -1 (n)
; Point to x(n - N + 1), since MACD in (A)
; Already moved elements of current
; x(n) to the next higher location
; P=ue(n) * x(n-N+l)
; Load wj(n) and round
; ACC=P+wj(n) and P=ue(n) * x(n-i)
; Store wj(n+ 1)
; Test loop counter, if counter not
; Equal to 0, decrement counter,
; Branch to ADAP and select AR2 as
; Next pointer.

For each iteration, N instruction cycles are needed to perform Equation (1), 6N in­
struction cycles are needed to perform weight updates in Equation (10), and the total number
of instruction cycles needed is 7N + 28. An example of a TMS32OC25 program implement­
ing a LMS transversal fIlter is presented in Appendix AI. Note that BANZ needs three
instruction cycles to execute. This can be avoided by using straight line code, which re­
quires 4N + 33 instruction cycles [25].

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 207

TMS320C30 Implementation

Although the TMS32OC30 doesn't provide any specific instruction for adaptive filter
coefficients up<iate, it still can achieve the weight updating in two instructions because
of its powerful architecture. The TMS320C30 has a repeat block instruction RPTB, which
allows a block of instructions to be repeated a number ·of times without any penalty for
looping. A single repeat mode, RM, in the status register, ST, and three registers - repeat
start address (RS), repeat end address (RE), and repeat counter (RC) - control the block
repeat. When RM is set, the PC repeats the instructions between RS and RE a number
of times, which is determined by the value of RC. The repeat modes repeat a block of
code at least once in a typical operation. The repeat counter should be loaded with one
less than the desired number of repetitions. Assuming the error signal e(n) in Equation
(10) is stored in R7, the adaptation of filter coefficients is shown as follows:

MPYF3 *ARO+ +(1)%,R7,Rl ; Rl = u*e(n)*x(n)
LDI order-3,RC ; Initialize repeat counter
RPTB LMS ; Do i = 0, N-3
MPYF3 *ARO+ +(1)%,R7,Rl ; Compute u*e(n)*x(n -i -1)

IIADDF3 *ARl,Rl,R2 ; Compute wi(n) + u*e(n)*x(n -i)
LMS STF R2, *ARI + +(1)% ; Store wi(n+l)

MPYF3 *ARO,R7,Rl ; For i = N-2
IIADDF3 *ARl,RI,R2

STF R2, *ARI + +(1)% ; Store wN-2(n+l)
ADDF3 *ARl,Rl,R2 ; Include last w
STF R2, *ARI + +(1)% ; Store wN-l(n+l)

where auxiliary register ARO and ARI point to x and w arrays. Rl is updated before loop
since the accumulation in the parallel instruction uses the previous value in Rl. In order
to update x array pointer to the new beginning of the data buffer for next iteration (i.e.,
perform the data move), one of the loop instruction set has been taken out of loop and
modified by eliminating the incrementation of ARO.

To perform an N -weight adaptive LMS transversal filter on TMS320C30 requires
3N + 15 instruction cycles. There are N and 2N instruction cycles to perform Equations
(1) and (10), respectively. The TMS32OC30 example program is given in Appendix A2.

The LMS algorithm considerably reduces the computational requirements by using
a simplified mean square error estimator (an estimate of the gradient). This algorithm has
proved useful and effective in many applications. However, it has several limitations in
performance such as the slow initial convergence, the undesirable dependence of its con­
vergence rate on input signal statistics, and an excess mean square error still in existence
after convergence.

208 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

Symmetric Transversal Structure [5]

A transversal filter with symmetric impulse response (weight values) about the center
weight has a linear phase response. In applications such as speech processing, linear phase
filters are preferred since they avoid phase distortion by causing all the components in
the filter input to be delayed by the same amount. The adaptive symmetric transversal
structure is shown in Figure 9.

xln)-.......... Z-1
Z-1 ______ _

Z-1

___ --- z-1

I-------<~ yIn)

Figure 9. Symmetric Transversal Structure (even order)

This filter is actually an FIR filter with an impulse response that is symmetric about
the center tap. The output of the filter is obtained as

NI2-1

y(n) E Wj(n) [x(n-i) + x(n-N+i+l)] (ISa)
i=O

where N is an even number. Note that, for fixed-point processors, the addition in the
brackets may introduce overflow because the input signals x(n -i) and x(n - N +i + 1) are
in the range of -1 and 1 - 2 -15. This problem can be solved by shifting x(n) to the right
one bit. The update of the weight vector is

wj(n+I) = wj(n) + ue(n)[x(n-l) + x(n-N+i+I)] (ISb)

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 209

for i=O,I, ... ,(NI2-1), which requires N/2 multiplications and N additions. Theoretical­
ly, this symmetric structure can also reduce computational complexity since such filters
require only half the multiplications of the general transversal filter. However, it is true
only for the TMS320C30 processor. When a filter is implemented on the TMS320C25,
the transversal structure is more efficient than the symmetric transversal structure due
to the pipeline multiplication and accumulation instruction MACD, which is optimized
to implement convolution in Equation (1).

TMS320C25 Implementation

For TMS320C25, in order to implement the instructions MAC, ZALR, and MPY A,
we can trade memory requirements for computation saving by defining

SYM

z(n-i) = x(n-i) + x(n-N+i+l) , i=O,I, ... ,N/2- 1

Now, Equation (15) can be expressed as

N/2-1
y(n) = E wj(n) z(n-i)

i=O

Wj(n+ 1) = wj(n) + u e(n) z(n-i) , i=O,I, ... ,N/2-1

Equation (16a) can be implemented using the TMS320C25 as

LARK
LRLK
LRLK
LRLK
LARP
LAC
ADD
SACL
BANZ

AR1, N/2-1
AR2,LAST-X
AR3,FIRST-X
AR4,FIRST-Z
AR3
*+,O,AR2
*-,O,AR4
*+,O,ARI
SYM,*-,AR3

; Counter = N/2 -1

; Point to x(n-N+l)
; Point to x(n)
; Point to z(n)

(16a)

(16b)

(16c)

The instruction sequence to implement the LMS algorithm in Equations (1) and(lO)
can be used to implement Equations (16b) and (16c), except using MAC instead ofMACD
in Program (A). Therefore, N instruction cycles are needed to shift data in x(n), 3N in­
struction cycles are needed to implement Equation (16a), N/2 for Equation (16b), and
3N for Equation (16c). The total number of instruction cycles required to implement the
symmetric transversal filter with the LMS algorithm is 7 .5N + 38. Where 7.5N is an in­
teger because N is chosen as an even number. The O.5N instruction cycles come from
Equation (15a) since symmetric transversal structure folds the filter taps into half of the
order N (see Figure 9). The maximum filter length for most efficient code, 256, is the

210 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

same as for the FIR filter. The use of the additional data memory can be obtained from
the reduced data memory requirement for weights of the symmetric transversal filter. The
complete TMS320C2S program is given in Appendix Bl.

Note that instead of storing buffer locations x(n) contiguously, then using DMOV
to shift data in the buffer memory (requiring N cycles) at the end of each iteration, we
can use a circular buffer with pointers pointing to x(n) and x(n - N + 1). Since pointer up­
dating requires several instruction cycles, compared with N cycles using DMOV to up­
date the buffer memory contents, the circular buffer technique is more efficient ifN is large.

TMS320C30 Implementation

As mentioned above, the TMS320C30 uses a circular buffer instead of data move
technique. Therefore, it does not have to implement tapped delay line separately as
TMS320C2S. Equations (I) and (16a) can be combined and implemented in the same loop.
The advantage of this is that a parallel instruction reduces the number of the instruction
cycles. The implementation is shown as follows:

LDF
LDI
RPTB
ADDF3
MPYF3

II STF
INNER ADDF3

ADDF3
MPYF3

II STF
ADDF3

0.0,R2 ; Clear R2
order/2-2,RC ; Set up loop counter
INNER ; Do i = 0, N/2 -2

*AR4++(1)%,*ARS--(I)%,Rl; z(i) = x(n-i) + x(n+N-i)
Rl,*ARI+ +(I),R3 ; R3 = w[] * z[]
Rl, *AR2+ +(1) ; Store z(i)
R3,R2,R2 ; Accumulate the result for y

*AR4++(I)%,*ARS--(1)%,Rl; For i = NI2 -1

Rl, *ARl- -(IRO),R3
Rl, *AR2- -(IRO)
R3,R2,R2 ; Include last product

where AR4 and ARS point to x[O] and x[N-l]. ARI and AR2 point to wand z array,
respectively. IRO contains value of N/2 -1. The same instruction codes of weight update
of transversal filter can be used in symmetric transversal structure by changing the x ar­
ray pointer to the z array pointer. Appendix B2 presents an example program. The total
number of instructions needed is 2.SN + IS, which is less than that of the transversal
structure.

Lattice Structure [6]

An alternative FIR filter realization is the lattice structure [26]. A discussion of the
transversal filter with the LMS algorithm shows that the convergence rate of the transver­
sal structure is restricted by the correlation of signal components; i.e., the eigenvalue spread,
Amaxl Amin. The lattice structure is a decorrelating transform based on a family ofpredic­
tion error filters as illustrated in Figure 10. The recursive equations that describe the lat­
tice predictor are

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 211

fo(n) = bo(n) = x(n) (17a)

(17b)

(17c)

where fm(n) represents the forward prediction error, bm(n) represents the backward predic­
tion error, km(n) is the reflection coefficients, m is the stage index, and M is the number
of cascaded stages. The lattice structure has the advantage of being order-recursive. This
property allows adding or deleting of stages from the lattice without affecting the existing
stages.

xln)
Stage

1

Stage

2

Stage m

.---------------,
I
I

fm-1 In) -i------.,--___t ...

Z-1

Figure 10. Lattice Structure

r--~-., fm(n)

Stage

m

----.... bmln)

To implement the lattice filter for processing actual data, the reflection coefficients
km(n) are required. These coefficients can be computed according to estimates of the
autocorrelation coefficients using Durbin's algorithm. However, it would be more effi­
cient if these reflection coefficients could be estimated directly from the data and updated
on a sample-by-sample basis, such as LMS algorithm [6]. The reflection coefficient
km(n + 1) can be recursively computed [7]:

212 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

For applications such as noise cancellation, channel equalization, line enhancement,
etc., the joint-process estimation [3] illustrated in Figure 11 is required. This device per­
forms two optimum estimations: the lattice predictor and the multiple regression filter.
The following equations define the implementation of the regression filter

eo(n) = den) - bo(n)go(n) (19a)

(19b)

O<=m<=M (20)

where the LMS algorithm is used to update the coefficients of the regression filter. For
noise cancellation application, em(n) corresponds to the output e(n) in Figure 5. For ap­
plications such as adaptive line enhancer and channel equalizer, filter output yen) is ob­
tained as

M

yen) E gm(n) bm(n) (21)
m=O

fo(n) f,(n) fm(n)

Stage Stage Stage
xln)

boln) 1 b,ln) 2 m bm(n)

: 9,(n)
dIn))-1--'----- -----fIIIf

yIn)

Figure 11. Lattice Structure with Joint Process Estimation

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 213

TMS320C2SITMS32OC30 Implementation

There are five memory locations-fm(n), bm(n) , bm(n-l), km(n) , and gm(n)­
required for each stage. The limitation of on-chip data RAM is 544 words for the
TMS320C25 and 2K words for the TMS320C30. A maximum of 102 stages can therefore
be implemented on a single TMS320C25 for the highest throughput. Here, another ad­
. vantage of TMS32OC30 architecture design is shown. Since the operands of the mathematic
operations can be either memory or register on the TMS320C30, and there is no need
·to preserve the values of fm array for the next iteration (refer to Equations (17) and (18»,
the fm array can be replaced by an extended precision register. Thus, for the most effi­
cient codes, the stage limitation of lattice structure for TMS320C30 is 512, or one-fourth
of the 2K on-chip RAM.

Lattice structures have superior convergence properties relative to transversal struc­
tures and good stability properties; e.g., low sensitivity to coefficient quantization, low
roundoff noise, and the ability to check stability by inspection. The disadvantages of lat­
tice filter algorithms are that they are numerically complex and require mathematical
sophistication to thoroughly understand their derivations. Furthermore, as shown in Ap­
pendixes Cl and C2, lattice structures cannot take advantage of the TMS320C25 and
TMS320C30's pipeline architecture to achieve high throughput. The total number of in­
struction cycles needed is 33M +32 for TMS320C25 and 14M +4 for TMS320C30.

Modified LMS Algorithms [5]

The LMS algorithm described in previous sections is the most widely used algorithm
in practical applications today. In this section, a set of LMS-type algorithms (all direct
variants of the LMS algorithm) are presented and implemented. The motivation for each
is some practical consideration, such as faster convergence, simplicity in implementation,
or robustness in operation. The description of these algorithms is based on the transversal
str:ucture. However, these algorithms can be applied to the symmetric transversal struc­
ture and the lattice structure as well.

Normalized LMS Algorithm

The stability, convergence time, and fluctuation of the adaptation process is governed
by the step size u and the input power to the adaptive filter. In some practical applica­
tions, you may need an automatic gain control (AGC) on the input to the adaptive filter.
The normalized LMS algorithm is one important technique used to improve the speed of
convergence. This is accomplished while maintaining the steady-state performance indepen­
dent of the input signal power. This algorithm uses a variable convergence factor u(n),
which represents a u that is a function of the time index,

u(n) = a I var(n) (22)

214 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

and

~(n + 1) = ~(n) + u(n)e(n)~(n) (23)

where a is a convergence parameter, and var(n) is an estimate of the input average power
at time n using the recursive equation

var(n) =(1 - b) var(n -1) + b x2 (n) (24)

where 0 < b < < 1 is a smoothing parameter. In practice, a is chosen equal to b.

For fixed-point processors, there is a way to reduce the computation of power estima­
tion. Since b in Equation (24) doesn't have to be an exact number, it is computationally
convenient to make b a power of2. If b = 2-m, the multiplication of b can be implemented
by shifting right m bits. Therefore, the var(n) in Equation (24) is computed by

var(n) = var(n-I) - b var(n-I) + b x2(n)
= var(n-I) - var(n-I) * 2-m + x2(n) * 2-m

Then, assuming the variance var(n) of input signal is stored in the data memory
V AR and its initial value is 0.99997 (= 1- 2 -15), The implementation of this equation
using TMS320C25 assembly code is

LARP
LRLK
SQRA
SPH
ZALH
SUB
ADD
SACH

AR3
AR3,FRSTAP

*
ERRF
VAR
VAR,SHIFT
ERRF , SHIFT
VAR

; Point to input signal x
; Square input signal

; ACC = var(n-I)
; ACC = (I-b) var(n -1)
; ACC = (I-b) var(n -1) + b x2(n)
; Store var(n)

The normalized LMS algorithm can be implemented as

var = bi * var + b * xn[O] * xn[O];
unen = ern] * a / var;
for (i = 0; i< N; i++)
wn[i] + = unen * xn[i];

where bi = (I-b), xn[O] = x(n), and unen = u(n)*e(n). This normalized technique
reduces the dependency of convergence speed on input signal power at the cost of in­
creased computational complexity, especially the division in Equation (22). The algorithms
of implementing the fixed-point and floating-point division on the TMS320C25 and

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 215

TMS320C30 can be found in the user's guide for each device [13, 14]. Since the power
of input signal is always positive, those codes can be simplified to save computation time.

Since the power estimation in Equation (24) and step size normalization in Equation (22)
are performed once for each sample x(n), the computation increase can be ignored when
N is large. As shown in Appendixes Dl and D2, the total number of instruction cycles
needed for the normalized LMS algorithm (7N +57 for the TMS320C25 and 3N +47 for
the TMS32OC30) is slightly higher than for the LMS algorithm (7N + 34 and 3N + 15)
when N is large.

Sign LMS Algorithms

The LMS algorithm requires 2N multiplications and additions for each iteration;
this amount is much lower than the requirements for many other complicated adaptive
algorithms, such as Kalman and Recursive Least Square (RLS) [3]. However, there are
three simplified versions of the LMS algorithm (sign-error LMS, sign-data LMS, and sign­
sign LMS) that save the number of multiplications required and extend the real-time band­
width for some applications [5, 27].

First, the sign-error LMS algorithm can be expressed as

~(n + 1) = ~(n) + u sign[e(n)] ~(n)

where sign[e(n)] 1 , if e(n) ;;::: 0
- 1 , if e(n) < 0

The C program implementation of sign-error LMS algorithm is

tu = u;
if (e[n] < 0.) (

tu = -u;)
for (i=O; i<N; i++) (

wn[i] + = tu * xn[i];

(25)

As shown in Appendixes El and E2, the instruction sequence to implement weight
update with the sign-error LMS algorithm is identical to that with the LMS algorithm.
The difference is that the sign-error LMS algorithm uses the sign [e(n)]*u instead of e(n)*u
before the update loop. Note that, for fixed-point processors, ifu is chosen to be a power
of two, the u x(n) can be accomplished by shifting right the elements in x(n). This algorithm
keeps the same convergence direction as the LMS algorithm. Thus, the sign-error LMS
algorithm should remain efficient, provided the variable gain u(n) is matched to this change.
However, the use of constant step size u to reduce computation comes at the expense of
a slow convergence rate since smaller u is normally used for stability reasons.

216 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

The programs in Appendixes El and E2 implement a transversal filter with sign­
error LMS algorithm in looped code. The total number of instruction cycles needed for
this algorithm using the TMS320C25 is 7N +26, which is slightly less than for the LMS
algorithm's 7N +28. Computing u*e(n) takes 5 instruction cycles. The sign-error LMS
algorithm determines the sign of the u by checking the sign of e(n), which takes only 3
instruction cycles. The total number of instruction cycles needed for the sign-error LMS
algorithm using the TMS320C30 is 3N + 16, which is slightly higher than for the LMS
algorithm. This occurs because the TMS320C30 takes only one instruction cycle to com­
pute u*e(n) and two instruction cycles to determine the sign of the u.

Secondly, the sign-data LMS algorithm is

~(n + 1) = ~(n) + u e(n) sign[~ (n)]

This equation can be implemented as

wj(n+ 1) = wj(n) + ue(n) , if x(n-i) > = 0
= wj(n) - ue(n) , if x(n-i) <0

(26)

for i = 0, 1 , ... ,N - 1. Since the sign determination is required inside the adaptation loop
to determine the sign of x(n - i), slower throughput is expected. The total number of in­
struction cycles needed is lIN +26 for the TMS320C25 and 5N + 16 for the TMS320C30.

Finally, the sign-sign LMS algorithm is

~(n+ 1) "= ~(n) + u sign[e(n)] sign[~(n)] (27)

which requires no multiplications at all and is used in the CCITT standard for ADPCM
transmission. As we can see from the above equations, the number of mUltiplications is .
reduced. This simplified LMS algorithm looks promising and is designed for VLSI or
discrete IC implementation to save multiplications.

The sign-sign LMS algorithm can be implemented as

for (i=0; i<N; H+) [
if (e[n] > = 0.) [

if (xn[i] >= 0.)
wn[i] + = u;

else
wn[i] - = u; J

else [
if (xn[i] > = 0.)

wn[i]-= u;

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 217

else
wn[i] + = u; J J

When this algorithm is implemented on TMS320C25 and TMS320C30 with pipeline
architecture and a parallel multiplier, the performance of sign-sign LMS algorithm is poor
compared to standard LMS algorithm due to the determination of sign of data, which can
break the instruction pipeline and can severely reduce the execution speed of the processors.

In order to avoid double branches inside the loop, the XOR instruction is utilized
to check the sign bit of e(n) and x(n -i). The sign-sign LMS algorithm can be implemented
as

wi(n + 1) = wi(n) + u , if sign[e(n)] = sign[x(n -i)]
= wi(n) - u , otherwise

The following TMS320C25 instruction sequence implements this algorithm without
branching (assuming that the current address register used is AR3):

LRLK ARl,N-l ; Set up counter
LRLK AR2,COEFFD ; Point to wi(n)
LRLK AR3,LASTAP+l ; Point to x(n-i)

ADAP LAC *-,O,AR2 ; Load x(n-i)
XOR ERR ; XOR with e(n)
SACL ERRF ; Save sign bit, sign = 0 if same signs

; Sign = 1 if different signs
LAC ERRF ; Sign extension to ACCH,

; ACCH = 0 If ERRF > = 0
; ACCH = OFFFFh if ERRF < 0

XORK MU,15 ; Take one's complement of m
; If sign = 1

ADD *,15 ; Weight update
SACH *+,l,AR1 ; Save new weight
BANZ ADAP,*-,AR3

The one's complement of u is used instead of -u, because they are only slightly
different and the step size does not require the exact number. The weight update with
this technique requires lON instruction cycles and FIR filtering requires Ninstruction cycles
so that the total number of instruction cycles needed is lIN + 21. The complete TMS32OC25
assembly program is given in Appendix Fl.

To determine whether a positive or negative u should be used without branching
is trickier in the TMS320C30. Fortunately, the extended precision registers ofTMS320C30
interpret the 32 most-significant bits of the 40-bit data as the floating-point number and
the 32 least -significant bits of the 40-bit data as an integer. When a floating-point number

218 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

changes its sign, its exponent remains the same. Therefore, the sign of step size u can
be determined by using XOR logic on its mantissa. The following code shows how the
sign-sign LMS algorithm is implemented on the TMS320C30.

ASH -31,R7 ; R7 = Sign[e(n)]
XOR3 RO,R7,R5 ; R5 = Sign[e(n)] * u
LDF *ARO+ +(1)%,R6 ; R6 = x(n)
ASH -31,R6 ; R6 = Sign[x(n -i)]
XOR3 R5,R6,R4 ; R4 = Sign[x(n -i)]*Sign[e(n)] * u
ADDF3 *AR1,R4,R3 ; R3 = wi(n) + R4

LDI order-3,RC ; Initialize repeat counter
RPTB SSLMS ; Do i = 0, N-3
LDF *ARO+ +(1)%,R6 ; Get next data

I I STF R3, *AR1 + +(1)% ; Update wi(n+ 1)
ASH -31,R6 ; Get the sign of data
XOR3 R5,R6,R4 ; Decide the sign of u

SSLMS ADDF3 *ARl,R4,R3 ; R3 = wi(n) + R4

LDF *ARO,R6 ; Get last data

I I STF R3,*AR1++(1)% ; Update WN -2(n + 1)
ASH -31,R6 ; Get the sign of data
XOR3 R5,R6,R4 ; Decide the sign of u
ADDF3 *AR1,R4,R3 ; Compute wN -1 (n + 1)
STF R3, *AR1 + +(1)% ; Store last wen + 1)

Here, RO, R4, and R5 contain the value of u before updating. ARO and ARl point
to x array and w array, respectively. R7 contains the value of error signal e(n). The com­
plete program is given in Appendix F2. The total number of instruction cycles is 5N + 16,
which is much higher than LMS algorithm.

The sign-sign LMS algorithm is developed to reduce the multiplication requirement
of the LMS algorithm. Since DSPs provide the hardware multiplier as a standard feature,
this modification does not provide any advantage when implementing this algorithm on
the DSPs. On the contrary, it causes some disadvantages since decision instructions will
destroy the instruction pipeline. If you use the XOR logic operation in order to avoid us­
ing the decision instructions, the complexity of the program will be increased and the total
number of instruction cycles will be greater than the regular LMS algorithm.

Leaky LMS Algorithm

When adaptive ftlters are implemented on signal processors with fixed word lengths,
roundoff noise is fed back to adaptive weights and accumulates in time without bound.
This leads to an overflow that is unacceptable for real-time applications. One solution is

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 219

based upon adding a small forcing function, which tends to bias each filter weight toward
zero. The leaky LMS algorithm has the form

~(n + 1) = r ~(n) + u e(n) ~(n) (28a)

where r is slightly less than 1.

Since r can be expressed as 1 - c and c < < 1, the TMS320C25 can take advantage
of the built-in shifters to implement this algorithm. Therefore, Equation (28a) can be
changed to

~(n + 1) = ~(n) - c ~(n) + u e(n) ~(n) (28b)

In order to achieve the highest throughput by using ZALR and MPY A, cw(n) can
be implemented by shifting wj(n) right by m bits where 2-m is close to c. Since the length
of the accumulator is 32 bits and the high word (bits 16 to 31) is used for updating w(n),
shifting right m bits of wj(n) can be implemented by loading wj(n) and shifting left
16 - m bits. The sequence of TMS320C25 instructions to implement Equation (28b) is
shown as

LRLK
LRLK
LRLK
LT
MPY

ADAPT ZALR
MPYA
SUB
SACH
BANZ

ARl,N-l
AR2,COEFFD
AR3,LASTAP+ 1
ERRF
*-,AR2
*,AR3
*-,AR2
*,LEAKY
*+,O,ARI
ADAPT,*-,AR2

; Set up counter
; Point to wj(n)
; Point to x(n - i)
; T = ERRF =u*e(n)

; LEAKY=16-m

For each iteration, 7N instruction cycles are needed to perform the adaptation pro­
cess (6N for the LMS algorithm). The total number of instruction cycles needed is 8N +28
(see Appendix Gl for the complete program). The leaky factor r has the same effect as
adding a white noise to the input. This technique not only can solve adaptive weights
overflow problem, but also can be beneficial in an insufficient spectral excitation and stalling
situation [5].

The method used above is especially for the TMS320C25, which has a free shift
feature. Since TMS320C30 is a floating-point processor, r can simply multiply to filter
coefficient. However, in order to reduce the instruction cycles, this mUltiplication can
combine with another instruction to be a parallel instruction inside the loop. The follow­
ing code shows how to rearrange the instructions from the LMS algorithm to include this
multiplication without an extra instruction cycle.

220 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

MPYF @u_r,R7 ; R7 = e(n)*u/r
MPYF3 *ARO+ +(I)%,R7,Rl ; Rl = e(n)*u*x(n)/r
MPYF3 *ARO+ +(1)%,R7,Rl ; Rl = e(n)*u*x(n-l)/r

II ADDF3 *ARl,Rl,R2 ; R2 = wa(n) + e(n)*u*x(n)/r
LDI order-4,RC ; Initialize repeat counter
RPTB LLMS ; do i = 0, N-4
MPYF3 *AR2,R2,RO ; RO = r*wj(n) + e(n)*u*x(n-i)

II ADDF3 *+ARl(I),Rl,R2 ; R2 = Wj+l(n) + e(n)*u*x(nz-i-l)/r
LLMS MPYF3 *ARO++(1)%,R7,Rl ; Rl= e(n)*u*x(n-i-2)/r

II STF RO, *ARI + +(1)% ; Store wj(n + 1)

MPYF3 *AR2,R2,RO ; RO = r*wN-3(n) + e(n)*u*x(n-N+3)
II ADDF3 * + ARl(I),Rl,R2 ; R2 = wN-2(n) + e(n)*u*x(n-N+2)/r

MPYF3 *ARO,R7,Rl ; Rl = e(n)*u*x(n - N + 1)/r
II STF RO,*ARl++(I)% ; Store wN-3(n+l)

MPYF3 *AR2,R2,RO ; RO = r*wj(n) + e(n)*u*x(n-N+2)
II ADDF3 *+ARl(1),Rl,R2 ; R2 = wN-l(n) +

* e(n)*u*x(n - N + 1)/r
MPYF3 *AR2,R2,RO ; RO = r*wj(n) + e(n)*u*x(n - N + 1)

II STF RO,*ARI + +(1)% ; Store wN-2(n+l)
STF RO,*ARI + +(1)% ; Update last W

Auxiliary registers ARO and ARI point to x and W arrays. AR2 points to the memory
location that contains value r. R7 contains the value of error signal e(n). Rl and R2 are
updated before the loop because the parallel instructions inside the loop use the previous
values in Rl and R2. Note that Rl is updated twice before the loop because the updating
of R2 requires the previous value of Rl. In order to update x array pointer to the new
beginning of the data buffer for next iteration, two of the loop instruction sets have been
taken out ofloop and modified by eliminating the incrementation of ARO. The TMS320C30
assembly program of an adaptive transversal fIlter with the leakage LMS algorithm is listed
in Appendix G2 as an example. The total number of instruction cycles for this algorithm
is 3N + 15, which is the same as the LMS algorithm. This example shows the power and
flexibility of the TMS320C30.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 221

Implementation Considerations

The adaptive filter structures and algorithms discussed previously were derived on
the basis of infinite precision arithmetic. When implementing these structures and algorithms
on a fixed integer machine, there is a limitation on the accuracy of these filters due to
the fact that the DSP operates with a finite number of bits. Thus, designers must pay at­
tention to the effects of finite word length. In general, these effects are input quantization,
roundoff in the arithmetic operation, dynamic range constraints, and quantization of filter
coefficients. These effects can either cause deviations from the original design criteria
or create an effective noise at the filter output. These problems have been investigated
extensively, and techniques to solve these problems have been developed [28, 29].

The effects of finite precision in adaptive filters is an active research area, and some
significant results have been reported [30 through 32]. There are three categories of finite
word length effects in adaptive filters:

• Dynamic Range Constraint (scaling to avoid overflow). Since this is not
applicable for a floating-point processor, the TMS320C30 is not mentioned
in this portion.

• Finite Precision Errors (errors introduced by roundoff in the arithmetic).

• Design Issues (design of the optimum step size u that minimizes system
noise).

Dynamic Range Constraint

As shown in Figure 1, the most widely used LMS transversal filter is specified by
the difference equations

and

N-l

y(n) E wj(n) x(n -i)
i=O

wj(n + 1) = wj(n) + u*e(n)*x(n -i), for i = 0, 1, ... , N-l

(29)

(30)

where x(n -i) is the input sequence and wj(n) are the filter coefficients.

If the input sequence and filter coefficients are properly normalized so that their
values lie between -1 and 1 using Q15 format, no error is introduced into the addition.
However, the sum of two numbers may become larger than one. This is known as overflow.
The TMS320C25 provides four features that can be applied to handle overflow manage­
ment [13]:

222 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

A. Branch on overflow conditions.
B. Overflow mode (saturation arithmetic).
C. Product register right shift.
D. Accumulator right shift.

One technique to inhibit the probability of overflow is scaling, i.e., constraining
each node within an adaptive fIlter to maintain a magnitude less than unity. In Equation
(29), the condition for Iy(n) I < 1 is

N-l

Xmax < 1 / E Iwj{n) I
i=O

(31)

where Xmax denotes the maximum of the absolute value of the input. The right shifter
of the TMS320C25, which operates with no cycle overhead, can be applied to implement
scaling to prevent overflow of multiply-accumulate operations in Equation (29). By set­
ting the PM bits of status register STl to 11 using the SPM or LSTl instructions, the
P register output is right-shifted 6 places. This allows up to 128 accumulations without
the possibility of an overflow. SFR instruction can also be used to right shift one bit of
the accumulator when it is near overflow.

Another effective technique to prevent overflow in the computation of Equation (29)
is using saturation arithmetic. As illustrated in Figure 12, if the result of an addition
overflows, the output is clamped at the maximum value. If saturation arithmetic is used,
it is common practice [28] to permit the amplitude of x(n -i) to be larger than the upper
bound given in Equation (31). Saturation of the filter represents a distortion, and the choice
of scaling on the input depends on how often such distortion is permissible. The satura­
tion arithmetic on the TMS320C25 is controlled by the OVM bit of status register STO
and can be changed by the SOVM (set overflow mode), ROVM (reset overflow mode),
or LST (load status register).

output

1-2-15

-1 : 1-2-15 --------1-------...... input

Figure 12. Saturation Arithmetic

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 223

Filter coefficients are updated using Equation (30). As illustrated in Figure 13, a
new technique presented in reference 31 uses the scaling factor a to prevent filter's coeffi­
cients overflow during the weight updating operation. Suppose you use a = 2-ffi. A right
shift by m bits implements multiplication by a, while a left shift by m bits implements
the scaling factor 1Ia. Usually, the required value of a is not expected to be very small
and depends on the application. Since a scales the desired signal, it does not affect the
rate of convergence.

dIn) --...,....----...... 8

xln)---t_ FILTER
STRUCTURE

ADAPTIVE
ALGORITHM

J----.~ eln)

1/8 yIn)

Figure 13. Fixed-Point Arithmetic Model of the Adaptive Filter

Finite Precision Errors

The TMS32OC25 is a 16/32-bit fixed point processor. Each data sample is represented
by a fractional number that uses 15 magnitude bits and one sign bit. The quantization interval

o = 2-b, (32)

(b = 15), is called the width of quantization since the numbers are quantized in steps of o.
The products of the multiplications of data by coefficients within the filter must be

rounded or truncated to store in memory or a CPU register. lAs shown in Figure 14, the
roundoff error can be modeled as the white noise injected into the filter by each rounding
operation. This white noise has a uniform distribution over a quantization interval and
for rounding

- 112 0 < e ~112 0 (33a)

224 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

and

(33b)

where oe2 is the variance of the white noise.

In general, roundoff noise occurs after each multiplication. However, the
TMS320C25 has a full precision accumulator, i.e., a 16 X 16-bit multiplier with a 32-bit
accumulator, so there is no roundoff when you implement a set of summations and
multiplications as in Equation (29). Rounding is performed when the result is stored back
to memory location y(n), so that only one noise source is presented in a given summation
node.

8

x----t [:»----t4.., E t---........... y

y = Rounding Ix • 8] = x • 8 + 8

Figure 14. Fixed-Point Roundoff Noise Model

For floating-point arithmetic, the variance of the roundoff noise [31] is slightly dif­
ferent from Equation (33b),

(33c)

Since TMS32OC30 has a 40/32-bitfloating-point multiplier and ALU, the result from
arithmetic operation has the mantissa of [31] bits plus one sign bit. Therefore,the 0 in
Equation (33c) is equal to 2-31 • Another roundoff noise is introduced when you restore
the result back to memory. This noise has the power of 2-23 because the mantissa of
TMS320C30 floating-point data is 23 bits plus one sign bit. Therefore, unless the filter
order is high, the roundoff noise from arithmetic operation is relatively small.

The steady-state output error of the LMS algorithm due to· the finite precision
arithmetic of a digital processor was analyzed in reference [31]. It was found that the power
of arithmetic errors is inversely proportional to the adaptation step size u. The significance
of this result in the adaptive filter design is discussed next. Furthermore, roundoff noise
is found to accumulate in time without bound, leading to an eventual overflow [32]. The
leaky LMS algorithm presented in the previous section can be used to prevent the algorithm
overflow.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 225

Design Issues

The performance of digital adaptive algorithms differs from infinite precision adap­
tive algorithms. The finite precision LMS algorithm is given as

~(n + 1) = ~(n) + Q[u*e(n)*~(n)] (34)

where Q [.] denotes the operation of fixed point quantization. Whenever any correction
term u*e(n)*x(n -i) in the update of the weight vector in Equation (34) is too small, the
quantized value of that term is zero, and the corresponding weight wj(n) remains unchang­
ed. The condition for the ith component of the vector w(n) not to be updated when the
algorithm is implemented with the TMS320C25 is

I u e(n) x(n-i) I <012 (35a)

where 0 = 2 -15. The condition for TMS320C30 is

I u e(n) x(n-i) I < 2exp * 0/2 (35b)

where exp is the exponent of wj(n) and 0= 2-23 .

Since the adaptive algorithms are designed to minimize the mean squared value of
the error signal, e(n) decreases with time. Ifu is small enough, most of the time the weights
are not updated. This early termination of the adaptation may not allow the weight values
to converge to the optimum set, resulting in a mean square error larger than its minimum
value. The conditions for the adaptation to converge completely [30] is u > Umin where

for the TMS320C25 and the TMS320C30

02*2exp
U2min = ---'-""""''----

4ax2Emin

(36a)

(36b)

where ax 2is the power of input signal x(n) and fmin is the minimum mean squared error
at steady state.

In the Leaky LMS Algorithm section, it was mentioned that the exce.ss MSE given
in Equation (14) is minimized by using small u. However, this may result in a large quan­
tization error since the most significant term in the total output quantization error is [31]

226 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

No 2 e

2 a2 u
(37)

The optimum step size uo reflects a compromise between these conflicting goals.
The value of uo is shown to be too small to allow the adaptive algorithm to converge com­
pletely and also to give a slow convergence. In practice, u > uo is used for faster con­
vergence. Hence, the excess MSE becomes larger, and the roundoff noise can typically
be neglected when compared with the excess mean square error.

Finally, recall Equations (11) and (12). The step size u has an upper limit to guarantee
the stability and convergence. Therefore, the adaptive algorithm requires

1
O<u<---­

No 2 x
(38)

On the other hand, the step size u also has a lower limit. The optimum uo, which
minimizes the sum of the excess MSE and roundoff noise, is smaller than Umin, i.e., too
small to allow the adaptive weight to converge. For an algorithm implemented on the
TMS320C25, the word-length of 16 bits is fixed, and the minimum step-size that can be
used is given in Equation (36). The most important design issue is to find .the best u to satisfy

1
Umin < u < ----

Nol
(39)

Therefore, in order to make the condition in Equation (39) valid, the initial values
of filter coefficients are better close to zero for the floating-point processor if the situation
in unknown.

Software Development

The TMS320C25 and TMS320C30 combine the high performance and the special
features needed in adaptive signal processing applications. The processors are supported
by a full set of software and hardware development tools. The software development tools
include an assembler, a linker, a simulator, and a C compiler. The most universal soft­
ware development tool available is a macro assembler. However, the assembly language
programming for nsp can be tedious and costly. For adaptive filter applications, an
assembly language programmer must have knowledge of adaptive signal processing. The
challenge lies in compressing a great deal of complex code into the fairly small space and
most efficient code dictated by the real-time applications typical of adaptive signal pro­
cessing.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 227

Recently, C compilers for the processors were developed to make DSP program­
ming easier, quicker, and less costly compared with the work associated with program­
ming in assembly language. Due to the general characteristics of a compiler, the code
it generates is not the most efficient. Since the program efficiency consideration is impor­
tant for adaptive filter implementation, the code generated from the C compiler has to

. be modified before implementing. Thus, two alternative ways, besides writing an assembly
program, to implement adaptive signal processing on DSP are presented. First is the
automatic adaptive filter code generator [12], which can be found on Texas Instruments
TMS320 Bulletin Board Service (BBS), and second are the adaptive filter function libraries
that support assembly and C programming languages.

In this report, two adaptive filter libraries have been developed: one can be called
from an assembly main program; the other can be called from the C main program. Note
that, for the TMS320C25 only, certain data memory locations have been reserved for storing
the ne.cessary filter coefficients, previous delayed signal, etc. In other words, these data
memories are used as global variables.

Assembly Function Libraries

The basic concept of creating an assembly subroutine for an adaptive filter is to modify
in module the assembly programs discussed above. Then, the user can implement the adap­
tive filter by writing his own assembly main program that calls the subroutine.

TMS320C25 Assembly Subroutine

The TMS320C25 has an eight-level deep hardware stack. The CALL and CALA
subroutine calls store the current contents of the program counter (PC) on the top of the
stack. The RET (return from subroutine) instruction pops the top of the stack back to the
PC. For computational convenience, the processor needs to be set as follows before call­
ing the assembly callable subroutine.

1. PM status bits equal to 01.
2. SXM status bit set to 1.
3. The current DP (data memory page pointer) is O.

The foilowing example is the TMS320C25 assembly main routine, which performs
an adaptive line enhancement by calling the LMS algorithm subroutine. The filter order
is 64, delay is equal to one, and the convergence factor u is 0.01.

* DEFINE AND REFER SYMBOLS

*
. global ORDER,U,ONE,D,Y,ERR,XN,WN,LMS

*

228 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

DEFINE SAMPLING RATE, ORDER, AND MU

*
ORDER: .equ
MU: .equ
PAGEO: .equ

*

20
327
o

; mu = 0.01 in Q15 format

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

*
XO:
XN:
WN:

*

.usect

.usect

.usect

"buffer" ,ORDER-l
"buffer" ,1
"coeffs" ,ORDER

* RESERVE ADDRESSES FOR PARAMETERS

* ONE:
U:
ERR:
Y:
D:
ERRF:

*

.usect

.usect

.usect

.usect

.usect

.usect

, 'parameters' , , 1
, 'parameters' , , 1
, 'parameters' , , 1
, 'parameters' , , 1
, 'parameters' , , 1
"parameters" , 1

* INITIALIZATION

*
START LDPK PAGEO

SPM 1
SSXM
LRLK AR7,XO
LACK 1
SACL ONE
LALK MU
SACL U

; Set DP = 0
; Set PM equal to 1
; Set sign extension mode
; AR7 point to > 300
; Initialize ONE = 1

; Initialize U ;", MU = 0.01

**
* PERFORM THE PREDICTOR
**
INPUT: IN D,PA2 ; Get the input
*

CALL LMS ; Call subroutine
*
OUTPUT: OUT Y,PA2 ; Output the signal
*

LAC D ; Insert the newest sample
LARP AR7
SACL *
B INPUT
.end

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 229

The symbols, such as ORDER, U, ONE, D, LMS, Y, and ERR, are defined and
referred to for the purpose of modular programming. The uninitialized sections specified
by the directive . usect can be placed in any location of memory according to the linker
command file. Note that MACD instruction requires the sources of the operands on pro­
gram memory and data memory separately, and CNFP instruction configures RAM block
o as program memory. Therefore, the coeffs section has to be in data RAM block 0, and
the buffer has to be in RAM block 1. Appendix HI contains the adaptive transversal filter
with LMS algorithm subroutine using the TMS320C2S, and Appendix H2 contains an
example of a linker command file.

TMS320C30 Assembly Subroutine

Instead of a hardware stack, TMS320C30 uses a software stack, which is more flex­
ible and convenient for a high-level language compiler. The stack memory location is
pointed to by the stack pointer SP. In order to maintain the proper program sequence,
the programmer must make certain that no data is lost and that the stack pointer always
points to proper location. The PUSH, PUSHF, POP, POPF, CALL, CALLcond, RETI­
cond, and RETScond instructions will change the value of the stack pointer; in addition,
writing data into it and using the interrupt will also change that value. It is the program­
mer's responsibility to initialize the stack pointer in the beginning of the program. The
same adaptive line enhancer example above using TMS320C30 is listed below. The
adapfltr .int program that initializes the stack pointer and the data RAM is given in Appen­
dix H3.

*
* DEFINE GLOBAL VARIABLES AND CONSTANTS

*

N
mu

*

. copy

. global

.set

.set

, 'adapfltr .int' '
LMS30,order ,u,d,y ,e
20
0.01

* INITIALIZE POINTERS AND ARRAYS

*
.text

begin .set $
LDI N,BK ; Set up circular buffer
LDP @xIL-addr ; Set data page
LDI @xIL-addr,ARO ; Set pointer for x[]
LDI @wIL-addr,ARI ; Set pointer for w[]
LDF O.O,RO ; RO = 0.0
RPTS N-1
STF RO,*ARO+ +(1)% ; x[] = O.

230 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

*

IlsTF
LDI
LDI

RO, *ARI + +(1)% ; w[] = O.
@iIL-addr,AR6 ; Set pointer for input ports
@out_addr,AR7 ; Set pointer for output ports

* PERFORM ADAPTIVE LINE ENHANCER

*
nput:

*

LDF
IILDF

STF
STF

*AR6,R7
*+AR6(1),R6
R7,@d
R6,*ARO

; Input d(n)
; Input x(n)
; Insert d(n)
; Insert x(n) to buffer

* CALL ASSEMBLY SUBROUTINE

*
CALL LMS30 *

*
*

OUTPUT y(n) AND e(n) SIGNALS

LDF @y,R6 ; Get y(n)
BD input ; Delay branch
LDF @e,R7 ; Get e(n)
STF R6,*AR7 ; Send out y(n)
STF R7,*+AR7(1) ; Send out e(n)

*
* DEFINE CONSTANTS
*
n .usect "buffer" ,N
wn .usect "coeffs" ,N
iIL-addr .usect "vars",1
out_addr .usect "vars",1
xIL-addr .usect "vars",1
wIL-addr .usect "vars",1
u .usect "vars" ,1
order .usect "vars",1
d .usect "vars",1
y .usect "vars",1
e .usect "vars" ,1
cinit . sect " .cinit"

. word 6,iIL-addr

.word 0804000h

. word 0804002h

. word xn

. word wn

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 231

. float mu

. word N-2

. end

In the above example, data memory order is initialized to N - 2 for computation conve­
nience. The linker command files and the subroutine that implements the LMS transver­
sal filter can be found in Appendixes H4 and H5.

C Function Libraries

The TMS32OC25 and TMS32OC30 C language compilers provide bigh-Ievellanguage
support for these processors. The compilers allow application developers without an ex­
tensive knowledge of the device's architecture and instruction set to generate assembly
code for the device. Also, since C programs are not device-specific, it is a relatively
straightforward task to port existing C programs from other systems.

To allow fast development of efficient programs for adaptive signal processing ap­
plications, C function libraries have been developed. These libraries include functions for
adaptive transversal, symmetric transversal, and lattice structures.

TMS32OC25 C-Callable Subroutines

In a C program, the memory assignments are chosen by the compiler. There are
two ways to use the most efficient instruction MACD:

A. Use inline assembly code to assign memory locations for filter coefficients and
buffers.

B. Reserve the desired memory locations for them and do the assignment in the
linker command file.

The latter method is used in this report.

For a C main program, the parameters passed to and returned from the subroutines
are all within the parentheses following the subroutine name, as shown below:

n - Filter order
mu - Convergence factor
d - Desired signal
x - Input signal
y - Address of output signal
e - Address of error signal

Since the TMS320C25 C compiler pushes the parameters from right to left into soft­
ware stack pointed by ARt, the subroutine gets the parameters in reverse order, as shown
below:

232

MAR
LAC

*­
*-

; Set pointer for getting parameters
; ACC = N

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

SUBK 1
SACL ORDER ; ORDER = N - 1
LAC *- ; Getting and storing the mu
SACL U
LAC *- ; Getting and storing the D
SACL D
LAC *-,O,A-R3 ; Insert the newest sample
LRLK AR3,FRSTAP
SACL *

The assembly subroutine returns the parameters y and e as follows:

LARP ARl
LAR AR2,*-,AR2 ; Get the address of y in main
LAC y
SACL *,O,ARl ; Store y
LAR AR2,*,AR2 ; Get the address of e in main
LAC ERR
SACL *,O,ARI ; Store e

Therefore, the parameters should be entered in the order given above. If there are
other parameters, they should be inserted right after the convergence factor mu. The leaky
LMS algorithm subroutine is given as an example.

llms(n,mu,r ,d,x,&y ,&e}

the r is defined in Equation (28a). Note that the values of the AR registers, which will
be used in subroutine, and the status registers must be saved at the beginning of the
subroutine and restored right before returning to calling routine. An example of a C-callable
program is given in Appendix 11. Memory locations 0200h to 0200h + N -1 and 0300h
to 0300h + N -1 are reserved for filter coefficients and buffers, respectively. N denotes
the filter order.

TMS320C30 C Subroutine

As previously mentioned, the TMS320C30 architecture has features designed for
a high-level language compiler. Note that the callable word is dropped in this section title
because the TMS320C30 is so flexible that the restrictions for the TMS320C25 no longer
exist. Since the memory locations of filter buffers and coefficients are determined by the
parameters that pass from the calling routine, the same subroutine can be used in different
places. However, the only restriction is that the memory locations of filter buffers must
align to the circular addressing boundary [14]. The features of TMS320C30 architecture
that make a major contribution toward these improvements are dual data address buses,
software stack, and flexible addressing mode. The parameters passed to subroutine are
pushed into the stack. Therefore, after returning from the subroutine, the stack pointer,
SP, must be updated to point to the location where SP pointed before pushing the parameters

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 233

into the stack. "However, this will be done by the C compiler. The usage example of the
C function subroutine is given as follows:

tlms(n,u,d,&w,&x,&y,&e) where n - Filter order
u - Step size
d - Desired signal
&w - Filter coefficients
&x - Input signal buffers
&y - Addr of output signal
&e - Addr of error signal

The example below shows how the C subroutine receives and manipulates the
parameters passed from the caller program and how the result is returned to the caller
routine.

*
* SET FRAME POINTER FP

*
FP

*

. set
PUSH
LDI

AR3
FP"
SP,FP

* GET FILTER PARAMETERS

*

*
*
*

LDI *-FP(2),R4 ; Get filter order
LDI "*-FP(6),ARO ; Get pointer for x(]
LDI *--FP(5),ARl ; Get pointer for w(]

COMPUTE ERROR SIGNAL e(n) AND STORE y(n) AND e(n)

LDI
SUBF3

IlsTF
LDI
STF
MPYF
POP

*-FP(2),AR2 ; Get y(n) address
R2, * + FP(1),R7 ; e(n) = d(n) - y(n)
R2, * AR2 ; Send out y(n)
*-FP(3),AR2 ; Get e(n) address
R7, * AR2 ; Send out. e(n)
* + FP(2),R7 ; R7 = e(n) * u
FP

Note that AR3 is used as the frame pointer in TMS320C30 C compiler. Appendix
12 contains the complete LMS transversal filter example subroutine program.

Development Process and Environment

Following a four stage procedure [33] to minimize the amount offuiite word length
effect analysis and real~time debugging, adaptive structures and algorithms are implemented

234 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

on the TMS320C25. Figure 15 illustrates the flowchart of this procedure. Since the im­
plementation on TMS320C30 is done only by the simulator, the last stage, real-time testing,
is not implemented.

Algorithm Analysis
and C Program
Implementation

J
.~

Re-write C Program
to Emulate

DSP Sequence

J

~
Implement in DSP

Program and Testing
by DSP Simulator

I

••
Real-Time

Testing

J

+
Figure 15. Adaptive Filter Implementation Procedure

In the first stage, algorithm design and study is performed on a personal computer.
Once the algorithm is understood, the filter is implemented using a high-level C program
with double precision coefficients and arithmetic. This filter is considered an ideal filter.

In the second stage, the C program is rewritten in a way that emulates the same
sequence of operations with the same parameters and state variables that will be implemented
in the processors. This program then serves as a detailed outline for the DSP assembly
language program or can be compiled using TMS320C25 or TMS320C30 C compiler.
The effects of numerical errors can be measured directly by means of the technique shown
in Figure 16, where H(z) is the ideal filter implemented in the first stage and H'(z) is
a real filter. Optimization is performed to minimize the quantization error and produce
stable implementation.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 235

H(z)

+
M

x(n) 10(n)12 1

ME e2 ln)

n=1

H(z)

Figure 16. A Commutational Technique for Evaluating Quantization Effects

In the third stage, the TMS320C25 and TMS320C30 assembly programs are
developed; then they are tested using the simulators with test data from a disk file. Note
that the simulation of TMS320C25 can also be implemented on the SWDS with the data
logging option. This test data is a short version of the data used in stage 2 that can be
internally generated from a program or data digitized from a real application environ­
ment. Output from the simulation is compared against the equivalent output of the C pro­
gram in the second stage. Since the simulation requires data files to be in Ql5 format,
certain precision is lost during data conversion. When a one-to-one agreement within
tolerable range is obtained between these two outputs, the processor software is assured
to be essentially correct.

The final stage is applied only to the TMS320C25. First, you download this assembled
program into the target TMS320C25 system (SWDS) to initiate real-time operation. Thus,
the real-time debugging process is constrained primarily to debugging the 110 timing struc­
ture of the algorithm and testing the long-term stability of the algorithm. Figure 17 shows
an experimental setup for verification, in which the adaptive filter is configured for a one­
step adaptive predictor illustrated in Figure 18. The data used for real-time testing is a
sinusoid generated by a Tektronix FG504 Function Generator embedded in white noise
generated by an HP Precision Noise Generator. The DSP gets a quantized signal from
the Analog Interface Board (AlB), performs adaptive prediction routines, and outputs an
enhanced sinusoid to the analog interface board. The corrupted input and predicted (en­
hanced) output waveforms are compared on the oscilloscope or on the HP 4361 Dynamic
Signal Analyzer. The corresponding spectra of input and output can be compared on the
signal analyzer. The signal-to-noise ratio (SNR) improvement can be measured from the
analyzer, which is connected to an HP plotter.

236 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

PERSONAL DSP DEVELOPMENT SYSTEM

COMPUTER (SWDS and AlB)

~
TEK2235
SCOPE

~

FG504
FUNCTION

GENERATOR

+ HP3561A

1: DYNAMIC-
SIGNAL

+ ANALYZER

PRECISION
NOISE

GENERATOR

HP PLOTTER

Figure 17. Real-Time Experiment Setup

x(n)........,-.------------,

d(n)
+

~-~~e(n)

Adaptive
Filter

1---0----_ Enhanced
Output x(n-1) yIn)

Figure 18. Block Diagram of a One-Step Adaptive Predictor

To illustrate the operation in a nonstationary environment, the adaptive predictor
is implemented using a TMS320C25, and the following experiment is performed. The
input signal is swept from 1287 Hz to 4025 Hz, then jumps back to 1287 Hz. The time
for each sweep is one second. The input spectra at every second are shown in Figure 19a;
the corresponding output spectra are shown in Figure 19b. From the observations on the

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 237

oscilloscope and signal analyzer, the significant SNR improvement, convergence speed,
ability to track nonstationary signals, and long-term stability of the adaptive predictor are
observed.

1/15 A:MAG
115dBV

Amplitude

6dB/DIV

-33
START: 0 Hz

,238

RANGE: 17 dBV STATUS: PAUSED

BW: 47.742 Hz STOP: 5,000 Hz

Figure 19(a). Spectrum of Input Signal

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

RANGE: 13 dBV STATUS: PAUSED
1/15

15 dBV

A:MAG

Amplitude

6 dB/DIV

-33
START: 0 Hz

Time

BW: 47.742 Hz STOP: 5.000 Hz Frequency

Figure 19(b). Spectrum of Enhanced Output Signal

Summary

Three adaptive structures and six update algorithms are implemented with the
TMS320C25 and TMS320C30. Applications of adaptive filters and implementation con­
siderations have been discussed. Two subroutine libraries that support both C language
and assembly language for two processors were developed. These routines can be readily
incorporated into TMS320C25 or TMS320C30 users' application programs.

The advancements in the TMS320C25 and TMS320C30 devices have made the im­
plementation of sophisticated adaptive algorithms oriented toward performing real-time
processing tasks feasible. Many adaptive signal processing algorithms are readily available
and capable of solving real-time problems when implemented on the DSP. These pro­
grams provide an efficient way to implement the widely used structures and algorithms
on the TMS320C25 and TMS320C30, based on assembly-language programming. They
are also extremely useful for choosing an algorithm for a given application. The perfor­
mances of adaptive structures and algorithms that have been implemented using the
TMS320C25 and TMS320C30 have been summarized in Tables 1 and 2.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 239

Table 1. The Performance of Adaptive Structures and Algorithms of TMS320C25

TMS320C25

LMS
Instruction Cycles 7N+28

Program Memory (Word) 33

Leaky Instruction Cycles 8N+28

LMS Program Memory (Word) 34

Sign-Data Instruction Cycles 11N +26

Transversal LMS Program Memory (Word) 41

Structure Sign-Error Instruction Cycles 7N+26

LMS Program Memory (Word) 30

Sign-Sign Instruction Cycles 11 N + 21

LMS Program Memory (Word) 30

Normalized Instruction Cycles 7N+S7

LMS Program Memory (Word) 47

LMS
Instruction Cycles 7.SN+38

I Program Memory (Word) 50

Leaky Instruction Cycles 8N+38

LMS Program Memory (Word) 51

Symmetric
Sign-Data Instruction Cycles 9.SN+36

Transversal
LMS Program Memory (Word) 58

Structure
Sign-Error Instruction Cycles 7.5N+36

LMS Program Memory (Word) 47

Sign-Sign Instruction Cycles 9.5N+31

LMS Program Memory (Word) 47

Normalized Instruction "Cycles 7.5N +69

LMS Program Memory (Word) 66

LMS
Instruction Cycles 33N+32

Program Memory (Word) 63

Leaky Instruction Cycles 35N+32

Lattice LMS Program Memory (Word) 65

Structure Sign-Error Instruction" Cycles 36N+32

LMS Program Memory (Word) 65

Normalized Instruction Cycles 90N+34

LMS Program Memory (Word) 92
"

Note: N represents filter order.

240 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

Table 2. The Performance of Adaptive Structures and Algorithms of TMS320C30

TMS320C30

Instruction Cycles, 3N+ 15
LMS

Program Memory (Word) 17

Leaky Instruction Cycles 3N+ 15

LMS Program Memory (Word) 19

Sign-Data Instruction Cycles 5N+ 16

Transversal LMS Program Memory (Word) 24

Structure Sign-Error Instruction Cycles 3N+ 16

LMS Program Memory (Word) 18

Sign-Sign Instruction Cycles 5N+ 16

LMS Program Memory (Word) 24

Normalized Instruction Cycles 3N+47

LMS Program Memory (Word) 49

Instruction Cycles 2.5N+15
LMS

Program Memory (Word) 23

Leaky Instruction Cycles 2.5N + 19

LMS Program Memory (Word) 26

Sign-Data Instruction Cycles 3.5N+ 18
Symmetric

LMS Program Memory (Word) 30
Transversal

Structure
Sign-Error Instruction Cycles 2.5N + 18

LMS Program Memory (Word) 24

Sign-Sign Instruction Cycles 3.5N + 17

LMS Program Memory (Word) 30

Normalized Instruction Cycles 2.5N+50

LMS Program Memory (Word) 56

Instruction Cycles 14N+9
LMS

Program Memory (Word) 20

Leaky Instruction Cycles 16N+9

Lattice LMS Program Memory (Word) 22

Structure Sign-Error Instruction Cycles 16N+9

LMS Program Memory (Word) 22

Normalized Instruction Cycles 67N+9

LMS Program Memory (Word) 73

Note: N represents filter order.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 241

References

[1] B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.
[2] R. Lucky, J. Salz, and E. Weldon, Principles of Data Communications, McGraw­

Hill, 1968.
[3] S. Haykin, Adaptive Filter Theory, Prentice-Hall, 1986.
[4] M. Honig and D. Messerschmit, Adaptive Filters: Structures, Algorithms, and Ap­

plications, Kluwer Academic, 1984.
[5] J.R. Treichler, C.R. Johnson, and M.G. Larimore, Theory and Design of Adaptive

Filters, Wiley, 1987.
[6] T. Alexander, Adaptive Signal Processing, Springer-Verlag, 1986.
[7] G. Goodwin and K. Sin, Adaptive Filtering Prediction and Control, Prentice-Hall,

1984.
[8] M. Bellanger, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, 1987.
[9] J. Proakis, Digital Communications, McGraw-Hill, 1983.
[10] C. Chen and S. Kuo, "An Interactive Software Package for Adaptive Signal Pro­

cessing on an ffiM Person Computer," 19th Pittsburgh Conference on Modeling and
Simulation, May 1988.

[11] S. Kuo, G. Ranganathan, P. Gupta, and C. Chen, "Design and Implementation of
Adaptive Filters," IEEE 19881nternational Conference on Circuits and Systems, June
1988.

[12] S. Kuo, G. Ma, and C. Chen, "An Advanced DSP Code Generator for Adaptive
Filters," 1988 ASSP DSP workshop, Sept. 1988.

[13] Texas Instruments, Second-Generation TMS320 User's Guide, 1987.
[14] Texas Instruments, Third-Generation TMS320 User's Guide, 1988.
[15] S. Qureshi, "Adaptive Equalization," Invited Paper, Proceedings of the IEEE, Sept.

1985.
[16] L. Rabiner and R. Schafer, Digital Processing of Speech Signals, Prentice-Hall, 1978.
[17] N. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications

to Speech and Video, Prentice-Hall, 1984.
[18] J. Makhoul, "Linear Prediction: A Tutorial Review," Proceedings of the IEEE, April

1975.
[19] C. Cowan and P. Grant, Adaptive Filters, Prentice-Hall, 1985.
[20] C. Gritton and D. Lin, "Echo Cancellation Algorithms," IEEE ASSP Magazine,

April 1984.
[21] D. Messerschmitt, et al, "Digital Voice Echo Canceller with a TMS32020," in Digital

Signal Processing Applications with the TMS320 Family, Prentice-Hall, 1986.
[22] B. Widrow, et al, "Adaptive Noise Cancelling: Principles and Applications," Pro­

ceedings of the IEEE, December 1975.
[23] A. Lovrich and R. Simar, "Implementation of FIRIIIR Filter with the

TMS3201O/TMS32020," in Digital Signal Processing Applications with the TMS320
Family, Texas Instruments, 1986.

242. Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

[24] S. Orfanidis, Optimum Signal Processing, MacMillan, 1985.
[25] G. Frantz, K. Lin, J. Reimer, and J. Bradley, "The Texas Instruments TMS320C25

Digital Signal Microcomputer," IEEE Micro, December 1986.
[26] B. Friedlander, "Lattice Filters for Adaptive Processing," Proceedings of the IEEE,

August 1982.
[27] A. Gersho, "Adaptive Filtering with Binary Reinforcement," IEEE Transactions

on Information Theory, March 1984.
[28] A. Oppenheim and R. Schafer, Digital Signal Processing, Chap. 9, Prentice-Hall,

1975.
[29] L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Chap.

5, Prentice-Hall, 1975.
[30] J. R. Gitlin et al, "On the Design of Gradient Algorithms for Digitally Implemented

Adaptive Filters," IEEE Transactions on Circuit Theory, March 1973.
[31] C. Caraiscos and B. Liu, "A Roundoff Error Analysis of the LMS Adaptive

Algorithm," IEEE Transactions on ASSP, February, 1984.
[32] J. Cioffi, "Limited-Precision Effects in Adaptive Filtering," IEEE Transactions on

Circuits and Systems, July 1987.
[33] R. Crochier, R. Cox, and J. Johnson, "Real-Time Speech Coding," IEEE Transac­

tions on Communications, April 1982.

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 243

List of Appendices for Implementation of Adaptive. Filters with the

TMS320C25 and TMS320C30

Appendix
Al
A2
Bl

B2

CI
C2
DI

D2

EI

E2

Title
Transversal Structure with LMS Algorithm Using the TMS320C25
Transversal Structure with LMS Algorithm Using the TMS320C30
Symmetric Transversal Structure with LMS Algorithm Using the
TMS320C25
Symmetric Transversal Structure with LMS Algorithm Using the
TMS320C30
Lattice Structure with LMS Algorithm Using the TMS320C25
Lattice Structure with LMS Algorithm Using the TMS320C30
Transversal Structure with Normalized LMS Algorithm Using the
TMS320C25
Transversal Structure with Normalized LMS Algorithm Using the
TMS320C30
Transversal Structure with Sign-Error LMS Algorithm Using the
TMS320C25
Transversal Structure with Sign-Error LMS Algorithm Using the
TMS320C30

FI Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C25
F2 Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C30
GI Transversal Structure with Leaky LMS Algorithm Using the TMS320C25
G2 Transversal Structure with Leaky LMS Algorithm Using the TMS320C30
H I Assembly Subroutine of Transversal Structure with LMS Algorithm Using

the TMS320C25
H2 Linker Command File for Assembly Main Program Calling a TMS320C25

Adaptive LMS Transversal Filter Subroutine
H3 TMS320C30 Adaptive Filter Initialization Program
H4 Assembly Subroutine of Transversal Structure with LMS Algorithm Using

the TMS320C30
H5 Linker Command/file for Assembly Main Program Calling the TMS320C30

Adaptive LMS Transversal Filter Subroutine
Ii C Subroutine of Transversal Structure with LMS Algorithm Using the

TMS320C25
12. C Subroutine of Transversal Structure with LMS Algorithm Using the

TMS320C30

244 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

~
"t:j

[
~
is
g'
~
~
§-

"t:j
::1.
~
~
~
~

~. s.
s.
'"
~
t:l
N
C

Q
v,
<:> ..,
S.
'"
~
t:l
N
C o
C

~

.title 'TUtS'
*HfHfHHttUHHffHfHHHf*HIHH.HfUUIHHfHHHHHHHHHtU

TlMS: Adaptive Filter Using Transversal Structure
and U1S Algoritoll, Looped Code

d (n) ----..:---------------------:

:+
(SUl"Il--) t(n)

x(n) ---------: Pf :-------:-------) yIn)

Algorith .. :

63
yin) = $IJ1w(klfxln-k) k=O,1,2, ••• ,b3

ko()

eln) = din) - yin)

w(U = w(k) + ufe(n)fx(n-kl k=0,1,2, •• b3

Whete II/(! use fi Iter order = 64 ilnd IIU = 0.01.

Note: This source progrill is the genetic version; 1/0 configuration hiS
not been set up. User has to Dodify the aain routine for specific
ipplic"ation.

Initial condition:
1) PI1 status bit should be equal to 01.
2) SXtl status bit should be set to 1 •
3) The current [p (datil leaory page pointer) should be page O.
41 Dita lIe.ory ('j£ should be 1.
5) Data IIIe.ory U should be 327.

Chen, Chein-Churtg February, 19B9

HfffHffff+****+fff++HH*fHU+HUHHHff+HHfHfHHfHf*HHffff

~FINE PARArlETERS

reDER:
PAGEO:

.equ

.equ
64

~FINE ADDRESSES OF IlIFFER AHII aEFFlCIElHS

XO: .usect "buffer U ,OODER-l
XN: • used ·buffer", 1
loIN: • usect ·coeffs· ,ORDER

IlESfRI'E ADDRESSES Fffi PllRAtETERS

D: • us@ct ·paraaeters· ,1
V: .used ·paraathrsN ,1
ERR: .used AparaHters",1
OOE: • used "paraaeters· ,I
U: • usect "paraaeters·, 1
ERRf: .usect "parilH!ters·,1
UfH*HIH*HHfHffffffHHHffH

PERFOOl1 TI£ ADAPTIVE FlLTER
fHffIHIHI***lfHfHffftfHHfHI

• text

ESTII'IITE TI£ SIGNAl.. Y

LARP AR3
un
11'1'1(

lAC !HO,lS
LRlJ(AR3,XN

FIR RPTK ffiDER-l
NACD OII+OfdOOh, .-
CNFD
API£
SACH

CDMPUTE THE ERRffi

NEG
ADI»! D
SACH ERR

Ll'DATE THE fEIGHTS

LT ERR
ItPY U
PI£
ADD Ot£,IS
SACH ERRF

LARK ARl,ORiER-l
LRLK AR2,WN
LRLK AR3,XN+l
LT ERRF
ItPY f-,AR2

ADAPT ZIIlR f,AR3
tl'YA f-,M2

SACH It,O,AR!
BANZ ADAPT, f- , AR2

FINISH .end

Configure BO as progra" anory
Clear the P register
Using rounding
point to the oldest sillple
Repeat N tius
Estilli.te YIn)
Configure DO as data aelory

; Store the fi I ter output

; ACe = - Yin)

; ERRln) = D(n) - Yin)

; T = ERRln)
; P = U • ERRln)

; Round the result
; ERRF = U f EffHnl

; Set up counter
; Point to the coefficients
; Point to the data sample
; T register = U f ERR(nl
; P = U * ERR(n) f X(n-kl
; Load ACCH with Alk,n) " round
; W(k,n+ll = WO::,n) + P
; P = U • ERRln) f Xln-k)
; Store W(k,n+ll

> 't:j
't:j
~

= ~
~

>
i-oo"

~
"'1

d§
CIl CIl -< = (t> (JQ "'1

CIl
-C:l =-­~ rJ).

~-~~
rJ).:::l
~= N"'1
=~
\.}~
N til;.

t"'"

~
e::
s. ;.
a

~

l?
'G

[
is §.

.Q.,
::...
t
:::l.
;;;

~
;::;

~
So
~

~
~
N
C

G v.
~ ..,
So
~

~
~
N
C a c

fffHfHHHHHUHHHH+HH+HtHtHfHHIIIIIIIIIIIIIIIIIII

f T30 - Adaptive transversal filter "ith U1S algoritha
using the ntS32OC3O

110 configuration:

dlnl -------------:

:+
(SlIt)--) t(n)

:-

xln) -----: ~ :-----:-----) yIn)

Al goritha=

63
ylnl = SLI1 olkl.xln-kl k=O,1,2, •• ,,63

k=O

,In) = dlnl - yIn)

IIIlkJ = .. (kl + u*flnl*x(n-kl k=O,l,2, .• 63

Whtre we use filttr ordtr = bot and au = 0.01.

Chen, Chein-thung ~rch, 1989

fffHHHf-HtHHHUHHHHffftHfHUtHHfffffffffffHffHtHf-+H+H

,copy "adapfltr.int"
HfffHffHffHfHHfHfHHIHIHHfftHHfHftfHHHffff

* PERFffilI ADAPTIVE FILTER
*HffHltHfHfffHfffffHffHffftHHffHfHfffHftffHHf

order . set b4
• u .Stt 01

INITIALIZE POINTERS AND ARRAYS

. text
btgin . set

LOI
LIP
LOI
LOI
LIF
RPTS
STF

:: STF
LOI
LOI

. $

order,BK
txn_addr
txo.-a.ddr,MO
hn_iddr,ARI
O.O,RO
order-1
RO,_I1IX
RO,>AR1++llIX
@in_addr,AR6
@ouLaddr Jifl

Set up drculu buffer
Set data page
Set pointer for xU
Set pointer for If[]

RO = 0.0

xC] = 0
0[1 = 0
Set pointer for input ports
Set pointer for output ports

input:
LIF

:: LIF
STF

tARb,R7
.+M6UI,Rb
R6,+MO

Input din}
Input xln)
Insert xln) to buffer

CMUTE FILTER OOTPUT ylnl

LIF
I'I'YF3
RPTS
1'I'YF3

:: ADDF3
ADIF

0.0,R2 , R2 = 0.0
_IIIX,>AR1++11lX,Rl
ordtr-2
fARO++(lll, fMl++(11l,Rl
Rl,R2,R2 , ylnl = oU.xU
Rl,R2 ; Include last result

COI1PUTE ERRal SIGNAL olnl AND OUTPUT ylnl AND .Inl SIGNALS

SUBF
STF

" STF

R2,R7
R2,'AR7
R7, ttAR711l

,In) = dlnl - yin)
Send out yIn)
Send out tlnl

LPDATE ~IGHTS oln I

I'I'YF @u,R7 ; R7 = tin) f u
If'YF3 t-ARO++<1IX"R7,Rl ; Rl = t(n) f u .. xln)
LOI order-3,Rt ; Initialize repeat counter
RPTB utS , Do i = 0, N-3
If'YF3 lARO++lm,R7,Rl ; RI = tin) oJ u • x(n-i-ll

" ADIF3 >ARl,Rl,R2 ; R2 = lIIilnl + tin) I u .. xln-il
LIIS STF R2,>AR1++lm ; ~i(n+1) = "Hnl + e(n) -I u -I x(n-i)

I'I'YF3 +MO,R7,Rl ; For i = N - 2
" ADDF3 >ARl,Rl,R2

BD input ; De 1 ay branch
STF R2,*AR1++11IX ; wi<n+1l = ~i<n) + e(n) -I u -I x(n-i)
ADIF3 >ARl,Rl,R2
STF R2,>AR1++I1IX ; Update h,st III

IEFH£ COOSTANTS

xn .usect 'buffer" ,order
.n .usect "coeffs·,order
in_addr .used ·vars·,l
ouLaddr .usect "'lars·, 1
xLaddr .used ·vars·,l
IiIn_addr .usect ·vars·,l
u .UStct "'lars' ,1
cinit .Stct •. cinit"

.lIIord S, in_addr

.lIIord II8OOlOOh

.word 0804002h
• 1liioI'd xn
.word .n
.float au
.end

Cj
[IJ Jj.
;.

> :g
~ = ~
~

~
~ ..,
§
[IJ

-<
~ ..,
[IJ

e:..
~

00
~-s;::i
ooll
~c:
N..,
Q~

n~
~ Q;.

~
00

~
~ .., -=-3

~

I
~
is
§"
~
::...
~ :::-.
;\i

~
~
~
~
§:-
So
~

~
~
tv
C
fj
v,
c
So
~

~
~
tv
C

Q
c

~

• title 'Y25'
tHtHtffHl-ff •• HtftHHfHfHH+*HHH ... tH"HHHtHHffHofHffHf

Y25: Adaptive Fi 1 ter Using SyMetry Transversd Structure
ind U1S AI gorithlA, Looped Code

dlnl ------------------------:

---- yin) +:t
: A. F. :---)ISltII--) .Inl

zUnI zlln-k)
:---------1 :------:

:-: :---:

:--: :-:
x(nl ------:---: Z :--:--: z : ••• :--: z :--:---:

:-: :--: :--:
:t

ISltII
:t

ISltII
:t

ISlI11
:t :--­

ISltII : Z
:-

\ :-: \ :-: \ :-: \
:-: Z :--:-: Z : ••• -:-: Z :---:--:

:--: :-: :--:

Algorith ••

zl!n-tl = xlnckl t xln-63tkl k=O.I ••••• 31

31
ylnl = SltI .Ikifxln-kl k=O.1.2 ••••• 31

k=O

e(n) = den) - yen)

.Ikl = .Ikl t ""Inifzl!n-Ic) 1<=0.1.2 ••• 31

Where 11ft use filter order = 64 and au = 0.01.

Note: This source progru is tbe generic version; I/O configuration bas
not bun set up. User has to lodify the Rin routine for specific
application.

Initial condition:
1) At status bit should be equal to 01.
21 Sit status bit should be set to logic 1.
31 Tbe current If (u.ta IItllOry page pointer should be page O.
41 Di.ta •• ory Cf£ should be 1.
SI Dita .. aory U should be 327.

Chen, Chein-Chung February, 1989

"fftHfHlIIIIIIIII ••• I ••• IIIIIIIIII ••• IIIIIIIIII •

lEFII£ PMAlETERS

!IlDER'
00El2'

.tqu

.equ
b4
32

lEFII£ ADIIRESSES OF IlfFER ANI ClEFFICIEllTS

FRSBlf. .useet -buffer" ,Il[£R2-1

L.A5IIlf' .used "buffer" ,I
Ill' .useet ·coeHs" ,0RDER2
FRSlIAT: .usect ·coeffs· ,1lU£R-I
LASlIAT: .used ·coeffs",l

IlESER'IE ADDRESSES FOO PARAI£TERS

D: .used ·puaJltters",1
Y: .useet ·para.aetersM ,I
ERR: .useet ·pa.rueters·, 1
(1£: .used ·paraaehrs·,l
U: . useet ·piruehrs" ,I
[RRF: .useet ·~rllfters·,1

HtffHfHtHHHHffffffflfHHHf

PfRF(IItt TI£ AlIAPTlIE FILTER
HlffHHHHHlfHfHffHfHHffH

• text

SYllltETRIC IlfFER ADD1T1ON

LARP AR3
LARK ARl.0RlER2-1
LJ1U(AR2.l.I\SMT
LRLK AR3.FRSlIAT
LJ1U(AR4. FRSIIlF

SYI1 LAC H,O,M2
ADD Il.AR4
SACL *+,O,AlU
BAN! S'm AR3

ESTHIATE TI£ SIONN. Y

Cll'P
If'VI(Il
LAC 01£.15
LJ1U(AR3.L.A5IIlf

FIR RPTK 00El2-1
I1AC1I IIltOfdOOh.'-
CII'II
APIV::
SACH

COI1PIJTE TI£ EftR(II

Sft up the counter
Point to oldest data
Point to nfWst dda
Point to first buffer

• Bufferlkl = lIATintkl t lIATin-Ntkl

Configure 9J as progru ... ory
Clear tbe P register
Using rounding
Point to the oldest buffer
Repeat Nl2 tillt
EstiRte Yin)
Confi gUl'e BO is dita Maory

; Store tht filter output

~
"CS

~
=-....
~

= >~
riQoo 0«
::!. 9
;'9
9 ::a.

", d
(I> r')

.... 0-3 = ",
(JC:/ = = =''(1)
~ -<
0-3~
:::~
00-
id~
='" n~ N u-.= ",

~

~
="

~
00

t

~
'I;j
~

§
s
§"
~ • ~
~.

~
iti
~
~ s:
So
'"
~
~

B
VI

~
So
'"
~
~
tv
C
Q
c

lEG
ADD
SACH

D,I~

ERR

lfDATE TIE !EIGHTS

LT ERR
ilPY U
PAC
ADD II£,I~

SACH ERIIf

lJIRt(ARI,0RDER2-1
LRI.J(AR2,1oW
LRLK M3,LASBlf
IT ERIIf
II'Y .-,AR2

AIJIIPT lllLR 1,M3
II'VA 1-,M2

SACH ",O,AR1
BAIIl ADAPT, t- ,AR2

; ACe = -- yen)

; ERRI •• = 01 •• - Yin'

; T = EM(n)

; P = U I ERRI ••

1 Round the result
; ERRF = U I ERRI ••

; Stt up counter
; Point to the coefficients
t Point to tht liSt buffer
; T register = U. ERRln)
; P = U • ERRln) " Xln-kl
; LOid ACOiwith A(k,n) &: round
; WH:,n+U = W(k,n) ... P
; p = U .. ERIUn) • Xin-In
; Stot. Wlk.n+1I

lfDATE DATA POSTION FOO I£XT ITERATION

FINISH
DATmY

LRI.J(

RPTK
DIMlY

.tnd

AR2,lASDAT-I
OODEN
1-

Set point.r·
R'put N-l tilNS

Shift data. for next iteration'

~
HHHHIIIIIIIIIIIIIIIIIIIIIIII •••• III1IIIIIIIIIIIIIIIHf.IHHIH l.lF 0.0,R2 t R2 = 0.0

'i:l LDI 1IRO,1IR5 ; Set bickwrd point.r for x[]

~
Y30 - Adaptive 5)'IMtrit: trlhlversil filttt lIIith LDI orderJ2-2,RC

UIS 11goritllo using tllt 1ItS32OC3O RPTB life > ~ Algoritha= A1111F3 ·_1111,1IIR5-(1)1,RI "C is zln-k) = xln-k-l) t xtn-63+k) k=O,l, •• o,31 ; zln) = x[n-il + x[n+N-il "C
g" 31 til

yen) = SltIIII(k)fz(n-k) k=O,l,2, ••• ,31 IfYF3 RI,tMI+<I1l,RJ , yll = .[].,Il = Q,. .sa, k=O :: SlF Rl,"M2++C1) ; Store zln)
~

IltER AIIIIF3 RJ,R2,R2 ; Accunlate tht result ~

~
.In) = dIn) - yIn)

.t:= AIIIIF3 tM4+<1 111, IIIR5-11l1,RI
~ 1II1(k) .I: MCk) + ute(n)l-zln-k) k=O,.,2, •• 31 ; zln) = x[n-il + x[n+N-il >~ ~.

"'Mr • ., Ult, filttr order = 64 and IU = 0.01 II'YF3 RI,tMI-URO),RJ , y[] = .II.,[] -00
:!l :: SlF RI,tAR2-URO) ; Store zln} ag«
~

tfHHHHflfHl.llllllllllllllltHHfHffHfHHH AIIIF RJ,R2 ; Include lut rnult ::::!. 9 _ ADAPTII£ FILTER
o::! HHHHHHtHlHIHfHHHHfllllllllllllll.11111 COII'UTE ERROl SIGHIII. .In) AND 001PUI yIn) and .In) SIGHIILS -9

="tIl s. .copy ·adlpfltr.int- 9 ::;-;:;. ordtr .Stt 64 , Fi I ttl' order SUIIF R2,R7 ; tIn) = dIn) - yIn)
IU .set 0.01 ; Step sizt STF R2,tM7 ; Send out yIn) d r;. ;:;. :1 STF R7,t+M711l ; Send out eCn) rn

'" • IMITIIUZE POINTERS AND MRAVS ~
~

.ttxt II'DATE I€IG/IlS .In) = ""I begin .Stt (JQ ~

~ LDI otdtt,1I< ; Stt up cil'cull.l' buf"1' II'YF tU,R7 ; R7 = tin) , U P'fo= N UP tx dd' ; Set data pt.ge /PYFJ IAR2++I1l,R7,RI ; Rl = e~n) , u , zln) ="rn
C LDI Ixn-lddl',1IRO ; Set pointtr for xU LDI ordet/2-3,RC ; Initializt rt(tMt counter til ~
Q LDI dd',ARI ; Set poioter for III[] RPTB UIS ,00;=0,N-3 ~Oi V, LDI Izn..acldr,M2 ; Set pointtr for zU II'YF3 IAR2++ 11) ,R7. RI ; Rl = tin) I u I zln-i-l)

~rs <::>
LDI orcltr/2-1,IRO ; Set indtx pointtr :: AIIIIF3 tMI,Rl,R2 ; R2 = IIIUn) + tin) I u I zln-i) ... l.lF O.O,RO , SO ;. 0.0 UIS SlF R2,tMI+<(1) ; llllien+!) = llllien) + tin) I u I z(n-i) 00-

;:;. RPTS or6t1'-1 IfYFJ tAR2-IIRO),R7,RI ; Fo, ; = N - 2 ~OO

'" STF fiO,_11l1 ,xl]=O :: ADDF3 tMl,RI,R2 N-

~
RPTS 0,,,,,/2-2 BD input ; DeilY brlnch C""l
STF RO,tMI+<1I) ,.1]=0 SlF R2,tMI+<11l ; lIIiCn+1) II: lIIIiCn) + tin) I U·' zln-i) n~

~
:: SlF RO, 1AR2++(1) , ,II • 0 AIIIIF3 tMI,RI.R2 ; Include lISt III

~-STF RO, tMl--IlRO) ; III[] II: 0 SlF R2, tMl-IlRO) , l!pdot. lut • C= N
C n SlF RO,tAR2-lIRO) , ,I] = 0 ""I

a LDI lin-lidr i M6 ; Set pointtr for iDput porb • !£FINE CQlSTIINlS til
LDI tout ... dd',AR7 ; Set pOinter for output ports • ~ C input: xn • used 'buffet' ,OI'Mr
l.lF _,R7 , Input ~In) .n .ustd 'coeffs' ,ordtrl2 e-:: l.lF t+M611l,R6 ; Input xln) zn .used 'coeffs',order/2
LDI 1IRO,1R4 ; Set for.rd pointer for xU iruddr • used 'vau',l

~ STF R6,tMG-Ul1 I Insert xln) to buffer ouLlddr .uJtct 'VlI'S',t

~ xn-l.ddr .usect 'vt.rs',.
toII'IIlE FILTER 001PUI yIn). WL&ddr .Ultet ·YV'J-,l 00 zn_lddr .useet 'v..,.s',1

$ • .UJtct 'Vlrs',t
cinit • Stet '.cinit'

.... rd 6,i dd'

250 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

~
'G

If
~
is
§.

.s;,
::...
§-
'g.
~
:::J
~
;;"!

~
S-
<I>

~
~
tv
C
Q
v.
Cl
S-
<I>

~
~
tv
C a c

tv
Ul -

.title 'us'
•• fHH.fHufHfHf-HH.HHtH.H •• HffHHfHHHf ffH

L2S: Adaptive Filter Using Lattice Structure
and U1S Algorithll. Looped Code

10lni IlInl IHlnl
-i-)ISlMI----} •••• ---i-)ISlMI--}filnl

i- i-
:---1--: i--:--: .,0 fki-l

* xln)-:
.leO : fki-J :
:-: :---:

:-: :-: -i
-iZi-i-}ISlMI--} ••.• ----iZi-i-}ISlMJ--)bilnJ

bOtn) :-: bUn) bi-Hnl :-:

Algorithl:

fUn) = fi-lInl - Kiln) I- bi-l!n:-l) i=1,2, ... ,b4

bilnl = bi-1(n-l) - Kiln) * fi-Hnl i=l,2, ••• ,64
i-I

tiln) = din) - Sltt yldnl = ei-1 - bi-1(nltGi-1(nl i=1.2 ••••• 64
k=O

64 64
yin) = SIJ'I yUn) = SU1 bUnHGiln)

i=O i=O

Kiln+U = Kiln) + ItU f [fitnlfbi-lIn-li + biln)lfi-ttnl]

Giln+!) = Giln) + IU f eiCn) f bUn) i=1,2, •• 64

Where filter order = 64 i.nd IV = 0.01.

Note: This source progru is the generic version; I/O configuration has
not betn set up. User has to .odify the !Nin routine for specific
application.

Initial condition:
!) ptf status bit should be equi.l to 01.
2) sxn stitus bit should be set to logic 1.
3) Tt.. current (P Ida.ta IItllOry page pointer) should bt pige O.
4) Data lIt.ory U should be "]27.
5) The 81 " BD1 pointer 1M3 " M4) should be exchanged every

iteration. For enap1e,
For odd iteration: AR3 -) 81

AR4 -} 001
For even iteration: M3 -) BDl

AR4 -} 81

ehtn, Clltin~hung Ftbruuy, 1989
fHHUHfl,III •• IIIIIII.fHH+HfHHHHHHHHUHHtHHHfl4ff'HHH

IEFII£ PARAIETERS

•
1lIIlER: .equ 64

!(FII£ ADDRESSES CI" IAFFERS AND CW'FIClOOS

61: .uSlet ·eoeffs· ,au:ER
1(1: .usect 'coeffs"~CER
n: .usect ·coeffs· .~+1
Bl= .used "buffer- ,mIER+1
8Dl: .uslet 'buffer"~+l

II£SER'lE ADDRESSES F(lll'ARAIETERS

D: .useet 'parileters M ,I
x: .useet lIj)i.rueters·,l
y: • useet ·parueters· ,I
E: .uslet -paruehrs· ,1
U: • useet 'paraaeters",1
TEJI>: .uslet "parueters·,l
HfffHffffffffffHfffffffHfffffH

PERFIRt TI£ AIIt1PTJ\£ FILTER
fffffHfHHfffffHHHfHHHHfH

• text

INITIAlIZE TI£ POINTERS

l.IIRf' AR3
l.AAI(ARI.IlIIlER-I
lRlK M2,FI
l.RI.J(AR3.BI
l.RI.J(AR4.BDI
l.RI.J(ARS,GI
l.RI.J(AR6.KI

INITIAlIZE TI£ BI AlII Fl

lAC
SACL -.O,M2
SOlCL I,O,AR3

INITIIIlIZATJI*

LT ',ARS
II'Y 1.M2
PAC
SACH
I£G
ADIII D
SACH E,

T = BI
P=BIIGI
ACe = 81 f Gl
Initialize YIOI = B1 f 01
ra = -181 I Gil
ra = Dlnl - 81 • GI
Initialize EIOI = Din) - 81 _ G1

>
"CI
"CI
g
Q.
~.

('1
I-"

d~ [IJ _

.... -=
(JQ r,;
-00
="­~ "1
~=
a:S-
00"1
W~

~~
('1~
N="
Vt~

a:
00

~
"1

~ e

u:~ ~
~

~
j~ ~ ~ ~

... * s ii!. ••

252 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

~
111' •• IIIIIIIIIIIIHHHffllllllllllllllll •• IIIIIIIIIIIII •••• n .. rfYF3 RS,tAR2,R6 BI f 01

L30 I Adaptive lattice Structure Filter IIIith"UIS Algorithl
" STF RS,tllRl Insert Bl

~ . using the 1l1S32OC3O SUBF R6,R7 E=D-BItGI 1;;"'
::l Algorithll un ordtr-l,RC "" ;os Rl'TB lattice > is fHn) = fi-1(n) - Ki(nl t bi-1(n-l) i=1.2, ... ,64 Pl'YF3 tARO,RS,R3 ; R3 = kFi-l

5' 1I'YF3 R7, tllRltt(m,RO ,RO = Ei-l f Bi-l "C
;OS biln} = bi-lIn-li - KHnl .. ii-lin) i=I,2, ••• ,64 " SUBF3 R3,tllR4,R3 ; R3 = Bi = BDi-l - kFi-I "C

~

~
i-I II'YF I.,RO ; RO = U f Ei-l t Bi-l = tilnl = din) - SlIt yk(nl = ei-l - bi-lInJtGi-1(n) i=l,2, ...• 64 ADDF3 RO,tAR2,RO ; RO = Gi-I + u * Ei-l f Bi-l Q. ~ k=O I I STF R3,.ARl ; Store Hi

~ 64 64 Pl'YF3 R5,tllRl,Rl , RI = Fi-l f Bi ~
yin) = SlJI yiCn) = ilIt biCn)fG;iCn) II STF RO, tAR2tt(II ; Store Gi

~ :;;. i=l i=l II'YF3 tARO, tM4,RO ; RO = kBDi-l

"" SUBF RO,RS ; R5 = Fi N .
~

kHn+l) = Kilnl + IU I [filnlfbi-Hn-l) + bUnlffi-Hnl] rfYF3 RS,fllR4tt(IlX,RO ,RI = Fi f BDi-l

~
ADIF RI,RO ; RO = FifBDi-l + Fi-ifBi ~~ GHn+1) = Giln) + IU I tiln) * biln) i=I,2, •• 64 II'YF lu,RO ; RO = U f (FifBDi-l + Fi-l'Bil

~ ADIF3 RO,tIIRO,RO ; ki = ki-l + RO [Il a.
S. wnere fi I ter- order = 64 and au = 0.04. Pl'YF3 R3,tAR2,R4 , R4 = Yi = II STF RO, fAROtt1l1 ; Stor. ki (JQ t")
S- Ch.n, Cb.in-Cbung Kirch, 1989 ADIF R4,R6 ; COlput. yin) ~

S- lattice SUBF R4,R7 ; Co.pute .(n) ;'00
""

fHffHHHffftfHHHHHfHHtlllllllllllllllllllllHHHffHfl ~
• copy idipfltr.int l OOTPUT y(nl ~ .(nl SIGNALS ""I

~ fHffHlfHffHHfHffffllllllllllllllll ••• tHH 1-3=
PERF<RI ADAPT!"" FILTER BD input DeIlY bl'lnch ~~ ~ fHffHfllfffHfffHHffHHHfffHHHffHtHH SUBF R4,R6 Tik. out liSt tel'll 00E; N ord.r .5.t 64 ; Filter ord.r STF R6,tAR7 Stnd out ylnl c:>

Q .. .s.t 0.04 ; St.p siz • :I STF R7,ttllR7<l1 Send out e(n) ~~
LDI fARO-UROI,RS Upditt k[] pointer ~~ VI

INITIALIZE POINTERS AND ARRAYS II LDI tAR2-UROI, R7 Updit. g[] pointer
<:l ~=:

~=-S- .t.xt DEFIIf: cmsTANTS

""
begin .5.t f =~ LDI 01'<ierf 2,BK ; Set up Circular buff.r kn .UStct ·cotffs",ord.r

~ UP f:kn-iddr , Stt d.ti page gn .usect ·coeffs· ,order ~ LDI Ikruddr,MO ; Set pointtr for Ul bn .usect ·buffer".2i'order
~ LDI Ibn_iddr,lIRl ; Set pointer for b[] in_iddr- .usect ·vin-,i 00
N LDI f! ddr,AR2 ; Set pointer for gEl ouLaddr .usect ·vars·.l > c:> a LDI order-,IRO kn-iddr .usect ·vats-,i -LDF O.O,RO , RO = 0.0 bn...ddr • used -val's·, 1 (JQ
c:> Rl'TS ordtr*2-1 gO-lddr .usect ·wrs-,1 =

STF RO, tIIROttl lIX , kll = 0.0 .nd gIl = 0.0 .usect ·vars l ,l ""I
Ii STF RO,tllRltt(!lX , bll = 0.0 ODd bd[] = 0.0 cinit .Stct ·.cinit l

ADDI IIRI,IRO,1IR4 .lIIord 6.irLaddr =-
LDI liruddr, AR6 ; Set pointtr for input ports • ItOI'd O804OOOh e
LDI f:out-l.ddr,M1 ; Set pointtr for output ports .lIIord 080400211

input: .word kn
LDF tIIR6,R7 ; Input dIn) .lIIOl'd bn

N II LlIF ft/IR6ll) ,R5 I Input xln} .lIIord gn
UI .fl .. t ou W

.tnd

~

!?
'tl

i
§.
§

~
;:..

.§"
~.

:3l
~
~

~.
;;.
;;.
'"
~
~
N
I:>

Q
v,
<::> ...,
;;.
'"
~
~
N
I:>

Q
I:>

,htl. '1JQ5'
tH-tHHH+ftfHHIHHtH-IfH+H++fHfHffHHHHffHH*HtHffHH

TN2S: Adaptive Filter Using Transversal Structure
ind NorHlized u.s Algorith8 ,Looped Code

Algorithll:

63
yIn) = SIJ1 .,(ldfx(n-k) k=O.1.2 ,b3

ko()

eln) = din) - yin) •

yarU) = (1.-r) f vu(K-l) + r f x(nl f x(nl

,,(kl = .0:,) + ufe(n)-tx(n-kl/vat(kl k=O,l,2, •• 63

Where lilt use filter order = 04 and IU = 0.01.

Note: This source progru is the generic version; 110 configuration has
not been set up. User has to .odify the Rin routine for specific
app 1 ication.

Initial condition:
1> PI1 status bit should be equal to 01.
2) SI~ status bit should be set to 1.
3) The (urr-ent IF (data Itlory page pointer) should be page O.
4) Data .ellory M should be 1.
S) Data Ittllory U should be '$27.
0) Dilta .ellory VAR should be initialized to 07fffh.

Chen, Chein-Chung February. 1989

fHf*******fIHfHUfHIHfffHfHfffHfHffHfHH

DEFIlE PARAl£TERS

~ER:

SHIFT:
PAGEO:

.equ

.equ

.equ

b4
7
o

DEFIlE ADIIlESSES IF IlFFER AND ctU"FICIENTS
t

10: • USfct "buFfu" ,M[£R-l
IN: .used "buffer- ,I
lit: .usect "coeffs.,flU£R ..

RESERVE ADIR:SSES F~ PIlRAlETERS

D: .ustct ·par-utters·,1

Y: .used ·pariHters.,l
ERR: .usect Mparaehrs·,1
OOE: .usect ·pa.rueters· ,1
u: .used ·parueters·,1
ERRF: .used "parueters·, 1
VAA: • usect ·parueters",!
HffffttHfffHH"tH""' HHf

PERF~M 11£ ADAPTl"" FILTER
ffffflffffffffHHHffffflHfHHH

. text

FIR

ESTlMTE THE POIER IF SIGNAl.

lJIRP M3
LRLK M3,XO
SQRA

SPH ERIIF
ZIUi VM
SUB VM,SHIFT
ADD ERIIF,SHIFT

SACH VM

ESTlMTE THE SIGNAl. V

CNFP
If'YK
LAC
LRlJ(

IIPTK
I1ACIJ
CNFD
APr;;
SACH

o
1JE,15
M3,XN
~-1

lIItOfdOOh, t-

CllIIPUTE 11£ ERROO

lEG
ADm D
SACH ERR

lPDATE 11£ IoEIGHTS

LT ERR
rt'Y
pr;;
ADD 1JE,15

IUllli.I!E COOERGE FACT~

ABS
RPTK 14
SUBC VM
BIT ERR, 0

; Point to input signal .X
; Squi1re input signal

ACe = VMln-li
ACe = (1-r) f VM(n-ll
oct = (1-1') f VM(n-i) ... r * X(n)

f X(n)

Stort W~Hn)

Configure 80 as progru ... ory
C1ei.r the P register
Using rounding
Point to the oldest suple
Repeat N tiHs
EstiNte Yen)
Configure 90 as dda Hllory

; Store the fi 1 hI' output

; ACe = - Vln)

; ERRln) = Din) - Vln)

; T = ERRln)
; P ::: U f ERR(n)

; Round the result

I1ake dividend positive
Repeat 15 tiHS
Pedorl U f :ERRlnJ: I VM
Check sign of ERR(n)

~
~
= =­~.
~

>~
rjQ~
o "'1
"'1 ~
~;; =--< = ~ "'1
d\ll
[IJ e. :r rJ1

IJ'Q ::t = =-~
~
~e;
s=~
rJ1~
~
N Q=­
(lZ
NO Vie

e.
N'
~

=-
~
rJ1

:?
'i5

~
~
§'
.s;,
::...
~
'i5
:::to
~
:::J
~
;:;
;t
§:
So
~

~
~
N
C

Q
v,
c
So
~

~
~
N
C a c

N
Ul
Ul

BBZ
lEG

IEXT SAel

LARl<
LRIJ(
LRLK
LT
~Y

ADAPT IALR
MPYA

SACH
BANI

FINISH .end

NEXT
; ERRF = - U .. :ERR(rd: I VAR

ERRF ; Store ERRF

ARt,ORDER-t Set up counter
AR2,~ Point to the coefficients
AA3, IN+1 Pviot to tt,e data sa.ples
Em T register = U f ERR(ol
"-,M2 P = U * ERR(n) .. X(n-k)
',M3 lQad ACCH !!11th A(k,nl &- round
1-,M2 W(k,n+ll = W(k,n) + P

p = U f ERRfnl .. X(n-k)
H,O,ARI Store W(k,o+1)
ADAPT, +-, AR2

tv ItfftHftHffHltHflHHHttHftHfffffHffHtfHftffotflfffHfl I ESTIMTE Tl£ PtIER IF Tl£ HFUl SItHt.
VI
0\ t TN30 - Adaptive transversal filter fIIith NorMlized UtS ilgoritha If'YF R6,-R6 ; R6 = x2

using tht TI1S320C30 If'YF "'_I.Rb , Rb = IH) • xl >
~ ~~ ~

Algor-ittll: I'PYF lvat ,R3 ; R3 = t • vuln-lI "C

b3 • rot'UTE FILTER OOTPUT yin) ~
yin) = SltI .Ik)>xln-k) k=O.1.2 b3 Q..

k=O ~ O.O.Rl , Rl = 0.0
~ ~
~ Vitln) = rlvarln-l) + l1-rlfXln)fx(n) PFYF3 tARO++(Ul,tMl++(1)l,Rl 1--4
~ :: ADIF R6,R3 "'-'
~ tin) = dIn) - yin) STF R3,tvu ; Rutore varin) ""r-:.... ~
~ RPTS ordtr"2 II"""""
::t wlk) = !IIlk) + u~(n)tx(n-k)/var(n) k=O,I,2, •• 63 ~ ~
!; If'YF3 >MO++II)I.tflRl++IIII.RI 0 ., c· Where we use filter order = 64 ind -au = 0.01. :: ADIf3 Rl,R2.R2 ; yin) = fII[].X[] -s ~
;:s ADtf Rl,R2 ; Include liSt result =: = .s;, Ch.n. Ch.in-'Chung llirch. 1989 . =- ::a

• calPUTE ERROR SIGHAl .Inl ~ ~ it. HfftHffHfHHHfHfffHHHfHffHHfHftHftHf - ""1
I::. • copy 'odoplltr.int' SUBF Rl.R7 , .In) = din) - yin) ...-4 rn
~ tfffffHfHffHfHIfHffHfHHHHfIHHHtH ~ Qj
::;. PERfI»1l1 ADAPTI FILTER • IlITPUT ylnl AND .In) SIGNot.S ~. -
~ HfiffffHHHfHHtHlftHHfUHHMftHHH = r.I'J.
~ order .set 64 ; Filhr,ordtr STF R2,tM7 ; Send out yin) (JQ =1
:::;-.u .set 0.01 ; Step 5Ut .. STF R7,ttM7(1) ; Sud out elnl ~ =
~ pollltr .Stt 1.0 ; Input signil powr ~ n
'" olph. .5Ot 0.996 lfDATE !EIGHTS .Inl ~ =
;t alphol .5.t 0.004 , 1.0 - olp"J
§: PIJSW ~ ,Cooput. IIvarlnl '"'"":I ~

INITIAlIZE POINTERS AND ARRAYS ~ Rl ; min) = 0 • 2. a:
So ASIi -24,Rl 00 ::.a
... • t.xt IEGI Rl W
~ btgin ... t SUBI 1.R2 , Now .. hove 2-<-1 N ~
~ LDI "dtr.II(Sft up circular buff.r ASIi 24,Rl Q
~ LIf' ","_oddr Sft doti pig. PUSH Rl (1 Z
~ LDI fxruddr.MO Sft poinhr lor x[l POPF Rl , Nolo Rl = x[0] = 1.0. 2-.-1. W 0
C LDI ... _oddr,ARI Sft point.r lor .[1 Q .,
Q LIF O.O.RO RO = 0.0 II'YF Rl,~.RO , RO = v • x[0] ~
\.It Rl'TS order-! SUIIIF 2.0.RO , RO = 2.0 - v • x[OI ..
(;) STF RO,tfIROt+llII x[l = 0 If'YF RO.Rl , Rl = x[l] = x[O] • 12.0 - v • x[OII !.
., I I STF RO.tflRl++1III .[1 = 0
~ LDJ lin~4dr 1Mb Stt pointtr for iftput ports I'fYF R2,Rl.RO ; RO = V f xU] ~
... LDI loul_oddr;AR7 Sft poinhr lor output ports SUIIIF 2.0,RO , RO = 2.0 - v • x[l] Q..
~ II'YF RO,Rl , R2 " x[2] = x[1l • 12.0 - v • x[l])

~ ~ ~
~ ~ _,R7 Input din) II'YF Rl.~.RO , RO = v • X[2] !;;ioI
v..> II ~ _Ml),Rb Inpul xln) SUIIIF 2.0.RO , RO = 2.0 - v' x[2] ~
~ STF Rb,<ARO Inmt xlnl to buff.. If'YF RO.Rl , R2 = x[3] = x[2] • 12.0 - v • x[21) 00
n
~ If'YF Rl.~,RO , RO = v • x[31

~., " '"" ;;li~ ~i

!h i~

~~&
rhi ri

ih

,.
7

~i ~~

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 257

~
00

~

I
is'
§"
~
::t...

~
~.

~
::;­
~

~

~.
So
So
~

~
~
N
C
Q
v.
~

if
~.
~
~
Q
c

.title 1TSE25'
HHtHHftHHllllllllllllllllHHfIHIHHtHHfflHfHHfHtHlfH

I

TSE25; Adaptive Fi Ittr Using Transversal Structure
.. d Sign-tr ••• U1S. Alg •• ithl ,L •• ped C.de

Algorithll

63
ylnl • 5lII.lkltxln-lc1 k=O,1,2, ••• ,63

k=O

elnl • dlnl - ylnl

F.r k • 0,1,2, ... ,63
lII(k) = M(k} + utxtn-k} if e(n) >= 0
.Ikl •• Ikl - ... In-lcl if elnl < 0

Where .. use filter order = 64 Ind au = 0.01.

Note: This source progr. is the generic version; 110 configuration hu
not been set up. User hu to .odif), the Kin routine for specific
application.

Initial condition:
U PII stdus bit should be equal to 01.
21 SX" st.tus bit sh.uld be Stt t. I.
3} The current IF (dda •• ory ~ge pointer) should be page O.
4} Dlta ... ry CIE should be 1.
51 llit • ry U should be m.
01 llit. _.y /£GIll sh.uld be -m.

Chen, Chein-thung February. 1989

HtHHff+lfHHHHtffllllllllllllllllllllllHHH

• lEFllE PiIRAI£TERS
f

!JURI •• qu 64
PAlEO' •• qu 0

I lEFllE AIDl£SSES [f IIlfFfR AND aEFFICIENTS
I

10= .usect -buffer- ,Ml£R-l
INI .IStct -buffer-, 1
"U .usect -coeffs- ,(Ji[£R

I RESERIIE AIlIIlESSES FtJl PARAIETfRS
I

I); .USlct -parueters\1
VI • usect -paI'ueters -.1

ERR: .useet ·parueters",l
(1£: .useet Rpal"ueters·,1
U: .useet ·parueters".1
ERRF: .useet "paruettrs·,1
NEGMU: .ustet ·paruetersR,I
*ff.l"HHHffHHHH~

FERFlIlM 11£ ADAPTlIE FILTB!
IflflftfllfHIHit*HHHHfHHHH

. text

FIR

ESTlMTE TI£ SIGNN. Y

LARP
CNFP
II'YK
LAC
LRU<
RPTK
MCD
CNFD
APAC
SACH

AR3

° ONE, 15
AR3,XN
tJlIEl-1
Ifj+OfdOOh,

Cl£CK Tl£ SIGN [f ERROR

LT
NEG
ADDH D
BGEI NEXT
LT /£GIll

1I'IIATE TI£ !.EIGHTS

NEXT lARK ARI,ORDER-I
LRU< AR2,1fj
l.Rl.K AR3,XN+1
II'Y ,AR2

ADAPT IALR 1,M3
II'YA ,AR2

SACH t+,O,ARI
BANI ADAPT, , AR2

•
FINISH .end

Configure eo is progr ... lHIIory
Clear the P register
Using rounding
Point to the oldest saple
Repeat N tiMS
Estiaate YCn)
Configure eo a5 data IBOry

; Store the fi I tel' output

T register = U
ACe • - Ylnl
ACe • Dlnl - Ylnl

; T register = -U

; Set up counter
; Point to the coefficients
; Point to the data salple
; P • U I Xln-kl
; load ACCH lIIith W(k,n) II round
; Wlk,n+1I • Wlk,nl + P
; P • U I Xln-kl
; Store "(k,o+1)

> "CI

~
= ~
tfj
~ >.

rIQ~
Q .,

:1. ~
~tIl
="~ e ~ .,
~; til _ = 00 (JCI~ .,
~= ="n
tD ~

~E;
=::tD
00 ~.
~~ N="
=00 n
N(JCI UI=
~

~
~
00

~ r s
::to
§

~
::...
~
~.

~ ::::­
~

~

~.
So
So
~

~
~
tv
<::>
Q
v,
~
So
~

~
~
tv
<::> a
<::>

~
10

f TSE30 - Adaptive trlnsytrnl filtfr .itb Sign-£rror UIS
algoritht using tho TIIS32OC3O

A)gorilh,"

63
yIn) = SUI olk)lXln-k) koO.I.2 ••••• 63

koO

oln) • dIn) - yIn)

for k=O.l,2, •• 63
olkl • olk) + ulxln-k) if tl,))= 0.0
olk) • olk) - Ulxln-k) if 01,) (0.0

Where WI' USf filter order = 64 and au -= 0.01.

Chen, ct.ein-cbung fIIreb, 1989

tHHfHfHffHfHfffHHHtHHfHlHHHHHfffH

.copy ·ildilpfltr.int l

HfHHlfHHffHfffHHHfHHHHfHflKlHf

PfRFIRI ADAPTIVE FILTER
fllfHfltHHHfffffHHflfHHfIHHHfIHHf

order .set b4
tU •• et 0.01

INITIIIl.IZE POINTERS AND MRAVS

• text
begin .Sft

LDI order , 8K Set up circuliI' buffer
UI' txn..oddr Set dlta pilg.
LDI lxn..lddr.ARO Set pOinter for x(]
LDI lIon ... ddr.MI Set pointer for at£]

UF O.O.RO RO • 0.0
RPTS order-t
STF RO. tMO++lllI ,xll'O .. STF RO.1M1++11l1 ; .11 ·0
LDI liruddr,AR6 ; Set .pointer for input ports
LDI lout..a.ddr ,Nfl ; Set pointer for output ports
UF ".R4 ;R4=.u
UF ".R5 ,R5'"

•
input:

UF _.R7 ; bput dCn)
II UF t+ARl>lll • R6 ; Input xCn)

STF R6.1MO = Insert xl,,) to buffer

• CIIf'U1£ FILTER OOTPUT yIn)

UF 0.0.R2 II ; R2 = 0.0
I _3 tMO++IIlI.1M1++IIlI.RI >

RPTS ord,,-2 "C
II'YF3 tMO++lIll.1M1++1Il%.RI "C

~
;; ADW3 Rl.R2.R211U ; yIn) = oll.xll =

ADIF Rl,R2 f IRelucit last fesult ~

I CIIf'U1£ ERROR SIGNAL tIn) ~
tfj

SUBf R2.R7 ; tIn) • dIn) - yIn) N >.
OOTPUT yIn) AND eln) SIGNALS ~ 1-3

STF R2. tAR7 , Send out yIn) Q rJ
:: STF R7,t+M7U) ; Send out ,en) :I. =

.... tIl
• If'DATE IlEIIlHTS oln) r ;:g

ASH -31.R7 , Get Signltln)] ~
IORJ R4.R7.R5 , R5 = S[tln)] • U ~ ~
tFtF3 offtRQ++CUJ.,R5,Rl; Rl = S[e(n)) " U .. xCn) til ~
LOt order-3,Re ; Initialize reptit counter 53- t/.}
RPTB SEUtS , 00 i • O. N-3 (lei
1f'YF3 tMO++I1lI.R5.Rl; Rl • S[tln)] • U I xln-i-[) ..,

•• AOOF3 IMI.RI.R2 ; R2 • oHn) + S[tln)] • U I xln-j) ;. ==
SEUtS STF R2.1M1++11l% , oHn+[) • oiln) + S[eln)]lulxln-j) ~ ~

If'VF3 1MO.R5.RI , For i = N - 2 ==
.. ADW3 IMI.RI.R2 1-3 ..,

BD input ; Delay brancb ~ tc>
STF R2,tAR1++(1)1 ; lIIiln+U = .itn} + S[.Cn)]tut')(Cn-i) ~ ~
ADIF3 IMI.RI.R2 00 ~
STF R2.1M1++11l% , Update) .. t 0 ~ =: N=-

I IEFIIE COISTANTS (is 00

xn .usect "bufftr-,order (".N ~.
Mn .useet ·cotffs"lordfr = =
iLaddr .useet ·yus",1 I
out-ddr . used "vars'''. tr1
xJ_addr .used ·vars·,' .,
Im_addr .used ·vlrs·,. a
u ,used ·virs",l .,
cinit . sect ",cinit"

.lIIord 5, iru.ddr ~
• word 08040(l()h ~
• word 0804002h ~

- ~ 00 .lIIord l1li1

.float .u

.end

s

~

I s
§"
~
~

~
~.

~
!it
~

s.
So
So
<1>

~
~
N

Q
c ..,
So
<1>

~
~
N
C a c

.titl. 'TSS25'
IHHHfHtlllllllllllllllllHHHffHlftHHfHHlfHHlHtHfflfHf

•
TSS: Adi.ptiVt Filter Using Transversal Structul'f

and Sign-Sign UIS Algol'ithl ,Looped Code

Algorith.'

63
yIn I = 5U1 .lkl",ln-kl k=O.1.2 ••••• 63

k=O

tIn I = dIn) - yIn) •

For k = 0.1.2 ••••• 63
lII(k) = w(k) + u if e(nlfx(n-kl)= 0
wlk) = 1110:1 - u iF e{n)~(n-Ic) < 0

Where we use filter order = 64 and IU = 0.01.

Note: This source progru is the generic version; 110 configuration hiS
not been set up. User has to aodify the Hin routine for specific
,pplication.

Initial condition:
U PIt status bit should be equal to 01.
2) SI" status bit sbould be 5.t to I.
31 Tb. curt.nt If (data ory page pointer) should be page O.
4) Dill lfI"y !X£ 5bould be I.
5) Dih, anory U should be 'n7.

eMn, Chein-thung Februity, 1989

HfIIHIHflIHfHfHHIHflHIHHIIHIHfIHIHH

IEFIIE PARAI£TERS

OOJERI
PAGEO'

.equ.

.equ
64
o

IEFIIE ImlESSES IF IlFFER AND ClEFFICIENTS

XO: .usect ·buffer· .0U£R-1
IN: .usect ·buffer· ,1
.,.: .usect ·coeffs".(JUER

RESER'IE ADIHSSES FOR PARAlETERS

D: .usect api.rueters· 11
YI .useet ·pitueters· ,1
ERR: .ustd -"rueters·,1

1)£: .useet ·pvueters·.l
U: • ustet ·paruetfrs· ,1
ERRF: • useet ·,aruettl's- ,I
ffUHfIfHUHfHfffflffHffHlHf

PERFOOII 11£ ADIIPTI\£ FILTER
ft.,fHfHfIIH.tHtHHfHHHHH

· • text

FIR

ESTiIlATE 11£ SIGNAl. Y

UIIIP
CN'P
If>\')(

LAC
l.RI.K
RPTK
I!ACIl
CN'D
API£
SACH

ARJ

o
!x£.15
ARJ.XN
ORDER-I
IoN+OfdOOb

SET !P 11£ POINTERS

lARK ARI.ORIEl-!
l.RI.K AR2.111
lRlK ARJ.XN+I

Cl£CK T/£ SIGN IF ERROR

/£G
ADI»I D
SACII ERR

• !PIlATE 11£ IoEIGHTS
•
ADAPT

•

LAC
lOR
SACL
LAC
IORK
ADD
SACH
BANZ

FINISH .tnd

1-,O,M2
ERR
ERRF
ERRF
111.15
1,15
".I.ARI
ADIIPT ARJ

Configure SO 1.5 progru ... ory
Clnr the P register
Using rounding
Point to the oldest SUlple
Repeat N tiMs
Estiu.te yen)
Configure BO as data ... ory

; Store the fi Iter output

Set up counter
Point to the coefficients
Point to the dila supJe

, ACe· Dlnl - YIn)

ACe = Xln-k)
Get the sign of ERfUn} .. X(n-k)
Store the sign
Get the sign with its sign extension
Get the convergent factor tlJ Dr -til
Upd.te Wlkl

> :g
~

= Q.
~

~
>~
~1-3
S; "1 ~ = ="tIl
= ~ ~~
til ~ -= 00 CICI

~~
= 1-3"1

~~
OO::;;!
~ N ==­(100
N
fJlCICI

= I
00

CICI

=
~
00

~

t
is
g"
~
~

~
~.

~
~
;;"!

s.
So
So
"'
~
~
N

9
c ...
So
"'
~
~
N
C
Q
c

~ -

fHHHfHlIHffHIHHHtHIHHHftHfflHHffHffHHfHtHH

I TSS30 - Adaptive tr&h5vtr5~1 filter IiIith Sign-5ign US
.. Igoritt. using the lltS32OC3O

Algor-jth.:

63
y(n) z StII .. (U~ln-k) PO,1,2, ••• ,63

PO

.(nl = den) - yen)

I, for k=O,1,2., ••• 63
o(tl = oCt) + ., if x(n-(cllt(n) >= 0.0
1iI(k) ;; .. Ck} - u, if xCriJftCn) < 0.0

...,,.. 11ft use fi1ter order = M and .u = 0.01.

Chen. CbeiD-Chuag llareh, 1989

.lHllHfHHHlIIIIIIIIII •• I.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH

• copy ai.ckpf1tr. iDt'
order ,Sft 64
.. ,set 0.01

• INITIIILIZE POINTERS AND _'IS

• text
begin .s.t

input:

LUI
LII'
LUI
LUI
UIF
UIF
UIF
UIF
IIPTS
STF

Ii STF
LDI
LDI

UIF
Ii UIF

STF

order,.
l>auddr
I>auddr,lIRO
""'-oddr,MI
I.,RO
",R4
",RS
O.O,RO
order-l
RO,IAAQ++(lJX
RO,IMI++(lJX
lin_ldclr,M6
h.t ... ddr,M7

_,R7
_U),R6
R6,eIIRO

CIItPUTE FILlER OOTPUT y(nl

UIF O.O,R2

; Set u, circulir buffer
; s.t dAti pige
; stt p.inter for x(]

; Set pointer for !f(]
;RO=IIU
; R4=1U
;RS=.u
; RO = 0.0

xll = 0
oil = 0
s.t pointer for input ports
Set pointer for oatput ports

Input d(nl
Input xC D)

Insert xen) to buffer

; R2 = 0.0·

II'Yf3 IAAQ++UlX,IMI++(lJX,RI

ordtr-2 R1'TS
II'Yf3

II ADIF.l
ADIIF

1AAQ++(Il1, IMI++(IIX,RI
RI,R2,R2 ; y(nl = oll,x[]
Al,R2 1 Include lISt result

COtPUTE ERROR SIGfW. .(nl AND IlJTPUT y(nl AND .(nl SIGfW.S

SUBF
STF

II STF

R2,R7
R2,<M7
R7,_7(l)

lPDATE II:IGHTS o(nl

ASH
XORJ
UIF
ASH
XOR3
ADIF.l

LUI
Ii'TB
UIF

Ii STF
ASH
XORJ

-3I,R7
RO,R7,RS
IAAQ++(l)X,R6
-3I,R6
RS,R6,R4
IMI,R4,R3

SSUtS ADIIF3

order-3,RC
SSUIS
IAAQ++U IX, R6
R3,IMI++(l)X
-31,R6
RS,R6,R4
IMI,R4,R3

LIIF
II STF

ASH
lID
XORJ
AIlDF3
STF

IEFIIoE caeTANTS

eIIRO,R6
R3,IMI++UIX
-3I,R6

input
RS,R6,R4
IMI,R4,R3
R3, eARI++(111

xn .useet 'buffer',ordtr
IiII'I .usect 'eotHs' ,order
irt..addr .useet ·vats.,1
ouLaddr .useet 'vars',l
xl'I-i.ddr .useet 'Yl.rs·,1
Ial-i.ddr • used ·vars.,1
u .usect -Yf.rs-,1
cinit • sect -.cinU-

• !ford S,iruddr
• lIIord O804OOOh
... rd OS04OO2h
•• 01'4 xn
.lford IIIn
.float .u

.tnd

.(nl = d(nl - yen)
Send out yen)
Send oat e(n)

R7 = Signle(nll
RS = Sign[e(n)l I- a
R6 = x(nl
R6 = Sign[x(n-Ul
R4 = Signlx(n-illeSignl.(nll ••
R3 = IIIHn) + R4

Initialize repeat counter
Do i = 0, N-3
Get next dati
Updde lIIi (0+1)

Get the sign of dltl
Decide the sign of u
R3 = IIIHn) + R4

Get I.st dot.
Update oN-2(n+1I
Get the sign of dati
Delay brinch
Decide the sign of u
Coop.t. oN-l(n+1I
Store list ,,(n+l)

:g
~
~
~

~
>~
riQ~
~ .,
.... 11:1 -= ="t'I.l e ~ ('t)

O~ t'I.l 11:1 -
Ji~
~~ -~=
a::~
'J).~
~
N­
=="
r':l'J).
~
=~

'J). t§ .

~

~

~
'"G

ff
~
is
§'
~
::....
~
~
~.

:31
1?
~
~
§:
S-o:.

~
~
tv
C o
..."
<:l ...

• title ~Tl25~

fH*H+f.H+tHH+ffHHHHtfffHf fHHHHHHHHftHtffHHHf

•
TL25; Ad.a.ptive Filter Using Tn.nsversal Structure

tnd Leaky-LMS Algorithl, Looped Code

Algorithl:

b3
yin) = SltI .Ikilxln-k) k=O.1.2 b3

k=O

eel'll = dlnl - yin)

!IIlk) = v-w(kl + u_eln)fx(n-k) k~.1.2 ••• 63

"'hue Iff use filter order = b4 and au = 0.01,

Note: nis source progl'u is tl'tt generic version; JlO configurltion has
not been set up. User hu to lodify the Rio routine for sped fie
a.pplication.

Initial condition:
U Pft status bit should be equil to 01.
21 SXI'! status bit should be set to 1.
3) The current If (data Iflory pige pointer) should be pige O.
41 Dih. It.ory (1£ should be 1.
S) Data Ifaory U should be 'n7.

Chen, Chein-Chung February, 1989

HfffHfHffHHHfftHHHHHfHHHftfHfHHfH

DEFII£ PIlRAl£TERS

•
IlIDER: ,equ b4
LEAKY: .equ 7
PAGEO: .equ

DEFII£ AllDRESS£S I:f' 9..fFER AND ClHFICIEHTS

XO: .used -buffer\au£R-l
IN: .unct -buffer· ,I
WN: .uud ·coeffs",ORlER

it RESERVE AlIMESSES FDR PllRAl£TtRS

~
~
tv
C a c

D:
V:
ERR:
()£:

.usect ·pi.raeters· ,I

.used ·puHfters· ,I

.usect • puUtttrs· ,I

.used "pt,rilltters· ,I

u: .USfct ·pirueters·, 1
ERRF: .used Rpuuehrs·,1 >-
fffffHlHHHIffflflHffHff+ff+H -c

PERFOOIt TI£ AlW'T1IlO FIllER "'CI
"'-tfHffHfIHffflfHlfHHHHHf ("t)

.- = Q..
ESTlMTE THE SIGNAl.. V ~.

~ ~ ~
CHFP Configure eo a.s progru If.ory
I'PYK 0 Clea.r the P register •
lAC CfE,15 Using rounding
L.RI..J(AR3,XN Point to the oldest suple ~

FIR RPTK ~-1 Repeat N tiltS ~
I1IICll IIMfdOOh.... Es Ii .. t. Yin) =
CWD Configure eo as data llellory ~
~ ~
SACH ; Store the fi J ter output e ro

til '"l
~TI£~ ~~

'-EG • ACe = - Vln) (JQ -
AD()l D' ~
SACH ERR , ERRln) = Din) - Yin) ;- '"l

= lPDATE TI£ IEIGHTS ~ II
LT ERR , T = ERRln) ~ S;
I'I'Y U , p = U • ERRln) rJJ. ~
POC ~
ADD OPE, IS ; Round the result N ~
SACH ERIIF , ERIIF = U I ERRln) = :=;

Cl=-
lARK MI,ORDER-l ; Set up counter N
LRLK AA2.~ ; Point to the coefficients tJI ~
LRLK AR3, XN+l ; Point to the da.ta sup 1@ to
LT ERRF ; T register = U f ERR(n) ~
I'I'V AR2 , P = U • ERRln) I Xln-k) ~

AMOT ZALR I,M3 ; Load ~ lIIith A<k,n) &: round ~
rFYA +-,M2 : WO::,n+1) = "'(k,n} + P ~

: p = U • ERfHn) f X(n-kl ~

SUB f,~ : ACe = R I W(I::,n) + P ~

SAO-! I+,O,ARI ; Store W(k,n t 1) 00
BAN! AlW'T AR2

> FINISH • end riQ'
C
'"l

~
:;

:?
UIIHfffHf H .. HHH UHHHf IHHHHH**HH+" I I ADIF3 RI,R2,R2 , ylnl = w[J.x[]
• TL30 - Ada.ptive tra.nsversa.l ·filhr !!lith Ltiky LHS algorithl ADDF RI,R2 : include list result > 'i::j using the ntS320C30

"'0 ~
;: COMPUTE ERROO SIGNI<. .Inl AND OOTPUT ylnl AND .Inl SIGNI<.S '0 AlgorithD:

~ ~ SUBF R2,R7 ; fin) = dirt> - yin) = is b3 STF R2, 'AR7 ; Send out yin) ~ ...
ylnl = SUI1 wlkl'xln-kl k=0,1,2, ... ,63 II STF R7,t+AR7111 ; Send out fin) -.

~ § k=O

<Q., lI'DATE I£IGHTS .Inl C".l fin) = din) - yin)
N :.... tl'YF @u_r,R7 ; R7 = tlnllu/r !} lillie) = r*wlkl + ufe(n)tx(n-kl k=O,I,2, ... ,63 tl'YF3 _IlIX,R7,RI ; Rl = e{n)tulx(nl/r

--3 1a tl'YF3 .1IROt+l1lX,R7,Rl ; Rt = e(nlfu*xln-ll/r
~. Where we use filter order' = 64, r = 0.995 and IU = 0.01.

" ADIF3 tARl,Rl,R2 ; R2 = -.0(0) t eln)fulx(nl!t ""l
LOI order-4,RC ; Initialize repeat counter ~

~
Chen, Chein-Chung I1irch, 1989 RPTB LUIS ; Do i = 0, N-4 = tl'YF3 'AR2,R2,RO ; RO = rfwi(n) t e(nJtufx(n-i) CIl ;:;:-

d~ '"
IHHHHHlfHIHfffffffHIHIHHflHHlffHHIH I I AOIF3 t+AR1I11,RI,R2 ; R2 = wi+1(n) .. elnlfulxln-i-1)/r

2l .copy "a.dapfltr.int" LUIS tl'YF3 tAROt+! 114, R7, Rl ; Rt = eln)fulxln-i-2)/r CIl '"l fffHHlfHffHfflffHlffffHHfHf,*Hfflfflf
" STF RO, fARt ++(lIX ; store .i In+l) CIl <S = ~ §: PERFIHI ADAPTIVE FILTER tl'VF3 'AR2,R2,RO ; RO = rftM-3(n) + eln)fufx(n-N+3)

(JQ -fHfHHHlllfffHHHfHffllfflfHlfflfllHlf
" ADIF3 HM1(U,Rl,R2 ; R2 = ... 2In) + e(n)fufx(n-H+2)/r

s.. order . set 64 tl'YF3 tARO,R7,RI ; RI = fln)fulx(n--H+UIr rJ1
lIIu_leaky .Sft 0.01005 ; au I leaky STF RO,'AR1++11II ; Store ~3{n+J) ::r '" " ~ ""l

~
leaky .set 0.995 iO input ; Delay branch = tl'VF3 tAR2,R2,RO ; RO = rltili(n) + e(n)t-ufxln-N+2) --3~

~
INITIIUZE POINTERS AND ARRAYS

" ADDF3 <+AR11l1,Rl,R2 ; R2 = IIIN-Un) + e(n)lufx(n--N+lI/r

~= tl'VF3 'AR2,R2,RO ; RO = rf"i(n) + e(n)lufx(n-N+1l N .hxt STF RO,tARl++1l1% ; Stort ,,*"2(n+1) rJ1~ 0 " Q begin .set STF RO,fARl++(l)X ; Update last .,

id~ LOI ordfr,BK ; Sff up cil'cular buffer
V, LIP bn_addrl ; Set data page

1l:F1J£ COOSTANTS = <;) LOI txn-iddr, ARO ; Set pointer for x[] n
LOI hln_addr, ARt ; Set pointer for 'II[) (.H::r s.. xn .usect ·buffer",ordu LOI ir _addr ,M2 ; Set pointer for I'

'" .usect ·coeffs",order =~ '" LDF O.O,RO , RO = 0.0
in_addr .usect ·vars",l ~

~ RPTS order-l
ouLaddr .used N vars ',l = STF RO, 'ARO++llIX ,x[J=O
xn_addr .used ·vars·,1 ~ ~ " STF RO,tARlHllll , .u = 0
IIIn_addr . used ·virs",l ~ N LOI t!:in_addr ,ARb ; Set pointer for input ports
'-' .usect ·vars",l

~ 0 LOI @ouLaddr,M7 ; Set pointer for output ports
r .lJsect ·virs·,1 0 input:
r_addr .used 'vars",1 ~ 0 LIF 'ARb,R7 ; Input din)
cinit .sect •. cinit"

rJ1 I I LDF .+ARbill ,Rb ; Input x(n)
.word 7,in_addr STF Rb, tARO ; Insert x(n) to buffer
.• ord II8II4OOOh > .• ord 0S040II2h -COIlPUTE FILTER OOTPUT ylnl
.• ord xn (JQ
.word .n 0

LIF 0.0,R2 ; R2 = 0.0
.float au_leaky ""I
. float leaky ::r N tl'VF3 <1IROt+ll ll., tARIHllll.,Rl .word

9 0\ RPTS order-2 .end W tl'YF3 tAROt+llll., tAR1Hllll.,RI

N .titl. 'w.s' • text

~ tHHfffIHIHffHfffHUnHHIHtflttHHH.u ... nftffUtHUffffH UIS lARP M3 ; Sft current register >
I SAA ARI.SAIIOI ; Slve register ARt "'CI

1JtS: ARptiYt Filter subroutine using Tn.nsytrnl Structure SAA AR2.SA'1f2 ; Stve register AR2 "'CI
inG U1S Algorithl, Looped Cod. SAA M3.SAllC:3 ; Save register M3 ~

CNFP ; Configure 90 is progru .. lory = Algorithl: /tPYI(0 ; Clut the P register Q..
LAC OlE, 15 ; Using rounding

11-1 LRlJ(M3.IN ; Point to the oldest sup!.
~

~
yin} = SU1 .lk}IXln-k} kOO.I,2,oo.,N-I FIR RPTK (lUEl-I ; Reput N tiltS

== kOO MCD ~fdOOh.l- ; Estiaate Yin)
~

'G af'D ; Configure SO u aita, •• ory
~ tin) = din) ~ y(n)~ Pl'ri::

t"'I.
::! SACH ; Store the fi I ttl' output ~~ ~ IIIlkJ = wlkJ t ijft(n)txln-kl k=O,l,2, •• o ,N-I

is COIIPUTE Tl£ ERRIll 00[11
~ g. Where we us. fi 1 ttl' order = N >9 ;:s 1£6 , ACe = - Yin} -C'"

~
Note: This subroutine perforls Adaptive Fi lter using the utS Algoritha. ADIIl D IJQ-

There ire SOM initial conditions to Htt before cilling it. SACH ERR , ERRln} = Din} - Yin} ~« ::...

~
Initial conditions: Ll'DATE Tl£ IoEIGHTS ~OO

1) Ottl. Hlory M should be equi) to 1. =-=
~.

21 Diti It.ort U should bt equa.l to ttJ (QIS forlNtl. LT ERR , T =ERRln) 9 ~
3) Pt1 status bit should be equal to 01. /tPY , P = U < ERRln}

~
41 SIt'I sh,tu5 bit should be set to logic 1. Pri:: 0 0
5) 0'hI stitus bit shourd be set to 1. ADD OlE, IS ; round the resu It [11 S.

~ 6) Tht current DP (dlta ItRiory pig'. pointer) should bt plge O. SACtI ERRf , ERRf = U < ERRln}
~ = = p.s. 1) Tht return current auxiliuy register lIIill be AR2. l.ARI(ARt,ORIEl-! ; Set up counter IJQ ~

~ 2) ARt AR3 have been used in this subroutine. LRI.J(AR2,1oN ; Point to the coefficients 0
LRlJ(M3.IN+I ; Point to tht dih slIp!e =-~

S- Chen, Chein-Chung Februuy. 1989 LT ERRf ; T register = U .. ERRln) ~ ~
~

II'Y f~,AR2 , P = U < ERRln} < Xln-k} ~""I
'HfHfffHfttttH+'HunIHftHfHHHHfHftHH ADAPT ZILR <,M3 ; LOid ACCH .itt. Alk,n) &: round

~ I II'YA ... ,AR2 ; Wlk,n+1) = W!k,nl + P ~=
lEFII£ AND !<£FER SYIIOOLS ; p = U • ERFHn) , Xln-kl OO~

~ SACtI n,O,ARl ; Store Wlk,n+lI ~-<
N .gl.bol UIS,IlRlER,U.D.M. Y.ERR.IN.1oN BANZ ADAPT AR2 N~
C Q""I
Q RESERVE IIDlIlESS Foo PARAIETER LAR ARI.SA\£I Restore register ARt n~ v, LAR AR2,SA'1f2 Rutore register AR2 N-
<::> SAVEl: .UStct ·Plruttus·,l LAR M3.SAVE3 Restore register AR3 til 00 .,

SA\'f2: .usect ·~rueters·, I I
S- SAVE3: .USfct • plrUtters· , 1 FINISH RET "'I
~

ERRf' .usect Rptrueters· , 1 =
~ fHtfHttHtfHfHHf+HHHtHfHf .end !")

Fm'1l'II Tl£ ADAPTlIlO FILTER = ~ H'UHffHf'U'tHtfHHHHHf++I ""I
N • ~
C ESTl11ATE Tl£ SI~ Y a ~
c

.... =-

Appendix H2. Linker Command File for Assembly Main Program
Calling a TMS320C25 Adaptive LMS Transversal Filter Subroutine

..
> ~
L

is

~

; ~ ~~ h~
- ~'< ~-

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 265

~

~
';;l

! a
g'
~
~

!
~'

~
;;:;
;;
§:
So
~

~
~
N
c:>
Q
v.
<:>
So
~

~
~
N
c:> a
c:>

,.idth 132
fH-IfHffHI-H++HHfffftHHfHffHHfHfHHIHHH+HHHtff

* This is the ini ti~1 boot routine for ntS32OC3O idiptive
filter Progrus.

f This BOduTe perforls the foll~ing actions:
1) Allocates ind initializes the systea sh,ck.
2) Per-for-Is Iluto-initializdion, IiIhich copies section

... const- data frol R()I to DATA RAtI.
31 Prepare to sti.tt the user's ~sHbly progru.

H**HfffHff*f+HHHftHffHHHffflofHHHHflfHfHHHHH

STAClCSIZE .set 40h ; Size of systN stack
FP .set M3 ; Frue pointer

RESET
•

• sect
.word

·vectors·
adip_ini t

• ALLOCATE SPlICE Fill Tl£ SYSTElI STACK, INITIALIZE TIE FIRST IOIDS IN
• ,text TO POINT TO TIE STACK AND INITIALIZATlIJI TAlLES,

•
stack .useet ". stiCk., STAO<-SIZE

,text

•
stacLaddr .word
ini Laddr .liIord

stack
cinit

; Address of stack
; Address of init tables

tHffH4f+UtHHHI •••• IIII •••••••• JHfHfl+HtHHHHH.KH

• ADAPTIVE FILTER INITIALIZATlIJI ENTRY POINT FOCTlIJI

•
• SET LP TI£ INITIAL STACK POINTER

•

LJIP
LDI
LDI

stacLa.ddr
@sh.cLiddr,SP
SI',FP

• IIO AUTOINITJALIZATJIJI

UP iniLi.ddr
LDI tin; Laddr ,ARO
Cll'1 -I,ARO
BEQ done
LDI _,RI
BZD done
LDI _,ARI
LDI _,RO
SUBI I,RI

•
do_init:

RPTS Rl

Get page of stored address
LOid the i.ddress into SP
And into FP too

Gtt pige of stored address
Get address of init hbles
IF RAPt aodtl, skip init

; Get first count
I IF 0, nothing to do
; Get dest address
; Get first lIord
; Count - 1

; Block copy

done:

STI
:: LDI

LDI
BNZD
LDI
LDI
SUBI

BR begin
.end

RO,tARI++
_,RO
RO,RI
do_init
_,AR
_,RO
I,RI

Move next count into Rl
IF there is lIore, reptit
Get next dtst address
Get next first lIord
Count - 1

>
"'0
"'0
t'D = ~
~

ffi .
~
a:
rJ1
w
N = (1
W =
>
~
~

'S.
<
('D

~
=­('D
"1

9" -.... e:..
IS
~ -.... o
=
~ o

(JCl
"1

3

~

t
is
:::to
el
;::

<Q.,
~
§-

'"i::l
~.

~
~ ;;;
;t
§:
So
'"
~
~
N
a
D v,
el
So
'"
~
~
N
a
Cl a

~

fHfH+HH*******HtHHHH****HHHHHHHH-tH*,*",**HHff

f BT30 - T1'IS320C30 adaptive transversal filter lIIith
U'tS algorithm assub1y subroutine.

Algorith.:

N-l
yIn) = SUI1wlkltx(n-kl k=O,l,2, •.. ,N-l

k=O

tIn) = din) - yin)

111(1;:) = .. 00:) + ufflnlfxln-kl k=O,1,2 ,N-l

Where IH: use filter order = Nand IIU = 0.01.

Initial condition:

1) ARO and Ml should point to x[Ol and 111[0],
2) Data. lIIIulory U should contain step size.
3) Da.ta IJIellory order should contain N-2, where N is filter order.
4) Data lelDories d, y, and e should be defined in ciller routine.

Chen, Chein-Chung ~rctl, 1989

UfffHfHfffHffHfnffHfffffHfffHlfffffHHHf

.global L/'tS30,u,d,y,e,order
U*lfffffffUUUfflfffl**IIHfHHI**flfHfHtffff

PfRFffiI1 ADAPTl\l: FILTER
fHHHflHfflffffffl**HffffHfHHfHffHffffHff

. text
UlS30 .set $

PUSH Rl
PUSI'£ Rl
PUSIF R2
PUSH R3
PUSI'£ R3

• OO1I'UTE FILTER OUTPUT yin I

1.DF

If'VF3
RPTS
If'VF3

" AD1F3
ADDF

O.O,RJ , RJ = 0.0

_Ill!, tARl++llIX,RI
@Order
'ARO++IIIX, tARl++IIIX,RI
RI,R3,RJ , y(nl = o[J.x[J
RI,R3 ; Include list result

• COf'UTE ERROR SIINlL .Inl AND STOR£ ylnl AND .Inl

STF RJ,@y
SUIIRF @d,R3
STF RJ,@<

• ll'DATE WEIGHTS o[J AND SHIFT x[J

If'VF IU,R3
If'VF3 _(IIX,RJ,RI
!.DI lorder ,Re
SUBI I,Re
RPTB UIS
If'VF3 1ARO++IIIX,R3,RI

" ADlIF3 'ARI,RI,R2
UIS STF R2,fARl++(1J~

If'VF3 IARO;RJ,RI
:: AD1F3 tARl,RI,R2

STF R2, 1AR1++(IIX
AD1F3 tARl,RI,R2
STF R2,tARl++CIIX

POPF RJ
PIP RJ
PlPF R2
POPF Rl
POP Rl

RETS
.end

Store- yin)
.Inl = dlnl - ylnl
Store tin)

R3 = fin) f u
Rl = tin) f u f xln)
Initialize repeat counter

; Do i = 0, N-3
; Rl = tIn) f U f xln-i-li
; R2 = ~i(nl + tin) I u * xln-il
; ~i(nt1) = IIIHn) + tin) I U f xln-il
; for i = N - 2

; lIIi(n+1) = SjilnJ + eln) f u .. xln-i)

; Update last til

>
"t:l
"t:l
~ :=
Q..
s;;o

:=
.&;:..

t""I 0

~~
00'"

~

>5!
-C'"
(JQ-
~« _0 00
-=:
=-C'" 5! ""l
dO
'" S. So So

(JQ ~

-0
=-~
~ ~
~""l

~~
00'"
~-<
N~
Q""l
~~
~­Qoo -""l =:
~ =:
""l
~

~

~

Appendix H5. Linker Command/file for Assembly Main Program
Calling the TMS320C30 Adaptive LMS

268

Transversal Filter Subroutine

i

~u~~n~
"""'''' 8
oooo:::c:::::~

~ h~hHi
I;!,~

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

~
"<:j

~
~
~
Ei
§"
~
::...
§-

"<:j
::to
~
:!l
~
~

~
;;.
~

~
~
tv
C
Q
v.
<:> ...,
;;.
~

~
~
tv
C a c

$

. ti tIe ~ctJ1S'

UHH HHtfI-H' .. UHHHHHHltf.""HHH ... ttHH ... ffltffffHf

CU1S: Adap:tive Filter C subroutine using Transversal Str'ucture
and lJtS Algorithll, Looped Code

Algotith.:

N-I
yin) = SLI1 wlk)f><ln-k) k=O, 1,2, ••• ,N-I

k=O

tIn) :; dIn) - y{n)

!ilk) :; ~(k) + ufe(nJ*x(n-k) k=O,1.2 •••• ,N-l

Where we use filter ordu :; N

Usage: IIks(n,.u,d,x,f.:y.I!el
n - order of fi 1 tel'
.u - convergence factol'
d - desired signal
x - input signal
Ly - addr of output signal
lte - add!' of error signal

Note: Data llelory 0200h 0200h+N-l &: 0300h O3OOh+N-l are reserved.

Chen, Chein-Chung February, 1989

+HHHUHfffUHfffffffffHHf+HHHfffffHfffff

.def _las

RESERVE ADORESSES Fill PARAMETERS

OSTO: .usect ·puaaeters", 1
OS11: .usect ·puiJM!ters·,l
SAVE!: .usect ·puueters",l
SA\£2: .used ·puueters·, t
SAVE3: .usect ·puoueters·,1
SAVE4: .used ·pariattersN,l
ORDER: .usect ·pariHters",l
X: • usect ·pariaeters· ,1
D: .usect "paraaetersN ,I
U: .usect "parueters·,l
y: .usect ·pualleters",l
ERR: .used ·para.eters· ,1
ERRF: • usect ·paraJleters·,l
ADRLST: .usect "parueters· ,1

DEFIlE ADDRESSES OF W'FER UID aEFFiCIENTSS

CO£FFP: .tqu
.equ
.equ

OffOO~

0200~

030Qh
COEFFD:
FRSTAP:
HHffHHHfHff**fffHfflftHf

PERFORM TI£ AllAPTI\£ FILTER
HHf***ffHHHHHHHHHHHHf

_1 lIS

FIR

SAVE TII£ VALlES (F TI£ REGISTERS

. text
SAIl
SAIl
SAIl
SAIl
SST
SST!

ARI,SAVEI
AR2,SA1£2
AR3,SA\£3
AR4,SAVE4
OSTO
OST!

GET THE ADAPTIVE FILTER PARAI£TERS

SPI1
SSXM
SIJVI1
L.lJ'I(

MIVl
LAC f-

SUBK I
SACL ORDER
ADLK FRSTAP
SACL ADRlST
LAC
SACL
LAC
SACL
LAC f-,O,M3
LRLK AR3,FRSTAP
SACL

ESTIMATE THE SIGNAL Y

CNFP
MPYK 0
LALK 1,15
LAA AR3,AmLST
RPT ORDER
I1ACD aEFFP,'"
Ctf'D
APAC
SACH

COI1PUTE TI£ ERROO

lEG
ADI»i

Set P register shi ft Mde
Set sign extension .ode
Set overflolll aode
Set data. page = 0
Set pointer for getting papaaeter
ACe = N

,ORDER=N-I

; Store address of last tap

; Get and store the I1J

; Get and store the D

; Insert nelHst sup Ie

Configure 00 as prograa ataory
Cl ear the P register
Using rounding
Point to the oldest suple
Repeat N tiatS

Esti.a.te YIn)
Configure 9;) as data lIt.ory

; Store the fi 1 ter output

; ACe = - YIn)

>
"Cl
"Cl
!'tI

= Q..
~

~
i-'

>(1
-00

IJQ C
o 0"
::!. '"S
..... 0
=-C
53 ::to

= Cj!'tl
f!J. 0 =,
IJQI-3
..... '"S
=-~
!'tI = [IJ

1-3-<
~~
OO[IJ

~a
Noo = (1'"S
NC
tI1~

C
'"S
!'tI

~
~

.~
00

270

i .

>

•
"

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

~
"t;j

[
~
i=i
~.

~
~

!
~.

~
~
~
~
§:
So
'"
~
tz
tv

9
c
So
'"
~
tz
tv
C a c

!j -

HtftHflHlfHfHHfftfHfHtHfI4tff'fHfffUfHfHfff+lfHUf

f CT30 - Tt1S32OC3O C subroutine adaptive transversal filttr with
~ olgorit"".

Algorith.:

N-l
ylnl = SlIt .lkl*Xln-kl k=Q.l.2 ••••• N-l

k=Q

.Inl = din I - ylnl

wlkl = wlkl + ufe(n)fxln-kl k~,1.2, ••• ,N-l

Whet. lilt use filter order = Nand IU = 0.01.

Usage~ tllsln,MI,d,'-,b,&y,&el
n - order of fi 1 tel'
1M! - convergenct factor
d - desired signal '* -fi 1 tel' coefficients
lex - input signal buffer
Ity - addr of output signal
lie - addr of error signal

Chen, Chein-chung Karch, 1989

IHflHffHIHHHHHHlHtfHtfHH.ttfHffHtfH

.globil _tlas
FP • set AR3
HH.ffHfHfffHffHlfHHHHfllffHHfffHHffH

PERFOR/I AIlAPTIIE FILTER
IfHffHHHftfHffHflHHHfHffffffHffHHfffff

. text
_tl .. .set S

PUSH FP
LDI sp.FP
PUSH ARO
PUSH ARI
PUSH AR2
PUSH Rl
PUSIF Rl
PUSH R2
PUSIF R2
PUSH RI
PUSIF Ab
PUSIF R7

* GET FILTER PIlRAlETERS

LDI
LDI
LDI
SUBI

~121.RI
~lbl.ARO

t-FPISI.ARI
2.R!

Get fi 1 ttl' order
Get pointer for x[]
Get pointer for w[]
Set loop counter

* ClllPUTE FILTER OUTPUT ylnl

LDF

If>Yf3
RPTS
If>Yf3

:: ADIF3
ADDF

0.0.R2 , R2 = 0.0

<ARO+tl1 I. <ARl"l1 I .Rl
RI
*ARO+tll I. <ARl"l 1 I .Rl
Rl.R2.R2 , ylnl = oll.x[]
Rl,R2 ; Include hst result

* ClllPUTE ERROR SIIHIL .W AND STOOE yin I AND tlnl

LDI
SUIF3

" STF
LDI
STF

~121.AR2

R2. ttFP(I) .R7
R2.<AR2
~131.AR2
R7.<AR2

* lI'DATE WEIOOS oil AND SHIFT x[1

II'YF ttFP121.R7
If>YF3 t-ARO(I). R7.Rl
LDI RI.RC
RPTB ~

If'YF3 t-AROI1I.R7.RI

" ADIF3 t-AR1W.Rl.R2
LDF tARO.Rb

" STF R2.tARl
LIIS STF Ab._tAROW

ADIF3 t-AR1UI.Rl.R2
STF R2.tARl

POPF R7
POPF Ab
POP RI
POPF R2
POP R2
POPF Rl
POP Rl
POP AR2
POP ARI
POP ARO
POP FP
RETS

.end

Ott ylnl address
tin) = din) - yin)
Stond out yin I
Get ten) address
Send out t(n)

; R7 = tin) .. U

; Rl = tin) • u f xln-N+l1
; Initialize repeat counter
, Do i = 1. N-l
; Rl = t(nl • u I xCn-i+-lI
; R2 = lIIi(n) +- eCnl I u I xCn-i)
, Get x((nti-N+ll
; .. iCn+lI = !!lien) +- eCn) I u I x(n-il
, Shift x[]
; R2 = !!IiCn) +- e(n) I u f x(n)
; U,ditt liSt III

>
"C
"C
(D

= Q..
~

~
>~
-00
~ = ""l C"
~8
="= 9 eo = O(D
~. Q = ~ IJQ

l-3
;;~
(D =
l-3~
~Pi
00 til
~~
N-
=00
~::;­
~=
=~ =

~
$J ;:
~
00

272 Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

A Collection of Functions
for the TMS320C30

Gary Sitton

Gaslight Software

273

274 A Collection of Functions for the TMS320C30

Introduction

This report presents a collection of efficient machine language programs for advanced
applications with the TMS320C30. These programs provide basic math and transcenden­
tal functions. Other routines include vector functions, FFTs and linear algebra.

Library Overview

The set of programs fall into six categories:

I. Normal precision floating point math functions,
II. Extended precision floating point math functions,
III. Integer arithmetic routines,
IV. Vector utility routines,
V. Radix 2 FFT routines, and
VI. Linear algebra routines.

Categories I and II are programs which implement a minimal set of elementary
mathematical functions for advanced applications. In these categories, the functions FPINV
and SQRT are improved versions of the programs in the TMS320C3x User's Guide [1].
In category III, IMULT and IDIV are improved versions of the programs EXTMPY and
DIVI in [1]. In category IV, *FMIEEE and *TOIEE are array versions of the TOIEEE
and FMIEEE scalar programs from the User's Guide.

The names and short descriptions of these routines use some special notation:

Categories I and II:

Categories IV and VI:

Categories II and VI:

xd - indicates that the relative accuracy of the im­
plemented function is x decimal digits.

* - program name prefix stands for M or R.
M - selects the memory based parameter entry point.
R - select§the register based parameter entry point.
X - indicates the extended precision program

version.

A Collection of Functions for the TMS320C30 275

Consult the program source listings for more details.

276

The following are brief descriptions of the programs by category:

I. Normal floating-point (32-bit) math functions ($MATH.ASM):

A. SIN -computes a 7d sine(x) for all x in radians.
B. COS -computes a 7d cosine(x) for all x in radians.
C. EXP -computes a 7d exp(x) for all Ixl ~ 88.
D. LN -computes a 7d In(x) for all x > O.
E. ATAN -computes a 7d atan(x) in radians for all x.
F. SQRT -computes an 8d sqrt(x) for all x ~ O.
G. FPINV -computes an 8d 1/x for all x *- O.
H. FDIV -computes an 8d x/y for all x and all y *- O.

II. Extended-precision, floating-point (40-bit) math functions ($MATHX.ASM):

A. SINX -computes a 9d sine(x) for all x in radians.
B. COSX -computes a 9d cosine(x) for all x in radians.
C. EXPX -computes a 9d exp(x) for all Ixl ~ 88.
D. LNX -computes an 8d In(x) for all x > O.
E. ATANX -computes an 8d atan(x) in radians for all x.
F. SQRTX -computes a lOd sqrt(x) for all x ~ O.
G. FPINVX -computes a lOd 1/x for all x *- O.
H. FDlVX -computes a lOd x/y for all x and all y *- O.
I. FMULTX -computes a lOd x*y for all x and y.

III. Integer (32-bit) math routines ($MATHI.ASM):

A.

B.
C.

ILOG2

IMULT
IDiV

-computes m = log2(n), n ~ 2m for use with radix
2 FFT programs.

-computes 64-bit product of two 32-bit numbers.
-computes quotient and remainder of two 32-bit

numbers.

IV. Vector utilities ($VECTOR.ASM):

A. *CORMULT -in-place computation of the complex vector pro-
duct of two complex arrays using the complex con­
jugate of the second array.

B. *CONMULT -in-place computation of the complex vector pro-
duct of two complex arrays.

C. *CBITREV -in-place bit reverse permutation on a complex ar-
ray with separate real and imaginary arrays.

D. *FMIEEE -in-place fast conversion of an IEEE array to a
TMS320C30 array.

A Collection of Functions for the TMS320C30

E.

F.
G.
H.

*TOIEEE

*VECMULT
*CONMOV
*VECMOV

-in-place fast conversion of a TMS320C30 array to
an IEEE array.

-in-place multiplies a constant times an array.
-moves (fills) a constant into an array.
-moves (copies) an array into another array.

V. Radix 2 FFT routines ($FFT2.ASM):

A.

B.

CFFFT2

CIFFT2

-Complex DIF forward radix 2 FFT using separate
real and imaginary arrays and 3/4 cycle sine table.

-Complex DIT inverse radix 2 FFT using separate
real and imaginary arrays and 3/4 cycle sine table
(does not include the liN scale factor).

VI. Linear algebra routines ($LINALG.ASM):

A.

B.

*SOLUTN

*SOLUTNX

-Solves a well conditioned system of linear equa­
tions with any number of dependent variable sets.
Uses no (diagonal) pivoting with normal-precision
floating-point math.

-Solves a well conditioned system of linear equa­
tions with any number of dependent variable sets.
Uses no (diagonal) pivoting with extended­
precision floating-point math.

Extended vs. Normal Precision

Categories I, II, and VI represent a dual collection of programs implemented with
32-bit single- or normal-precision TMS320C30 floating-point arithmetic, and with 40-bit
extended-precision TMS320C30 floating-point arithmetic. Some of the normal-precision
programs (category I, for example) have been written using the TMS320C30 RND in­
struction for rounding to obtain the optimal precision from the standard floating point
TMS320C30 instruction set. This has been done with a slight loss of speed. Such round­
ing can be carefully eliminated by the user if the additional speed is necessary at the ex­
pense of some accuracy.

Extended-precision was implemented on the TMS320C30 by the simple implemen­
tation of the 40-by-40 floating-point multiply routine, FMVLTX. This was necessary since
the TMS320C30 has 40-bit addition and subtraction instructions, but the multiply operates
only on 32-bit inputs. By using the native add and subtract FMULTX and the extended­
precision registers RO to R7, 40-bit floating-point math was effecte~. Al140-bit constants
are stored in two consecutive words in memory. The first word is the normal truncated
32-bit floating-point number. The least significant byte of the second word contains the
remaining bottom 8 bits of the extended mantissa. The programs are coded to properly
load extended-precision registers with these double-word constants.

A Collection of Functions for the TMS320C30 277

The extended-precision versions of the programs in this report may be slower than
their normal precision counterparts. When using extended-precision results in RO from
category II programs, note that the results may be stored in memory with or without round­
ing. A more accurate normal-precision result will generally be obtained by rounding. You
should never round before using an extended-precision result as input to another extended­
precision program unless special circumstances exist. Note that truncation, not rounding,
will occur if an extended-precision register is moved to any 32-bit register or any memory
location. This will generally cause loss of accuracy in the amount of the value of the least
significant bit of the mantissa.

Program Utilization

Since all programs in this collection are intended to be invoked by a CALL instruc­
tion, you must have the stack pointer (SP register) appropriately set to an available memory
area, preferably in internal RAM. Programs in categories I and II save and restore the
data page register DP by using the stack area pointed to by SP. Programs in category
III do not alter or use the DP register at all. The programs in categories IV through VI
alter but do not restore the DP register.

All ofthe programs in categories I through III, except for ILOG2, are implemented
as straight line code. You may wish to disable the instruction cache while these programs
are being executing. This will cause no loss .of execution speed and will avoid flushing
out potentially reusable instructions in the cache. It is beneficial to have the cache enabled
when using most of the remaining programs (categories IV through VI) as they generally
contain multi-instruction loops.

Programs in categories IV through VI allow input through externally defined variables
addresses. The .global references indicate these addresses, where the input variable values
and/or addresses are located. The starting address of these memory locations is given by
the external variable $PARAMS. All of the addresses are assumed to be in the same
TMS320C30 memory page as $PARAMS. If this is not the case, the addresses or the
programs should be changed assure that the DP register gets set properly.

Programs in categories IV and VI also allow the use of registers to hold input
parameters. The exact registers to be used are found in the program source listings. When
using the register input entry point, refer to the program using the R prefix on the pro­
gram name, e.g. RSOLUTN. The memory based parameter input entry uses the M prefix,
e.g. MSOLUTN. The .global references to the R prefix entry points may be deleted if
they are not needed.

278 A Collection of Functions for the TMS320C30

Function Approximation Techniques

Categories I and II are made up of a collection of elementary mathematical func­
tions numerically approximated using two basic methods. The functions SIN, COS, EXP,
LN, and AT AN are approximated by using polynomials fitted to the various functions
over a limited range of the independent variable. The functions SQRT and FPINV are
approximated by iteratively solving a particular non-linear equation. The extended preci­
sion versions of these programs (category II) use the same approach with extended-precision
arithmetic and resort to more accurate polynomials or more iterations to achieve the desired
precision.

Polynomial Approximations

The polynomial approximation method is fundamentally very simple. A limited part
of a function is approximated by a polynomial of some order sufficient to obtain the desired
accuracy. The polynomial is generally a series of the form:

n
Pen, x) = E [a[i]xiJ,

i=O
(1)

where x is the independent variable, n the polynomial order (a fixed integer), and a[i]
is a set of n + I fixed coefficients.

The desired function, say f(x), is then approximated by a particular Pen, x) such that:

f(x) = Pen, x) + e(x), xl < x < xu, (2)

where xl and xu are the limits of the domain of x, and e(x) or e(x)/f(x) is the error func­
tion which has been usually minimized in the min-max (equi-ripple) sense. This is done
by selecting an appropriate means of calculating the coefficients a[i].

Various techniques and schemes are used in the selection of:

o the approximation interval,

• transformations on the function,

• selection of the polynomial form,

• error minimization criteria, and

• calculation of the coefficients.

See Hastings [2] for an excellenttutorial on this numerical methodology. All of the
polynomial approximations used in here were obtained from the National Bureau of Stan­
dards reference edited by Abramowitz and Stegun [3].

A Collection of Functions for the TMS320C30 279

Non-Linear Equation Approximation

The second method of approximation, using the solution of non-linear equations,
is easier to understand. This method requires that a solution for the equation g(x) = 0
be found. One means for solving this equation is by Newton-Raphson iteration. This can
be understood by considering the Taylor series expansion for g(x):

g(x + h) = g(x) + hg'(x) + rex, h), (3)

where rex, h) is the remainder of the series (which can be assumed to be small), and g'(x)
is the derivative of the function g(x). Leaving off the remainder in (3) we get, in terms
of incremental values of x, the approximation:

g(x[i+ 1]) = g(x[i]) + [x[i+ 1] -x[ijJg'(x[i]).

Solving for x[i + 1] in (4) with g(x[i + 1]) = 0 yields the approximation:

x[i + 1] = x[i] - g(x[i])/g'(x[i]).

(4)

(5)

Thus, x[i + 1] will converge to a solution of g(x) = O. Convergence can be shown
to be quadratic, i.e. the error in the approximation at each iteration is proportional to the
square of the error in the previous iteration. Minimally, this requires a sufficiently close
starting value for x[O] and the condition that ig'(x)i > 0 for all iterated values of x.

Math Functions Details

The approximation techniques can be applied to each of the classes of functions.
The following sections describe the approximations as they are applied to each function.

Inverse and Square Root Functions

For the problem of computing good approximations to sqrt(c) (SQRT and SQRTX
routines) and lIc (FPINV and FPINVX routines), both g(x) and g'(x) must be derived
and then use the iteration of equation (5). This is complicated by the restriction that divi­
sion should be avoided since the TMS320C30 has no divide instructions. For the iteration
to find the inverse of c, you can write:

g(x[i]) = lIx[i] - c = 0, (6)

which is solved when lIx = c or x = lIc. Taking the derivative of (6) and substituting
into (5) and simplifying gives us:

x[i + 1] = x[i][2 - cx[iD, (7)

which needs no division.

Thus, (7) will converge to lIc with the accuracy (in digits) for each iteration equal
to twice that of the preceding one. Thus, if x[O] approximates lIc to 3 bits of precision,
only three iterations of (7) will yield about 24 = 3(23) bits of accuracy.

280 A Collection of Functions for the TMS320C30

A similar iteration from f(x) = x2 for sqrt(c) can be derived from the formulation:

g(x[iD = x[ij2 - c = 0, (8)

which is solved when x2 = c or x = sqrt(c). The solution for (8) leads to the classic square
root formula:

x[i+l] = 0.5[c/x[i] + x[iJ}, (9)

but this equation uses division. However, the iteration from f(x) = 1/x2 for 1/sqrt(c) can
be shown to be:

x[i + 1] = x[iJ[1.5 - c'x[ij2}, (10)

where c' = c/2 = 0.5c. Though (10) needs no division, the final desired result must be
transformed by an extra multiplication by the input c because:

sqrt(c) = c[1/sqrt(c)J. (11)

Formula (10) will also converge, in the precision doubling fashion of the Newton­
Raphson iteration, given a suitable close starting value for x[O] and the use of sufficiently
accurate arithmetic. Note that the extended-precision version routines FPINVX and SQRTX
both use an extra iteration (for a total of 4) to achieve the needed 32-bit accuracy for the
40-bit format.

The initial guess x[O], for the iterations of l!sqrt(c) and 1/c, may be obtained using
an interesting approximation. A TMS320C30 floating-point number c = (1 + m)2e, where
o ~ m < 1 and -127 ~ e ~ 127. The extra 1, added to the fractional mantissa m,
is the implied bit. Then we can write the inverse of cas:

1/c = 1/(1 + m)2-e.

An excellent approximation for the inverse of the mantissa is:

1/(1 + m) = 1 - m/2,

(12)

(13)

which is exact at the end points: m = 0 and m = 1. Then the approximation for the
reciprocal would be:

lIc = (1 - ml2)2-e. (14)

A Collection of Functions for the TMS320C30 281

It turns out that this approximation can be achieved in a single logical operation.
If you compute the unlikely value of c' = c XOR OFF7FFFFFFFh, you would comple­
ment all bits in c except the sign bit. Including the implied bit and taking the effect of
one's complement arithmetic into account results in a final value of:

c' = [1 + (1 - m)]2-(e + 1), (15)

or the desired approximation:

c' = (1 -mI)2-e = lIc. (16)

c' gives about 3 bits of precision, which is an excellent seed x[O] for the lIc iteration.
Using e/2, you have a start for the lIsqrt(c) iteration as well.

Sine and Cosine Functions

The SIN, COS, SINX, and COSX (sine and cosine) routines all use the same basic
approximation (section 4.3.98, p. 76 in [3]). The series is for sin(x)/x but is obviously
transformed by mUltiplying by x. The polynomial of even terms then is of the form:

5
sin(x) = x 1: [a[2i]x2i] + xe(x) ,

i=O
(16)

where Ixl ~ Pi/2 and Ixe(x)I ~ 2(10-9). Instead of using another power series for cos(x),
you can use the fact that:

cos(x) = sin(x + Pi/2). (17)

The series given by (16) is only accurate in the 1st and 4th quadrants, i.e. Ixl ~
Pi/2. Sin(x) in the other two quadrants is found from:

sin(x) = sin(Pi - x). (18)

The case for x < 0 is expediently handled by using I x I for all calculations except
for the final multiply by x in (16).

Exponential Functions

The EXP and EXPX (exponential) routines use an approximation (see Section 4.2.45,
p. 71, in [3]). The expansion is of the form

7
exp(x) = 1: [a[i]xi] + e(x),

i=O
(19)

where 0 ~ x ~ In(2) and le(x)1 ~ 2(10- 10). The series for 2Y is found by substituting
y = x/ln(2) since:

exp(x) = exp(ln(2)y) = 2Y. (20)

282 A Collection of Functions for the TMS320C30

The new expansion then becomes:

7
2y = E [b[i]yiJ + e(x) ,

i=O

where b[i] = a[i](ln(2)i). See the coefficients in the EXP routine.

(21)

Values of exp(x) for x outside the convergent range are found by two means. First
for x < 0, note the relationship:

exp(-x) = lIexp(x), (22)

which does require an inverse (see the FPINV and FPINVX routines). For y > 1, let
y = n + f where n = 1, 2, ... and ° S f < 1. By substituting y in (20), you get

exp(x) = 2n+f = (2i)(2n). (23)

Natural Log Functions

The LN and LNX (natural or base e logarithm) routines use the approximation from
[3] (section 4.1.44, p. 69). The expansion comes in the form:

8
In(1 + x) = E [a[i]xiJ + e(x) ,

i=1
(24)

where ° S x S 1 and ie(x)i s 3(10-8). The expansion for In(y) can be used if the
transformation y = x-I is applied.

Values ofln(x) for x outside the convergent range are found in the following way.
First, make the substitution x = f(2n) for 1 S f < 2 and n = 0, 1, ... ,and then write:

log2(x) = log2(f2n) = n + log2(f), (25)

where log2(x) is the log base 2 of x. Using the relationship that log2(x) = hi(x)/ln(2),
you get the equation

In(x) = In(f) + nln(2). (26)

Arctangent Functions

The ATAN and ATANX (arc or inverse tangent) routines use the approximation
from section 4.4.49, p. 81 in [3]. The series with only even terms for atan(x)/x is trans­
formed to

8
atan(x) = x E [a[2i]x2iJ + xe(x) ,

i=O

A Collection of Functions for the TMS320C30

(27)

283

where -1 ~ x ~ 1 and Ixe(x)I ~ 2(10- 8). Values for atan(x) for x outside the con­
vergent range are obtained by noting the following identity:

atan(x) = atan«x - l)/(x + 1)) + Pi/4. (28)

Using the bilinear transformation y = (x - l)/(x + 1) assures, at the expense of
a divide operation, that y ~ 1 for x ~ 1. The case for x < 0 is expediently handled
by using Ixl for all calculations except for the final multiply by x in (27).

Divide and Multiply Functions

The last group of routines in category I and II are those for the additional arithmetic
functions FDIV and FDIVX (floating-point divides), and FMULTX (extended-precision
floating-point multiply). The divide operation for the TMS320C30, a = blc is done by
calculating the reciprocal or inverse of the divisor c. Then you compute

a = b(l/c). (29)

For a normal-precision divide, FDIV finds lIc by a call to FPINV. A subsequent
normal TMS320C30 floating-point multiply of the rounded inverse provides a suitable
quotient. For an extended-precision divide, FDIVX finds lIc by a call to FPINVX. The
inverse is then extended-precision multiplied by the dividend using FMULTX.

The extended-precision floating-point multiply simulated by FMULTX is the key
to the implementation of virtually all of the extended-precision functions. The extended
multiply is achieved using the normal floating-point multiply of the TMS320C30. For two
extended-precision numbers xa and xb, you can represent each as the sum of two floating­
point numbers: xa = a + ea(2-24) and xb = b + eb(2-24). The quantities ea and eb
are the one-byte extensions of xa and xb respectively.

Thus the complete product xc = (xa)(xb) can be expanded and written as

xc = (a)(b) + [(a)(eb) + (b)(ea)]2 -24 + (ea)(eb)2 -48. (30)

The last term in (30) is always less than the 32-bit precision in the mantissa of the
final result. Therefore, you need only to compute the first two terms in the product xc.
Also, note that all the indicated products in (30) may be computed using a normal-precision
native TMS320C30 multiply as long as the terms are collected in extended-precision
registers. The additions are also done using the native TMS320C30 add as it is implemented
in extended-precision.

284 A Collection of Functions for the TMS320C30

Integer Arithmetic Program Details

Integer routines differ from the floating-point versions because they produce only
integer results. If the computation can produce fractional values, then the fraction must
be truncated to leave only the integer result.

Integer Result Log Base 2

The routine ILOG2 is a useful utility for computing integer value m of the log base
2 of the integer D. The result is computed by successive multiplies by 2 (implemented
as shifts by 1). The resulting relationship is n ~. 2m, such that if log2(n) is not an exact
integer, m is rounded up to the next largest integer. This is useful as it allows the deter­
mination of m from any value n > 0 (e.g. not a power of two) which might require the
padding of additional values (zeros) for a radix 2 FFT. This program is very fast because
of a delayed branch loop and internally requires only 4(m + 1) cycles (cached) to do the
calculation.

Extended Precision Integer Multiply

The IMULT routine is a modified version of the program EXTMPY in the
TMS320C3x User's Guide [1]. It has been modified and slightly speeded up. The negation
of the final 64-bit product is done in two instructions by direct two's complement nega­
tion rather than by using one's complement to simulate the same result. The product is
computed by breaking the multiplier and multiplicand up into two 16 bit integers each.
Thus the full product c of the numbers a = au(216) + aI, and b = au(216) + bl is

c = (au)(bu)232 + [(au)(bl) + (bu)(al)]216 + (al)(bl), (31)

where the powers of two indicated are accomplished by shifts. Note that each product
in (31) must be represented as a 32-bit integer. The adds in the sum must be done with
care to facilitate the carry between the two final 32-bit components of the product.

Integer Divide

The IDIV routine is a modified version of the program DIVI in the TMS320C3x
User's Guide [1]. It has been modified to return the absolute value of the remainder of
the integer division. The remainder was originally computed, but was discarded during
the extraction process for the quotient. A few more instructions allow the extraction of
both the quotient and remainder from the result of the SUBC process. The program IDIV
may be used for the computation of the modulo function. The output of IDIV is the pair
[q, Irll = alb, with the property:

o ~ r = (a modulo b) < a, (32)

for a > 0 and b > O. The complete relationship is, by definition, a = bq + r, for positive
a and b.

A Collection of Functions for the TMS320C30 285

Vector Utility Routines

Vector utilities are functions which operate on arrays of numbers. Some utilities,
. like dot products and convolutions, are simple. Other utilities, like those presented here,
are more involved.

Complex and Complex Conjugate Array Multiplies

The array routine *CORMULT computes the point-by-point complex conjugate
multiply of two complex arrays. If the arrays are cl and c2, and are of length n, then:

cl[k] +- c1[k]conj(c2[k]), k = 1, ... , n, (33)

where +- means replaces. Each complex array is assumed to be stored as two separate
arrays, i.e. (c1] = (xl, yl] and (c2] = (x2, y2]. In cartesian complex representation, (33)
becom~s

(xl + iyl) +- (xl + iyl)(x2 - iy2) , (34)

where i represents the imaginary constant sqrt(- 1). Separating the real and imaginary
parts, we have:

xl +- xlx2 + yly2, yl +- ylx2 - y2xl (35)

This operation can be used for the frequency domain correlation of two FFTs to imple­
ment time domain correlation.

On the other hand, the array routine *CONMULT computes the point-by-point com­
plex multiply oftwo complex arrays. If the arrays are cl and c2, and are each oflength
n, then

c1[k] +- cl[k](c2[k]), k = 1, ... ,n,

In cartesian complex representation, (36) becomes

(xl + iyl) +- (xl + iyl)(x2 + iy2).

Separating the real and imaginary parts results in

xl +- xlx2 - yly2, yl +- ylx2 + y2xl.

(36)

(37)

(38)

This operation can be useq for the frequency domain convolution of two FFTs to imple­
ment digital filtering.

286 A Collection of Functions for the TMS320C30

Complex Array Bit Reversal

The array routine *CBITREV executes an in-place bit reverse permutation on two
arrays simultaneously. This operation is generally used for index scrambling before a DIT
FFT (decimation in time, see CIFFT2), or after a DIF FFT (decimation in frequency,
see CFFFT2) for index unscrambling. Therefore, *CBITREV is useful in permuting com­
plex arrays stored as two separate arrays which are associated with radix 2 FFTs. The
program uses the bit reverse indexing feature of the TMS320C30 to achieve this function.
The loop in *CBITREV is nearly as efficient in permuting two arrays together as per­
muting one array alone. This is due to the use of parallel load and store instructions and
a delayed (single cycle) conditional branch.

Floating Point Conversions

The array routines *FMIEEE and *TOIEEE are vectorized versions of their original
scalar counterparts FMIEEE and TOIEEE. Both routines do fast conversions from or
to IEEE format by avoiding dealing with special rare cases. Also, both programs convert
the numbers in the arrays in-place which destroys the original data. These array versions
of the format conversion routines are much faster than calling the scalar version routines
in a special loop. These routines also have their own internal, shared constant table for
conversions.

Vector Primitives

The array routines *VECMULT, *CONMOV, and *VECMOVare a useful suite
of efficient programs for simple array operations. The first routine, *VECMULT, per­
forms the simple operation x[k] ~ x[k]c which is a scalar-vector multiply useful in uniform­
ly scaling an array by a constant c. You can use this for scaling arrays after an inverse
FFT by choosing c = lin. The next routine, *CONMOV, performs the operation
x[k] ~ c which is useful in filling or initializing any portion of an array to a single cons­
tant c. The last routine, *VECMOV performs the simple operation x[k] ~ y[k] , an array
move, and is, therefore, generally useful.

FFT Routines

This category contains the two complementary radix 2 complex FFT programs
CFFFT2 and CIFFI'2. These programs differ from previously available TMS320C30 FFT
programs in that they operate on complex arrays which are stored as two separate and
independent real arrays. Both routines do the FFTs in-place and do no index permutations
or constant scaling (multiplication). Also these programs require only a 3/4 cycle exter­
nal, pre-computed sine table. As with previous FFT programs, these, too, have a special
multiply-less butterfly loop for the occurrence of unity twiddle or complex rotation factors.

A Collection of Functions for the TMS320C30 287

The routine CFFFr2 is a DIF radix 2 complex forward FFT program and thus
assumes a normally indexed pair of input arrays. The output array is bit-reverse permuted
and normally must be unscrambled to be of any use (see *CBITREV). The routine CIFFT2
is a DIT radix 2 inverse FFT program and thus assumes a bit-reverse indexed pair of
input arrays. A normally indexed complex frequency spectrum must be bit-reverse scrambl­
ed before using CIFFT2 (again, see *CBITREV). On the other hand, the output from
this inverse FFT is in normal indexed order, but lacks the traditional scaling by the factor
of lin. Therefore, back-to-back calls of CFFFT2 and CIFFT2 will return the original
complex array (in proper order) but multiplied by a factor of n. Consult the handbook
by Burrus and Parks [4] for additional FFT algorithm details.

Linear Algebra Routines

The routines *SOLUTN and *SOLUTNX are the normal- and extended-precision
implementations of the algorithm for solving simultaneous linear equations. This algorithm
is the modified Gauss-Jordan elimination without (off diagonal) pivoting. This is a simple
algorithm which is intended for use with well-conditioned systems of dense linear equa­
tions of moderate size. Well conditioned means that the system oflinear equations is linearly
independent or non-singular. This subject and further algorithm details are to be found
in chapter 2 of [5] by Press et al, or any other book on the numerical techniques of linear
algebra. This algorithm is suitable for a wide range of problems requiring the solution
of a system of linear equations, e.g. exact or least squares polynomial fitting.

A simple system of linear equations has the form:

A[l, l]x[l] + A[l, 2]x[2] + ... + A[1, n]x[n] = y[1], (39)
A[2, l]x[l] + A[2, 2]x[2] + ... + A[2, n]x[n] = y[2],

A[n, l]x[l] + A[n, 2]x[2] + ... + A[n, n]x[n] = y[n].

Symbolically, you may write A = A[i, j] as the n x n matrix of coefficients, and
x = xli] as the unknown independent variable (column) vector, and y = y[j] as the depen­
dent variable (row) vector. Thus (39) can be written in short hand form as Ax = y or
Ax - y = 0, where the multiplication indicated is a matrix-vector multiply. The fun­
damental problem in linear algebra, then, is to find the solution vector x. In fact, you
may desire to find the m different solutions to m sets of linear equations which share the
same coefficient matrix A, i.e. Ax[k] = y[k], for k = 1, ... , m.

288 A Collection of Functions for the TMS320C30

You can solve the general problem just stated by using *SOLUTN, or with more
accuracy with *SOLUTNX. This is done by constructing a tableau B (table of coefficients)
which is simply the coefficient matrix A (in row major storage format) with the negative
of the y vector(s) appended (:) as m extra columns to A. Thus you would have B = A
: -y, as your problem, where B is a n by n+m matrix and typically m = 1. Thus, for
the common case of m = 1, the input array B can be written as:

A[1, 1], A[1, 2], ... , A[1, n], -y[I], (40)
A[2, 1], A[2, 2], ... , A[2, n], -y[2],

A[n, 1], A[n, 2], ... , A[n, n], -y[n].

After the *SOLUTN routine is executed, the matrix C = A' : x appears, where
the co1umn(s) beyond the original coefficients A (the y[k] vectors) have been replaced
by the solution vector(s) x[k]. The new matrix A' is a partially computed version of the
inverse of the matrix A. The complete inverse of A, which is normally computed by the
standard Gauss-Jordan scheme, is rarely needed. Therefore, a faster modified algorithm
has been used which does about half the work.

This simple method used for solvi~g systems of linear equations has two restrictions.

1. As the pivoting operation (exchange of x and y variables) always starts with
A[I, 1] and proceeds down the diagonal, A[I, 1] must be non-zero. This is
because, in the exchange process, you must divide by the pivot element. A zero
coefficient at A[1, 1] may be moved by reordering the variable indices by ap­
propriately swapping rows and columns in A and in y.

2. The maximum absolute value of the elements in A must be approximately uni­
ty. This is necessary to assure that no pivot element is encountered which is
smaller in magnitude than 10-8 for *SOLUTN, and 10-10 for *SOLUTNX.
This restriction monitors the system condition and assures an adequately ac­
curate solution, but the fmal solution should always be verified by substitu­
tion. This is done by inspecting the elements of the error vector e = Ax -
Y computed by using the solution x, and the original A and y.

A Collection of Functions for the TMS320C30 289

Summary

This report presented a set of routines that can be used in digital signal processing
applications. The appendix contains the source code of these routines. This source code
can also be obtained from the Texas Instruments Electronic Bulletin Board (713) 274-2323.
If there are comments or corrections, please contact the author of this report:

Mr. Gary Sitton
Gas Light Software
5211 Yarwell
Houston, TX 77096
Tel (713) 729-1257

References

(1) TMS320C3x User's Guide (literature number SPRU031), Texas Instruments, Dallas,
TX, August 1988.

(2) Hastings, C. Jr., "Approximations for Digital Computers", Princeton University
Press, Princeton N.J., 1955.

(3) Abramowitz, M. and Stegun, I.A. (Editors), Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards
(Applied Mathematics Series 55), Washington D.C., 1964.

(4) Burrus, C.S. and Parks, T.W., "DFT/FFT and Convolution Algorithms", John
Wiley and Sons, New York N.Y., 1985.

(5) Press, W.H., Flannery, B.P., Teukolsy, S.A., and Vettering, W.T., Numerical
Recipes in C - The Art of Scientific Programming, Cambridge University Press, Cam­
bridge England, 1988.

290 A Collection of Functions for the TMS320C30

~

~
[
<5' ;::c

.s;,
~ ;::c

~.
'c> .,
So
(1)

~
~
tv
C a c

~ -

Appendix

Program Librar'y

1. $MATH. ASM
II. $MATHX.ASM
II 1. $MATH I. ASM
IV. $VECTOR.ASM
V. $FFT2.ASM
VI. $LINALG.ASM

tHlfHHffffHlfHHHHfHttfHffHHHHfHHtHIHffHffHtHfffHI-H+fHf

PROGRAI" $/lATH. ASIt

NORIW. FLOATING-POINT (32-BITl ItATH FLN:Tlcm

$/IATH.ASIt COIISISTS OF TI£ FIUOilING ROUTINES.

SIN - COItPUTES A 70 SINEW FOR AlL I IN RADIANS.

cas - COIIPUTES A 70 casUE(XI FOR AlL I IN RADIANS.

EIP - COMPUTES A 70 EIPIXl FOR" AlL a: =< 88.

LN - COMPUTES A 7D LNm FDR ALL I) o.

ATAN - COIi'UTES A 7D ATANm Fill IU. I IN RADIANS.

SrilT - CWUTES AN so SQRTlXI Fill ALL I >= O.

FPI~ - COIIPUTES AN so III FDR ALL X /< o.

FOIV - COII'UTES AN so x/v FOR ALL X AND ALL Y /< O.

f tHlftHHffHlflHfHHfHHfHflffffftHtfflfHUffHftfHfHfffff**fffffftf

~
>

~
Hf4HUtfffHIHHlHHfffHtflflHltffHfHHHlfHffff RND RO ; ROUND X
• _:SIN LDF RO,R4 ; R4 {= X N

* loIlimN BY: GARY A. SITTOO COSI/£ ENTRY POINT
GAS LIGHT SOFTWARE
HOUSTON, TEXAS ECOS:
MIlCH 1989.

SCALE AND Mill' VARIABlE X
* SINE FUNCTION: RO (= SIN(ROI.

ABSF RO ; RO {= :x:
• III'PROXlMTE ACCURACY: 7 IECIrIAL DIGITS. LDF RO,RI ; RI {= RND IX:

INPUT RESTRICTIOOS: NOOE. rf'YF !NORM.RI ; RI {= Xt2lPI
• REGISTERS FOR INPUT: RO (IIROUMENT IN RADIANSI. FIX RI,IRO ; IRO <= INTEGER GUADRANt Q
< REGISTERS USED AND RESTOOEIll If' AND SP. FLOAT IRO,R2 ; R2 {= FLOATING IlUADRANT Q
< REGISTERS ALTERED: RRO, lRO. AND RO-4. SUBF R2,RI,RO ; RO <= X, -I (X < I
< REGISTERS Fal OUTPUT: RO. NEGF RO,R3 ; R3 <= -X • ROUTINES NEEIEl: NONE. ADDI I,IRO ; lRO <= Q + I
< EIECUTlOO CYCLES (HIN, tlAX); 44 , 44. AND 3,IRO ; IRO <= TADLE INDEX
fffffHfHUHHHHHfHHffHfHffHffHfHffHffHfHf TSTB 2,IRO ; LOOK AT 2ND LSS

LDFNZ R3,RO ; IF I THEN RO (= -X
EXTERNAL PROGRAM NIllES LDI @ACON,ARO ; ARI -) CONST. TABLE

ADDF HRRO(IROI,RO ; FINAL IlAPPING, RO <= 1 + C
.GLOBL SIN NEGF RO,R3 ; R3 <= -I
.GLOBL ECOS LDI @ACOF,ARO ; RRO -} CCfFF. T ADLE

INTERNAL CONSTANTS
POP DP ; UNSAVE DP

::t. .DATA
EVALUATE TRUNCATED !ODD I SERIES

~ rlPYF RO,RO,R2 ; R2 (= X 2
NORM .FLOAT 0.636619n2 ; 2/PI RND R2 ; ROUND X .. 2

~ PlLYNONI/i.. CCfFFS. Fal SIN(I'2IPIl, -1 < X < 1 rlPYF *ARO-,R2,Rl ; RI <= X"2tCl1 B. ADDF *ARO--,Rl ; Rl <= C9 + Rl Q SHFT .FLOAT 1.570790327 ; CI (PII21 ;OS

.Q.,
• FLOAT -0.0459640968 ;C3 rfVF R2,Rl ; Rl <= XH2*1C9 + RIl .FLDAT 0.07969260878 ;C5

ADDF <ARO--,Rl ; Rl <= C7 + RI

~
.FLOAT -0.00468166687 ; C7
.FLOAT 0.00016025884 ;C9

II'VF R2,Rl ; Rl <= XH2«C7 + Ril ;OS

~
COF .FLOAT -0.000003433338; ell

ADDF *ARo--,RI ;Rl<=C5+Rl c· ACOF .IIJRD COF ; AIlMESS OF COEFFS.
RHO RI ROUND BEFORE • ;OS

too
MPVF R2,RI Rl {= X"2'(C5 + RIl

~ CON .FLOAT -1.0, 0.0, 1.0, 0.0 ; \'lAPPING CONSTANTS
ADDF *ARO-,Rl Rl <= C3 + RI ..,

So ACOO .IIJRD CON ; ADDRESS OF COOSTS.
AND Rl ROUND BEFORE •

'" rlPVF R2,Rl Rl <= X .. 2.(C3 + RIl

~
• TEXT

RDDF tRRO.RI Rl<=Cl+Rl

~
START OF SIN _

tv SIN: C
Q

PUSH If' ;SAVEDP
C UP @ACOF ; LOAD DATR PAGE POINTER

;:..

12
~
Q
§'
~
~ ;:::
Q
§'
'" 'C'

~

~
~
tv
C a
c

N
\0
W

FINISH UP SERIES AND RETURN

lDF R4,R4
LlWN R3,RO
pop R2
!!UD R2
RNO RO
RHO RI
MPVF RI,flO

TEST ORIGINAl X
IF X (0 THEN RO (= -x
R2 (= RETWN ADDRESS
RETURN (DELAYEDI
RIJLIill BEFORE •
ROUND BEFORE •
RI (= hlCI + RII

ffffHfftfHfHHfHHHfHffff****HH******fHIHtfHH

• PROORAI1: COS

• IIRITTEN BY: GARY A. SlTT~
GAS LIGHT SOFTWARE
HOUSTON. TEXAS
MIlCH 1989.

• COSINE FUNCTION: RO (= COStROI.

• APPROXIMATE ACCURACY: 7 DECIMAL DlGlT5.
INPUT RESTRICTl~S: NONE.

• REGISTERS FOR INPUT: RO (ARGIJI1ENT IN RADIANSI.
• REGISTERS USED AND RESTORED: DP AND SP.
• REGISTERS ALTERED: ARO, IRO, AND RO-4.
• REGISTERS FOR OUTPUT: RD •
• ROUTINES NEEDED: ECOS (SINI.
• EXECUTI~ CYCLES (MIN, MAXI: 46 , 46.

• NOTE: USES SHFT CONSTANT FROM SIN PROGRAM'
*********H"**I*II**I,,**********************************

COS:

EXTERNAL PROGIW1 NAMES

.GLOBL COS

.GLOBl ECOS

• TEXT

START OF COS PROGRAM

PUSH DP
LDP ~ACOF

BRD ECOS
RND RO
ADDF @SHFT,RO
LDF RO,R4

RETURN OCCURS FROM SIN '

; SAVE DP
; lOAD DATA PAGE POINTER

RO (= COS(XI = SIN(X'I, (DELAYEDI
ROUND X
RO (= X' = X + PII2
R4 (= X'

tv nHfffl**uuun***UHfHftfHfHtHfltfffIHHHffHf PUSH II' ; SAVE II'

~ · PROGRAN; EXP • LDP ffC7 ; LOAD DATA PAGE POINTER
RND RO ; ROUND X

· WRITTEN BY: ()AAY A. SITTON I£GF RO,R2 ; R2 <. -x
GAS LIGHT SOFTWARE LOF RO,RI ; RI <. x
HOUSTON, TEXAS LDFN R2,RI ; IF X < 0 THEN RI <. I X;

MARCH 1989. II'VF @ENRI1,RI ; RI <. X • IWLNI21
FIX RI,R3 ; R3 <. I • INTEGER IF X · EXPONENTIAL FUNCTlON: RO (. EXPIROI. FLDAT R3,RO ; RO <. FLT. PT. I
SUBF RO,RI ; RI (. FRACTION OF :XI, 0 <. X (I · APPROXIMATE ACCURACY; 7 DECIMAL DIGITS. I£Gl R3 ; R3 <. -I

INPUT RESTRICTlONS; lRO: (. 88.0. LSH 24,R3 ; MOVE -I TO EXP. · REGISTERS FOO INPUT: RO. PUSH R3 ; SAVE AS INT.

• REGISTERS USED AND RESTOREG; lIP AND SP. POPF R3 ; R3 (. FLT. PT. 2*'-1
* REGISTERS ALTERED; RO-4. LOI ffC7,ARO ; ARO -> C£EFF. TABLE
* REGISTERS FOR OUTPUT: RO. POP lIP ; UNSAVE II'
* ROUTINES NEEDED: FPINV. · EXECUTION CYCLES mN, MAXI: 44 IRO (. 01, 70. EVALUATE TRUNCATED SERIES
HHff*********HHH*tfflf***********HfHHIH*********

AND RI ; ROUND BEFORE *
EXTERNAL PROGRAM NAMES NPYF .ARQ--, RI, RO ; RO (. X+C7

ADDF .ARO--,RO ; RO <. Cb + RO
.GLOBL EXP
.GLOBL FPINV MPVF RI,RO ; RO <. XlICb + RDI

ADOF 'ARO-,RO ; RO (. C5 + RO
INTERNAl CONSTANTS

NPYF RI,RO ; RO (= XHC5 t- RO)
;.. • DATA ADDF 'ARO--,RO ; RO (. (4 + RO

~ seAL I NG COEFF. FOR 2'<-1 NPYF RI,RO ; RO <. XHC4 + ROI

~ ADDF *ARO-,RO ; RO (. C3 + RO
ENRM • FLOAT 1.442695041 ; I/LNI21

~ RND RO ; ROUND BEFORE * o· POLYNOMIAL COEFFS. FOR 2.H, 0 (. X < 1. NPYF RI,RO ; RO <. 11(C3 + ROI ;:

<Q.,
ADDF .ARD-,RO ; RO (= C2 + RO

.FLOAT 1.0000000000 CO

~
• FLOAT -().693147180 CI RND RO ; ROUND BEFORE •
• FLOAT 0.240226%9 C2 NPYF RI.RO ; RO <. l'lC2 + ROI ;: • FLOAT -0.055503654 C3 ADDF 1AR0--,RO ; RO <. CI + RO '"l

::to .FLOAT 0.009615978 C4
<::> .FLOAT -0.001328240 C5 RND RO ; ROUND BEFORE * ;:

'"' .FLOAT 0.000147491 C6 MPYF RI,RO ; RO <. X*ICI + ROI

'0> C7 .FLoAT -0.000010863 C7

... TEST FOR X < 0 AND RETURN

S- 1£7 .OIJRD C7

~ LDF R2,R2 ; TEST ORIGINAl -X

~
• TEXT BND FPINV ; IF -X < 0 THEN RO (. Ill, I DaAYEDI

ADDF tARO,RO ; RO (= 2H-X = CO + RO

~
START OF EXP PROGRAM RND RO ; ROUND BEFORE *

tv II'YF R3,RO ; RO <. 2*'-11 + XI
a EXP:

a RETS ; RETURN IIF NO FPINV BRANCHI
SCALE VARIABLE X a

~ f**H**HHfHUfHHHHHffH-IHHHH*HH++Hf*HHH SCALE VARIABlE X
* PROORIII1: tR *

~ PUSH DP ; SAVE IF
;:::: I WRITTEN BY: GAAY A. SITTON LOP lACS ; LOAD DATA PAGE POINTER

'" CAS LIGHT SIlfTlIARE PUSIF RO ; SAVE AS FLT. PT. B. IIlUSTON. TEXAS POP R3 ; R3 (= INTEGER FORMAT <:l MIlCH 1989. ASH -24.R3 ; R3 (= E = SIGNED EXP. ;:s
FLOAT R3.RI ; RI (= FLT. PT. E VALUE .s;, * LOGARITHM FWCTION BASE E: RO (= tRIRO). LOF @CO,R2 ; R2 {= 1.0

~ LDE R2.RO ; EXP. RO (= 0 II (= X (2)
* APPROXlHATE ACCURA(Y; 7 IlOClHAL DIGITS. SUBRF RO,R2 ; R2 (= X - I 10 (= X (I) ;:s INPUT R£STRICTlONS: RO) 0.0. LOF @LNRM,RO ; RO (= tR(2) B. * R£GISTERS FOR INPUT: RO. tlPYF Rl.RO ; RO (= E*tR(2) § I R£GISTERS USED AND RESTORED: DP AND SP. LOF RO,R3 ; R3 (= EILN(2)

'" I REGISTERS ALTERED: ARO AND Ro-3. LDI @AC8.ARO ; ARO -) COEFF. i ABLE
'0> * R£GISTERS FOR OUTPUT: RD. POP DP ; UNSAVE DP I ROUTINES NEEIlEll: NONE.

S. I EXECUTION CYCLES IMIN, HAll: 43 • 43.
EVALUATE TRUNCATED SERIES

'"
tUfHHtHHHHffUHffHfHHfHfHHffHHffHffHtH

~
RND R2,RI ; RI (= RND X

EXTERNAL PROOR!II1 NAl1ES
HPYF '~RO--,RI,RO ; RO (= IIC8

~ ADDF IARO--,RO ; RO (= C7 + RO
.GLOB!. tR tv

tlPYF RI.RO ; RO (= IIIC7 + RO) C

Q INTERNAL CONSTANTS
ADDF IARO--,RO ; RO (= CO + RO

C • DATA
HPYF RI,RO ; RO (= lllCO + RO)

SCALING CDEFFS. FOR LNIl+X) ADDF IARO--.RO ; RO (= C5 + RO

tlPYF RI.RO ; RO (= XIIC5 + RO) LNRH .FLOAT O.693147100b ; LN(2)
ADDF IARO--,RO ; RD (= C4 + RO CO .FLOAT 1.0000000000 ; CO 11.0)

tlPYF RI.RO ; RO (= X'(C4 + RO) PIlLYNOl'IIAL COEFFS. FOR UH 1+X). 0 (= X (1.
ADDF IARoe-.RO ; RO (= C3 + RO

• FLOAT 0.9999964239 ; Til' OF (I
RND RO ; ROUND BEFORE I .FLOAT -0.4998741238 ; TOP OF C2
HPYF RI.RO ; RO (= XI(C3 + RO) • FLOAT 0.3317991l2S8 ;TDP~C3
ADOF IARo--.RO ; RO (= C2 + RO • FLOAT -0.2407338084 ; TOP Of C4

.FLOAT 0.1676540711 ; TIP ~ C5
RND RO ; ROl*W BEFORE I • FLOAT -0.0953293897 ; Til' OF CO
HPYF RI,RO ; RO (= IIIC2 + RO) • FLOAT D. D360B84937 ;TOP~C7
ADDF fARO-,RO ; RO (= CI + RD ca .FLOAT -0.0064535442 ; TOP Of ca

ACB • WORD CB ADD IN SCALED EXPONENT AND RETURN

• TEXT
POP R2 R2 (= RETURN ADDRESS
BUD R2 RETURN IllOLA YEO)
RND RO RIfflI) BEFORE I START OF LN PROGRAM
HPYF RI.RO RO (= XIICI + RO)

LN: ADDF R3.RO RO (= tRIX) + E'LN(2)

N
RO,RO ; TEST X \0 LOF

Ul RETSLE ; RETI.IlN NOW IF X (= 0

~

::...
g
~
~ §.

~
~ ;:s

B.
§
'" 'C> .,
S-,..

~
~
N
<:::> a
<:::>

HHHftHHffHHf**fHHfHHHftHHHfHffHffHHHf

< PROGRAII' ATAN

1 WRITTEN BY' DARY A. SITTON
GAS LIGHT S(FTWARE
f«JUSTON, TEXAS
IIAROl 1989.

1 ARC TAtaNT FUNCTION' RO (= ATAN(RO).

< APP!lIJXIMTE ACCLIlACYI 7 DECIMAL DIGITS.
INPUT RESTRICTlOHS' IDlE.

< REGISTERS FDR INPUT! RO.
< REGISTERS USED AND RESTORED' Ill' AND SP.
< REGISTERS AlTERED' ARO, lRO, AND RO-4.
< REGISTERS FDR OUTPUT! RO (IN RADIANS).
< ROUTINES NEEDED' FDIV.
< EXECUTION CYClES ("IN, IlAXlI 30 (:ATAN: (- 1), 69. <
HHHHHUHfH**HfHHfHHHIHHHfHHUfffHfHH

EXTERNAl PROGRAII NAI1ES

.GLOIll ATAN
,GLOIll FDIV

INT€RNAl CONSTANTS

• DATA

SCALING COEFFS. FDR ATAN(X)

.FLOAT -0,7853981035 ; -PI/4

.FLDAT 0.7853981635 , PI/4
,FLOAT O.OOOOO~ , ZERO

i'Cl.VNOrHAl COEFFS. FOR ATAN(x), -1 (= X (= 1.

Cl ,FLOAT 1.0000000000 , CI
.FLOAT -0,3333314528 ;C3
.FLOAT O.lffl355085 ,CS
,FLDAT -o,1420S89944 ; C7
• FLOAT 0,1065626393 , C9
• FLOAT -0.0752896400 ,W
,FLOAT 0,0429096138 , C13
.FLOAT -0,0161057367 , CIS

CI7 • FLOAT 0,OO2a662257 , CI7

~17 • WORD C17

• TEXT

START OF ATAN PROORAi'l

ATAN'

SCALE VARIABlE X

PUSH Ill' , SAVE Il'
LDP !AC17 , LOAD DATA PAGE POINTER
ABSF RO,R2 , R2 (= IX:
SUBF @CI,R2 , R2 (- :x: - I
BLED SKIP , IF : X:) I THEN SCALE (DELAYED)
RND RO,R3 ,R3(=RNDX
RND RO,RI , RI (= RND X
lOI O,IRO , lRO (= 0, POST SCALE INDEX

SCALE FOR IX:) I

PUSHF RI , SAVE RND X
ABSF RO,RI , RI (= IX:
ADDF @CI,RI ;Rl<=lX~+l

LDF R2,RO , RO (= :x: - I
CALL FDIV , RO (= <:X: - ll/(lX: + 1)

TEST FDR X' (0

POPF R2 , GET ORIGINAl X
WED SKIP ; IF X (0 THEN RO (= -X' (DELAYED)
RND flO,R3 , R3 <= RND X'
RNO RO,RI ; RI (= RND X'
SUBI I,IRO , lRO <= -I, (PI/4)

NEGF R3,R3 , R3 (= -X'
SUBI I,IRO , IRO <- -2, (-P1/4)

SKIP' /PYF RI,RI,flO , flO (= 1><2
lOI !AC17,ARO , ARO -) COEFF, TABLE
POP Ill' , tmAVE Ill'

EVALUATE TRUNCATED <ODD) SERIES

RND RO,RI , RI (= RND U<2
/PYF >ARO--, Rl, RO ; RO <= XH2>C17
ADOF fARO--,RO ; RO (= CIS + flO

/PYF RI,RO , RO <= IH2«CI5 + RO)
ADOF fARO--,RO , RO (= C13 • RO

PlPYF Rl,RO , RO <= X"2«CI3 • RO)
ADOF IARO-,RO , flO (= Cll • RO

PlPYF RI,RO ; RO (= X1f2f(Cll + ROI
ADDF fARO-,RO , RO (= C9 • flO

RND RO R<X.tID IlEFORE 1
PlPYF RI,RO RO (= X"21(C9 • RO)
ADDF fARo-,RO RO <= C7 • RO

~

n
~
~
Q.
g'
~
~ ::

~.
'c> .,
So
'"
~
~
~ a c

!S

AND RO ; RIX.ND BEmIE 0
If'\'F RI,RO ; RO <= XH2<1C7 + ROI
ADIf <MO-,RO ;RO<=C5+RO

RND RO , RIX.ND BEFORE f

If'YF RI,RO , RO <= Xo02f1C5 + ROI
AIlIlF <MO-,RO ,RO<=eJ+RO

RND RO , ROONlI IIEFCIIE 0
If'VF RI,RO ; RO <= XH20leJ + ROI
ADIf oARO-,RO,RI ;RI<=CI+RO

FINISH UP, POST SCAlE BY C AND RETURN

POP R2
BUD R2
RND RI
If'YF Rl,RI,RO
AIlIlF o++AROllROI,RO

R2 <= RETUlN ADDRESS
RETUlN UIEUlYEDI
ROlHIllEFCllEo
RO <= ATANIII = 1<11 + ROI
RO <= ATANIXI + C 10.0, PII4 DR -1'1/41

ffHHHfHfHfHHIHHHHfHHHJHfllffHHH1ffHtH
PROORM. SQRT

o WRITTEN BY' G/lRY A. SITTOO
GAS LIGHT SlfTlIo1RE
IWSTON, TEXAS
ItARCH 1m.

o SQUARE ROOT FUNCTION: RO <= SllRTlROI.

APPROXlI1ATE ACCURACY: 8 IECII1AL DIGITS.
1tf'UT RESTRICTIONS: RO >= 0.0.
REGISTERS FDR IIfUT: RO.·
REGISTERS USED AND RESTDREG: DP AND SP.

o REGISTERS AlTERED: Rll-4.
o REGISTERS FDR OUTPUT: RO.
o ROUTIt£S t£Eml: NlNE.

o
.0

o EXEruTIltl CYCLES 'KIN, MXlI 49 , 49.
HfHfHIHIHHHfHfffttHfHfHffHlfHHlHHHHfflf

OOTi
OOT2
CNST3
OOT4

EXTERNIi. PROORM NAI£S

.GLOIIL SQRT

INTERNAl. COOTANTS

.DATA

• SET
• SET
.FLDAT
.• FLDAT

0.5
1.5
1.103553391
O. 780330086

; ADJUSTED 1.0
; AIUISTED SQRTU121

SI1SK .WORD 0FF7FFFFFH

SQRT:

.TEXT

START If SQRT PROORM.

Llf RO,R3 , TEST AND SAllE Y
RETSLE , RETUlN NaI IF Y <= 0

GET APPROXIMTIOO TO IIY. FOR Y = 11+K102f<£
AND 0 <= " < I, FDR E EllEN' XIOI = 11-1112102H-EI2
AND FOR E ODD' XlOI = SllRTlll2lfl1-1112102H-EI2

PUSH
LIP
PUSHF
POP
XDR
LDI

DP
I!SIlSK
RO
R2
1SIISK,R2
R2,RI

SAllE DP
LOAD DATA PAGE POINTER
SAllE Y AS FLT. PT. Y = 11+K102ffE
R2 <= Y AS INTEGER
R2 <= COf'l.EIlENT All BUT SION
RI <= (Ht/2102H-E

~
00

::t..

9
~

~.
~
~
::s
~
~.

'"
~ ..,
So
~

~
~
N
C a c

LDI
LSH
ASH
POSH
f'(ff

LIIE
LIIF
LSH
LIIFIf/
rl'Yf
POP

R2,R4
8,RI
-I,R2
R2
R2
R2,RI
!CNST3,R2
7,R4
@CNST4,R2
R2,RI
lIP

; R4 (= RI
; RI (= RI EXP. REI1OI'EIl
; R2 (= R2 WITII -E/2 EXP,
; SAVE R2 AS INTEGER
; R2 (= FLT, PT,
, RI (= (H/2)f2ff-E/2
, R2 (= 1,1 .. , fOR ODD E
, TEST LS8 (f E (AS SIGN)
, IF E EVEN R2 (= 0.78 .. ,
, RI (= CORRECTED ESTlMTE
, lNSAVEIIP

GEi'£RATE VIZ (USES rl'Vfl.

rl'Vf CNSTl, RO
RNIl RO

• RO (= V/2 TRIH:,
, RO (= RHO Vl2

NEWTON ITERATICti FOR Y(X) = X - Vff-2 = 0 ...

rl'Yf RI,RI,R2 R2 (= X[O]"2
I!PYf RO,R2 R2 (= (Vl2) • X[O]ff2
SUBRf CNST2,R2 R2 (= 1,5 - (VI2) • X[O]1I2
rl'Yf R2,RI RI (= X[1] = no] * (1.5 - (V/2)<x(O]ff2)

I!PYf RI,RI,R2 , R2 (= X[1]ff2
rl'Vf RO,R2 • R2 (= (VI2) * XCI]ff2
SUBRf CNST2,R2 , R2 (= 1,5 - (VI2) • X[1] .. 2
I!PVf R2,RI ; RI (= xm = XCI] • (1.5 - (Vl2)*X[lJ1I2)

I'I'VF RI,RI,R2 , R2 (= X[2]*,2
I1PYF RO.R2 , R2 (= (VI2) f m]"2
SUBRF CNST2,R2 ; R2 (= 1.5 - (VI2) • X[2]"2
I1PYF R2,RI , RI (= X[3] = X[21 * (1,5 - (V/2)*X[2]*,2)

RHO RI • ROUND BEFORE *
I1PVF RI,RI,R2 ; R2 (= H3]*,2
RNIl R2 ; ROUND BEFORE •
I1PYF RO,R2 ; R2 (, (VI2) f H3]ff2
SUBRF CNST2,R2 , R2 (= 1.5 - (Vf2) f X[3lff2
RHD R2 , ROUND BEFORE •
II'Yf R2,RI ; RI (= X[4] = XC3] • (1.5 - (V/2)'X[3]*,2)

INVERT FINAL RESULT AND RETURN

POP R2 R2 (= RETlQlN ADDRESS
BUD R2 RETURN ([£lAVED)
RHD R3 ROUND BEFORE ,
RHD RI ROUND BEFORE •
rl'YF RI,R3,RO RO = SlIlHV) = V.SlIlTU/V)

• WRITTEN BY' GARY A, SITTON
GAS LIGHT SCfTWARE
1IlUSTON, TEXAS
I1ARCH 1989.

f FLOATING POINT INVERSE' RO (= lIRO

• APPROXIMATE ACClIlACY' 8 DECIML DIGITS,
INPUT RESTRICTIONS: RO != 0.0,

• REGISTERS FOR Ihl'UTI RD.
• REGISTERS USED AND RESTGRED' lIP AND SP.
• REGISTERS ALTERED. 00-2 AND R4.
• REGISTERS FOR OUTPUT: RO.
t ROUTINES NEEDED: NOI£.
• EXECUTION CYCLES (MIN, MAX): 33 , 33,
ffHJ.IHHHflfHfffffffHHHHfffffffHHfHHfHHfHf

ONE
TWO

!15K

FPrNV'

EXTERNAL PROGRM NAllES

.GLOBL FPINV

INTERNAL COIIST ANTS

.DATA

• SET 1.0
• SET 2.0

• WORD OFf7fFFFFH

• TEXT

START OF FPINY PROGRAM

LDF OO,RO
RETSZ

• TEST F
,RETURHNCIIIFF=O

GET APPROXIMATION TO lIF. FOR F = (1+11) .2*'E
AND 0 (= M (I, USE: no] = (1-11/2) , 2"-E

PUSH lIP ; SAVE OATA PAGE POINTER
LDP MSK , LOAD DATA PAGE POINTER
PUSHF RO ; SAVE AS FLT. PT. F = (1t1\) * 2"E
POP RI ; mCH BAQ(AS INTEGER
XOR MSK,RI • C!l'PlEIIENT E & 11 BUT NOT SIGN BIT
PUSH RI • SAVE AS INTEGER, AND BY MAGIC ...
POPF RI • RI (= X[O] = (1-11f2) * 2't-E,
POP OP , UNSAVE lIP

~ NEWTON ITERATION FOR: VIXI • X - I/F • 0 ...

g MPVF RI,RO,R4 , R4 (. F • X[O]

~ SUBRF TWO,R4 , R4 (. 2 - F • X[Q]

Q. MPYF R4,RI , RI (. XCIl • X[O] • 12 - F • XCO]I

g' rlPYF RI,RO,R4 , R4 (. F • xm

.s;, SUBRF TWO,R4 , R4 (. 2 - F • X[I]

MPYF R4,RI , RI (. X[2] ': XII] • 12 - F • XlllI

~ MPYF RI,RO,R4 , R4 {= F • X[2]
;:::
Q. SUBRF TWO,R4 , R4 (. 2 - F • X[2]

g' MPYF R4,RI , RI (. XI3] • X[2] • 12 - F • X[2]1

'" FOR THE LAST ITERATION: XC4]. 1X13] • II - IF' m]111 + X£3]

~ ... RND RO,R4 , ROUND F BEFORE LAST MUL TIPL Y

s.. RND RI,RO , RIIJND X[3] BEFORt MULTIPLIES
~ MPYF RO,R4 , R4 {. F • X[3] • I + EPS

~ FINISH ITERATION AND RETlilN

~ pop RZ R2 (. RETlilN ADORtSS
W
C BUD R2 RETlilN (DELAYED I

0 SUBRF 0NE,R4 R4 {= 1 - F • Xl3] = EPS

C MPYF RO,R4 R4 (. X[3] • EPS
ADIF R4,RI,RO RO (= XI4] • 1X13]HI - 1F<X[3]111 + x[3]

N

:8

HHHffHHHHlflffUft**ff+fHfHtHH*****"*I**f**U

• PROORAII: FDIV

• WRITTEN BY: GARY A. SITTON
GAS LIGHT SOFTWARE
HOUSTON, TEXAS
APRIL 1989.

I FLOATING POINT DIVIDE FUNCTION: RO (. RO/RI.

• APPROXIMATE ACCURACY: 8 DECItIAL DIGITS.
INPUT RESTRICTIONS: RI !. 0.0. •

I REGISTERS FOR INPUT: RO IDIVIDENDI AND Rl IDIVlSORI.'
• REGISTERS USED AND RESTORED: DP AND SP.
• REGISTERS AlTERED: RO-4.
• REGISTERS FDR OUTPUT: RO IMTIENTI.
• ROUTINES NEEDED: FPINV.
• EXECUTION CYCLES IMIN, MAXI: 43 , 43.
ftH***U**IHfffflnl********fIfIHfHH**UHHU***flf

FDIV:

EXTERNAL 'PROGRAM NAMES

.GLOBL FDIV

.GLOBL FPINV

• TEXT

START IF FDIV PROGRAM

RND RO,R3
LOF RI,RO
CALL FPINV
AND RO
MPYF R3,RO

RETS

• END

R3 (. AND X
Rl (= Y
RO (. l/Y
ROiJND BEFDRE •
RO (. X

, RE~

w
8

;:..

~
~
~.
.s;,
~ ;:,
Q.
§'
'" '0> ...
s.
'"
~
f:2
tv
C o
C

f**H**fffffHfffff"****ffHffHHfffHHffffffIHHlffHHHtffHfff*HHlff

PROGRA!: SMA THX. AS/!

EXTENDED-PRECISION. FLOATING-POINT 14Q-BlTI MATH FUNCTIONS

SMATHX.ASM CONSISTS OF THE FOLLOWING ROUTINES:

SINX - COMPUTES A 9D SIN <Xl FOR ALL X IN RADIANS.

COSX - COMPUTES A 9D COSINEIX) FOR ALL X IN RADIANS.

EXPX - COMPUTES A 9D EXP I X) FOR ALL : X: =(SS.

L/iX - COMPUTES AN SD L/iIX) FOR ALL X) O.

ATANX - COMPUTES AN eo ATANIX) FOR ALL X IN RADIANS.

SQRTX - COMPUTES A 100 SQRTIX) FOR ALL X)= O.

FPINVX - COMPUTES A 10D IIX FOR ALL X 1= O.

FDIVX - COMPUTES A 100 XIY FOR ALL X AND ALl Y 1= O.

FMULTI - COMPUTES A laD XlY FOR ALL X AND ALL Y.

H**,*HIHfffHffflffflff**HHffffH*HfffHlfIfIIHfIHII*****HH*ff*HII*

".'HfI*HH+HHfff**fff-lfff-tHfHHf+HHH-fH-HHHff

• PROORAI\: SINX

• WRITTEN BY: GARY A. SInON
GAS Ll GHT SOFTWARE
HOUSTON. TEXAS
MARCH 1989.

• EXTENDED PRECISION SINE FUNCTION: RO (= SINlRO).

• APPROXIMATE ACCURACY: 9 !€WIAL DIGITS.
INPUT RESTRICTIONS: NONE.

• REGISTERS FOR INPUT: RO IARGII1ENT IN RADIANS).
• REGISTERS USED AND RESTORED: OP AND $P.
• REGISTERS ALTERED: MO, IRa, AND RO-7.
• REGISTERS FOR OUTPun RO.
• ROUTINES NEEDED: F1UTX.
• EXECUTION CYCLES IMlN, MAXI: WI. 160.
IHIIHHIfIIHHHfIHIHI**HffffffHlfftHHHHfIHff

NRM2
NRMI

SHF2
SHFI

COF

ACOF

CON

ACON

EXTERNAL PROORIili NAMES

.GLDBL SINX
• GLOBL ECOSX
• OLDBL FMum

INTERNAL CONSTANTS

• DATA

SCALING COEFFS. FOR SINIX)

• WORD 0000OOO6FH
• WORD OFF22F9S3H

; BOTTOM OF 21PI
; TOP OF 2/PI

POLYNOMIAL COEFFS. FOR SINIX)

• WORD OOOOOOOA3H ; BOTTOM OF CI IPlI2)
• WORD 00049QFDAH ; TOP OF CI IPlI2)
• WORD OOOOOOODIH ; BOTTct1 OF C3
• WORD OFFDAA2ISH ; TOP OF C3
• WORD 00OOOO0E3H ; BOTTct1 OF C5
• WORD OFC2335EOH ; TOP OF C5
• WORD OFSE69754H ; TOP OF C7
• WORD OF3280B2SH ; TDP OF C9
• WORD 0E09997B4H ; TOP OF Cll

• WORD COF ; ADORESS OF COEFFS.

• FLOAT -1.0, 0.0, 1.0, 0.0 ; MAPPINO CONSTS.

• WORD CON ; ADORESS OF CONSTS.

• TEXT

;:...

~
~
~
g'
~
~
;::s
~
g'
'"
~ ..,
S-
o,

~
~
tv
a o
a

w
o .-

SINX:

ECOSX:

START Of S I NX PROGRAM

PUSH OP ; SAVE OP
LDP @NRi11 ; LOAD DATA PAOE POINTER

COSX ENTRY POINT

SCALE AND MAP VARIABLE X

PUSHf RO ; SAVE ORIGINAL X
ABSf 00 ;OO(=:X:
LDf @NRi1I,RI ; RI (= TOP II' 2/PI
OR I!NRI12,RI ; OR IN BOTTCI1 Of 2/PI
CALL FMULTX ; RO (= a:*2/PI
FIX RO,IRO ; IRO (= INTEGER tlUADRANT G
FLOAT IRO,RI ; RI (= FLOATING Gli\DRANT Q

SUBf RI,RO ; RO (= X, -I (X { I
NEGf RO,R3 : R3 (= -x
ADDI I,IRO ; R2 (= Q + I
AND 3,100 ; IRO (= TABLE INDEX
TSTB 2,IRO ; LOOI< AT 2ND LSB
LDFNZ R3,OO ; If I THEN RO (= -x
LDP ~ON ; LOAD DATA PAGE POINTER
LDI @ACilN,ARO ; ARO -) CONST. TABLE
ADDf ++AROIIRO),RO ; FINAL MAPPING, RO (= X + C
NEGF OO,R3 ; R3 (= -x
LDI ~Of,ARO ; ARO -} COEFF, TABLE

EVALUATE TRWCATED SERIES

LDF RO,RI ; RI (= X
CALL FMULTX ; RO (= XH2
LDF RO,RI ; Rl (= X**2

MPYf *ARO-- ,RI, RO ; RO {= X**21C11
ADDf *ARO-c,RO ; RO {= C9 + RO

MPYF RI,OO ; RO (= X**2>1C9 + RO)
ADDf *ARO-- ,RO ; 00 (= C7 + 00

~nF RI,RO 00 (= XM2t(C7 + RD)
LDF *ARO-- ,R2 R2 (= TOP II' C5
OR *ARo--,R2 OR IN BOTTOM Of C5
ADDf R2,RO RO (= C5 + RO

CALL FIUTX RO (= X**2*(C5 + RO)
LDf *ARO--,R2 R2 (= TOP (f C3
OR *ARO--,R2 OR IN BOTTOI1 OF C3
ADDf R2,RO 00 (= C3 + 00

CAll FMULTX
LDF *ARO-- , R2
OR *AOO,R2
ADDf R2,OO,RI

TEST fOR X (0 AND RETURN

NEaf R3,OO
BRO fMULTX
POPf AS
LOfN R3,OO
POP OP

RO (= XH2*1C3 + 00)
R2 (= TOP (f CI
OR IN BOTTOI1 (f CI
RI(=CI+RO

00 (= X
00 (= HRI = SINIX), (DELAYED>
TEST ORIGINAL X
IF X (0 THEN RO (= -x
UNSIIVE OP

RETURN OCCURS fROM fMULTX '

...,
13

:A.

~
~

~.
<Q.,
~ ;:::
~
~.

"" 'C' ..,
it
~
~
N
<::>

Cl
<::>

H*ftHfHfHHfH*H*H*f*****HfHf*****HHH***,****f

• PflOORAI'\: COSX

• IIRInEN BY: GARY A. SITTON
GAS LIGHT SOFTWARE
HOUSTOII. TEXAS
iWlCH 1969.

I EXTENIED PRECISIOII COSINE FOCTION: RO (= COS(ROI. •

• APPROXlMTE ACClIlACY:.9 l£ClrilL DIGITS.
INPUT RESTRICTIOIIS: NOlIE.

I REGISTERS Fill INPUT: RO (ARGLIENT IN RADIMSI.
I REGISTERS USED AND RESTORED: lIP MD SP.
I REGISTERS ALTERED: MO, lRO. AND RO-7.
• REGISTERS FIll ruTPUT: RO.
I RruTII£S 1EElEI: ECOSX (SINXI.
I EIECUTlOO CYCLES (nlN, Mil: 165, 165.

• NOTE: USES SlFI AND SIF2 FRO'(SINX PflOORAI'I!
HHffHlHllIlllllllIllIlllIllIlIlIlllHHHHHHHfHf

EXTERNAL PflOORAI'I NAlES

• GLOlIL COSI
• GLOlIL ECOSl

.TEXT

START IF COSI PflOORAI'I

COSI:

PUSH lIP ; SA~ lIP
LlIP _1 , LOAD DATA PAGE POINTER

II!D ECOSI RO (= cosm = SIN(I'I, (!£LAYEDI
LIF tslFl,RI Rl (= TOP IF PII2
!XI tsIF2,RI III IN IIOITaI OF PII2
AIIIF RI,RO RO (= I' = X + PII2

RETIBI 0CClIiS FRO'(SINI (Ii..IAS FlU.TlI !

ffHHHHflf**Hf+Hf***************HHfUfHHHH

• PROGRAl1: EXPX

• WRITTEN BY: GARY A. SITTON
GAS LIGHT SOFTw.RE
HOUSTON, TEXAS
MARCH 1989.

• EXTENDED PREC. EXPONENTIAL: RO (= EXP(ROI.

• APPROXIMATE ACCURACY: 9 DECIMAL DIGITS.
INPUT RESTRICTIONS: :RO: (= 88.0.

• REGISTERS Fill INPUT: RD.
• REGISTERS USED AND RESTORED: lIP AND SP.
• REGISTERS ALTERED: ARO AND RO-7.
• REGISTERS FOR OUTPUT: RD.
• ROUTINES NEEDED: FMULTX AND FPIN~I.
• EXECUTION CYCLES (nIN, MXI: 115 (RO (=0 I, 160.
*HHffflfffHIHHHftHHHffHHHHHHHfffffHfHH

ENRM2
ENRMI

C7

AC7

EXTERNAL PRDCoRAM NAI1ES

.GLOBL ElPX
• GLOiIL FMUL TX
.GLOBL FPIN~X

INTERNAL CONSTANTS

• DATA

SCALING COEFFS. FOR 2""X

• WORD 00OOOO029H , IIOTI!l1 OF l/LN(21
• WORD 0003SAA3BH : TOP OF I/LNt2I

POLYNOMIAL COEFFS. Fill 2**-1, 0 (= X (1.

• WORD OOOOOOOOOH , CO (1.0)
• WORD OOOOOOOOAH , BOTIOM OF CI
• WORD OFFCE8DEBH , TOP OF CI
.WORD 00OOOOO6EH , BOTTOM OF C2
.WORD OFD7SFDEDH , TOP OF C2
.WORD OOOOOOO4bH ; BOTI!l1 OF C3
• WORD OFB9CA833H ,TOPOFC3
.WORD OF91D8CSbH ; TOP IF c\
• WORD OFbDIE7A9H ; TOP OF CS
• WORD OF3IAA7D7H ; TOP OF Cb
• WORD OEFC9BD9CH ; TOP OF C7

• WORD C7

• TEXT

START OF ElPX PROGrulI1

~ ElPI'

g
~
~
C·
;:s

~
~ ;:s

§.
;:s

'" ~ ...
S.
~

~
tz
tv
C
Q
C

W
0
W

itIL£ VMIAIIlE X

PUSH II' ;S4M;1I'
UP 1N:7 ; lOAD MTA PAGE POINTER -RO,R2 ;R2<=-X
LIF RO,RI ; RI <= X
UfII R2,RO ; IF X <OTIENRI <= IX:
LIF IBHIl,RI ; RI <= Ta> 0' I/LNI21
Ol _,RI , m IN BOTTaI 0' I/LNI21
au FlU.TX , RO <= X = :x:tLN121
FII RO,II3 , 113 <= I = INTEGER 0' X
FlOAT R3,RI , RI <= FLT. PT. I
SUIF RI,RO,RI , RI <= FROCTIOO 0' :·X:, 0 <= X (I
IEGI 113 , 113 <= -I
LSH 24,113 , Ifl'IE -I TO EXP •
PUSH 113 , S4M; AS IN!.
POPF 113 ; 113 (= FLT. PT. 2 1
un IN:7,ARO , ARO -) COO'F. TABLE
pa> II' , LtiSAVE II'

EV!Il.lilTE TRltCATED SERIES

If'iF IARO--,RI,RO , RO (= IIC7
AllIIF IARO--,RO , RO (= C6 + RO

If'YF RI,RO , RO (= X'IC6 + ROI
AllIIF <ARO-,RO , RO (= a; + RO

If'YF RI,RO ; RO (= XI-{CS + RO)
AllIIF <MO-,RO , RO (= C4 + RO

If'YF RI,RO ; RO (= Xf(C4 + RO)
LIF IARO--,R4 , R4 (= TOP 0' C3
m fARO-,R4 , m IN BOTTOM OF C3
AllOF R4,RO ,RO(=eJ+RO

If'YF RI,RO , RO (= lI(eJ + ROI
LIF fARO-,R4 , R4 {= TOP 0' C2
Ol 'ARO-,R4 , m IN SOTTIli'I OF C2
AllIIF R4,RO , RO (= C2 + RO

au Fl!UI.TX , RO (= X<lC2 + ROI
LIF <ARO-,R4 , R4 (= TOP OF CI
m 'ARO-,R4 , til IN BOTTOM OF CI
AllIIF R4,RO , RO (= CI + RO

au Fl!UI.TX , RO (= IIICI + ROI

TEST FOR X < 0 AND RETURN

LIF R2,R2 , TEST ORIGINAL -x

BNO FPINVX
ADDF IARO,RO,RI
II'YF R3,RI,RO
LDI1 RI,RO

RETS

IF -X (0 THEN RO (= 1/X, (DELAYEDI
RI <= 2 .. -X = co + RO
RO (= 2'<-11 + Xl TRIK.
RO <= Flll /WITISSA

, RETURN (IF t«l FPINVX BRANCHI

W HHHfHffHftHftHffffffHffHtffff***ffff*ffflffffff* ACB .WffiI) CB

~ • PIIOGRIIII: LHI •
• TEXT

~'UTTEN8Y: GARY. A. SlTT~
GAS LI GHT stf'TWARE STAAT OF LNX PROGRAII
IIlJSTIlH, TEXAS
MRCH 1989. LNX:

• EllENlEII PREC. LIlGARITHi BASE E: RO (= LHIROI, LDF RO,RO , TEST X
RETSLE , RETUfIN IiJW IF I (= 0

• APPROXlIlATE ACClRACY: 8 IECIIIAL DIGITS.
III'IlT RESTRICTiIJj5: RO) O. O. SCALE VARIABLE I

• REGISTERS F(Il 11I'IlT: RO,

• REGISTERS USED AND 1IEST(IlED: lIP AND 51'. PUSH lIP , SAVE lIP

• REGISTERS ~ TERED: ARO AND ROc7. LDP eACS : LOAD DATA PAGE POINTER

• REGISTERS F(Il OOTP\lT: RO, PUSlf' RO , SAVE AS FLT. PT.

• ROOTINES NEEIED: FlU.Tl. POP R3 , R3 (= INTEGER FORMAT

• EXECUTION CYClES I"IN, 1lAx): 193, 193. ASH -24,R3 , R3 (= E = SIGNED EIP.
FLOAT R3,RI , RI (= FLT. PT. E V~UE
LDF @C0,R2 , R2 (= 1.0

EI~_NAI£S llIE R2,RO , EIP. RO (= 0 11 (= X (2)
SUBRF RO,R2 , R2 (= I - I 10 (= X (11

.a.ra LHI LDF @lHR"I.RO , RO (= TIIP OF LHI21
• m.oa. FlU. Tl (Il @lIIRI12,RO , (Il IN 8OTIOM OF LHI21

~L FlU.Tl , RO (= E'LH121
1NlERW. ClJj5TANTS LDF RO,R3 , R3 (= EflNI21

LDI tACS,AAO , ARO -) COEFF. TABlE
~ • DATA POP DP , UNSAVE lIP

~ SClLINl COO'fS. F(Il LHlltXl EV~UATE TRUNCATED SERIES

~ URI2 .IOID 0000000F7H , 8OTIOM OF LHI21 LDF R2,RI , RI (= I
~ §. URU .IOID OFF317217H , TIIP OF LHI21 ~YF 'ARo-. RI, RO , RO (= x.es

LDF fARO--,R2 ,R2(=TIIPOFC7

~
po"YIDII~ COO'fS. f(Il U1lltXl, 0 <= I < I. OR tARO-,R2 , OR IN IIOTIOM OF C7

ADDF R2,RO , RO (= C7 t RO

~ CO .FlOAT 1.0 , CO 11.01
!:: ~YF RI,RO , RO (= 1.IC7 + RO) ;:

.IQUJ IIOOOOIIOFFH i IIOTIOM OF CI LDF 'ARO--,R2 , R2 (= TIIP OF Cb ~
CS· :IQUJ 1IFF7FFFC3H , TIIP OF CI OR fARO--.R2 , OR IN IIOITOM OF Co
;: ,IQUJ 000000084H , IIOTIOM OF C2 ADDF R2,RO , RO (= Cb t RO

'" .IQUJ OFE80107fH ,TllPOFC2

'C' .IQUJ OOOOOOOIl'!ti ; IIOTI~ OF C3 ~YF RI,RO , RO (= 1.ICb + ROI
.... ,IQUJ 0fE29E11fH ; TIIP OF C3 LDF 'ARQ-,R2 , R2 (= TOP OF C5

So .IQUJ 00000009711 ;_OFC4 OR *ARO-,R2 ; OR IN IIOITOM OF C5
~ .IQUJ ~13H ;TllPOFC4 ADOF R2,RO ; RO (= C5 + RO

~
.IQUJ 00000004IH ; IIOTI~OFC5

•• III'D2IIIDI2H ; TIIP OF C5 ~L FII.JLTX , RO (= XfIC5 + ROI

~
.IQUJ 0000000E7H ; IIOTI~ OF Cb LDF 'ARO--,R2 , R2 (= TIIP OF C4

N
,IIIRI IJ'CIICC3'IH ,TllPOFCb OR tARo-,R2 , OR IN IIOITOM OF C4

C ;IQUJ 000000043H , IIOTI~ OF C7 ADOF R2,RO , RO (= C4 + RO a .IQUJ 1fB130187H ; TIIP OF C7
II .IQUJ IF8M:lI?IfH ; TIIPOFCS ~L FII.JLTX , RO (= 1.IC4 + ROI C

LDF 'ARo-,R2 , R2 (= TOP OF C3

~ (II 1IIRO-,R2 ,IIIINIIOTTOIIFCl

g - R2,RO ,RO(=Cl+RO

~ au. Flll.TX , 110 (. XIICl + 1101

B. UF 1IIRO-,R2 , R2 (. TIP IF C2
(II 1IIRO-,R2 ,IIIINIIOTTOIIFC2

§ AIIF R2,RO ,RO(zC2+RO

~ au Flll.TX , RO (= XIIC2 + 1101

~ UF 1IIRO-,R2 , R2 (= TIP IF CI
;: III 1IIRO-,R2 , III IN IIOTTOIIF CI

B. - R2,RO ,RO(=CI+RO

§ au Flll.TX , 110 (. XIICI + 1101

'" 'Ci' AIIII IN SCAI£D EXPCIENT.
So AIIF R3,RO , RO (= LNIXI + EtlNI21

'"
~

RETS ; IIET\Rl

~
N
C

Cl c

w
~

HHHtftHHHHtffHftHHHHfHIIHtIHHHHHHHH

PROORAII: ATANX

I WRITTEN BY; GARY A. SITTEW
GAS LIGHT SOFTWARE
HOUSTOO, TEXAS
ItARCIi 1989.

EXTENIED PRECISIOO ARC TNroENT; 110 (= ATANlROI.

I APPROXIItATE ACCL'lACY: 8 DECIIW. DIGITS.
I Itf'UT RESTRICTIOOS: NEWE.
I REGISTERS FOO Itf'UT: RO.
I REGISTERS USED AND RESTIIIED: IP AND SP.
I REGISTERS ALTERED: ARO, 1110, AND.Ro-7.
• REGISTERS roo ruTPUTI RO lIN RADIANSI.
I ROOTINES NEEDED' FItULTl, AND FDM. I
I EXEtUTIOO CYCLES I"IN, MXI, 210 IIATANX:<=II, 332. I

HfltHHHfftffHfHHtHflfHfHftHtHHtfff-HHHHII

CI

EXTERNAL PROORAN NAMES

• GLOBL ATANX
.GLOBL FItULTX
.GLOBL FDIVX

INTERNAl. COOSTANTS

.MTA

SCAlING COEFFS. FOR ATANIXI

• WORD OOOOOOOSDH BOTIon IF -P1I4·
.WCIlII OFFB6F0251 TIP IF -P1I4
• WORD 0000000A2H IIOTIon IF PII4
.WCIlII OFF49OFMH TIP OF PII4
.IIORD OOOOOOOOOH SOTTon OF ZERO
.WCIlII OSOOOOOOOH TIP OF ZERO

POLYNonIAL COEFFS. FOO ATANIXI, -.1 (= X (= I,

.WOOD OOOOOOOOOH ; TIP IF CI (1,01

.IIIIRD 000OOOO6EH , SOTIO" OF Cl
• WORD 0FEII55594H ; TIP IF Cl
.IIORD OOOOOOOD9H ; IIOTTGn OF C5
• WORD 1lFD4C88E4H ; TIP IF C5
.IIORO OOOOOOOFFH ; IIOTIDn OF C7
• WORD OFDEE8038H ; TOP IF C7
.IIORO 000000056li ; IIOTTDn OF C9
• WORD OFC5A3D83H ; TIP OF C9
.IIORD 000000093H , IIOTIGn IF ell
.WCIlII OFCE5CEeIIH ; TIP OF Cll
.IIORO OOOOOOOBFH ; IIOTTDn OF ell
• WORD OF82FCIFDH , TOP OF CI3

W .1«lRD OfAFB9IFEH , TOP OF Cl5 ADIF R2,RO , RO (= Cl3 + RO
~ Cl7 .1IIIlII Of73BD74AH , TIP Of Cl7

tl'YF RI,RO , RO (= XHZ'ICI3 + ROl
ACl7 .1IIIlII Cl7 L]f IARO--,R2 , R2 (= TOP Of ell

00 'ARQ--,RZ , OR IN ronOll OF Cll
.TEXT ADIF RZ,RO , RO (= Cll + RO

START Of AlANX PROGRAIt au FnTX , RO (= IHZ'ICll + ROl
LDF 'ARO--,R2 , R2 (= TOP OF C9

ATANI' 00 fARG--,R2 , OR IN roTTCft OF C9

SCALE VARIABLE X
ADIF R2,RO , RO (= C9 + RO

CALL FnTX , RO <= XHZtlC9 + ROl
PUSH IP ,SAYEIP LDF tARG--,R2 , R2 <= TOP OF C7
LIP 1AC17 , lOA1J OOTA PAGE POINTER OR tARO-,R2 ,mIN ronCft OF C7
ABSF RO,R2 , R2 <= IX; ADOf RZ,RO ; RO (= C7 + RO
5UBF 1e1,R2 ,R2(=:X:-I
!LED SKIP , IF IX:) I TI£N SCALE (InAYEDl au FIIlUI , RO (= IHZt(C7 + ROJ UF_ RO,R3 , R3 (= X lDF tARQ--,R2 , R2 (= TOP OF C5
UF RO,RI , Rl (= X

00 tARG--,R2 , OR IN roTTOI1 OF C5
UlI O,IRO , lRO (= 0, POST SCALE INDEX ADDF R2,RO , RO (= C5 + RO

SCALE Fill IX:) I CALL FIIlI.TX , RO (= IHZt(C5 + ROJ
1IF tARo--,R2 , R2 <= TOP OF C3

PUSIF RO , SAYE X
00 tARO-,R2 , OR IN ronCft OF C3

ABSF RO,RI , Rl (= IX;
ADDF R2,RO ,RO(=C3+RO

AIIF IeI,RI , Rl <= IX: + I
~ UF R2,RO , RO <= IX: - I CALL FI1I.ILTX ; RO (= XH2f(C3 + RO)

~
au FDIYX _ , RO (= !iX: - lImx: + 11

FINISH lP
~ TEST Fill X' < 0

~ ADDF fARO-,RO,RI , RI (= Cl + RO
15' POPF R4 , !lET ORIGINAL X

1IF R3,RO , RO (= I (SIGNEDl
;:,; &D SKIP , IF I (0 TI£N RO <= -I' (InAYEDI au FIIlI.TX , RO (= ATANI!Xl = XI(1 + ROl

~
UF RO,R3 , R3 <= X'

NOP _!lROJ , ARO -) C (0,0, PI/4 III -P1/4J UF RO,RI , Rl <= I'

~ stili 2,IRO , lRO <= -Z, IPII4J
ADD IN POST SCALE YI<.UE C lING RETLIlN

;:,;
IEOf RO,R3 , R3 (= -X'

POP R4 R4 (= RETI.IlN ADIflESS ~. stili Z,IRO , lRO <= -4, I-P1I4J
BUD R4 RETURN IInAYEDJ

;:,; LDF tARO--,RI Rl (= TOP Of C
'" SIClPI au RlLTX , RO <= XH2

00 tARO,RI OR IN ronCft OF C 'C> UlI 1AC17,ARO , ARO -) COO'F. TABLE
ADDF RI,RO RO (= ATIIN!Xl + C I'U' IP , lNSAI'E IP

So
MLUllTE lRl.ICATED ((11111 SERIES <1>

~ UF RO,RI , Rl <- XH2

~ II'Yf __ ,RI,RO , RO <= XH2ft17

tv NIIf
__ ,RO

, RO<=CI5+RO

c
RO <= XH2tICI5 + ROJ [3 IPYF RI,RO

UF --,Ri R2 <= TIP Of Cl3
C 011

__ ,R2- OR IN _ Of Cl3

~

~
~
~
g'
.:;,
~ ;:s
~
~.

'0-...
It
~
~
N o a o

w
::.l

I·

I IIIlmN BY' GIIRI' A. SITTIII
GAS UGHT !iIFTWAAE
HOUSTIII, 'TEXAS
tIIRCH 1989.

I APPROXIIlATE 1II:IlRICY. 10 IECIIIAL DIGITS.
I 1II'1II RESTRICTIII6' RO ,.. 0.0.
I IUISTERS FlII 1II'1II' RO.
I IUISTERS USED AND R£Sl1IlED. IlP AND SP.
I IUISTERS ALTEREDI RO-7.
I I£lllSTERS FlII WTPUT' RO.
I RIlITllES IEEIED' FIlLTX.
I· EXEIlJTIIII C"/Q.fS I"IN, IIAX): 138, 138.
"IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHHflllllllllllllllfH

CNSTl
CNST2
CNST3
CNST4

EXTEIIIAl PROORAII NAI£S

.GLOIL SllRTX
• GLOIIL FIlL TI

1_ CONSTANTS

.DATA

• SET
.SET
.FLOAT
.FlOAT

0.5
1.5
1.103553391
0.7S033OOSI>

, ADJJSTED 1.0
, ADJUSTED SllRTIlI2)

S/tSI(.IIlRD OFF7FFFFFH

SORTX'

.TEXT

START OF SIlRTX PROGRAIt.

LDF RO,R3 , TEST AND SAVE V
RETSLE , RETURN /OJ IF V <= 0

GET APPROXIIlATION TO IN. FOR V = U+K)f2"E
AND 0 <= K < I, Fill E EVEN' x[0] = IH1I2)f2ft-EI2
AND FlII E ODD' no] = SQRTUI2)'U-K/2)f2H-E/2

PUSH
LDP
PUSHF
I'(P

lOR
LDI
LDI

IlP
ISI1SK
RO
R4
@SltSI<,R4
R4,RI
R4,R5

SAVE II'
LOAD DATA PAOE POINTER
SAVE V AS FlT. PT. V = U+K)f211E
R4 <= v AS INTEGER
R4 (= COll'LEltENT ALL SUT SIGN
RI <= I H1/2)'2"-E
RS <= RI

LSH
ASH
PUSH
f'(f'F

LD£
LDF
LSH
LDFI'fj

rl'VF

8,RI
-1,R4
R4
R4
R4,RI
lCNST3,R2
7,R5
1CNST4,R2
R2,RI

; RI (= RI EXP. REIIlVED
; R4 (= R4 WITH -E12 EXP.
; SAVE R4 AS INTEGER
; R4 <= FlT. PT.
; RI (= fl-IV2)12H-E12
; Ri <= 1.1 ... Fill ODD E
; ~ LSS OF E lAS SIGH)
, IF E EVEN R2 <. O. 7B ...
, RI <= COIRECTED ESTJIlATE

GElERATE Vl2 IUSES rl'VF).

rl'VF CNSTl, RO , RO (= Vl2 TRIJ'lC.
LDI R3,RO , RO <= Vl2 All PREC.

NEW11lI ITERATIOO FOR VIX) = X - VH-2 = 0 ...

rl'VF RI,RI,R2. R2 <= x[0]H2
rI'VF RO,R2 R2 <= IV/2) • X[OIH2
SUBRF CNST2,R2 R2 <= 1.5 - IVl2) • x[0]H2
rl'VF R2,RI RI <= XIll = X[OI * 11.5 - IVl2)'X[0]"2)

rl'VF RI,RI,R2 , R2 <= XIllH2
rl'VF RO,R2 , R2 <= IVI2) * x[IlH2
SUDRF CNST2,R2 , Ri <= 1.5 - ·IVl2) • XII]1I2
rI'VF R2,RI ,. RI <= x[2] = XIll * 11.5 - IVl2)*XIll"2)

~VF RI,RI,R2 , R2 (= X12]1I2
rI'VF RO,R2 , R2 (= IVl2) • X[2)1I2
SUDRF CNST2,R2 , R2 <= I.S - (Vl2) • x[2]1I2
~VF R2,RI , RI <= X[3] = X[2) • U.5 - (Vl2)1XI2]ff2)

LDF RO,R2 , R2 (= Vl2
LDF RI,RO , RO (= x[3)
CALL FIt.l.TX , RO <= X[3)1I2
LDF RI,R4 , R4 (= X13]

LDF R2,RI , RI <= Vl2
LDF R4,R2 , R2 <= x[3]
CALL Flt.l.TX , RO <= IVl2) f X[3]1I2
SUBRF CNST2,RO , RO <= I.S - (Vl2) • x[3)H2
LDF R2,RI , RI <= X[3]
CALL FItLlTX , RO <= x[4] = X[3] • U.S - (Vl2)fX[3)'f2)

INVERT FINAL RESULT AND RETURN

IIRD
LDF
I'(P

NlP

FMULTX
R3,RI
DP

RO = SIlRTlV) = VtSllRTIl/V) IDELAYED)
RI <= v
ltlSAVE IlP
DEAD CYCLE

RETURN OCCURS FROM FlU. TX !

w o
00

::...

~
" ~.
~
~ ;::
Q

~.

'\)' ...
;:;.
'"
~
~
N
C a
c

HftffHHHfffHffHffHH*****HIU*HHHH*****Htflf

• PROGRAII: FPINVX

• IIUTTEII BY: GIi/lV A. SITTON
GAS LIGHT SOFTI/ARE
I4JUSTON, TEXAS
I1ARCH 1989.

EXTENDED PREC. FLT. PT. INVERSE: RO (= I/RO.

• APPROXIMTE ACClIlACV: 10 DECII1AI. DIGITS.
Itf'UT RESTRICTIONS: RO != 0.0.

• REGISTERS Fill Itf'UT: RO.
REGISTERS USED AND RESTORED: Il' AND SP.
REGISTERS ALTERED: RO-I AND R4-7.
REGISTERS Fill OUTPUT: RO.
ROOTII£S ItEELED: FIU.TX,

• EXECUTION CYClES ININ, MXII 76, 76.
11.IIIII.J.I.tfHHHfHHfHHHHHHHHHfHfHflHH

(J£

TIll

l15li

F1'INIIX'

EXTERNAl. PROORAII ~

,Gl.O!IL FPINIIX
,GlOII. F19JLTl

INTERNAl. COOTIINTS

,DATA

.SET I,D
• SET 2.0

.1IIJllJ 0fF7FFFFFH

.TEXT

START IF FPINIIX _

UF RO,RO
I£TSZ

; TEST F
; RETlRHDI IF F = 0

OET _IllATION TO IIF. FIll F = I1+N) I 2HE
lIND 0 <- " < I, USE: nOJ = 11-1112) • 2H-E

PUSH
LIP
PIISIF
I'll'
XlIi
PUSH
IV'f
I'll'

Il'
IIISK
RO
RI
IIISK,RI
RI
RI
lP

SAVEll'
LOAD DATA PAIi: POINTER
SAlE AS FLT. PT, F = I1+H) I 2HE
FETCH lIACl(AS INTEGER
COfLEIIENT E ~ N BUT IflT SIGN BIT
SAlE AS INTEGER, AND BY MGIC ...
RI (= X[OJ = 11-11/2) I 2H-E,
lNSA\E Il'

NEWTON ITERATION FOR: VIX) = X - I/F = 0 •••

MPYF RI,RO,R4 R4 (= F I HO]
SUBRF TWO,R4 R4 <= 2 - F I nOJ
I1PVF R4,RI RI <= X[I] = HO] • 12 - F I X[O])

I1PYF RI,RO,R4 R4 (= F I X[I]
SUBIIF TWO,R4 R4 <= 2 - F I XI I]
I1PYF R4,RI RI <= X[2] = X[I] I 12 - F • X[I])

MPYF RI,RO,R4 R4 (= F I X[2]
SUBRF TWO,R4 R4 (= 2 - F I X[2]
MPYF R4,RI RI <= X[3] = X[2] • 12 - F I X[2])

FOR THE LAST ITERATION: X[4J = 1X[3] • 11 - IF I X[3]))) • X[3]

CAll. FrI.IlTX
SUBRF M,RO
CAll. FMlUX
ADDF RI,RO

RETS

.END

RO <= F I Xl3] = I + EPS
RO (= I - F • X[3] = EPS
RO <= Xl3] I EPS
RO (= X[4] = 1X[3ltil - IFlm]») + X[3]

; RETURN

~

g
~
~
§'

..s;,
~ ::s
~
~.

'&
So
'"
~
~
tv
C a c

IN

f5

: 11111111111111111111111.11111111.
_. FDIYX --

• IIIITlEJI BY. GARY A. SIT11II
IMS UIlHT SIFTI/ME
HIlISUII, 'TEXAS
IIIIRCH 1989 •

• EX1EIIED PlEISICW DIVIIE: RO (= RO/RI.

• III'I'ROJlllAlE ACCtRACY: 10 IECIIIAl. DIGITS.
• IlI'UT IIESlRICTIII6' Rl != 0.0. •
• REGISTERS FCII IlI'UT: RO (DIVIIEND) AND RI (DIVISOR).'
• REGISTERS USED AN) ~: II' AND 51'.
• REGISTERS ALT8IED: RO-7.
• REGISTERS FCII WTPIII: RO (QOOTIENT).
• IWTIIES t£EIED: FlU.TX AND FPINVX.
• EXmJTICW C'II:lES ("IN, IIAX): 107, 107.
1IIHtf

FDIVX:

EXTERNAL PROORAI1 NAIES

.1l.OII. FDIVX

.1l.OII. FPINVX

.1l.OII. FlU.TX

,TEXT

START OF FDIVX PROORIIII

LDF RO,R3
LDF Rl,RO
CALL FPINVX
LDF R3,RI
IIR FlU.TX

R3 (= X
Rl (= V
RO (= I/V
RI<= X
RO (= XIV

RE1IIlN OCCURS FRtII FlU. TX !

HHtH§HHfHffl •• tHHHfHHI**"IHf**HHHfIHHH

t PROGRAII' FlU.TX

WRITTEN BY, GARY A. SITTCW
GAS LIGHT SlfTWARE
IIlJSTON, TEXAS
MARCH 1989.

EXTENIED PRECISICW ItLlTIPLV' RO (= ROfRI.

I APPROXlftATE IiXOOACV: 10 DECIftAL DIGITS.
INPUT RESTRICTIONS: NONE.
REGISTERS FOR INPUT' RO.

I REGISTERS USED AND RESTORED' DP ~D 51'.
I REGISTERS ALT8IED: RO AND R4-7.
I REGISTERS FOR OUTPUT, RO •
I ROUTII£S t£EIED, NINE.
I EXECUTICW CVCLES (MIN, ftAX): 20, 20.
fHHfHfHfHfIHfHffffHf,**"**HfflfffHltiHtHtIU

FlIULTXI

EXTERNAL PROORIIII NAtES

.GLoa. FllULTX

• TEXT

START OF FIlULTX PROORIIII

ABSF
XOR
ABSF
I1PVF
LDF
ANON
SUBRF
I1PYF
ADDF
LDF
ANON
SUBRF
Pl'YF
ADDF
I£GF

RO,R4
Rl,RO
RI,R7
R4,R7,R6
R4,R5
OFFH,R5
R4,R5
R7,R5
Rb,R5
R7,R6
OFFH,R6
R7,R6
R4,R6
Rb,R5
RS,R6

, R4 (= :XA:
, RO (= SIGN INFO ..
, R7 (= :XB:
; R6 (= AlB
, R5 (= :XA:
, R5 (= A = XA - EAt2H-24
, R5 (= EA12tt-24
• R5 (= BlEAt2H-24
; R5 (= AlB + BtEA'2"-24
, R6 <= :XB:
, Rb (= B = XB - EB'2H-24
, R6 (= EBt2H-24
, R6 (= AtEB*2H-24
; RS (= :XAtXB: = AlB + (B*EAtA*EB)*2H-24
, R6 (= - :XAIXB:

TEST FOR IAIXB (0 AND RE1IIlN

POP R4
!IUD R4
LDF RO,RO
LDFN Rb,R5
LDF R5,RO

R4 (= RETURN ADDRESS
RETtffl (DELAYED)
TEST ORIGINAl.. (XA A XB)
IF XAUB < 0 THEN R5 (= -:XAlXB:
RO (= IAlIB

w
o

;:...

~
[
~.

~
~
;::
~
~.

'" 'C>
;;.
'"
~
~
N
C a c

HHHHfftHfHffHHflftHH**ffHfffff:l-HHHffHfHIHHH**HHf**IHHH

I

'1

PROGRAM: SI1ATHI.AS/1

INTEGER 132-BITl I1ATH ROUTINES

SI1ATHI.AS/1 CONSISTS Of THE FOLLOWING ROUTINES:

ILOO2'- COIfUTES M = LOO2INl, N=(2nM FOR USE WITH RAOlX 2 FFT
PROORAIIS.

IIlJlT - CM'UTES A 64-BIT PRODUCT Of TWO 32-BIT NtIIBERS.

IDlY - CM'UTES THE QOOTIENT AND _INnER OF TWO 32-BIT NUllBERS.

fHHHitH-HHHfHfHffHffHHHHfffHfHfHHfffHHffffHf**ffHffflffff

IHHHlfHIHHH*******HIHHfHH***HIHHHHHflH

• PROGRAi'I: lum

• WRITTEN BY: GARY A. SITTON
GAS LIGHT SOfTWARE
HOOSTON, TEXAS
I1ARCH 1989.

I INTEGER LOG BASE 2: RO <= IINTEGERl LOG2IROl.

I INPUT RESTRICTlONS: RO) O.
• REGISTERS FOR INPUT: RO.
I REGISTERS USED AND RESTORED: SP.
* REGISTERS ALTERED: lRO-l AND RO.
* REGISTERS FOR OUTPUT: RO.
I ROUTINES NEEDED: NONE.
fffUfHflHHHHHfHHHHHHH*HHHHHHfHHHH

EXTERNAL PROGRAM NAI1ES

.Gl.OBL ILOG2

.TEXT

START OF ILOO2. PROGRAM

ILOG2:

LDI 1,IRO ; IRO (. I I IN IT. 11
lOI -l,IRl ; IRI (. M IINIT. -11

CMPI IRO,RO ; COMFARE ITO N
LOOP: BOlD LOOP ; LOOP IF N) I IDElAYEDl

L5H 1,IRO ; I (= 2*1
ADOI 1,IRl ; M = H + 1
CMPI 100,00 ; COMPARE I TO N

LDI IRl,OO ; 00 (= LOO2INl
RETS ; RETURN

::...
g
~
~
~.

~
~
;:
~
~.

~
So
~

~
~
~ a c

w --

PIaMI. llU.T

• IRlmN BY. GMY A. SJn(w
GAS LIGfT S!F1WARE
1«JI.ISl'(Jj.·lEXAS
IIAROi 1989.

llIlEiR 32 X 32 IU.TJPLY: RI, RO (= ROoRI.
IEU.T IS TIE 64 BIT PROlX.tT (F 00 32 BIT lIi'UTS. >

llFUT RESTRICTJ!»IS' N»IE.
o REGISTERS Flll 1tf'UT1 RO AND RI.
o REGISTERS USED AND RESTaD' SP.
o REGISTERS ALTERED' ARO-I ANIJ RO-4.
o. REGISTERS Fill OO!PUT. RI (UPPERI ANIJ RO (LOWERI.
o ROUTIIES NEEIED. NOI£ •
HHHHfHHHfllllllllllllllfHHHUHfHHfHUfHfff

IIU.TI

EXTERNAl. _ NArES

.GLOIL linT

.lEXT

START (F llU. T PROOIW1

XIIl RO,RI,ARO
ASSI RO
ASSI RI

ARO (= SIGIU1 (RO<Rll
RO (= IX:
RI (= :Y:

SEPARATE I1lIL TJPLIER AND IWL TIPLICAND IN TWO PARTS

LDI
LSH
AND
LSH
AND

-16,ARI
ARI,RO,R2
OFFFFH,RO
ARI,RI,R3
OFFFFH,RI

ARI (= -16 (f(Il SHIFTSI
R2 (= XI = UPPER 16 BITS (F

RO (= XO = LOWER 16 BITS OF
R3 (= YI = UPPER 16 BITS OF
RI (= YO = LOWER 16 BITS OF

CARRY OUT THE IU.TlPLlCATlOO

"'YI RO,RI,R4
ItPYI R3,RO
"'YI R2,RI
ADDI RO,RI
tlPYI R2,R3

PUT THE PROOOCTS TOOETHER

LDI RI,R2
LSH 16,R2
CllPI O,ARO

R4 (= XO<YO = PI
RO (= XO<YI = P2
RI (= XIfYO = P3
RI (= P2+P3
R3 (= XI>YI = P4

R2 (= P2+P3
R2 (= LOIIER 16 BITS OF P2+P3
CHECK THE SIGN OF THE PRODLtT

OONE'

BGED IlOI£
LSH ARI,RI
ADDI R4,R2,RO
ADDC R3,RI

IF)= 0 THEN 00'£ (DELAYED)
RI (= UPPER 16 BITS (F P2+P3
RO (= 110 = LOIIER !lORD OF THE PROOOCT
RI (= WI = UPPER IIORD (F TIE PRODUCT

NEGATE THE PRODUCT IF tI.J1BERS WERE (F OPPOSITE SIGN

SUBRI O,RO • RO (= -110
SUBRB O,RI , RI (= -WI (WITH B!IlROW)

HETS ,RETURN

w -N

:t.

12
~ ;:;
~.

~
~
~
;:;
0'
i:;
'0'

~
~
~
tv
C o
c

HHffffHfHllHHHfffH.HffHlfHfffffHtHHHHffU

• PROGRM: IDIV

• OIlITTEN Bn G/lRV A. SITTON
GAS LI GHT S(FTWARE
IOJSTON, TEXAS
I1ARCH 1989.

INTEGER 32 I 32 DIVllE: 00, RI {= RO/RI.
• RESlL T IS A 32 BIT QUOTIENT AND I REMINDER I.

INPUT RESTRICTIONS: RI != O. •
• REGISTERS All IN'UT: RO (DIVIDEND! AND RI !DIVISOR!.'
• REGISTERS USED AND RESTIJlED: SP.
• REGISTERS AlTERED: lRO-I AND RO-3.
• REGISTERS FOO OOTPUT: RO (IlOOTlENT! AND

RI OREMINDERIi.
• ROOTlt£S NEEIED: toE.
tHtHHIIIII.I.I ••• IIIIIIIIIHHHffHftHHfHfHfHfH

IDlY:

EXTERIW. _ NAItES

.1i.OBL IDIV

START IF IDlY _

.TEXT

DETERIIII\E SIGN IF RESlLT. GET ABS!l.UTE YAlUE OF II'ERANDS.

XOO RO,RI,R2
ASSI RO
ASSI RI

TEST IN'UT VAl\£S

Cll'1 RO,RI
IIIUD ZERQ

R2 {= SIGNUIt (RO/Rli
RO (= IXI
RI (= IVI

: ct»IPARE DIYlSOR TO DIVIDEND
; IF Rl) RO TlEN RETIJ1N 0 (DELAVED!

-'IZEtfERIIHDS. USE DlFFEREta IN EXPONENTS AS
SHIFT CWIT FOO DIYISOR, AND AS REPEAT CWIT FOO SUIIC.

FlOo\T RO,R3 R3 (= NlRIIAlIZED DIVIDEND
PIJSIF R3 PUSH AS FLOAT
p(I' IRI IRI (= INTEGER
LSH -24,IRI IRI (= DIVIDEND EXPfIIENT

FlOo\T RI,R3 R3 (= NIlM.IZED DIVISOR
PIJSIF R3 PUSH AS FlOo\T
p(I' IRO IRO (= INTEGER
LSH -24,IRO IRO (= DIVISOR EXPONENT

ZERO:

SUBI IRO,IRI ; IRI (= DIFFERENCE IN EXPONENTS
LSH IRI,RI ; Rl (= ALIGNED DIVISOR WITH DIVIDEND

DO IRl+l SUBTRA<T L SHIFTS.

RPTS IRI
SUSC RI,RO

; REPEAT IRI+l T1r1ES
; RO (= 2'(RO - Rli

IlASK OFF THE LOWER IRl+l BITS IF RO

LOI RO,RI
SUBRI 31,IRI
LSH IRl,RO
NEGI lRI
LSH IRI,RO
SUBRI -32,IRI
LSI! IRI,RI

RI (= lREI1AINDER, IlOOTlENr:
IRI (= 32 - (IRl+lI
RO {= RO SHIFT LEFT IRI
IRI (= -IRI
RO {= lXi/IVI
IRI (= -(JRI+D
RI (= lREI1AINGERI

CHECK SIGN AND NEGATE RESlLT IF I\ECESSARY.

NEGI
ASH
LOINZ
Cll'1
RETS

RO,R3
-31,R2
R3,RO
O,RO

RETURN ZERQ QUOTIENT.

LOI
LOI
RETS

• END

RO,RI
0,00

R3 (= -1Xi/IVI
TEST SIGN BIT
IF SET RO {= -RO
SET STATUS FROII RESULT
RETURN

RI (= lREI1AINDERI
RO (= ° IlOOTlENT
RETURN

::t..

~
~
g.
§
.s;,
~
;::
Q

~.

'0' ...,

~

~
~
IV
C a c

w -w

1IIIIIIIIIIIIIIIIIHHHfffHfHffHffHHHfffHHHfHffflfHffHfffflHHH

PROORIIIU '<'{CTal.ASII

<'{CTOO UTILITIES

s<'£CTal,ASII COOSISTS OF THE FlllIlllINJ ROOTlNES:

tCaMJLT - IN-PLACE COIi'UTATIOO OF TI£ CM'lEX 'lECTOO PRODlCT OF Til:)
COf'LEX ARRAYS USIMl 11£ Dl'IPLEX ClIDJIlATE OF TI£ SEC1JHD
fImIY.

tCINI.l.T - IN-PLACE CIllf'UTATlOO OF TI£ aJIII'LEX VECTOR PRODUCT OF TIIJ
COIIPLEX fImIYS.

tCBlTREV - IN-PLACE BIT REVERSE PERltJTATlON 00 A CIlI1Pl.EX fImIV WITH
SEPARATE REAL lIND IIWlINARY fImIVS •

tFMIEEE - IN-PLACE FAST CONVERSIOO OF AN IEEE ARRAY TO A TMS320C30
fImIV.

tTOIEEE - IN-PLACE FAST CONVERSIOO OF A TIIS32OC30 ARRAY TO AN IEEE
fImIY.

t<,{CltULT - IN-PLACE I1lUIPLIES A CONSTANT TIMES AN ARRAY.

tCONMOV - IIJVES IFILLSI A CONSTANT INTO AN ARRAY.

IVECMOV - MOVES ICOPIES) lIN ARRAY INTO ANOTI£R ARRAV.

fHffHlfHHHfHffHHHffHHHlfHHHlfffftHHHfHffllfllffHIHHIHff

ffffl**HfffffUHffHffffflffffltftHlffHHffHffHH+HfH

• PROGRAM: tCffil1UL T

• WRITTEN BY: GARY A. SITTOO
GAS LIGHT SOFTIIARE
HOUSTOO, TEXAS
FEBRUAAY 1989 •

• COIIPLEX IN-PLACE FREIllfNCY DlJllAIN CORRELATlOO:
t CI (= CI t C1JHJIC2) , CI II'ID C2 ARE BOTH OF LENlTH
t N, AND CI = !Xl + ItmAND CONJI(2) = IX2 - IIV21.

t I1CORPill T ENTRY PRCTOCOL:
VARIABLES Fill ItpUT:

$IAD! -> WOl, SIAD2 -) mOl,
SSAD! -) X2[01, SSAD2 -) Y2[01,
$N = N ILENGTHI, SPARItS = DATA PAGE.

[NPUT RESTR[CTlOOS: $N) O.
REGISTERS ALTERED: RC, 01', AlID-3 II'ID RO-3.

t RCDRMUL T ENTRY PRCTOCOL:
REGISTERS FOR INPUT:

ARO -) mOl, ARI -) mOl, AR2 -) X2COl,
AR3 -) Y2[01, RC = N ILENlTHI.

INPUT RESTRICTIONS: RC) O.
REGISTERS ALTERED: Re, ARO-3 AND RO-3.

• REGISTERS USED lIND RESTORED: SP.
t REGISTERS FOR OUTPUT: MlNE.
• RCUTINES NEEDED: NOtt:.
IHln**fHfHH**fffHnl*'*HHfHl-tnHHHftfffHlfflffl:lH

EXTERNAL MEMORY ADDRESSES

.GLOIl. SPARMS ; PARAMETER PAGE ADDRESS

EXTERNAL VARIAlI.E AOOOESSES

.GLOIl. $N ARRAY LENGTH N
.GLOBL SIAD! ADDRESS OF I NPUT X!
.GLOIl. SIAD2 ADDRESS OF I NPUT VI
.GLOBL SSAD! ADDRESS OF INPUT X2
• GLOBL S5AD2 ADDRESS OF Uf'UT V2

EXTERNAL PROORA/1 NAtES

.GLOBL MCORtlULT : MEtolV ENTRY FOR COMPLEX ICORR.I MULTIPLY

.GLOBL ReORMULT ; REGISTER ENTRY Fill CCWLEX ICORR.I I'I..lTlPLY

START OF PROGRAM AREA

• TEXT

I1EI1ORY BASED PARAMETER ENTRY

W -"""

~

~
~
:4. o·
;=::

~
~ ;=::

~.
'" 'Cl' ...
s.
'"
~
~
N
C a
c

I'ICORItULT:

LOP HPARIIS LOAD DATA PAGE POINTER
LDI @SN,Re Re (= N
LDI HIADI,ARO ARO -) mOl
LDI HIAD2,ARI ARI -) mOl
LDI HSADI,AR2 AR2 -) X2[0)
LDI @SSAD2,AR3 AR3 -) 1'2[0)

REGISTER BASED PARAl£TER ENTRY

RCtRtJl.T:

IllI1PLEX ItLTIPLY lCORRELATIONI LOOP

::

UXPJ:
::

SUBI

RPTB
~YF

~YF

~YF

ADIF
~YF

SUBF
STF
STF

RETS

I,Re

LOOPI
fARO, fAR2,RI
fARI, fAR3,R3
lAR2++,fARI,RO
RI,R3,R2
fARO, fAR3++ ,RI
RI,RO,R3
R2,fARO++
R3,-lAR1++

;Re(=N-I

; REPEAT 8I.OCK N mEl>
; RI (= lI[JlIX2IIl
; R3 (= YJ[J)IY2IIl
; RO (= Yl[JlU2IIl, IOCR. AR2 AND •• ,
; R2 (= XJ[J)1X2IIl + YJ[J)IY2[I)
; RI (= XlIIHY2m, IOCR. AR3
; R3(= YJ[J)IX2IIl - Xlm1Y2[Jl
; Xl[II (= R2, IOCR. ARO AND.,.
; YI[Jl (= R3, IOCR. ARI

; RETlI\N

t-UUHItHIHHH.fHHHfHHltHHHHIHHUHHfIHHHHf

• PROORAI1: fCOO~lLT

• OIlmEN BY: GARY A. SITTON
GAS LIGHT SOFTWARE
IIlUSTON, TEXAS
APRIL 1989.

I CGI1I'LEI IN-PLACE FREIlIDCY OOI'IlIN CGNVG.UTION'
I CI (= CI I C2, CI AND C2 ARE BOTH IF LENGTH
I N, ANO CI = IXI + IIYII AND C2 = IX2 + IfY21.

I ~PIIJI. T ENTRY PROTOCOl:
VARIABLES FOR 11f'IJT'

SIAD! -) mOl, SIAD2 -) mOl,
SSADI -) 12[01, SSAD2 -) Y2[0),
$N = N lLENGTH), SPARIIS = DATA PAGE.

INPUT RESTRICTJ~' $N) O •.
REGISTERS ALTERED' Re, DP, ARO-3 AND RO-3.

I RCONI1U. T ENTRY PROTDCQ'
REGISTERS FOR INPUT:

ARO -) mOl, ARI -) YIIO), AR2 -) X2[0),
AR3 -) Y2[0), Re = N lLENGTHI.

INPUT RESTRICTI~' Re) O.
REGISTERS ALTERED' Re, ARO-3 AND RO-3.

• REGISTERS USED AND RESTORED: SP.
I REGISTERS FOR OUTPUT: NIH:.
I ROUTINES NEEIEJ. NIH:.
HHfHHHHfHHHfHH-HfHfHHHHllllllllllllllllllllff

EXTERNAL I'B'IllY ADmESSES

.GlO81. SPAR!1S ; PARAI£TER PAGE ADmESS

EXTERNAL VARIABLE ADmESSES

.GlO81. $N

.GlOBL SIADI

.GlO81. SIAD2

.GlOBL SSADI
,GlO81. SSAD2

ARRAY LENGTH N
ADmESS IF IIf'IJT XI
ADmESS OF IIf'IJT YI
ADmESS IF IIf'IJT X2
ADmESS IF INPUT Y2

EXTERNAL _ NAI£S

.GlO81. I1CONIU.T ; l1ElUlY ENTRY FOR C!II'LEX IC(JN, I ItLTIPLY

.GlO81. Rrof1I.I.T ; REGISTER ENTRY FOR C!II'LEX (C(JN. I ItLTIPLY

START OF _ AREA

• TEXT

PEI1IllY BASED PARrI£TER ENTRY

::...
g
~
~
§'
~
~
;::
~ §.
'"' 'cs>
So
'"
~
e:J
N
C a c

t.>
Vt

1tC3fU.T:

UP
IlII
IlII
IlII
IlII
IlII

I$PMIIS
@SH,Re
I$IADI,ARO
I$IAlI2,ARI
HSADI,AR2
1$SAD2,AR3

LOAD DATA PAGE POINTER
RC (= N
ARO -) mOl
ARl -) mOl
AR2 -) X2Wl
AR3 -) Y2IOl

REGISTER BASED PARAIETER ENTRY

Rroft.lT:

ClJl>LEX IU.TiPLY (CONVOLUTION) LOOP

SUBI I,RC , RC (= N - I

RPTB LOOP2 , REPEAT !lOCI(N TillES
If'YF tARO, tAR2,Rl , RI (= Xl[ll'X2lll
If'YF tARI, tAR3, R3 , R3 (= YllIl*Y2lIl
If'YF IAR2++,tARI,RQ ,RQ (= YllIJfX2lll, INCR. AR2 AND ...

:: SUBF R3,RI,R2 , R2 <= XllIlIX2lll - YllIlfY2lll
If'YF tARO, fAR3++ , R 1 , Rl (= XlllllY2lll, INCR. AR3
ADDF RI,RQ,R3 , R3 (= YllI]tX2[[J + XHIlfY2lIl

UJ(P2: STF R2,tARO++ , XIlIl <= R2, INCR. ARO AND ...

" STF R3,4AR1++ , Yllll (= R3, INCR. ARI

RETS , RETURN

HHHnfHHHfHf*H*ftHIHHl-H+HHfHffHHHfHHI

f PROOlAII: fCBITREV

WRITTEN BY: GAAY A. SITTON
GAS LIGHT SOfTWARE
HOUSTON, TEXAS
MARCH 1m.

f BIT RE~ERSE INDEX MAP TWO REAL AARAYS AS A SIIRE I
I CD!fLEX ARRAY WITH THE SWAPPING DONE IN-PLACE.
I XlIl, YlIl (-) XlJl, YIJl, WHERE J = BRII).
• LENGTH OF ARRAYS N)= 4 IS ABSCLUffiY REQUIRED.

f I1CBITREV ENTRY PROTOCOL:
~ARIABLES FOR INPUT:

SIADI -) XlOl, SIAD2 -) YEOl,
$N = N (LENGTH), SPARI1S = DATA PAGE.

INPUT RESTRICTIONS: $N)= 4. •
REGISTERS ALTERED: RC, DP, IRQ, ARO-3 AND RO-3 ••

• RCBITRE~ ENTRY PROTOCOL:
REGISTERS FOR INPUT:

ARO -) XlOl, ARI -) YIOl, RC = N (LENGTH). I
INPUT RESTRICTIONS: RC)= 4.
REGISTERS ALTERED: RC, IRO, ARO-3 AND RQ-3.

* REGISTERS USED AND RESTORED: SP.
I REGISTERS FOR ruTPUT: NONE.
* ROUTiNES NEEDED: ~.
IHHH*****H-HHIHIHfffHfHfHHHHHHHfHIHHH

EXTERNAL tEIIORY ADORESSES

.GLOBl SPARl1S , PARAMETER PAGE ADDRESS

EXTERNAL VARIABLE ADDRESSES

.GLOBl $N

.GLOBL SIADI
• GlOBl $1 AD2

ARRAY lENGTH N
ADDRESS OF INPUT X
ADDRESS If INPUT Y

EXTERNAL PROGRAM NllllES

.GLOBL I1CBITREV ,IIE~Y ENTRY FOR CctlPlEX BIT REVERSE

.GLOBl RCBITREV ,REGISTER ENTRY FOR COIIPlEX BIT REVERSE

START OF PROGRAM AREA

.TEXT

MEMORY BASED PARAMETER ENTRY

M<BITREV:

w -0'\

::...

9
~
~
15'
;:;

<Q,

~
;:;

£t
c
;:;

'" 'a> ...
s-
o:.

~
f2
N
<::> a
<::>

LOP
LDI
lOI
LDI

UPARMS
@SN,Re
@SIADI,ARO
@SIAD2,ARI

LOAD Il1TA PAGE POINTER
RC (= N
ARO -) ARRAY I
ARI -) ARRAY Y

REGISTER BASED PARAMETER ENTRY

RCBITREV:

lOI RC,IRO : IRO (= N
SUBI 3,Re ; Re (= N - 3
LSH -I,IRO ; lRO (= N/2 FOR BIT REVERSE
lOI ARO,AR2 ; AR2 -J ARRAY I IBIT REV.)
NP fAR2++IIRO)B : INCR. 8RIAR2) (OUTSIDE LOOP)
NOP fARO++ ; INCA. ARO (OUTSIDE LOOP)
lOI ARI,AR3 ; AR3 -J ARRAY Y (BIT REV.)

00 BIT REVERSE SWAP ON !10TH ARRAYS
SKIPPING THE OTH ~ N-IST ELEMENTS

RPTB LOIJ'3 ; REPEAT LOOP N-2 TIMES
Clf'I AR2,ARO ; COII'ARE AR2 TO ARO
8GElJ LOO>3 ; IF ARD)= AR2, LOOP lDELAYED)
NP fARl ++ ; INCA. ARI
NOP 'AR3++(!RO)B ; INCA. 8RIAR3)
UF 'ARO++,RO ; RO (= xm, INCR. ARD

UF fAR2,R2 ; R2 (= XIJl
UF fARl,RI ; RI (= vm

" LDF fIIR3,R3 ; R3 (= YrJl
STF RO, fAR2 ; x[Jl (= RO

II STF R2, f-ARD ; ICll (= R2
STF RI,fAR3 ; YIJl (= Rt

:: STF R3, fARl ; YCll (= R3
UO'3: NP fAR2++(!RO)B ; INCA. liR(AR2)

RETS ; RETURN

*lfttltfHHfftftfHHHfHHIH*HnHntHftHIfHHHH

• PROGRAM: 'F11IEEE

• WRITTEN BY: GARY A. SITTON
GAS Ll GHT SOFTWARE
HOUSTON, TEXAS
iWlCH 1989.

.' • CONVERT AN ARRAY OF IEEE FLOATING-POINT tI.l'l8ERS TO •
• TMS320C30 FLOATING-f'OlNT FOONAT. ASSlI'lES NO: INF., •
• NAN, 00 DENORMALlZED NlIMlIERS.

• ~MlEEE ENTRY PROTOCOL:
VARIABLES Foo INPUT:

SIADI -J 1[0l, SN = N lLENGTH),
SPARMS = DATA PAGE.

INPUT RESTRICTIONS: $N J O.
REGISTERS ALTERED: Re, OP, ARO--I ~ RD-t.

• RFMlEEE ENTRY PROTOCOL:
REGISTERS Foo Ilf'lfT:

ARO -J x[ol, RC = N (LENGTH).
INPUT RESTRICTIONS: RC J O.
REGISTERS ALTERED: Re, ARD-I AND RD-I.

• REGISTERS USED AND RESTORED: SP.
• REGISTERS FOR OUTPUT: NONE.
• ROUTINES NEEDED: NONE.
HHHlffH**HHHHHHH-HHHHHfHHfHHffHHHH

CTAB

EXTERNAL I1EIIORY ADDRESSES

• Gl.OBL SPARMS ; PAIW'£TER PAGE ADDRESS

EXTERNAL VAAIABLE ADDRESSES

.GLOBL $N

.GLOBL SIADI
; ARRAY LENGTH N
; ADDRESS OF I NPUT X

EXTERNAL PROORAIt NAtES

• Gl.OBL MFMlEEE ; MEllJRy ENTRY Foo IEEE -J 'C30 WMRSION
• GLOBL RFMlEEE ; REGISTER ENTRY Foo IEEE -J 'C30 ctmERSION

CONSTANTS FOR !10TH CONVERSIONS

• DATA

• WORD OfFSOOOOOH
• WOOD OFFOOO()()()!l
• WORD 07FOOOOOOH
• WOOD OSOOOOOOOH
• WORD OSIOOOOOOH

::....
g
~
g.
§
.Q,

~ ::s
~
O·
::s
"-
~ ...
So
'"
~
~
tv
C a
C

w
-...J

TAIIA .I0Il) CTAB

START OF _ MEA

.TEXT

_ SASEIl PAIW£JER ENTRY

IflllEEE'

UP - • LOAD DATA PAG£ POINTER
L111 N.RC ; RC <= N
L111 ISIADI,ARO ; ARO -) IEEE MAAY

REGISTER SASEIl PAIW£JER ENTRY

RRUEEE.

SUBI I,RC ;RC<=N-I
UP ICTAB ; lOAD DATA PAGE POINTER
L111 ITAIIA,ARI ; ARI -) aJNSTANT TABlE

IEEE -) 'C30 CONVERSION LOIP

RPTB lOOP4 ; REPEAT lOOP N TIllES
AND tARO, tARI,OO ; IIEPlACE FRACTIIl'l WITIl 0
ADDI tARO,OO ; SHIFT SIGN AND EXPIIDT INSERTING 0
L11IZ _1111,00 ; IF All ZERO, lOAD 'C30 0.0
L111 tMo,Rl ; TEST ORIGiNAl NJ/1BER
BGED lOOP4 ; IF >= 0, STm; rtJ1BER 10000YEDI
SUBI _1121,00 ; REJ()YE EXI'tt£NT BIAS 0271
PUSH 00 ; SA"" AS AN ItffEGER
POPF 00 ; lJISAVE AS A FL T, PT. NItIIER

NEGF 00 ; NEGATE 'C30 NJ/1BER

lOOP4' STF RO,fARO++ ; STm; 'C30 tlI1BER, INCR. ARO

RETS ; RETURN

HHHfffHfHHfHHfffHffffHHfffHHffHHfHHHfH

* _. *TOIEEE •

< WRlmN BY' GARY A. SITTON
GAS LIGHT SOFTWARE
HOUSTON, TEXAS
APRIL 1989,

• CONVERT AN ARRAY OF TllS32OC30 FlOATING-POINT
• tlI1BERS TO IEEE FlOATING-POINT FOR/1AT. ZERO
• IS TIE 0Nl V SPECIAl CASE.

• mOIEEE ENTRV PROTOCOL:
VARIABlES FOR INPUT:

SIADI -) X[Ol, $N = N IlENGTHl,
SPIIRIIS = DATA PAGE •

INPUT RESTRICTIIl'lS' $N) O.
REGISTERS AlTERED' RC, lIP, ARO-l AND RH.

RTOIEEE ENTRY PROTOCil.'
REGISTERS FOR INPUT'

ARO -) X[OI, RC = N ILENGTIlI,
INPUT RESTRICTIONS' Re) O.
REGISTERS AlTERED' Re, ARQ-I AND 00-1.

• REGISTERS USED AND RESTORED' SP.
• REGISTERS FIlR OUTPUT' NONE,
• ROOTINES NEEDED. NONE.

NOTE. <1OlEEE SHARES THE CTAB TABLE FR(II *FIIIEEE
fHfffHHfHfHHfl-tHl-HfHHffHI-H4Hfff*fffHHfHff

mOIEEE.

EXTERNAl IIEIIllV ADORESSES

• GLOBl SPARtIS ; PARAI£TER PAGE ADDRESS

EXTERNAl VARIABlE ADDRESSES

.GLOBL SN

.GLOBL SIADI
; ARRAY LENGTIl N
; ADDRESS OF INPUT X

EXTERNAl PROGRA" NMES

.GLOBL mOIEEE ; I1EIOlY ENTRV FOR 'C30 -) IEEE CON\£RSION
• GLOBl RTOlEEE ; REGISTER ENTRY FOR 'C30 -) IEEE CONI'ERSION

START OF PROGRM AREA

• TEXT

~RY BASED PARMETER ENTRY

w
00

::to.

~
~
~
g'
~
~
;::

I'
~
;:;.
~

~
~
tv
C
[3
C

RTOIEEE:

LOP
LOI
LOI

HPARMS
HN,RC
@$iADI,ARC

LOAD DATA PAGE POINTER
RC {= N
ARC -) 'C30 ARRAY

REGISTER BASED PARAMETER ENTRV

SUBI I,RC RC{=N-I
LOP @CTAB LOAD DATA PAGE POINTER
LOI eTASA,ARI ARI -) CONSTANT TABLE

'C30 -) IEEE CONVERSION UXP

RPTB LOOI'5 : REPEAT LOOP N TillES
ABSF <MO,RO : TEST llU1ilERl
LDPI HAR1I4l,RO , IF = 0, LOAD FAKE 0.0
LSH I,RO , SHIFT OFF SIGN BIT
PUSHF RO , SAVE AS A FLT. PT.
LDP tARO,RI , TEST ORIGINAL N\.ItBER
IlGED LOOPS , IF)= 0, STORE tUIIIER (DELAYEDl
POP RO , UNSAVE AS AN INTEGER
ADDI HAR1!2l,RO , ADD EXPONENT BIAS 027l
LSI! -I,RO , ADJUST FOR SIGN BIT

OR HAR1I3l,RO , r.£GATE IEEE IU1iIER

UXP5' STI RO,<ARO++ , STORE IEEE tUllIER, INCR. ARC

RETS , RE1LIiN

HHftHfHfffffHHffHfHffHH*HffffHH ... ·HfHHHH

• PROGRN1: *VECI1ULT

• WRITTEN BV: GARV A. SITTON
GAS Li GIlT SOFTWARE
HOUSTON, TEXAS
FEBRUARV 1989.

f SCALAR - VECTOR IUTiPLY: xm {= XEIlfC, C IS A
• CONSTANT AND THE ARRAY X IS OF LENGTH N)= I.

• MCltH ENTRV PROTOCOL:
VARIABLES FOR INPUT:

SIADI -) XIOI, SN = N (LENGTHl,
ICNST = C, IPARl1S = DATA PAGE,

HAJT RESTRICTIONS: IN) O.
REGISTERS ALTERED: RC, DP, ARO AND RO-I.

• RVECI1UL T ENTRY PROTOCOL:
REGISTERS FOR I~UT:

ARO -) xeOI, RO = C, RC = N (LENGTHl.
INPUT RESTRiCTiONS: RC) O.
REGiSTERS ALTERED: RC, ARC AND RI.

• REGISTERS USED AND RESTORED: SP.
• REGISTERS FOR OUTPUT: NONE.
• ROUTINES NEEDED: NONE.
tHffHHtfffHfHUHfHHfffffHfUHfHHHfffHfHffHfH

EXTERNAL IIEMORV ADORESSES

• GLOBL IPARIIS : PARAMETER PAGE ADORESS

EXTERNAL VARIABLE ADORESSES

.GLOBL IN
• GLOBL SCNST
.GLOBL SIADI

ARRAY LENGTH N
ADDRESS OF CONSTANT C
ADDRESS Of INPUT X

EXTERNAL PROORM NAI£S

• GLOBL IIIWI.I. T ,I1EIIllY ENTRY FOR SCALAR - VECTOR 11.1. TiPL Y
,GLOBL RVECI1ULT ,REGISTER ENTRY FOR SCALAR - VECTOR IIl.TiPLY

START OF PRIlMAII AREA

• TEXT

IEllJRY BASED PARAI1ETER ENTRY

!VECI1ULT:

LOP
LOI

HPARI1S
HN,RC

: LOAD DATA PAGE POINTER
, RC {= N

~

9
[
§.

~
~ ;:s

'"' ~.
~
So
~

~
~
N
C a c

YJ -10

LDI
UF

KIADI,ARO
KCNST,RO

, ARO -) nOl
,RO(=C

REGISTER BASED PARAIIETER ENTRY

R'IECItl.T:

SKIP!:

SUBI 2,RC
"'YF RO,fARO,RI
Cll'I O,RC
lilT SKIPI

RC(=N-2
RI (= c.no]
CIlIf'ARE RC TO 0
IF RC (0 THEN SKIP LIXP

SCALAR - VECTOR tIJl. TI PLY LIXP

RPTS RC REPEAT INST. N-I TIMES
",YF RO,HtARO,RI RI (= c.m+ll
STF RI,>ARO 1m (= c.ml

STF RI,'ARO , I[N-I] (= C'WI-!]

RETS ; RETURN

HtffHffHfHffffff**fHfftHHfHHIIIIIIIIIIIIIIHHHHH

• PROGRAM: fCON/lO'l f

WRImN BY: GARY A. SITT~
GAS LIGHT SOFTWARE
HOUSTON, TEIAS
FEBRUARY 1989.

• SCALAR -) VECTOR i'IJVE: 1m (= C, C IS A
• CONSTANT AND TIE ARRAY I IS OF LENGTH N.

• I'ICOOI1OV ENTRY PROTOCOL:
VARIABLES FOR INPUT:

SIAD! -) nOl, $N = N (LENGTH),
$CNST = C, $PAR/tS = DATA PAGE.

INPUT RESTRICTIONS: $N) O •
REGISTERS ALTERED: Re, lIP, ARO, AND RO.

• RCONMOV ENTRY PROTOCOL:
REGISTERS FOR INPUT:

ARO -) 1[01, RO = C, RC = N (LENGTH).
INPUT RESTRICTIONS: RC) O.
REOISTERS ALTERED: RC, ARO.

• REGISTERS USED AND RESTORED: SP.
• REGISTERS FOR OUTPUT: NONE.
• ROUTINES NEEDED: NONE.
ffHHfffHfHHHI-HHHfH-tHfHHHffHHffHftHfHHHH

MC~~MOV:

EXTERNAL MEMORY ADDRESSES

• GLOBL IPARHS ; PARAMETER PAGE ADDRESS

EXTERNAL VARIABLE ADORESSES

.GLOBL $N

• GLOBL ICNST
.GLOBL SIADI

ARRAY LENGTH N
ADDRESS OF CONSTANT C
ADDRESS OF INPUT X

EXTERNAL PROGRAM NAMES

• GLOBL tK:ONHOV ; MEMORY ENTRY FOR CONSTANT TO VECTOR HOVE
• GLOBL RC0III10V ; REGISTER ENTRY FOR CONSTANT TO VECTOR MOVE

START OF PROGRAM AREA

• TEXT

MEMORY BASED PARAMETER ENTRY

LOP
lDI

WARMS
@IN,RC

; LOAD DATA PAGE POINTER
; RC (= N

~

~

~ -~
~
g'
~

~
g.
~
'0' .,
So
""
~
f::J
N
C
Q
c

RWftI'i.

LDI
LlF

ISIADI,ARO
IItNST,RO

• ARO -) xtoJ
,RO(=C

REGISTER.BASED PMAIETER ENTRY

SUBI I,RC ,RC<=N-I

SCAUIR 10 '£Till I1IMO UXP

RPTS RC
STF RO, IARO++

RETS

, REPEAT INST. N T1I£S
,1m <= C

,RETLIlN

flfHHHfffftffHfHftHfHffHfffHHHffHfHHHfftHHH

I PROORAI!' f\l:C/fJV

• WRITTEN BY: GARY A. SITTON
GAS LIGHT SCflWARE
II1USTON, TEXAS
FElIRUARY 1989.

• VECTOR ~YE: ym <= 1!I1, 1= O, ... ,IH (N)= Il.

I I1'IE~V ENTRY PROTOCOL:
VAlUABLES Fill IIf'UT:

$IADI -) I[OJ, $1AD2 -) Y[OJ,
$N = N (LENGTHI, tPARI1S = DATA /'ME.

INPUT RESTR[CTlONS' $N) O.
REGISTERS ALTERED: ftC, DP, ARO-I, AND RO.

R'lECIIIl'I ENTRY PROTOCOL:
REGISTERS Fal [1f'UT:

ARO -) I[OJ, l1li1 -) Y[OJ, RC • N (LENGTHI.
[NPUT RESTRICTIONS' RC) O.
REGISTERS ALTERED: RC, ARO-I, AND RO.

I REG[STERS USfI) AND RESTtllEII: SP.
I REG[STERS Fill OUTPUT: 10'£.

I

I ROOTiNES reDED' ruE.
ffftHtHffffttHfHHHfffHHHHHflHHfffll.111111111111

I1'IECIIIl'I'

EITERI/AI.. I£IIIIlV ADDRESSES

.GLOB!. tPARI1S , PARAI£TER PAlE ADDRESS

EXTERNAL VAR[ABLE ADIIRESSES

.GLOB!. $N

.GLOB!. $IADI

.GLOB!. $1AD2

_Y LENGTH N
ADDRESS OF IIf'UT I
ADIIRESS IF IIf'IJT Y

EXTERI/AI.. PROGRAIt NAItES

.GLOB!. I1'IECIIlII

.GLOB!. RVEOIJII
, I£to!y ENTRY Fal VECTIIl 10 '£Till lIllIE
, REG[STER ENTRY Fal '£Till 10 'IECTlJI lIllIE

START OF _ MEA

.Tm

rEMRY BASED PARAI£TER ENTRY

LOP
LD[
LDI

ISPARI1S
m,RC
ISIADI,ARO

LOAD DATA PAlE POINTER
RC <= N
ARO -) X[OJ

~

g
~
R g.
.s;,
~
B. a
'C' ...
s-
Ilo

~
~ c
Q
c

~ -

LDI ISIAIl2,1IR1 , IIRI -) YIOI

IEGISTER BIISED PARMETER ENTRY

R'iEOIlYI

SUBI 2,RC ,RC<=N-2
Uf tMO++,RO , RO (= UOI
Cll'I O,RC , ilII'ARE RC TO 0
lILT Sl(IP2 I IF RC (0 TIEN Sl(IP LOOP

IlECTII! 11M: LOOP

RPTS RC , REPEAT INST. N-I TIlES
Uf tMO++tRO , RO (= mill
S1F RO,tARI++ , 11M: xm TO ym

Sl(IP2: S1F RO,tARl , 11M: UN-II TO YIN-II

RETS I RE11JIN

.EIID

tHHHfHffffHIIIIIIIIIIIIIIII.lllllllllltHiHHHHHHIIIIIIIIIIIIIIIIIII

PROGRA": tfFT2. ASII

RADIX 2 m ROOTINfS

IfFT2.ASII CCIISISTS (F TI£ FIILLII/IM> ROOTINES:

CFFFT2 - CIlI'l£)(DIF FmwARD RADIX ·2 m USING SEPARATE ~ lIND
II1AGINARY ARRAYS lIND 314 CYCl£ SINE TABLE.

I. CIFFT2 - COlt'LEX DIT INVERSE RADIX 2 FFT USING SEPARATE REAl lIND
IIVIGINARY ARRAYS lIND 314 CYCl£ SUE TABLE IlXES t«lT ItnUlE
THE liN SCILE FACTOR.

ffffHftfHffHfftfffffHHHtfHHHfffHfHHtHffHfHHfHHlftHfffHtHf

w
~

::...
~
~
~
§'
.s;,
~ ;:;
~'
~

~
~
~
N
C
Q
c

HHUHHftffHHfHfHHHH**HHH**HfHHHfHIIHHHI

I PROORAM: CFFFT2

I WRITTEN BY' GARY A, SITTON
GAS LIGHT SOFTWARE
HOUSTON, TEXAS
MRCH 1989,

I SPECIAl VERSION USES 3/4 SIN!: TABLE LOOKUP WITH
I TI£ PARAI'IETERS PASSED IN PREDEFIN!:D IIEi'IOOY LOCATIONS,
I COIIPL£X RADIX-2 DIF FORWARD FFT FOR THE Tl1Sl2OClO,
I THIS PROORAM ASSlI1ES NORML ORDERED DATA AS IJroT,
I BUT LEAYES TI£ OUTPUT llaXED IN BIT REVERSED ORDER,
I TWO POINTERS ARE USED FCll SCPARATE REAl AND IMAGINARY I
I ARRAYS,

I VARIABLES FOR IJroT:
sIADI -) REAlIOl, siAD2 -) lMAGIOJ,
$N = N ILOOTHI, $M = M ILOO2INII,
SSItE -) SItE TABLE, WMMS = DATA PAGE,

INPUT RESTRICTIONS: $N). I,
I REGISTERS AlTERED: RC, Q', IRO-I, ARo-7, AND RO-7,
I REGISTERS USED AND RESTORED: SI',
I REGISTERS FCll OUTPUT: NOtE,
I ROOTlt£S t£EIaI: NOtE.
HIIII""III'IIIIIIIIIIIIHflHfHHH-lltHIHHHHfH.Hff

CFFFT2:

EXTERNAl _ twES

• GLOBL CFFFT2 : ENTRY POINT FCll EXECUTION

EXTERNAl IEltORY ADDRESSES

.GLOBL S511£ ; SINE TABLE ADCllESS
• GLOBL WARMS ; PARAIETER PAGE ADDRESS

EXTERNAl VARIABLE ADCllESSES

.GLOBL $N
,GLOBL $M

, GLOBL SIAOI
.GLIlIII. SIAD2

,TEXT

FFT LOOTH, N = 2**M
" = LIll2INI)= 2
REAl III'UT ARRAY AOCllESS
IMAGINARY INPUT ARRAY ADCllESS

STMT IF DIF FFFT PROORAM

INITIAlIZE LiXJ> VARIABLES

UI'
!.DI -tSN, lAO

; LDAD DATA PAGE POINTER
; lRO (= NI IINIT, NI

FLOOP:

FIil.W

LOI lRO,IRI IRI (= N
LSH -2,IRl IRI (= N/4, OFFSET FOR COSIN!:
LOI O,AR6 AR6 (= K IINIT, 01
lOI IRO,R7 R7 (= NI
LSH -I,R7 R7 (= N2 IINIT, NI2I
lOI I,RS RS (= IE IINIT,I1

OUTER LOOP

ADDI I,AR6 K (= K + 1
lOI @$IADI,ARO AR() -) XIOI
ADD! R7,ARO,ARI ARI -) XILI
LDI @$IAD2,AR2 AR2 -) YIOI
ADOI R7,AR2,AR3 AIl3 -) YILI
LOI RS,RC SETUP 1ST INNER LOO' REPEAT COONTER,
SUBI I,Re RC lONE LESS THAN TI£ lESlRED II

FIRST INNER LOO' !UNITY TWIDDLE FACTOR I

RPTB
ADOF
SUBF
ROOF
SUBF
STF
STF
STF
STF

FBLKI
fARO,lARI,RO
fARI,fARO,RI
IAR2,IAR3,R2
tARl, IAR2, R3
RO, tAR0++IIROI
RI,IARI++IIROI
R2,1AR2++IIROI
R3, fAR3++(IRO)

PROGRAM EXIT TEST

CMPI @$N,AR6
RETSGE

MAIN INNER LOOP

LDI 2,AR7
LDI I,ARO
LDI I,AR2
LDI @$SINE,AR5

; REPEAT BLOCK IE THIES
; RO (= WI + XILI
; RI (= xm - XILI
; R2 (= VIII + YILI AND .. ,
; R3 (= V!ll - YILI
; xm (= RO, INCA. ARO AND .. ,
; XILI (= RI, INCR. ARI
; Y III (= R2, INCA, AR2 AND, ..
; YILI (= R3, INCR, AR3

; COMPARE M TO K
; IF K)= " TI£N IlET\Rl

J (= 2, IPRE-INCREIlENTEDI
ARO (= I IINIT. II
AR2 (= I IINIT, II
ARS (= SINTABllAl IINIT. IA = 01

FlNLOP: ADDI RS,ARS ; AR5 -) SINTABlIA (= IA + IEl
LDF fARS,R6
ADDI AR5,IRI,AR4
AOOI @$IADI,ARO
ADDI @$IAD2,AR2
ADDI R7,ARO,ARI
ADDI R7,AR2,AR3
LDI RS,RC
SUBI I,Re

; R6 (= SINIXI, IX = 121P1IN)fIAI
; AR4 -) COSIXI
; ARO -) xm
; AR2 -} YIII
; ARI -) XILI
; AR3 -} YILI
; SETUP 2ND INNER LIXJ> REPEAT COONTER.
; RC lONE LESS THAN THE lESlRED II

SECOND INNER LOO' 1000S TWIDDLE ROTATIONI

RPTB FBLK2 ; REPEAT BLOCK IE TIMES

;:.... SU!iF *MI, <MO, R2

g 5IJBF tIIR3,tAR2,RI
II'YF R2,Rb,RO

~ :1 ADIF tAR2,tIIR3,R3

'" II'YF RI,*M4,R3
::to :: STF R3, IM2++! lROI Cl
;::! SUIIF RO,R3,R4

~
II'YF RI,R6,RO

:: ADDF <MO, *MI,R3

~ II'YF R2,<AR4,R3
;::! II STF R3,*MO++IIROI

B. ADIF RO,R3

Cl FIiLK2' STF R3, *MI ++ I lRO I
;::! II STF R4, IAR3++ II RO I

'" ~ Cll'I . R7,AR7
S- IILTD FIN1.Cf
<1\ LOI AR7,ARO

~
LOI AR7,AR2
ADDI I,AR7

~
N IIRD FLOOP
C LSI! I,RS a LOI R7,IRO
C LSI! -I,R7

END OF OUTER lOO'

...,
~

, R2 (= XT = XIII - XILI
, RI (= YT = Y1I1 - YILI
, RO (= XTtSIN AND ...
, R3 (= YIII + Y!L1
, R3 (= YTtCOS AND ...
, YIII (= YIII + YILI, INCR. AIl2
, R4 (= COStYT - SINIXT
, RO (= SINtYT AND ...
, R3 (= XIII + XILI
, R3 (= eoslXT AND ...
, XIII (= XIII + XILI , INCR. ARO
, R3 (= eoslXT + SIN<YT
, XILI (= eoslXT + SINIYT, INCR. ARI AND ...
, YILI (= eoslYT - SINtXT, INCR. AR3

, COMPARE N2 TO J

IF J (N2 TlEN LOOP IDELAYEDI
ARO (= J
AR2 (= J
J (= J + I

NEXT F'l STAGE IDELAYEDI
IE (= 2f!E
NI (= N2
N2 (= N2/2

tffHfHHf .. ***fUfHfHHfHffH HfftffHHfHfU .. fHHf

• PROGRAM' CIF'l2

I WRITTEN BY' GARY A. SITTON
GASLIGHTSOFTIIARE
HOUSTOO, TEXAS
MARCH 1989.

• SPECIAL VERSION USES 3/4 SINE TAIILE LOO<\JP WITH
I THE PARAMETERS PASSED IN PREDEFINED NEI100Y LOCATIOOS.
• CDNPLEX RADIX-2 DIT INVERSE F'l FOR THE TIIS32OC3Q.

• THIS PROGRAM ASSUMES BIT REVERSED ORDERED DATA AS
INPUT. BUT LEAVES THE OUTPUT INDEXED IN NORJ1AL 00lER.

• TWO POINTERS ARE USED FOR SEPARATE REAl AND IIIAGINARY •
f ARRAYS •

• VARIABLES FOR INPUT:
SIADI -) REAUOI. SIAD2 -) IIIAG[oJ,
$N = N ILENGTHI, SH = H ILOO2INII,
$SINE -) SINE TABLE, SPARMS = DATA PAGE.

INPUT RESTRICTIONS' $N) 1.
f REGISTERS ALTERED: Re, DP, lRO-I, ARO-7, AND RO-7.
I REGISTERS USED AND RESTORED: $P.

• REGISTERS FOR OUTPUT: NONE.
• ROUTINES NEEDED: NONE.
fIHHH»fffHHHfHfltff**fffHHfHIHfHHHflffHfffff

CIFFT2:

EXTERNAL PROORAN NAMES

.GlOBL (IFFT2 , ENTRY POINT FOR EXECUTION

EXTERNii'. MEMORY ADDRESSES

• GlOBL SS I NE : SINE TABLE ADDRESS
• GlOBL $PARMS : PARAMETER PAGE ADDRESS

EXTffi'W. VARIABLE ADDRESSES

• GlOBL $N

.GLOBL $N

• rUBL SIADI
• GLOBL SIAD2

FFT LENGTH, N = 2'*H
M = LOO2INI)= 2
REAL INPUT ARRAY ADDRESS
IMAGINARY INPUT ARRAY ADDRESS

START OF DIT IFF! PROOR!iI1

• TEXT

INiTIALIZE LOOP VARIABLES

LDP
LDI

@.?ARMS
I!$~. IRO

: LOAD DATA PAGE POINTER
: "lRO (: N

W LDI IRO,IRI IRI (= N MPYF *AR4, fAR3,RO ; RO (= COSJ.y(U, AND .•.

~ LSH -2,IRI IRI {= N/4, OFFSET FOR COSINE
" SUBf R3,R4,R2 ; R2 (= XT = COS*X(L) - SINfV(U

LDI @$M,ARb ARb (= K lINn. MI MPYF Rb, 'ARI,RI ; RI (= SIN>l{L1, AND ...
LDI I,R7 R7 (= N2 IINIT. II

" SUBf R2, .ARO,R3 ; R3 (0 XIII - IT
LDI IRO,RS R5 (= N ADDf RO,RI,R4 ; R4 (= YT = COSfYlLi + SIN.XILI
LSH -1,R5 RS (0 IE IINIT. N/21 SUBF R4,.AR2,R3 ; R3 (0 Ytll - YT, AND ...
LDI 2,IRO IRO (= NI lINn. 21 " STF R3, fARl H(lRO) ; XILI C= XIII - IT, INCR. ARI

ADDF R2, 'ARO,R3 ; R3 (= XIII + XT, AND ...
OUTER LOOP " STF R3,fAR3t+(IRO) ; VILI (= Ytll - n, INCR. AR3

ADDF R4, .AR2,R4 , R4 (= VII I + VT
ILOOP: LDI !$lADI,ARO , ARO -) 1101 IBLK2: STF R3, tAROHI IROI ; XIII (= XIII + IT, INCR. ARO AND ...

ADDI R7,ARO,ARI ; ARI -) XILI " STF R4,'AR2++IIROI , VIII (o VIII + VT, INCR. AR2
LDI mAD2,AR2 ; AR2 -) VIOl
ADDI R7,AR2,AR3 , M3 -) VILI CMPI R7,AR7 ; CCMPARE N2 TO J
LDI RS,RC ; SETUP 1ST INNER LOOP REPEAT COUNTER.
SUBI I,RC , RC lONE LESS mAN THE DESIRED II BLTD IINW' ; IF J C N2 THEN LOOP IDELAVEDI

LDI AR7,ARO ; ARO (= J
FIRST I~ LOOP IUNITY TWIDDLE FACTOR I LDI AR7,AR2 , AR2 (= J

ADDI I,AR7 ; J (= J + I
RPTB IBLKI ; REPEAT BLOCK IE TI MES
ADDf tARO, tARI,RO , RO (= XIII + XILI SKIP: SUBI I,ARb ,K(=K-I
SUBF tARI, tARO, RI ; RI (= XIII - XILI eMPI O,ARb ; CCMPARE 0 TO K
ADlF *AR2, >AR3, R2 , R2 (= VIII + VILI AND ... BGTD ILOOP , IF K) 0 TI£N LOOP IDELAYEDI
SUBF fM3, *AR2, R3 ; R3 (= VIII - VILI LSH -I,RS , IE (= IE/2
STF RO, tARO++ II RO I ; XII I (= RO, INCR. ARC AND ... LDI IRO,R7 ; N2 (= NI

I: STf RI,fARI++llROI , XILI Co RI, INCR. ARI LSH I,IRO , NI (= 2INI

::....
IBLKI: STF R2, tAR2++1 IROI ; VI I I (= R2, INCR. M2 AND ...
:: STf R3, fM3tt(IRO) , VILI (= R3, INCR. AR3 PROORAM EXIT POINT

g
CllPI @1II,ARb ,CCMPAREMTOK RETS ; RETURN

~ BEQD SKIP ; If K = M THEN SKIP TWIDDLED LOOP

B. • END

§ MIN INI£R WIF

<Q, LDI 2,AR7 , J {= 2, IPRE-INCREMENTEDI
LDI I,ARO , ARO (= I lINn. 11

~ LDI 1,M2 ; AR2 (= I IINIT. 11
;:: LDI ISSIt£,ARS , ARS (= IA lINn. 01

B. IIII.(P' ADDI RS,ARS , ARS -) SINTABIIA (= IA + IEl §
Co

LDF tARS,Rb , Rb (= SINIXI, IX = 12tPIINIfIAI

'&
ADDI ARS, IRI, AR4 , AR4 -) COSIXI
ADDI mADI,ARO ; ARO -) XIII ..,
ADDI HIAD2,AR2 ; AR2 -) VIII

S- ADDI R7,ARO,ARI ; ARI -) XILI
~ ADDI R7,AR2,AR3 , M3 -) YILI

~
LDI RS,RC , SETUP 2ND INNER LOOP REPEAT CIlIINTER.
SlJBI I,RC , RC lONE LESS TIWl THE [{SIRED II

~
SECOOl INNER LIXl' IOC(S TWIDDLE RDTATIOIII tv

C a RPTB IBLK2 REPEAT BLOCK IE TIMES
C tf'YF tAR4, tARI,R4 R4 {= CQStXILi

tf'YF Rb,>AR3,R3 R3 {= SINfVILI

;:...

g
~
~
§'
.Q,
iJ
;:
~
~.

'C> ...
;;.
~

~
~
N
C a c

W
N
UI

111 ••• II •• II •• III.IIII.llfHUHHHffHHHUHHHHfUHfUHHHHHHHU

_: $lINALG.ASI1

LINEAR ALGElIRA RO.JTlNES

$lINALG.ASI1 CONSISTS OF TI£ F(llIlllIN; ROUTINES:

<SOLUTN - S()LI'ES A WElL CONDITIONED SYSTEM OF LINEAR EIlUATlONS WITH
~Y Nll'1IIER IF IEPENIJENT VARIABLE SETS. USES NO !DIAGONAL)
PIVOTING WITH NORI1AL -PRECISION FLOATING-POINT MATH.

<SOl.UTNX - S()LVES A WElL CONDITIONED SYSTEM OF LINEAR EIlUATlONS WITH
~Y NUi'IIIER OF IEPENIJENT VARIABLE SETS. USES NO !DIAGONAL)
PIVOTING WITH EXTENDED-PRECISION FLOATING-POINT MATH.

fHfHHHfHfffffIHHHHnHHHUffIHffHHHffH**HfHUHUflf**it*****

HHHH*******H4HHHIi********HH***HUUIUHHHH

, PROGRAM: 'SOLUTN

, WRITTEN BY: GARY A. SITTON
GAS LIGHT SOFTWARE
HOUSTON, TEXAS
MAY 1989.

INORMAL PRECISION VERSION)

• SOLVES A SYSTEM OF LINEAR EQUATIONS A<X = Y IN THE <
• TABLEAU FORMAT B = AH, ~ M X N MATRIX. THIS
, MEANS THAT A IS AN M X M SQUARE MATRIX IF COEFFI- <
• CIENTS, AND -Y IS AN M X N-M RECTANGULAR MATRIX •
• OF N-M VECTORS EACH HAVING M ELEI'CNTS, EACH OEPEN- ,
• DENT VARIABLE COLUMN VECTOR IS NEGATED AND APPENOED •
• TO THE COEFFICIENT MATRIX A. THE SET OF N-M INQE- •
, PENDENT SOLUTION VECTORS X WILL APPEAR IN PLACE OF •

THE ORIGINAL APPENDED COLUMNS WHEN SOLUTN FINISHES. ,
• ROW MAJOR MATRIX STORAGE FORMAT IS ASSUMED PLUS
• THE PROGRAM ASSUMES N } M) I ANO BIO, 01 '= 0.0
• SINCE THE METHOD USES DIAGONAL PIVOTING AND STARTS •
• WITH BIO, 01. ANY PIVOT ELEMENT (10"-8 IN ITS
• ABSOLUTE VALUE WILL IMPLY AN "ILL CONDITIONED"
• SYSTEM OF EQUATIONS, I. E. NOT HAVING SUFFICIENT
• LINEAR INDEPENDENCE, AND WILL RESULT IN AN INeOt!- •
, PLETE SOLUTION. AN INOO1PLETE SOLUTION WILL BE

INDICATED BY THE VALUE OF R3 = 0.0 ON EXIT, ELSE •
• R3!= 0.0 AND EQUALS THE LAST PIVOT ELEMENT VALUE. •

, MSOLUTN ENTRY PROToaJL:
VARIABLES FOR INPUT:

IIADI -) BIO, 0.1, $NROw = M,
INCOL = N, $PARMS = DATA PAVE.

INPUT RESTRICTIONS: N) M) I.
REGISTERS ALTERED: Re, DP, ARO-7, IRO-I,

ANn RO-7.

• RSOLUTN ENTRY PROTOCOL:
REGISTERS FOR INPUT:

ARO -) BIO, OJ, ARI = M, AR2 = N.
INPUT RESTRICTIONS: AR2) ARI) 1.
REGISTERS ALTERED: Re, ARO-7, IRO-I, AND RO-7. •

• REGISTERS USED AND RESTORED: SP.
• REGISTERS FOR OUTPUT: R3.
, ROUTINES NEEDED: FPINV (SEE $MATH).

• NOTE: COMMENTED OUT RND INSTRUCTIONS MAY BE ACTl- ,
.. VATED FOR ADDIT IONAL ACCURACY WITH LOSS OF SPEED.

******fH*****************tii****t************************

EXTERNA, PROGRAM NAMES

\j) • GLOBL I1S(LUTN I£nORV BASED ENTRY CALL FPINV ; RO (= -liBIK, KI
N
0'1 • 0l0Bl. RSa.UTN REGISTER BASED ENTRY RND RO ; ROUND INIJERSE

• GLDBL FPINY RECIPROCIi. ROOTINE
DIVIDE RlGiT PART OF Pll'OT ROW BY -PIVOT aEllENT

EXTERNIi.. PARAltETER NAI£S
ADDI AR3,IRO,AR7 ; AR7 -) BIK, KI .Gi.DBl _

; PARIiIETER SPACE ADDRESS LDI ARb,RC ; RC (= N-K-2
,GLOBl fIADI ; POINTER TO MATRIX B, ADDRESS OF BIO, 0]
.0l0Bl SIflOI ; NUI1BER OF !DIS IN"B, I'AI.lE OF " RPTB 0l00P ; REPEAT DIVIDE lOOP N-i<-l TIMES
,OlOIL SNCOl ; NmBER OF cruJlNl IN B, VIWE OF N MPYF RO, f++/IR7 ,R2 ; R2 <= BIK, J]tH/BIK, Kll

RND R2 ; ~ 't" TO ROLWD t
INTERNlLW6TANTS DlOOP: STF R2,tAR7 ; BIK, J] <= R2

.DATA START "It-INER lOOP II INDEll

EPSN ,FlOAT 1,0£-8 ; SINWLAAITY CRITERION LDI O,IRI ; IRI (= I IINIT. 0)
ZERO .SET 0,0 , SINWLAAITY FLAG LDI ARO,AR4 ; AR4 -) BIO, 0]

START 5W/TN _ CI1PI lRO,lRI , COIf ARE I TO K
llOOP: BEQ SKIP ; IF I = K Tl£N SKIP PIVOT Rill

" ,TElT
ca1PLETE PIVOTING OPERATION

IEIU!Y BASED PARIiIETER ENTRY
ADDI AR4,IRO,AR5 ; AR5 -) Bll, KI _:
lDF • tAR5,RO , RO <= B1I, KJ
LDI ARb,RC ; RC <= N-K-2

lOP HPARIIS , lllAD DATA PAGE POINTER CI1PI I,RC ; COIf ARE RC TO I
;:t... LDI ISIAIlI,ARO , ARO -) B10, OJ BlTD JUMP ; IF RC < I Tl£N t() RPTB IDElAYED)

g LDI _,ARI , ARI <= "
LDI 1tHOO..,AR2 ,AR2<=N SUBI I,RC , RC <= N-K-3 -~ ADDI AR3,IRO,AR7 ; AR7 -) BIK, JJ

Q. REGISTER BASED PARAltETER ENTRY MPYF RO, f++/IR7 ,RI , RI <= B1K, K+I]tm, KJ

§' RSW/TNI START INNER-INNER lOOP (J INDEll

~ 5ETU' lOOP REGISTERS RPTB JlOOP , REPEAT PIVOT lOOP N-K-2 TIMES

~ MPYF RO,*++AR7,Rl , RI <= B1K, JJtBlI, K]

;:s UP IEPSN , lOAD DATA PA(£ POINTER II ADDF RI, t++AR5, R2 ; R2 (= BlI, "J] + RI

Q. LDI O,IRO , lRO <= K IINIT. 0) RND R2 ; REI'IOVE IIf- TO ROltID +

~' LDI ARO,AR3 , AR3 -) BIO, 0] ..lOOP: STF R2,_ ; Bll, J] <= R2
SUBI I,ARI , ARI <= 11-1

~
LDI AR2,AR6 ,AR6<=N END OF INNER-INNER LOOP (J INDEX)

SUBI 2,AR6 , AR6 <= N-2 .., ..lII(P: ADDF RI, t++MS, R2 ; R2 <= BlI, N-Il + RI

So MAIN lOOP (K INtEll RND R2 ; R8t0VE n TO ROUND +
<11 STF R2,_ , Bll, N-Il <= R2

~
KlOOPI lDF HAR3(JRO),R3 ; R3 <= B1K, KJ, NEXT PIVOT

ABSF R3,RO , RO <= 1R31 SKIP: CI1PI ARI,IRI , COMPARE I 10 "-I

~ CII'F IEPSN,RO , COMPARE I B1K, Kli TO EPS BlTD IlOOP ; IF I < 11-1 lIEN lOOP (DElAYED)

N ILT SINl , IF I B1K, KJ I (EPS Tl£N STOP
C ADDI AR2,AR4 AR4 -) Bll+I, OJ

a COfI/TE RECIPIDA OF -PIVOT ELEIEirr ADDI I,IRI I <= 1+1

C
CI1PI IRO,IRI COMPARE I TO K

-- R3,RO , RO <= -B1K, KJ

;:..

g

i
~
~ ;:s
~
~.

'& ...
So
~

~
~
N
C a c

w
!j

SINl:

END IF IIt£R LOOP II INDEX)

01'1 ARI,IRO
Il.TD {(lOOP

ADDI AR2,AR3
ADDI I,IRO
SUBI 1,AR6

, cot'ARE K TO IH
, IF K (IH TI£N LOOP

AR3 -) 8[K'I, 01
K (= K'I
ARb (= IHH

END IF OUTER LOOP IK INDEX)

RETS ,RETURN

Slt«lIl.AR SYSTElI EXIT

UF ZERO,R3 , SET "SINOULAR" FLAG

RETS , RETI.IlN

flUHHffHHHHHHHtfHHHtIIIIIIIIIIIIII.111111111

I PROGRAI1: lSOLUTNX

I IIlITTEN 8Y' GARY A. SITION
GAS LI GHT SIl'TIIARE
IIlUSTON, TEXAS
MY 1989.

IEXTENDED PRECISION VERSION)

I SOLVES A SYSTEM IF LINEAR Ellll'ITlGNS AIX = Y IN TI£ I
I TABLEAU FORMAT 8 = AH, AN M X N /lATRIX. THIS
• MEANS THAT A IS AN M X M SIlUARE MATRIX IF COEFFI- I
I CIENTS, AND -Y IS AN M X N-I1 RECTANGllAR /lATRIX
I IF N-M.VECTORS EACH HAVING M ELEMENTS. EACH IE'EN- •
• CENT VARIABLE CGLUHN VECTIll IS NEGATED AND A'I'ENIEl •
I TO THE COEFF[ClENT /lATRIX A. TI£ SET IF N-I1 INIIE- I
I PENDENT SOLUTION VECTORS X WILL APPEAR IN PLACE IF I
• THE ORIGINAL APl'ENDED CGLUMNS IoIiEN SOLUTNX FINISI£S.'
• ROW MAJOR MATRIX STORAGE FOR/IAT IS ASSUIIED PLUS
• THE PROGRAM ASSUNES N) M) I AND 8[0, 01 != 0.0
I SINCE THE METHOD USES DIAGOOAl PIVOTING AND STARTS •
• WITH 8[0, 01. ANY PIVOT ELEHENT (1Ott-10 IN ITS •
• ABSOLUTE VALUE WILL IMPLY AN "ILL CONDITIONED"
• SYSTEM OF EIlIJATlONS, I. E. NOT HAVIOO SlfFICIENT
• LINEAR INDEPENDENCE, AND WILL RESlA.T IN AN INCOII- •
• PLETE SOLUTION. AN INCOHPLETE SOLUTION WILL BE
• INDICATED BY THE VAlUE IF R3 = 0.0 ON EXIT, ELSE •
• R3!= 0.0 AND EQUAlS THE LAST PIVOT ELEMENT VAllE. •

• MSOLUTNX ENTRY PROTQCGL:
VARIABLES FOR INPUT:

IIADI -) BID, 01, INROW = M,
INCOL = N. 'PARMS = DATA PAGE.

INPUT RESTRICTIONS: N) M) I.
REGISTERS ALTERED: RC, DP, ARO-7, IRO-I,

AND RO-7.

• RSOLUTNX ENTRY PROTOCOl'
REGISTERS FOR INPUT:

ARO -) 810, 01, ARI = M, AR2 = N.
INPUT RESTRICTIONS: AR2) ARI) I.
REGISTERS AlTERED: Re, ARO-7, IRO-I, AND RO-) ••

• REGISTERS USED AND RESTORED: SP.
I REGISTERS FOR OUTPUT: R3.
• ROUTINES NEEDED: FPINVX AND FMULTX ISEE $MATHXI.

• NOTE: THE RND INSTRucnONS MAY BE REMOVED WITH
• SOI1E LOSS Of ACCURACY BUT INCREASE IN SPEED.
n****fU**H****fHfiUffU*************UHfUffUIHH

EXTERNAL PROGRAM NAMES

w
to.)
00

::...
~
[
§'

<5;,
~ ;::
~
~.

'0> ...
~
~
~
N
C

Q
c

• GLOBL IIS(LUTNX
.!LOB!. RSOLUTNX
.GLOB!. FPINVX
.!LOB!. FI1ULTX

IEMRY BASED ENTRY
REGISTER BASED ENTRY
RECIPROCAL ROUTINE
tlULTIPLY ROUTINE

EXTERNAL PARAI'IETER NMES

.!LOB!. IPARIIS

.!LOB!. SIADI

.!LOB!. SNROW

.!LDBL SNCOl.

INTeRIW. CONSTANTS

.DATA

EPSNX .FLDAT I.Of-IO
ZEROX .SET 0.0

PARIiI£TER SPACE AD1llESS
POINTER TO MTRlX B, ADDRESS OF B[O, 01
NUIIBER OF ROWS IN B, VALUE OF M
NUI1BER OF CGLUMNS IN B, VALUE OF N

,. SINllARITY CRITERION
, SINGULARITY FLAG

START 5Il.UTNX PROOlAII

• TEXT

I'8OlY BASED PARAI£TER ENTRY

I1SILUTNX'

UP
UlI
UlI
UlI

IIPARIIS
ISIADI,ARO
_,ARI
IfI«:(L,ARl

LOAD DATA PAGE POINTER
ARO -) Bro, 01
ARI (= M
ARl (= N

REGISTER BASED PIlRAl£TER ENTRY

RSIl.UTNX'

SETUP lOOP REGISTERS

UP
UlI

. UlI

stili
UlI
stili

tEPSNX
O,IRO
ARO,AR3
I,ARI
ARl,AR6
2,AR6

ItAIN lOOP CK INDEX)

I<I.O(I'XI LIF
AIISF
CIFF
B!.T

HAR3URO) ,R3
Ra,RO
tEPSNX,RO
SIr«lX

LOAD DATA PAlE POINTER
100 (= K UNIT. 0)
AR3 -) B[O, 01
ARI (= 11-1
ARb <= N
ARb (= N-2

R3 <= S[K, Kl, NEXT PIVOT
RO (= 'Ra'
COMPARE • BIK, Kl: TO EPS
IF 'B[K, Kl. (EPS 1l£N STOP

COfUTE RECI~ OF -PIVOT ELEMENT

NEGF R3,RO
CALL FPINVX
LDF RO,RI

RO (= -BIK, Kl
RO (= -I/BIK, Xl
RI (= -I/BIX, Kl

DIVIDE RIGHT PART OF PIVOT ROW BY -PIVOT ELE~NT

ADDI AR3,IOO,AR7 , AR7 -) BIK, Xl
LDI ARb,RC , RC (= N-J(-2

RPTB DLOOFI REPEAT DIVIDE LOOP N-i<-i TIMES
LDF H+AR7,RO RO (= BIX, Jl
CALL FMULTl RO (= B[K, Jl'H/BIK, Kl)
RHO 00 ROUND •

DLOOFX: STF RO, 'AR7 BIK, Jl (= 00

START INNER LOOP II INDEll

UlI
UlI

O,IRI
ARO,AR4

CMPI IRO,IRI
lLOOPI' BEQ SKIPI

, IRI (= I IINIT. 0)
, AR4 -) B[O, 01

, COMPARE I TO K
, IF I = K TI£N SKIP PIVOT ~

COMPLETE PlVOTIOO OPERATION

ADDI AR4, IRO, 1'115 ARS -) BlI, Kl
LDF '1'115,00 RO (= BII, Kl
UlI ARb,RC RC <= N-J(-2
CI1?I I,Re COMPARE RC TO I
BLTD .!JMPI IF RC < I THEN NO RPTB IDaAYED)

SUBI I,Re RC <= N-J(-3
ADDI AR3,IRO,AR7 AR7 -) BIK, Jl
MPYF RO,H'AR7,RI RI <= B[K, K+ll'BII, Kl

START INNER-INNER LOOP IJ INDEX)

RPTB
~YF

•• ADDF
RHO

JLOOPX' STF

JLOOPX
RO, +++AR7,Rt
RI,H'ARS,R2
R2
R2, .ARS

REPEAT PIVOT LOOP N-K-2 TIMES
RI (= S[K, Jl'SlI, Kl
R2 (= SlI, Jl + RI
R!WlI +
S[[, Jl <= R2

END OF [NNER-INNER LOOP IJ INDEX)

JUMPI: ADDF Rl,f++AA5,R2 , R2 (= S[I, N-Il + RI
RHD R2 ;ROltIDt
STF R2, tARS , B[I, N-ll (= R2

SKIPX: CI1?I ARI,IRI , COMPARE I TO M-I
BLTO ILOOPI , IF I (11-1 1l£N LOOP CDaAYED)

ADDI ARl,AR4 , AR4 -) SlI'l, 01
ADDI 1,1RI ; I <= 1+1

~

g -~
~
§"
~
~
~
~"

'& ...
So
."

~
~
~
Q
c

w
~

ClPI IRO,IRI ,ClJll>AREITOK

END IF lItER ltD' (I INIEIl

ClPI MI,IRO , CIJII>ARE K TO 11-1
LTD KLlD'X , IF K <It-I TI£II ltD'

ADDI AR2,AR3 AR3 00) BIK+!, OJ
ADIlI I,IRO K (z K+l
SUBI 1,ARt. ARt. (= IH-I

END IF 0UlBl L(XI> (K INIEIl

RETS , REl\IUI

SIIOJl.AR SYSTElt EXIT

SINGX' LIF ZEROX,Rl , SET 'SJIOJl.AR' FlAG

RETS ., RETlIlN

"END

330 A Collection of Functions for the TMS320C30

Part Ill. Digital Signal Processing
Interface Techniques

9. TMS320C30 Hardware Applications
(Jon Bradley)

10. TMS320C30-IEEE Floating-Point Format Converter
(Randy Restle and Adam Cron)

331

332

TMS320C30
Hardware Applications

Jon Bradley

Digital Signal Processor Products-Semiconductor Group
Texas Instruments

333

334 TMS320C30 Hardware Applications

Introduction

The TMS320C30 is a high-speed, floating-point, digital signal processor. The TMS320C30s
advanced interface design allows it to be used to implement a wide variety of system configura­
tions. Its two external buses and DMA capability provide a parallel 32-bit interface to byte- or
word-wide devices, while the interrupt interface, dual serial ports, and general purpose digital I/O
provide communication with a multitude of peripherals.

This application report describes how to use the TMS320C30s interfaces to connect to vari­
ous external devices. Specific discussions include implementation of parallel interface to devices
with and without wait states, use of general purpose I/O, and system control functions. All inter­
faces shown in this report have been built and tested to verify proper operation.

Major topics discussed in this report are as follows:

• System Configuration Options Overview

• Primary Bus Interface
- Zero Wait Interface to RAMs
- Ready Generation
- Bank Switching Techniques

• Expansion Bus Interface
- ND Converter Interface
- D/A Converter Interface

• System Control Functions
- Clock Oscillator Circuitry
- Reset Signal Generator

• Serial Port Interface

• XDSIOOO Target Design Considerations

System Configuration Options Overview

The various TMS320C30 interfaces allow connections to a wide variety of different device
types. Each of these interfaces is tailored to a particular family of devices.

Categories of Interfaces on the TMS320C30

The interface types on the TMS320C30 fall into several different categories depending on
the devices to which they were intended to be connected. Each interface comprises one or more
signal lines that transfer information and control its operation. Shown in Figure 1 are the signal line
groupings for each of these various interfaces.

TMS320C30 Hardware Applications 335

Figure 1. External Interfaces on the TMS320C30

Data .. 32

Address 24

Primary Bu

{ Control

External { DMA
Interface

Interrupt { Interface

4

External Flags 2

System Reset

ROM Enable

System
Man" { Control Clock

Clock
Outputs

..
r

..
~

DO·31 XDO·31

AO·23 XAO·12

R/W XR/W

STRB XRDY

RDY IOSTRB

MSTRB

HOLD

HOLDA TCLKO·1

INT0-3 CLKXO·1

lACK DXO·1

FSXO·1

XFO·1 CLKRO·1

DRO·1

RESET FSRO·1

MC/MP

X1

X2/CLKIN

H1

H3 TMS320C3C

.. 32

13

2

2

2

2 ~~

2

2

2

Data

Address

Timer Interface

}
Dual

Serial
Ports

Expansion
Bus

All of the interfaces are independent of one another and different operations may be per·
formed simultaneously on each interface.

The Primary and Expansion buses implement the memory mapped interface to the device.
The external DMA interface allows external devices to cause the processor to relinquish the Prima·
ry bus and allow direct memory access.

Typical System Block Diagram

The devices that can be interfaced to the TMS320C30 include memory, DMA devices, and
numerous parallel and serial peripherals and I/O devices. Figure 2 illustrates a typical configuration
of a TMS320C30 system showing different types of external devices and the interfaces to which
they are connected.

336 TMS320C30 Hardware Applications

Memory

Perlpherlals

Perlpherlals

Bit I/O

Figure 2. Possible System Configurations

Primary Bus

Interrupt
Interface

External
DMA

Interface

External
Bus

Timer
Interface

TMS320C30
External

Flags
System
Control

Clock and Reset
Generators, etc.

Serial Ports

TLC32040 AIC
Analog I/O

Memory

. Peripherals

I/O Devices

TCM29C13
CODEC

This block diagram constitutes essentially a fully expanded system. In an actual design, any
subset of the illustrated configuration may be used.

Primary Bus Interface

The primary bus is used by the TMS320C30 to access the majority of its memory mapped
locations. Therefore, typically when a large amount of external memory is required in a system,
it is interfaced to the primary bus. The expansion bus (discussed in the next section) actually com­
prises two mutually exclusive interfaces, controlled by the MSTRB and IOSTRB signals respec­
tively. Cycles on the expansion bus controlled by the MSTRB signal are essentially equivalent to
cycles on the primary bus, with the exception that bank switching is not implemented on the expan­
sion bus. Accordingly, the discussion of primary bus cycles in this section applies equally to
MSTRB cycles on the expansion bus.

Although both the primary bus and the expansion bus may be used to interface to a wide vari­
ety of devices, the devices most commonly interfaced to these buses are memories. Therefore, de­
tailed examples of memory interface will be presented in this section.

Zero Wait State Interface To Static RAMs

For full speed, zero-wait state interface to any device, the TMS320C30 requires a read access·
time of 30 ns from address stable to data valid. Because, for most memories, access time from chip
select is the same as access time from address, it is theoretically possible to use 30 ns memories
at full speed with the TMS320C30. This, however, dictates that there be no delays present between
the processor and the memories. This is usually not the case in practice, due to interconnection de-

TMS320C30 Hardware Applications 337

lays and the fact that typically some gating is required for chip select generation. Therefore, slightly
faster memories are generally required in most systems. If one level of reasonably high-speed (be­
low 10 ns in propagation delay) gating is used to generate chip select for the memories, 20 ns de­
vices may be used.

Among currently available RAMs, there are two distinct categories of devices with different
interface characteristics. These two categories are RAMs without output enable control lines (OE),
which include the I-bit wide organized RAMs and most of the 4-bit wide RAMs, and those with
OE controls, which include the byte wide and a few of the 4-bit wide RAMs. Many of the fastest
RAMs do not provide OE control, and use chip select (CS) controlled write cycles to insure that
data outputs do not turn on for write operations. In CS controlled write cycles, the write control line
(WE) goes low prior to CS going low, and internal logic holds the outputs disabled until the cycle
is completed. Using CS controlled write cycles is an efficient way to interface fast RAMs without
OE controls to the TMS320C30 at full speed.

In the case of RAMs with OE controls, the use of this signal can provide added flexibility
in many systems. Additionally, many of these devices can be interfaced using CS controlled write
cycles with OE tied low, in the same manner as with RAMs without OE controls. There are, howev­
er, two requirements for interfacing to OE RAMs in this fashion. First, the RAMs OE input must
be gated with chip select and WE internally so that the device's outputs do not turn on unless a read
is being performed. Second, the RAM must allow its address inputs to change while WE is low,
which some RAMs specifically prohibit.

The circuit shown in Figure 3 shows an interface to Cypress Semiconductor's CY7C186
25 ns 8K x 8-bit CMOS static RAMs with the OE control input tied low and using a CS controlled
write cycle.

338 TMS320C30 Hardware Applications

Figure 3. TMS320C30 Interface to Cypress Semiconductor CY7C186 CMOS SRAM

4 x CY7C186-25

Primary
Address Bus

A(23-0) I
A12 10 19 031

A11
A12 1/07

9 18 030

A10 8
A11 1/06

17 029

A9
A10 1/05

7 16 028
A9 1/04

A8 6 15 027

A7
A8 1/03

~ 5 13 026
A7 1/02

A6 4 12 025
A6 1/01

A5 3 11 024
A5 1/00

A4 2
A4

A3 25

A2
A3

24
A2

A1 23
A1

A23 AO 21
AO

I/O 8" 0(16-23)

20
CS1

(0-7)

9~ STRB~
I/O 8 0(8-15)

CS2 (0-7) ~

27
R/W~ WE

74AS04
OE I/O 8/. 0(0-7) r (0-7)

Primary Data Bus 0(31-0)

In this circuit, the two chip selects on the RAM are driven by STRB and A23, which are
ANDed together internally. The use of A2310cates the RAM at addresses OOOOOh through 03FFFh
in external memory and STRB establishes the CS controlled write cycle. The WE control input is
then driven by the TMS320C30 R/W signal, and the OE input is not used, and is therefore connected
to ground.

The timing of read operations, shown in Figure 4, is very straightforward since the two chip
select inputs are driven directly. The read access time of the circuit is therefore the inverter propaga­
tion delay added to the RAMs chip select access time or tl + t2 = 5 + 25 = 30 ns. This access time
therefore meets the TMS320C30s specified 30 ns requirement.

TMS320C30 Hardware Applications 339

Figure 4. Read Operations Timing

H1~ / \
A23-0 X Valid X

I

STRB \l /
I
I

! A23 I
I I
I I I I < > 031-0 I I

Valid

I
~

I
14- tj I

j4-t2 ~.

During write operations, as shown in Figure 5, the RAMs outputs do not turn on at all, due
to the use of the chip select controlled write cycles. The chip select controlled write cycles are gen"
erated by the fact that R/W goes active (low) before the STRB term of the chip select input. Because
the RAMs output drivers are disabled whenever the WE input is low (regardless of the state of the
OE input) bus conflicts with the TMS320C30 are automatically avoided with this interface.The cir­
cuit's data setup and hold times (t1 and t2 in the timing diagram) of approximately 50 and 20 ns,
respectively, also easily meet the RAMs timing requirements of 10 and 0 ns.

Figure S. Write Operations Timing

''---
A23-0 __ ---'X~ ______________ ___'X'_ ___ _

STRB / _---J
\.~ ___ ---,A

I

\.~ ______________ ~i __ ~/
- I

R/W

031-0 ----------<~ ' _____ --.-; _-"!?>-------
if.~----tj -----t!~ I

I I
~t2 ~

If more complex chip select decode is required than can be accomplished in time to meet
zero-wait state timing, wait states or bank switching techniques (discussed in a later section) should
be used.

340 TMS320C30 Hardware Applications

It should be noted that the CY7C186's OE control is gated internally with CS, therefore the
RAMs outputs are not enabled unless the device is selected. This is critical if there are any other
devices connected to the same bus; if there are "no other devices connected to the bus, then OE need
not be gated internally with chip select.

RAMs without OE controls can also be easily interfaced to the TMS320C30 using a similar
approach to that used with RAMs with OE controls. If there is only one bank of memory implem­
ented, and no other devices are present on the bus, the memories' CS input may often be connected
to STRB directly. If several devices must be selected, however, a gate is generally required to AND
the device select and STRB to drive the CS input to generate the chip select controlled write cycles.
In either case, the WE input is driven by the TMS320C30 R!W signal. Provided sufficiently fast
gating is used, 25 ns RAMs may still be used.

As with the case of RAMs with OE control lines, this approach works well if only a few banks
of memory are implemented where the chip select decode can be accomplished with only one level
of gating. If many banks are required to implement very large memory spaces, bank switching can
be used to provide for multiple bank select generation while still maintaining full speed accesses
within each bank. Bank switching is discussed in detail in a later section.

Ready Generation

The use of wait states can greatly increase system flexibility and reduce hardware require­
ments over systems without wait state capability. The TMS320C30 has the capability of generating
wait states on either the primary bus or the expansion bus and both buses have independent sets of
ready control logic. Ready generation is discussed in this subsection from the perspective of the
primary bus interface, however, wait state operation on the expansion bus is similar to that of the
primary bus, therefore these discussions pertain equally well to expansion bus operation. Thus,
ready generation will not be included in the specific discussions of the expansion bus interface.

Wait states are generated on the basis of the internal wait state generator, the external ready
input (RDY), or the logical AND or OR of the two. When enabled, internally generated wait states
effect all external cycles, regardless of the address accessed. If different numbers of wait states are
required for various external devices, the external RDY input may be used to tailor wait state gener­
ation to specific system requirements.

If the logical OR (or electrical AND since the signals are true low) of the external and wait
countready signals is selected, the earlier of either ofthe two signals will generate a ready condition
and allow the cycle to be completed. It is not required that both signals be present.

The OR of the two ready signals can be used to implement wait states for devices that require
a greater number of wait states than are implemented with external logic (up to seven). This feature
is useful, for example, ifa system contains some fast and some slow devices. In this case, fast de­
vices can generate a ready signal externally with a minimum oflogic, and slow devices can use the
internal wait counter for larger numbers of wait states. Thus, when fast devices are accessed, the
external hardware responds promptly with a ready signal that terminates the cycle. When slow de­
vices are accessed, the external hardware does not respond, and the cycle is appropriately termi­
nated after the internal wait count.

The OR of the two ready signals may also be used if conditions occur that require termination
of bus cycles prior to the number of wait states implemented with external logic. In this case, a

TMS320C30 Hardware Applications 341

shorter wait count is specified internally than the number of wait states implemented with the exter­
nal ready logic, and the bus cycle is terminated after the wait count. This feature may also be used
as a safeguard against inadvertent accesses to nonexistent memory that would never respond with
ready and therefore lock up the TMS320C30.

If the OR of the two ready signals is used, however, and the internal wait state count is less
than the number of wait states implemented externally, the external ready generation logic must
have the ability to reset its sequencing to allow a new cycle to begin immediately following the end
of the internal wait count. This requires that, under these conditions, consecutive cycles must be
from independently decoded areas of memory and that the external ready generation logic be capa­
ble of restarting its sequence as soon as a new cycle begins. Otherwise, the external ready genera­
tion logic may lose synchronization with bus cycles and therefore generate improperly timed wait
states.

If the logical AND (electrical OR) of the wait count and external ready signals is selected,
the later of the two signals will control the internal ready signal, and both signals must occur. Ac­
cordingly, external ready control must be implemented for each wait state device in addition to the
wait count ready signal being enabled.

This feature is useful if there are devices in a system that are equipped to provide a ready sig­
nal but cannot respond quickly enough to meet the TMS320C30s timing requirements. In particu­
lar, if these devices normally indicate a ready condition and, when accessed, respond with a wait
until they become ready, the logical AND of the two ready signals can be used to save hardware
in the system. In this case, the internal wait counter can be used to provide wait states initially, and
become ready after the external device has had time to send a not ready indication. The internal wait
counter then remains ready until the external device also becomes ready, which terminates the
cycle.

Additionally, the AND of the two ready signals may be used for extending the number of wait
states for devices that already have external ready logic implemented but require additional wait
states under certain unique circumstances.

In the implementation of external ready generation hardware, the particular technique
employed depends heavily on the specific characteristics of the system. The optimum approach to
ready generation varies depending on the relative number of wait state and non-wait state devices
in the system and the maximum number of wait states required for anyone device. The approaches
discussed here are intended to be general enough for most applications, and are easily modifiable
to comprehend many different system configurations.

342

In general, ready generation involves the following three functions:
1) Segmentation of the address space in some fashion to distinguish fast and slow devices.
2) Generating properly timed ready indications.
3) Logically ORing all of the separate ready timing signals together to connect to the physi­

cal ready input.

TMS320C30 Hardware Applications

Segmentation of the address space is required so that a unique indication of each of the partic­
ular areas within the address space that require wait states can be obtained. This segmentation is
commonly implemented in a system in the form of chip select generation. Chip select signals may
be used to initiate wait states in many cases, however, occasionally chip select decoding consider­
ations may provide signals that will not allow ready input timing requirements to be met. In this
case, coarse address space segmentation may be made on the basis of a small number of address
lines, where simpler gating allows signals to be generated more quickly. In either case, the signal
indicating that a particular area of memory is being addressed is normally used to initiate a ready
or wait state indication.

Once the region of address space being accessed has been established, a timing circuit of
some sort is normally used to provide a ready indication to the processor at the appropriate point
in the cycle to satisfy each device's unique requirements.

Finally, since indications of ready status from multiple devices are typically present, the sig­
nals are logically ORed using a single gate to drive the RDY input.

One of two basic approaches may be taken in the implementation of ready control logic de­
pending upon the state in which the ready input is to be between accesses. If RDY is low between
accesses, the processor is always ready unless a wait state is required; if RDY is high between ac­
cesses, the processor will always enter a wait state unless a ready indication is generated.

If RDY is low between accesses, control of full speed devices is straightforward; no action
is necessary since ready is always active unless otherwise required. Devices requiring wait states,
however, must drive ready high fast enough to meet the input timing requirements. Then, after an
appropriate delay, a ready indication must be generated. This can be quite difficult in many circum­
stances since wait state devices are inherently slow and often require complex select decoding.

If RDY is high between accesses, zero wait state devices, which tend to be inherently fast,
can usually respond immediately with a ready indication. Wait state devices may simply delay their
select signals appropriately to generate a ready. Typically, this approach results in the most efficient
implementation of ready control logic. Figure 6 shows a circuit of this type which can be used to
generate 0, 1, or 2 wait states for multiple devices in a system.

TMS320C30 Hardware Applications 343

Figure 6. Circuit For Generation of 0, 1, or 2 Wait States for Multiple Devices

2 Walt
Status

Devices

,-/'--,.

{ 15 TMS320C30 14
Address Bus 13

STRB 12
11

74ALS138

A
B
C
G2A

G1

Other 1
Walt

Status
Devices

J PRE
Q 9

14

Device
Selects

74AS32

+5V

4.7kQ

H1 --------~~----~------------~
RESET----------------e-------------------~

Other 0
Walt

Status
Devices

A

In this circuit, full speed devices drive ready directly through the '74AS2I, and the two fJip­
flops delay wait state devices' select signals one or two HI cycles to provide 1 or 2 wait states.

Considering the TMS320C30's ready delay time of 8 ns following address, zero wait state
devices must use ungated address lines directly to drive the input of the '74AS21, since this gate
contributes a maximum propagation delay of 6 ns to the RDY signal. Thus, zero wait state devices
should be grouped together within a coarse segmentation of address space if other devices in the
system require wait states.

With this circuit, devices requiring wait states may take up to 36 ns from a valid address on
the TMS320C30 to provide inputs to the '74AS20s inputs. Typically, this allows sufficient time
for any decoding required in generating select signals for slower devices in the system. For exam-

344 TMS320C30 Hardware Applications

pie, the 74ALS138 driven by address and STRB, can generate select decodes in 22 ns, which easily
meets the TMS320C30s timing requirements.

With this circuit, unused inputs to either the 74AS20s or the 74AS2I should be tied to a logic
high level to prevent noise from generating spurious wait states.

If more than 2 wait states are required by devices within a system, other approaches may be
employed for ready generation. Ifbetween three and seven wait states are required, additional flip­
flops may be included, in the same manner as shown in Figure 6, or internally generated wait states
may be used in conjunction with external hardware. If greater than seven wait states are required,
an external circuit using a counter may be used to supplement the internal wait-state generator's
capabilities.

Bank Switching Techniques

The TMS320C30's programmable bank switching feature can greatly ease system design
when large amounts of memory are required. This feature is used to provide a period of time during
which all device selects are disabled that would not normally be present otherwise. During this in­
terval, slow devices are allowed time to turn off before other devices have the opportunity to drive
the data bus, thus avoiding bus contention.

When bank switching is enabled, any time a portion of the high order address lines change,
as defined by the contents of the BNKCMPR register, STRB goes high for one full HI cycle. Pro­
vided STRB is included in chip select decodes, this causes all devices to be disabled during this
period. The next bank of devices is not enabled until STRB goes low again.

Bank switching is not required during writes since these cycles always exhibit an inherent
one-half HI cycle setup of address information before STRB goes low. Thus, when using bank
switching for read/write devices, a minimum of half of one HI cycle of address setup is provided
for all accesses. Therefore, large amounts of memory can be implemented without wait states or
extra hardware required for isolation between banks. Also, note that access time for cycles during
bank switching is the same as that of cycles without bank switching, and accordingly, full speed
accesses may still be accomplished within each bank.

When using bank switching to implement large multiple-bank memory systems, an impor­
tant consideration is address line fanout. Besides parametric specifications for which account must
be made, AC characteristics are also crucial in memory system design. With large memory arrays
which commonly require large numbers of address line inputs to be driven in parallel, capacitive
loading of address outputs is often quite large. Because all TMS320C30 timing specifications are
guaranteed up to a capacitive load of 80 pF, driving greater loads will invalidate guaranteed AC
characteristics. Therefore it is often necessary to provide buffering for address lines when driving
large memory arrays. AC timings for buffer performance may then be derated according to man­
ufacturer specifications to accomodate a wide variety of memory array sizes.

The circuit shown in Figure 7 illustrates the use of bank switching with Cypress Semiconduc­
tor's 'CY7C185 25 ns 8K x 8 CMOS static RAM. This circuit implements 32K 32-bit words of
memory with one wait-state accesses within each bank.

TMS320C30 Hardware Applications 345

w
~ Figure 7. Bank Switching For Cypress Semiconductors CY7C185

BAO-12

~
~
N BSTRB <::>
Q BANKSELO
<::> BR/W

~
i:i.
::E BANKSEL1 .,
~

~ BAN KSEL2
"5
~ BAN KSEL3 .,
g.
;:s 00-31 '"

15 ' 151~ 15 128 - "15 128 Vee

1'28 v,, BM' , M'
I I v" BM' , A" BAH ~ AH
I v" Bm , A" BAH ~ AH ".1O:n A10 I BA" , A1, BAH" AH .M' J!1 A10 ... " AS
I BAH "'- AH .,," " A10 .M " AS BA, " A'
I .,," " A10 .M " A9 BAS " .. ~ BA' -' A' DO "
I Ai. " A9 BA' " AS BA> -' A> DO H ~ BAS , AS D1 ~
I BAS: ... A, BA> -' A> DO H ~B"" A, D1 ~ ~ BAO ,,~
I SA' -' A' DO H ~ BA' , '" D1 ~ r--- BAO ~ .. "1i?J f'-B.A' , M D3 ~
I BA, , A, D1 ~ r--- BAO '.. ,,~ BM __ M D3 r,;--- BII' , II' D4 ~
I B". ... AS ,,~ BM -' A4 D3 ~ - BAO , A' D4 ~ B~ '" D5"",
I BA' -' A4 D3 r,;--- - BII' , A3 D4 ~ BA:! , A:! D5"", _ BM 9 A 1 D6 ~
I BA' , A3 D4 r,;--- BA> -' A:! D5 17' _BA1 9 A1 D6 I~ I BAO 10 AO ,,~

• ., • A:! D5"", BA1 -'- A1 D6 I~ I BAO 10 AO "'19' _ II BA1 ~ A1 D6 ~ 1 BAO 1!! AO "'19' r---- BANKSEL" CS1

BAO to AO D7 '19' ~ BANKSEL" C51 ""TAB" C52
I - BANKSEL" C51 BOTAB " C52 " WE I BANKSEL " C51 B<TAB .. C52 " WE ~ DE
I .'TAB -" CS, " WE .--" DE GND

I - "WE I ~ DE I GND--, 11' ,
I ~ DE GND J 1;" II '!/_>
I Gf!!' J 11" V '!/ _ >
: V 1"> V '!/ -/ ~
I __ >
i_ _ _____ J -+ 1 BankO._

~--------- + OataBusOO-31

~ -----tr Bank 1 ~
'L.5.,

----1I Bank 2 J 7

~ -----.I Bank 3 ~
• J

A wait state is required with this implementation of bank memory because of the added prop­
agation delay presented by the address bus buffers used in the circuit. The wait state is not a function
of the fact that the memory is organized as multiple banks or the use of bank switching. When bank
switching is used, memory access speeds are the same as without bank switching once bank bound­
aries are crossed. Therefore, no speed penalty is paid when using bank switching except for the oc­
casional extra cycle ihserted when bank boundaries are crossed. It should be noted, however, that
if the extra cycle inserted when crossing bank boundaries d()es impact software performance signif­
icantly, code can often be restructured to minimize bank boundary crossings, thereby reducing the
effect of these boundary crossings on software performance.

The wait state for this bank memory is generated using the wait state generator circuit pres­
ented in the previous section. Because A23 is the signal which enables the entire bank memory sys­
tem, the inverted version of this signal is ANDed with STRB to derive a one wait state device select.
This signal is then connected in the circuit along with the other one wait state device selects. Thus,
any time a bank memory access is made, one wait state is generated.

Each of the four banks in this circuit is selected using a decode ofAlS-A13 generated by the
74AS138 (see Figure 8). With the BNKCMPR register set to OBh, the banks wiII be selected on
even 8K-word boundaries starting at location 080AOOOh in external memory space.

TMS320C30 Hardware Applications 347

Figure 8. Bank Memory Control Logic
74ALS2541

2 18
A Al Yl BAO

3 17
Al A2 Y2 BAl

4 16
A2 A3 Y3 BA2

5 15
A3 A4 Y4 BA3

6 14
A4 AS Y5 BA4

7 13
A A6 Y6 BAS

8 12
A A7 Y7 BA6

9 11
A7 A8 Y8 BA7

19
Gl G2

74ALS2541
2 18

A8 Al Yl BA8
3 17

A A2 Y2 BA9
4 16

Al A3 Y3 BA10
5 15

All A4 Y4 BAll
6 14

Al AS Y5 BA12
RiW

7 13
BR/W

8 A6 Y6 12
9 A7 Y7 11

A8 Y8 19
Gl G2

74AS04

74AS138

~ 3 STRB BSTRB
A15 C BANKSELO

2
A14 B BANKSEL1
A13 A BANKSEL2

BANLSSEL3

6
A23 G1 4

5 G2A
G2B

348 TMS320C30 Hardware Applications

The 74ALS2541 buffers used on the address lines are necessary in this design since the total
capacitive load presented to each address line is a maximum of20 x 5 pF or 100 pF (bank memory
plus zero wait-state static RAM), which exceeds the TMS320C30 rated capacitive loading of 80
pF. Using the manufacturers derating curves for these devices at a load of 80 pF (the load presented
by the bank memory) predicts propagation delays at the output of the buffers of a maximum of 16
ns. The access time of a read cycle within a bank of the memory is therefore the sum of the memory
access time and the maximum buffer propagation delay or 25 + 16 = 41 ns, which, since it falls be­
tween 30 and 90 ns, requires one wait state on the TMS320C30.

The 74ALS2541 buffers offer one additional system performance enhancement in that they
include 25-ohm resistors in series with each individual buffer output. These resistors greatly im­
prove the transient response characteristics of the buffers especially when driving CMOS loads
such as the memories used here. The effect of these resistors is to reduce overshoot and ringing
which is common when driving predominantly capacitive loads such as CMOS. The result of this
is reduced noise and increased immunity to latchup in the circuit, which in turn results in a more
reliable memory system. Having these resistors included in the buffers eliminates the need to put
discrete resistors in the system which is often required in high speed memory systems.

Thiscircuit could not have been implemented without bank switching, since data output's
turn-on and turn-off delays would have caused bus conflicts. Here, the propagation delay of the
74AS 138 is only involved during bank switches, where there is sufficient time between cycles to
allow new chip selects to be decoded.

The timing of this circuit for read operations using bank switching is shown in Figure 9. With
the BNKCMPR register set to OBh, when a bank switch occurs, the bank address on address lines
A23-A13, is updated during the extra HI cycle while STRB is high. Then, after chip select decodes
have stabilized, and the previously selected bank has disabled its outputs, STRB goes low for the
next read cycle. Further accesses occur at normal bus timings with one wait state as long as another
bank switch is not necessary. Write cycles do not require bank switching due to the inherent address
setup provided in their timings.

TMS320C30 Hardware Applications 349

Figure 9. Timing For Read Operations Using Bank Switching

~ t3 j4- -+i t4 j4-

H1 ~,.,..I -1-1 --II,....-"""'\~ 1 I
____ -J><~------------~:--V-al-Id----------------

I
A23-13

A12-0 ____ -J)[~I ___________ V_al~i~------------JX~-----
I I ______ ~!t ~~ _____________________ _

-.! t~ I

______ -JJrrl----------~-+1-t5--~-----------------
I I

~t3~ \yl---------------__________ ~I Ir-______________ _

031-0 Bank 0 on Bus }~-------_«"'" __ B_a_n_k_1_0_n_B_u_s __ _

The timing for this interface is summarized in the Table 1.

Table 1. Bank Switching Interface Timing

Time Interval Event Time Period

t1 HI falling to address/STRB valid 14 ns

t2 Add to select delay 10 ns

t3 Memory disable from STRB 10 ns

t4 HI falling to STRB 10 ns

t6 Memory output enable delay 3 ns

Expansion Bus Interface

The TMS320C30s expansion bus interface provides a second complete parallel bus which
can be used to implement data transfers concurrently with and independent of operations on the
primary bus. The expansion bus comprises two mutually exclusive interfaces controlled by the
MSTRB and IOSTRB signals, respectively. This section discusses interface to the expansion bus
using IOSTRB cycles; MSTRB cycles are essentially equivalent in timing to primary bus cycles,
and are discussed in the previous section.

Unlike the primary bus, both read and write cycles on the I/O portion of the expansion bus
are two HI cycles in duration and exhibit the same timing. The XR/W signal is high for reads and
low for writes. Since I/O accesses take two cycles, many peripherals that require wait states if inter­
faced either to the primary bus or using MSTRB may be used in a system without the need for wait
states. Specifically, in cases where there is only one device on the expansion bus, devices with ac­
cess times greater than the 30 ns required by the primary bus, but not more than 59 ns can be inter­
faced to the I/O bus without wait states.

350 TMS320C30 Hardware Applications

ND Converter Interface

AID and D/A converters are components that are commonly required in DSP systems and
interface efficiently to the I/O expansion bus. These devices are available in many speed ranges
and with a variety of features, and while some may be used at full speed on the I/O bus, others may
require one or more wait states.

Figure 10 shows an interface to an Analog Devices AD1678 analog to digital converter. The
AD1678 is a 12-bit, 5 Ils converter allowing sample rates up to 200 kHz and with an input voltage
range of 10 volts bipolar or unipolar. The converter is connected according to manufacturers speci­
fications to provide 0 to + 10 volt operation. This interface illustrates a common approach to con­
necting devices such as this to the TMS320C30. Note that the interface requires only a minimum
amount of control logic.

Figure 10. Interface to AD1678 AiD Converter

XA 12-

TRB r
4___.. 6 ms-­

X R/W

74AS04 Ys I
sJ ~~IOW
74As32

9

10J
8 lOR

I

T 11
Vee

2 OE

XA

SC
~ CS

12 - ONE~ 12/8

12p.....c 13
SYNC 1
EOCEN 74LS244 v;: XOO

:8 1Y1 1A1 2 DO
r' - X01 4 16 01 74AS32 11

X02 14 6 17 02
X03 12 8 ~9 03 X04 9 2Y1 2A1 11
X 5 13 20 04

X06 S 15 21 OS

X07 3 17 22 06
23 07

1G 2G 24 g:
1 I 2S 010

26 011

74LS244 PGNO
X08 18 1Y1 1 A1 ~ t4 X09 16 ~ X010 14 ~ X011 12 ~

1G ~ONE
XOBus

~

r 28

Voo
REFOUT

JSOQ

REFIN

BIPOFF "}ooo
AIN 6

+S r
A01678 f20K Q

EOC 27 INTO

Vee AGNO

J: r

Analog
Inpul

The AD1678 is a very flexible converter and is configurable in a number of different operat­
ing modes. These operating modes include byte or word data format, continuous or non-continuous
conversions, enabled or disabled chip select function, and programmable end of conversion indica­
tion. This interface utilizes 12-bit word data format, rather than byte format to be compatible with
the TMS320C30. Non-continuous conversions are selected, so that variable sample rates may be
used, since continuous conversions occur only at a rate of200 kHz. With non-continuous conver­
sions, the host processor determines the conversion rate by initiating conversions through write op­
erations to the converter.

TMS320C30 Hardware Applications 351

The chip select function is enabled, so the chip select input is required to be active when ac­
cessing the device. Enabling the chip select function is necessary to allow a mechanism for the
AD1678 to be isolated from other peripheral devices connected to the expansion bus. To establish
the desired operating modes, the SYNC and 12/S inputs to the converter are pulled high and EO­
CEN is grounded, as specified in the AD1678 data sheet.

In this application, the converter's chip select is driven by XA12, which maps this device at
S04000h in I/O address space. Conversions are initiated by writing any data value to the device,
and the conversion results are obtained by reading from the device after the conversion is com­
pleted. To generate the devices Start Conversion (SC) and Output Enable (OE) inputs, IOSTRB
is ANDed with XR/W. Therefore, the converter is selected whenever XA12 is low, and OE is driv­
en when reads are performed, while SC is driven when writes are performed.

As with many AID converters, at the end of a read cycle the AD1678 data output lines enter
a high impedance state. This occurs after the Output Enable (OE) or read control line goes inactive.
Also common with these types of devices, is that the data output buffers often require a substantial
amount of time to actually attain a full high-impedance state. When used with the TMS320C30,
devices must have their outputs fully disabled no later than 65 ns following the rising edge of
IOSTRB, since the TMS320C30 will begin driving the data bus at this point if the next cycle is a
write. If this timing is not met, bus conflicts between the TMS320C30 and the AD1678 may occur,
potentially causing degraded system performance and even failure due to damaged data bus drivers.
The actual disable time for the AD1678 can be as long as 80 ns, therefore buffers are required to
isolate the converter outputs from the TMS320C30. The buffers used here are 74LS244s that are
enabled when the AD1678 is read, and turned off30.8 ns following IOSTRB going high. Therefore,
the TMS320C30 requirement of 65 ns is met.

When data is read following a conversion, the AD1678 takes 100 ns after its OE control line
is asserted to provide valid data at its outputs. Thus, including the propagation delay of the 74LS244
buffers, the total access time for reading the converter is 118 ns. This requires two wait states on
the TMS320C30 expansion I/O bus.

The two wait states required in this case are implemented using software wait states, howev­
er, depending on the overall system configuration it may be necessary to implement a separate wait
state generator for the expansion bus (refer to section on ready generation). This would be the case
ifthere were multiple devices that required different numbers of wait states connected to the expan­
sion bus.

Figure 11 shows the timing for read operations between the TMS320C30 and the AD1678.
At the beginning of the cycle, the address and XR/W lines bej::ome valid t1 = 10 ns following the
falling edge ofH1. Then, aftert2 = 10 ns from the next rising edge ofH1, IOSTRB goes low, begin­
ning the active portion of the read cycle. After t3 = 5.S ns, the control logic propagation delay, the
lOR signal goes low, asserting the OE input to the AD1678. The '74LS244 buffers take t4 = 30 ns
to enable their outputs, and then, following the converters access delay and the buffer propagation
delay (t5 = 100 + 18 = 118 ns) data is provided to the TMS320C30. This provides approximately
46 ns of data setup before the rising edge of IOSTRB. Therefore, this design easily satisfies the
TMS320C30s requirement of 15 ns of data setup time for reads.

352 TMS320C30 Hardware Applications

Figure 11. Read Operations Timing Between the TMS320C30 and AD1678

HI

x:1~-~~--,-: _____________________ >C
I I (4-'2-01

, 4; "ill / IOSTRB 1---
~~--------------------~ _____ -::... '3

lOA \l / ~I ________________ -J

READO
DATA i ~'Io..' ________ -,)>------

~4 I
I I
It ts .!

Unlike the primary bus, read and write cycles on the I/O expansion bus are timed the same
with the exception that XR/W is high for reads and low for writes and that the data bus is driven
by the TMS320C30 during writes. When writing to the AD1678, the '74LS244 buffers do not turn
on and no data is transferred. The purpose of writing to the converter is only to generate a pulse
on the converter's SC input, which initiates a conversion cycle. When a conversion cycle is com­
pleted, the AD1678's EOC output is used to generate an interrupt on the TMS320C30 to indicate
that the converted data may be read.

It should be noted that for different applications, use ofTLC1225 or TLC1550 NO conver­
ters from Texas Instruments may be beneficiaL The TLC1225 is a self-calibrating 12-bit-plus-sign
bipolar or unipolar converter which features 10 JlS conversion times. The TLC1550 is a lO-bit,
6 JlS converter with a high speed DSP interface. Both converters are parallel-interface devices_

D/A Converter Interface

In many DSP systems, the requirement for generating an analog output signal is a natural con­
sequence of sampling an analog waveform with an NO converter and then processing the signal
digitally internally. Interfacing D/A converters to the the TMS320C30 on the expansion I/O bus
is also quite straightforward.

As with NO converters, D/ A converters are also available in a number of varieties_ One of
the major distinctions between various types of D/A converters is whether or not the converter in­
cludes latches to store the digital value to be converted to an analog quantity, and the interface to
control those latches. With latches and control logic included with the converter, interface design
is often simplified, however, internal latches are often included only in slower D/A converters.

Because slower converters limit signal bandwidths, the converter chosen for this design was
selected to allow a reasonably wide range of signal frequencies to be processed, in addition to illus­
trating the technique of interfacing to a converter using external data latches.

Figure 12 shows an interface to an Analog Devices AD565A digital to analog converter. This
device is a 12-bit, 250 ns current output DAC with an on-board 10 volt reference. Using an off­
board current-to-voltage conversion circuit connected according to manufacturers specifications,

TMS320C30 Hardware Applications 353

the converter exhibits output signal ranges 0 to + 1 0 volts, which is compatible with the conversion
range of the AID converter discussed in the previous section.

XD Bus

Figure 12. Interface Between the TMS320C30 and the ADS6SA

74LS377
XDO 3 1D
XDI 4
XD2 7
XD3 8
XD4 13
XD5 14 U25
XD6 17
XD7 18

11 CLK

74LS377
XDB 3
XD9 4
XD10
XD11

7 U26
8

11 CLK

+12V

Vee VEE 7 -12 V

4 REF. OUT
20V SPAN 11

50 Q

10
10 V SPAN I-'-'--~-----,-:;-;c----,

DAe OUT .-9 __ -"1

1Q ~ ~ __ -,---------,1-"-13 Bit 12 (LSB)
14 11

6
9
12
15
16
19

EN 1

2

6
9

EN 1
12

18 7

15 10
16 9

AD565A 17 8

19 6
20 5
21 4
22 3
23 2

24 Bit 1 (MSB)

XA12

Power 12
GND

AGND

-12

2.4 K

Analog
Out

Because this DAC essentially performs continuous conversions based on the digital value
provided at its inputs, periodic sampling is maintained by periodically updating the value stored
in the external latches. Therefore, between sample updates, the digital value is stored and main­
tained at the latch outputs that provide the input to the DAC. This results in the analog output re­
maining stable until the next sample update is performed.

The external data latches used in this interface are '74LS377 devices that have both clock
and enable inputs. These latches serve as a convenient interface with the TMS320C30; the enable
inputs provide a device select function, and the clock inputs latch the data. Therefore, with the en­
able input driven by inverted XA12 and the clock input driven by IOW, which is the AND of
IOSTRB and XR/W, data will be stored in the latches when a write is performed to I/O address
805000h. Reading this address has no effect on the circuit.

Figure 13 shows a timing diagram of a write operation to the D/A converter latches.

354 TMS320C30 Hardware Applications

Figure 13. Write Operation to the D/A Converter Timing Diagram

I

H1\ I \ / , \ / ~ I , I I

XA12-XAO ~ : : >C
, I I I

XA12 t1-W \
I , r I I
I I I , 14"' t3~ I I I , \l / 'OSTRB t2-~ I ,

~t4 I

lOW \l A
I
I >-XD32-XDO ~

I I
I I
J+----t5----~ I

I I
14"-- t6--t1

Because the write is actuall y being performed to the latches, the key timings for this operation
are the timing requirements for these devices. For proper operation, these latches require simply
a minimal setup and hold time of data and control signals with respect to the rising edge of the clock
input. Specifically, the latches require a data setup time of20 ns, enable setup of25ns, disable setup
of 10 ns and data and enable hold times of 5 ns. This design provides approximately 60 ns of enable
setup, 30 ns of data setup, and 7.2 ns of data hold time. Therefore, the setup and hold times provided
by this design are well in excess of those required by the latches. The key timing parameters for
this interface are summarized in Table 2.

Table 2. Key Timing Parameter for D/A Converter Write Operation

Time Interval Event Time Period

tl HI falling to address valid 10 os

t2 XAI2 to XAI2 delay 5 TIS

t3 HI rising to IOSTRB falling 10 ns

t4 IOSTRB to lOW delay 5.8 ns

ts Data setup to lOW 30 ns

t6 Data hold from lOW 7.2 TIS

System Control Functions

There are several aspects ofTMS320C30 system hardware design that are critical to overall
system operation. These include such functions as clock and reset signal generation and interrupt
control.

TMS320C30 Hardware Applications 355

Clock Oscillator Circuitry

An input clock may be provided to the TMS320C30 either from an external clock input or
by using the on-board oscillator. Unless special clock requirements exist, using the on-board oscil­
lator is generally a convenient method of clock generation. This method requires few external com­
ponents and can provide stable, reliable clock generation for the device.

Figure 14 shows a clock generator circuit using the internal oscillator. This circuit is designed
to operate at 33.33 MHz and since crystals with fundamental oscillation frequencies of 30 MHz
and above are not readily available, a parallel-resonant third-overtone circuit is used .

. Figure 14. Crystal Oscillator Circuit

TMS320C30

X1 X2/CLKIN

33.33 MHz

01--------,

47 pF T O:.::H1 TOO pF

In a third-overtone oscillator, the crystal fundamental frequency must be attenuated so that
oscillation is at the third harmonic. This is achieved with an LC circuitthat filters out the fundamen­
tal, thus allowing oscillation at the third harmonic. The impedance of the LC circuit must be induc­
tive at the crystal fundamental and capacitive at the third harmonic. The impedance of the LC cir­
cuit is given by:

z (w) = L/C
j [w L - 1/wC]

(1)

Therefore, the LC circuit has a pole at:

1
w --­

p - ./Lc
(2)

At frequencies significantly lower than wP' the 1/(wC) term in (1) becomes the dominating
term, while wL can be neglected. This gives:

z (w) = jwL for w < wp (3)

In (3), the LC circuit appears inductive at frequencies lower than wp' On the other hand, at
frequencies much higher than wP' the wL term is the dominant term in (1), and 1/(wC) can be ne­
glected. This gives:

356 TMS320C30 Hardware Applications

1
z (w) = -. - for w > w p

JWC

(4)

The LC circuit in (4) appears increasingly capacitive as frequency increases above wp' This
is shown in Figure 15, which is a plot of the magnitude of the impedance of the LC circuit of Figure
14 versus frequency.

Figure 15. Magnitude of the Impedance of the Oscillator LC Network

Capacitive
Region

w
(rad/s)

Based on the discussion above, the design of the LC circuit proceeds as follows:
1) Choose the pole frequency wp approximately halfway between the crystal fundamental

and the third harmonic.
2) The circuit now appears inductive at the fundamental frequency and capacitive at the

third harmonic.

In the oscillator of Figure 13, choose wp = 22.2 MHz, which is approximately halfway be­
tween the fundamental and the third harmonic. Choose C = 20 pF. Then, using (2), L = 2.6 f-lH.

Reset Signal Generation

The reset input controls initialization of internal TMS320C30 logic and also causes execu­
tion of the system initialization software. For proper system initialization, the reset signal must be
applied at least ten HI cycles, i.e., 600 ns for a TMS320C30 operating at 33.33 MHz. Upon power­
up, however, it can take 20 ms or more before the system oscillator reaches a stable operating state.
Therefore, the powerup reset circuit should generate a low pulse on the reset line for 100 to 200
ms. Once a proper reset pulse has been applied, the processor fetches the reset vector from location
zero which contains the address of the system initialization routine. Figure 16 shows a circuit that
will generate an appropiate powerup reset circuit.

TMS320C30 Hardware Applications 357

+5V

Figure 16. Reset Circuit

TMS320C30

74LS14 74LS14

Rl = 100 KQ

DGND

The voltage on the reset pin (RESET) is controlled by the R 1 C1 network. Mter a reset, this
voltage rises exponentially according to the time constant R 1 C1, as shown in Figure 17.

Figure 17. Voltage on the TMS320C30 Reset Pin.

Voltage

V = Vee (1_e- t/'t)

Vee - - - - - - - -~---~'---

Time

The duration of the low pulse on the reset pin is approximately t1, which is the time it takes
for the capacitor Cl to be charged to 1.5 V. This is approximately the voltage at which the reset input
switches from a logic a to a logic 1. The capacitor voltage is given by:

t ~)
V = Vee [1 - e - r

358 TMS320C30 Hardware Applications

where i = RICI is the reset circuit time constant. Solving (5) for t gives:

Setting the following:

Rl =
CI =
Vee =
V =

100 kQ

4.7 IAF
5V
VI=1.5V

V
t = - RICI In [1 - -]

Vee

(6)

gives t = 167 ms. Therefore, the reset circuit of Figure 16 provides a low pulse of long enough
duration to ensure the stabilization of the system oscillator.

Note that if synchronization of multiple TMS320C30s is required, all processors should be
provided with the same input clcock and the same reset signal. Mter powerup, when the clock has
stabilized, all processors may then be synchronized by generating a falling edge on the common
reset signal. Because it is in the falling edge of reset that establishes synchronization, reset must
be high for a period of time (at least ten HI cycles) initially. Following the falling edge, reset should
remain low for at least ten HI cycles and then be driven high. This sequencing of reset may be ac­
complished using additional circuitry, based on either RC time delays or counters.

Serial Port Interface to Ale

For applications such as modems, speech, control, instrumentation, and analog interface for
DSPs, a complete analog-to-digital (ND) and digital-to-analog (D/A) input/output system on a
single chip may be desired. The TLC32044 analog interface circuit (AIC) integrates on a single
monlithic/CMOSchip a bandpass, switched-capacitor, antialiasing-input filter, 14-bit resolution
ND and D/A converters, and a lowpass, switched-capacitor, output-reconstruction filter. The
TLC32044 offers numerous combinations of master clock input frequencies and conversion/sam­
pling rates, which can be changed via digital processor control.

Four serial port modes on the TLC32044 allow direct interface to TMS320C30 processors.
When the transmit and receive sections of the AIC are operating synchronously, it can interface to
two SN54299 or SN74299 serial-to-parallel shift registers. These shift registers can then interface
in parallel to the TMS320C30, otherTMS320 digital processors, or to external FIFO circuitry. Out­
put data pulses are emitted to inform the processor that data transmission is complete or to allow
the DSP to differentiate between two transmitted bytes. A flexible control scheme is provided so
that the functions of the AlC can be selected and adjusted coincidentally with signal processing via
software control. Refer to the TLC32044 data sheet for detailed information.

When interfacing the AlC to the TMS320C30 via one of the serial ports, no additional logic
is required. This interface is shown in Figure 18. The serial data, control and clock signals connect
directly between the two devices and the AlC's master clock input is driven from TCLKO, one of
the TMS320C30s internal timer outputs. The AlC's WORD/BYTE input is pulled high selecting
16-bit serial port transfers to optimize serial port data transfer rate. The TMS320C30s XFO, confi­
gured as an output, is connected to the AIC's reset (RST) input to allow the Ale to be reset by the
TMS320C30 under program control. This allows the TMS320C30 timer and serial port to be ini­
tialized before beginning conversions on the Ale.

TMS320C30 Hardware Applications 359

Figure 18. AIC to TMS320C30 Interface

TMS320C30 TlC32044

IN+
26

ADV

IN- AGND

FSXO
02 14

FSX OUT+
22

AOUT

DXO
03 12

OX OUT-
21

FSRO
P3 4

FSR

ORO
01 5

DR Voo
7

+5
CLlO(O M5 10

SHIFTClK Vcc+
20

+5

ClKRO
N4

Vcc_
19

+5

TClKO
P4 6 MSTR ClK AGND

18

AGND AGND

WOR01 BYTE
13

+5

RST
2

XFO DGND

G2 9

DGND

To provide the master clock input for the AlC, the TCLKO timer is configured to generate
a clock signal with a 50% duty cycle at a frequency ofHl/4 or 4.167 MHz. To accomplish this, the
timer 0 global control register is set to the value 3Clh, which establishes the desired operating
modes. The timer 0 period register is set to 1 which sets the required division ratio for the HI clock.

To properly communicate with the AlC the TMS320C30 serial port must be configured ap­
propriately. To configure the serial port, several TMS320C30 registers and memory locations must
be initialized. First the serial port should be reset by setting the serial port global control register
to 2170300h. (The AlC should also be reset at this time. See description below of resetting the AlC
using XFO). This resets the serial port logic and configures the serial port operating modes includ­
ing data transfer lengths and enables the serial port interrupts. This also configures another impor­
tant aspect of serial port operation: polarity of serial port signals. Because active polarity of all seri­
al port signals is programmable, it is critical that the bits in the serial port global control register
that control this be set appropriately. In this application all polarities are set to positive except FSX
and FSR which are driven by the AIC and are true low.

The serial port transmit and receive control registers must also be initialized for proper serial
port operation. In this application, both of these registers are set to 111h, which configures all of
the serial port pins in the serial port mode, rather than the general purpose digital I/O mode.

With the operations described above completed, interrupts are enabled, and provided the seri­
al port interrupt vector(s) are properly loaded, serial port transfers may begin after the serial port
is taken out of reset. This is accomplished by loading El70300h into the global control register.

To begin conversion operations on the AI C and subsequent transfers of data on the serial port,
the AIC is first reset by setting XFO to zero at the beginning of the TMS320C30 initialization rou-

360 TMS320C30 Hardware Applications

tine. Setting XFO to zero is accomplished by setting the TMS320C30 IOF register to 2. This sets
the AIC to a default configuration and halts serial port transfers and conversion operations until
reset is set high. Once the TMS320C30 serial port and timer have been initialized as described
above, XFO is set high by setting the IOF register to 6. This allows the AIC to begin operating in
its default configuration, which in this application is the desired mode. In this mode all internal fil­
tering is enabled, sample rate is set at approximately 6.4 kHz, and the transmit and receive sections
of the device are configured to operate synchronously. Conveniently, this mode of operation is ap­
propriate for a variety of applications, and if a 5.184 MHz master clock input is used, the default
configuration results in an 8 kHz sample rate which makes this device ideal for speech and telecom­
munications applications.

In addition to the benefit of a convenient default operating configuration, the AIC can also
be programmed for a wide variety of other operating configurations. Sample rates and filter charac­
teristics may be varied, in addition to which, numerous connections in the device may be configured
to establish different internal architectures, by enabling or disabling various functional blocks.

To configure the AIC in a fashion different from the default state, the device must first be
sent a serial data word with the two LSBs set to one. The two LSBs of a transmitted data word are
not part of the transferred data information and are not set to one during normal operation. This con­
dition indicates that the next serial transmission will contain secondary control information, not
data. This information is then used to load various internal registers and specify internal configura­
tion options. There are four different types of secondary control words distinguished by the state
of the two LSBs of the control information transferred. Note that each secondary control word
transferred must be preceded by a data word with the two LSBs set to one.

The TMS320C30 can communicate with the AIC either synchronously or asynchronously
depending on the information in the control register. The operating sequence for synchronous com­
munication with the TMS320C30 shown in Figure 19, is as follows:

1) The FSX or FSR pin is brought low.
2) One 16-bit word is transmitted or one 16-bit word is received.
3) The FSX or FSR pin is brought high.
4) The EODX or OEDR pin emits a low-going pulse.

Figure 19. Synchronous Timing ofTLC32044 to TMS320C30

SHIFTCLK

DR --;:==~
OX

For asynchronous communication, the operating sequence is similar, but FSX and FSR do
not occur at the same time (see Figure 20). After each receive and transmit operation, the
TMS320C30 asserts an internal receive (RINT) and transmit (XINT) interrupt, which may beused
to control program execution.

TMS320C30 Hardware Applications 361

Figure 20. Asynchronous Timing of TLC32044 to TMS320C30

u u u u
u u

XDSIOOO Target Design Considerations

The TMS320C30 Emulator is an eXtended Development System (XDS1000) which has all
the features necessary for fuII-speed emulation. The TMS320C30 uses a revolutionary technology
to aIIow complete emulation via a serial scan path. If users provide a 12-pin header on their target
system, realtime emulation can be performed using the TMS320C30 in their target system.

To use the emulation connector of the XDS1000, the signals shown in Figure 21. should be
provided to a 12 pin header (two rows of six pins) with pin 8 cut out to provide keying. Table 3 de­
scribes the pins and signals present on the header.

Figure 21. 12 Pin Header Signals

Header Dimensions:
Pln-lo-pln spacing: 0.100 Inches (X, y) EMU1 t 2 GND
Plnwldlh: 0.025 Inches square posl
Pin lenglh:0.235 Inches nominal

EMUO t 3 4 GND

EMU2 t S 6 GND

PO (+5V) 7 NO PIN (KEY)

EMU3 9 10 GND

H3 11 12 GND

TOP VIEW

Table 3. Signal Description

Signal Name Description

EMUO Emulation pin O.
EMUl Emulation pin 1.
EMU2 Emulation pin 2.
EMU3 Emulation pin 3.
H3 TMS320C30 H3.
GND Ground.
PD Presence detect. It indicates that the cable is connected and target system is powered up. It

should be tied to +5 volts in the target system.

362 TMS320C30 Hardware Applications

In addition to the signals required atthe emulation connector, the EMU4 through EMU6 sig­
nals on the TMS320C30 must also be appropiately connected to ensure proper emulation operation.
The EMU4 signal must be tied to +5 volts and EMUS and EMU6 must be left unconnected. Also,
the RSVO through RSVlO signals must be tied to +5 volts as described in the Third-Generation
TMS320 User's Guide (literature number SPRU031).

Summary

The TMS320C30 is a high-performance 32-bit floating-point digital signal processor. Its
dual parallel-interface busses and serial ports, along with a wide variety of additional support inter­
faces make the device an extremely flexible system-level DSP microprocessor. Using the tech­
niques described in this report, the TMS320C30 can be used to implement sophisticated signal pro­
cessing applications with the high precision and dynamic range provided by 32-bit floating-point
arithmetic.

This application report has described the use of external interfaces on the TMS320C30 to
connect it to memories, ND and D/A converters, and numerous other peripheral devices, as well
as the generation of wait states and other system functions.

The interfaces described in this report have all been built and tested to verify proper opera­
tion, and the techniques described can be extended to encompass design of more complex systems.

TMS320C30 Hardware Applications 363

364 TMS320C30 Hardware Applications

TMS320C30= IEEE JFH({»atiill1lg= P((J)llll1lt
Format C01I1lveIrteIr

Randy Restle, Regional Technology Center, Waltham, MA
Adam Cron, Digital Signal Processor Products-Semiconductor Group

Texas Instruments

365

366 TMS320C30-IEEE Floating-Point Format Converter

Introduction

Certain applications require the exceptionally high arithmetic throughput inherent in the
TMS320C30 Digital Signal Processor but must use the IEEE floating-point number format, which
differs from the TMS320C30's number format. The TMS320C30 uses a 2's complement format
for the mantissa and exponent. Besides making the device more compatible with analog to digital
converters, it is computationally more efficient in both speed and die size than the IEEE format.
Applications requiring the IEEE format can benefit from the use of a custom chip for this conver­
sion. For this reason, a chip has been designed, built, and tested. This report describes that chip.

The TMS320C30-IEEE Floating-Point Number Format Converter is a peripheral that per­
forms floating-point number conversions between the native format of the TMS320C30 and the
Single-Precision IEEE Standard 754-1985. This conversion is performed in hardware and can con­
vert an incoming (IEEE-formatted) or outgoing (TMS320C30-formatted) floating-point number
in less than one TMS320C30 instruction cycle. Normally, the part is placed between memory and
the TMS320C30.

This peripheral has two operating modes.

• Mode 1 does not pipeline any data through the chip. Instead, one wait state is automatical"
Iy generated to compensate for the converter's propagation delays. This mode is equiva­
lent in performance to equipping the TMS320C30 with a single-cycle convert instruction.
In those applications where speed is of utmost importance, the pipeline mode is provided.

.. Mode 2 enables the converter's built-in pipeline.

Because propagation delays through the chip reduce the access time required for
TMS320C30 external memory, the pipeline mode allows conversions to take place on one data val­
ue while a previously converted value is being read, or written, by the TMS320C30. Depending
on the TMS320C30 instruction cycle time and the access time of memories being used, the pipeline
mode can eliminate degradation in TMS320C30 throughput entirely. However, it should be noted
that values fed through the pipeline appear at the output in the next cycle. Therefore, an extra read
or write (i.e., the same operation that was being performed) must be performed to flush the pipeline.
Consequently, when pipeline mode is used, data values and their addresses are skewed from one
another. This mode is intended for high-speed block transfer/conversion, and the address skew
should be acceptable.

All control signals to and from the converter are compatible with TMS320C30 signals so that
no extra circuitry is required to use this chip. In fact, it has been designed to appear as much as possi­
ble like a simple bus transceiver (e.g., SN74LS245). Consequently, it has two data buses. Data bus
A (pins DA31 through DAO) should be connected directly to one of the TMS320C30's data buses
and the other to memory. Its direction pin (DIR) should be tied to the read/write pin (RIW), and
its output enable pin (DE) can be tied to either STRB or MSTRB of the TMS320C30, depending
on where in the TMS320C30 memory map IEEE numbers are stored.

Key Features

This device is designed to fit into systems equipped with TMS320C30 external memory into
which IEEE formatted numbers are stored. Below is a list of some specific features of the
TMS320C30-IEEE Floating-Point Converter:

TMS320C30-IEEE Floating-Point Format Converter 367

• Automatic wait-state generation during conversions

• Automatic interrupt generation when IEEE NaNs are encountered

• Automatic pipeline mode for single-cycle conversions

• Built-in SCOPE (i.e., JTAG) testability logic

Report Overview

• External Interfaces - Describes the external interfaces of this chip, the pinout, and pins.

• Architectural Overview- Describes the functions of the converter. Gives an overview of
the TMS320C30 and IEEE Standard 754-1985 number formats and the scope of numbers
that can be converted.

• Converter Operating Modes - Describes the converter's operating modes.

• Interrupts - Describes the Not a Number interrupt generated by the converter.

• Software Application Examples - Contains software application examples.

• Hardware Application Examples - Contains hardware application examples.

• JTAG/lEEE-1149.1 Scan Interface - Contains the JTAG/IEEE scan interface description.

Typographical Conventions

In this report, buses are signified with the bus name in capital letters, followed by the range
of signals (bits) enclosed in parentheses and separated by a colon. For example, TI(31:0) is bus
"TI", bits 31 through 0 (31 is the most significant bit, 0, the least). Table 1 shows the symbols and
their corresponding meaning that are used in sections of the report concerning control logic, algo­
rithm overview, and bit-specific conversion algorithms.

Table 1. Symbols and Meanings

Symbol Name Meaning

+ plus arithmetic summation
I pipe logical OR
& ampersand logical AND
! exclamation point one's complement
- minus two's complement
" caret EXCLUSIVE OR

External Interfaces

Packaging

The TMS320C30 device is housed in an 84-pin package. This pinout was chosen for efficient
flow through connection to the buses. The TMS320C30-IEEE Converter's pin assignments are
shown in Table 2, and the pin locations are shown in Figure 1.

368 TMS320C30 IEEE Floating-Point Format Converter

Table 2. Pin Assignments

Pin Name Pin Name Pin Name

1 GND 29 DA3 57 DA29
2 DB15 30 DA4 58 DA30
3 DB14 31 DAS 59 DA31
4 DB13 32 DA6 60 TDI
5 DB12 33 DA7 61 TMS
6 DB11 34 DA8 62 TCK
7 DBlO 35 DA9 63 vec
8 DB9 36 DAlO 64 GND
9 DB8 37 DA11 65 TDO
10 DB7 38 DA12 66 TIP
11 DB6 39 DAB 67 RST
12 DB5 40 DA14 68 DB31
13 DB4 41 DA15 69 DB30
14 DB3 42 vee 70 DB29
15 DB2 43 GND 71 DB28
16 DBI 44 DA16 72 DB27
17 DBO 45 DA17 73 DB26
18 WAIT 46 DA18 74 DB25
19 PIPE 47 DAl9 75 DB24
20 eLK 48 DAZO 76 DB23
21 vee 49 DAZI 77 DB22
22 GND 50 DAZ2 78 DB21
23 NAN 51 DAZ3 79 DB20
24 DIR 52 DAZ4 80 DB19
25 OE 53 DA25 81 DBl8
26 DAD 54 DA26 82 DBl7
27 DAl 55 DA27 83 DBl6
28 DA2 56 DA28 84 vee

TMS320C30 IEEE Floating-Point Format Converter 369

OB5
OB4
OB3
OB2
OB1
OBO

WAIT
PIIPE

ClK
Vee

GNO
NAN
OIR
OE

OAO
OA1
OA2
OA3
OA4
OA5
OA6

Figure 1. Pin Locations

m~rom~~~~~~Ou~~~~~~~~~
~~~~~~~~~~Zu~~~~~~~~~ 
OOOOOOOOOO~>OOOOOOOOO 

11109 8 7 6 5 4 3 2 1 84838281807978777675 
12 74 OB25 

TMS320C30 - IEEE 
FLOATING POINT 

22 FORMAT CONVERTER 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

OB26 
OB27 

71 OB28 
OB29 
OB30 
OB31 
RST 
TIP 
TOO 
GNO 
Vee 
TCK 
TMS 
TOI 
OA31 
OA30 
OA29 
OA28 
OA27 
OA26 

65 

62 
61 
60 
59 
58 
57 
56 
55 
54 

333435363738394041424344454647484950515253 

Pinout Description 

Table 3 describes the pin functions. 

Table 3. Converter Signals 

Signal Pins TYpe Description 

DIR 1 Input Direction - This pin determines what type of conversion 
should take place. When it is high, data on bus B is converted 
from IEEE to TMS320C30 format and output on bus A. When 
it is low, data on bus A is converted from TMS320C30 to IEEE 
format and output on bus B. This pin is normally tied directly 
to the TMS320C30 read/write pin. 

OE 1 Input Output Enable (active low) - In combination with the DIR 
pin, this pin disables the currently driven bus (i.e., bus A or B). 

370 TMS320C30 IEEE Floating-Point Format Converter 



Table 3. Converter Signals (Concluded) 

Signal Pins Type Description 

WAIT 1 Output This pin is driven high in nonpipelined operations to signal the 
TMS320C30 to extend its external memory access to allow 
the conversion to complete. It can be tied directly to the 
TMS320C30 ready line. It is appropriately driven for both 
read and write operations, but is always low in pipelined mode 
of operation. 

PIPE 1 Input Pipeline Enable - When this is high, the converter is confi-
gured in pipeline mode. It must be tied low for nonpipeline 
mode. 

CLK 1 Input Clock - This clock is the wait-state generator and the pipeline 
clock. It should be connected directly to the TMS320C30 HI 
clock pin. 

NAN 1 Output Not-a-Number Interrupt - This pin is driven low for 1.5 CLK 
cycles and signals an attempted conversion of the IEEE for-
mat: Not-a-Number. This pin can be tied directly to one of the 
TMS320C30 interrupt pins and can signal command or mes-
sage passing in multi-processor, shared-memory-type de-
signs. 

DA(3I:O) 32 Input/Output Data Bus A - This 32-bit bus should be tied to either one of 
the two TMS320C30 data buses (Le., the primary or expan-
sion buses). 

DB(31:0) 32 Input/Output Data Bus B - This 32-bit bus is normally connected to a 
memory array containing IEEE-formatted data. 

TCK 1 Input Test Clock. 

TMS 1 Input Test Mode Select. 

RST 1 Input Reset (active low) - This pin resets aU logic on the device. 

TDI 1 Input Test Data In. 

TDO 1 Output Test Data Out. 

TIP 1 Output Test Instruction Register Parity - During instruction register 
scan, when paused, this output reflects instruction register 
even parity. 

TMS320C30 IEEE Floating-Point Format Converter 371 



Architectural Overview 

Figure 2 shows the block diagram of the converter. 

T 
M 
S 
3 
2 
o 
C 
3 
o 

I 
N 
T 
E 
R 
F 
A 
C 
E 

S 
C 
A 
N 

L 
o 
G 
I 
C 

Introduction 

Figure 2. Converter Block Diagram 

IEEE TO 
TMS320C30 

CONVERTER 

HOLDING 
REGISTER 

HOLDING 
REGISTER 

HOLDING 
REGISTER 

HOLDING 
REGISTER 

TMS320C30 
TO IEEE 

CONVERTER 

CONVERTER CONTROL LOGIC 

TEST CONTROL LOGIC 

S 
C 
A 
N 

L 
o 
G 
I 
C 

M 
E 
M 
o 
R 
y 

I 
N 
T 
E 
R 
F 
A 
C 
E 

The TMS320C30 attains a peak performance of 33 MFLOPS, largely due to the float­
ing-point format that it uses. In this format, both exponent and mantissa are represented in 2's-com­
plement form. 

In the IEEE format, the mantissa is represented in signed-magnitude form, and the exponent 
includes a bias (i.e., an offset). Additionally, values of numbers are not determined by the same for­
mula. Instead, the exponent is used to flag numbers that are encoded differently. For example, if 
the exponent is 255, the value is considered not a number (NaN). Another exception is signaled 
when the exponent is zero. In this case, the mantissa is defined to be denormalized. 
The TMS320C30's floating-point format is considerably simpler; most numbers can be converted 
to it without any loss of precision. However, some denormalized IEEE numbers are smaller than 

can be represented in TMS320C30 format. When these numbers are converted, they are translated 

to the closest TMS320C30 values. The error is less than ±2-127. 

IEEE Floating-Point Format Overview 

IEEE Standard 754-1985 defines formats for single-, single-extended-, double- and 
double-extended-precision floating-point numbers. The single-precision format fits entirely with-

372 TMS320C30 IEEE Floating-Point Format Converter 



in 32 bits, which is the bus width of the TMS320C30, and is the only format supported by the con­
verter. 

low: 

The format of the single-precision IEEE Standard 754-1985 is shown below: 

Figure 3. Single-Precision IEEE Standard 754-1985 Format 

31 30 23 22 O-BIT# 

5 EXPONENT FRACTION 

MSB LSB MSB LSB 

In this format, 

5 is the sign bit of the mantissa (0 = positive, 1 = negative). 

EXPONENT is an unsigned 8-bit field that determines the location of the binary point 
of the number being encoded. 

FRACTION is a 23-bit field containing the fractional part of the mantissa. 

LSB is the least significant bit of a field 

MSB is the most significant bit of a field 

The decimal value (v) of some number X is defined by one of five separate cases shown be-

Case 1: If EXPONENT = 255 and FRACTION .. 0, then v is NaN. 

Case 2: If EXPONENT = 255 and FRACTION = 0, then v = ± infinity. 

Case 3: If 0< EXPONENT < 255, then v = (_l)S 2exp-127 (1.FRAC) 

where: 

5 is either ° or 1 

FRAC is the decimal equivalent of FRACTION 

EXP is the decimal equivalent of EXPONENT 

Note that an implied 1 exists to the left ofthe binary point as shown above. This means 
the mantissa of an IEEE-encoded value has 24 bits of precision. 

Case 4: If EXPONENT = ° and FRACTION .. 0, then v is a denormalized number and 
v = (_l)S 2-126 (O.FRAC) 

where 
5 is either ° or 1 

FRAC is the decimal equivalent of FRACTION 

Note that an implied ° exists to the left of the binary point as shown above. This means 
the mantissa of an IEEE-encoded value has 24 bits of precision. 

TMS320C30 IEEE Floating-Point Format Converter 373 



Case 5: If EXPONENT = a and FRACTION = 0, then v = ± zero. 

TMS320C30 Floating-Point Format Overview 

TMS320C30 single-precision floating-point format uses a 2's-complement exponent and 
mantissa and is shown in Figure 4. 

Figure 4. TMS320C30 Single-Precision Floating-Point Format 

31 24 23 22 

EXPONENT S FRACTION 

MSB LSB MSB LSB 

The decimal value (v) of some number X is determined as follows: 
v = {(_2)S + (.FRAC)) 2exp 

where S is either a or 1 

FRAC is the decimal equivalent of FRACTION 

EXP is the decimal equivalent of EXPONENT 

o +- BIT # 

An alternate way of describing the TMS320C30 mantissa is as follows: 

ss.fraction 

Note that the bit to the left of the binary point is implied and is the complement of the sign 
bit. This gives the TMS320C30's mantissa 24 bits of precision and not 23 bits as might be expected. 
For example: 

The most positive TMS320C30 mantissa is 

01.11111111111111111111111 = 2 - 2-23 

The least positive TMS320C30 mantissa is 

01.0000 0000 0000 0000 0000 000 = 1 

The most negative TMS320C30 mantissa is 

10.0000 0000 0000 0000 0000 000 =-2 

The least negative TMS320C30 mantissa is 

10.11111111111111111111111 = -1- 2-23 

Note that zero is uniquely identified when the TMS320C30 exponent is -128. 

IEEE Number Conversion 

This section describes the classifications of IEEE numbers, how they are decoded, and the 
algorithms necessary to translate them to TMS320C30 format. 

374 TMS320C30 IEEE Floating-Point Format Converter 



IEEE Dynamic Range 

Table 4 shows the dynamic range of IEEE numbers. This chart can be used to quickly deter­
mine the case classification of an IEEE number. 

Table 4. IEEE Range of Numbers 

Sign Exponent Mantissa Value Type Case 

0 FF 0 not applicable NaN 1 
0 FF 0.000 ... 000 + infinity + Infinity 2A 
0 FE 1.111...111 (2_Z-23)x2127 + Normalized Number 3A 
0 FE 1.111...110 (2_2-22)x2127 + Normalized Number 3A 
0 FE 1.111...101 (2_2-21 + 2-231X2127 + Normalized Number 3A 
0 FE 1.111...100 (2_Z-21)x212 + Normalized Number 3A 

0 FE 1.000 ... 000 2127 + Normalized Number 3A 
0 FD 1.111...111 (2_Z-23)x2126 + Normalized Number 3A 
0 FD 1.111...110 (2_Z-22)x2126 + Normalized Number 3A 
0 FD 1.111...101 (2_2-21+2-23Jx2126 + Normalized Number 3A 
0 FD 1.111...100 (2_2-21 )x212 + Normalized Number 3A 

0 01 1.000 ... 000 Z-126 + Normalized Number 3A 
0 00 0.111...111 (1_Z-23)xZ-126 + Denormalized Number 4A 
0 00 0.111...110 (1_Z-22)xZ-126 + Denormalized Number 4A 
0 00 0.111...101 (1_2-21+Z-23ix2-126 + Denormalized Number 4A 
0 00 0.111...100 (1_Z-21)xZ-1 6 + Denormalized Number 4A 

0 00 0.100 ... 000 Z-127 + Denormalized Number 4A 
0 00 0.011 ... 111 (1_Z-22{xZ-127 - Denormalized Number 4B 
0 00 0.011 ... 110 (1-Z-2 )xZ-127 - Denormalized Number 4B 
0 00 0.011...101 (1_2-20+ 2-22)x2-127 - Denormalized Number 4B 

0 00 0.000 ... 011 (1+Z-1)x2-14S - Denormalized Number 4B 
0 00 0.000 ... 010 Z-148 - Denormalized Number 4B 
0 00 0.000 ... 001 Z-149 - Denormalized Number 4B 
0 00 0.000 ... 000 + 0.0 + Zero 5 
1 00 0.000 ... 000 -0.0 -Zero 5 
1 00 0.000 ... 001 -(2-149) - Denormalized Number 4D 
1 00 0.000 ... 010 -(2-148; - Denormalized Number 4D 
1 00 0.000 ... 011 -(1+Z- )xZ-148 - Denormalized Number 4D 

TMS320C30 IEEE Floating-Point Format Converter 375 



Table 4. IEEE Range of Numbers (Concluded) 

Sign Exponent Mantissa Value Type Case 

1 00 0.011 ... 111 -{1_T22)xT127 - Denormalized Number 4D 
1 00 0.100 ... 000 -{T12,? - Denormalized Number 4D 
1 00 0.100 ... 001 -{1+2- 2)x2-127 - Denormalized Number 4C 
1 00 0.100 ... 010 -{1+2-21)x2-127 - Denormalized Number 4C 
1 00 0.100 ... 011 -{I +2-21+2-22)x2-127 - Denormalized Number 4C 

1 00 0.ll1...1ll -{1_2-23)x2-126 - Denormalized Number 4C 

1 01 1.000 ... 000 -{T126i - Normalized Number 3C 
1 01 1.000 ... 001 -{1+2- 3)xT126 - Normalized Number 3B 
1 01 1.000 ... 010 -{I +T22)xT126 - Normalized Number 3B 
1 01 1.000 ... 011 -{1+T22+T23)x2-126 - Normalized Number 3B 

1 01 1.111...1ll -{2_2-23)x2-126 - Normalized Number 3B 
1 02 1.000 ... 000 -{2-12i - Normalized Number 3C 
1 02 1.000 ... 001 -{2+T 3)xT125 - Normalized Number 3B 
1 02 1.000 ... 010 -{2+ 2-22)x2-125 - Normalized Number 3B 
1 02 1.000 ... 011 -{1+2-22+2-23)x2-125 - Normalized Number 3B 

1 FE 1.111...100 -{2_2-21)x2127 - Normalized Number 3B 
1 FE 1.111...101 -{2-2-21+2-23Jx2127 - Normalized Number 3B 
1 FE 1.1ll ... ll0 -{2_T22)x212 - Normalized Number 3B 
1 FE 1.111... II 1 -{2_T23)x2127 - Normalized Number 3B 

1 FF =0 - infinity - Infinity 2B 

IEEE-to-TMS320C30 Control Logic 

The control logic that classifies incoming IEEE data in order to perform correct translation 
to TMS320C30 format is shown below. The form of the expressions was chosen to minimize propa­
gation delay through the device. 

The logic is simplified if the following three factors are used (refer to typographical defini­
tions for symbols used): 

EXPFF= IEEE(30) & IEEE(29) & IEEE(28) & IEEE(27) & 
IEEE(26) & IEEE(25) & IEEE(24) & IEEE(23) 

EXPOO = !( IEEE(30) IIEEE(29) I IEEE(28) I IEEE(27) I 
IEEE(26) I IEEE(25) I IEEE(24) I IEEE(23) ) 

MANTO = !( IEEE(21) I IEEE(20) IIEEE(19) IIEEE(18) I 
IEEE(17) I IEEE(16) I IEEE(15) I IEEE(14) I 

376 TMS320C30 IEEE Floating-Point Format Converter 



Then 

IEEE(13) 
IEEE(9) 
IEEE(5) 
IEEE(l) 

Case 1: NaN 

I IEEE(12) 
I IEEE(8) 
I IEEE(4) 
I IEEE(O» 

I IEEE(ll) 
I IEEE(7) 
I IEEE(3) 

= EXPFF & (IEEE(22) I !MANTO) 

Case 2A: positive infinity 

= !IEEE(31) & EXPFF & !( IEEE(22) I !MANTO) 

Case 2B: negative infinity 

= IEEE(31) & EXPFF & !( IEEE(22) I !MANTO) 

Case 3A: positive normalized numbers 

= !IEEE(31) & !EXPOO & !EXPFF 

Case 3B: negative normalized numbers with fraction ... 0 

I IEEE(lO) 
I IEEE(6) 
I IEEE(2) 

= IEEE(31) & !EXPOO & !EXPFF & (!MANTO I IEEE(22» 

Case 3C: negative normalized numbers with fraction = 0 

= IEEE(31) & !EXPOO & !EXPFF & !( !MANTO I IEEE(22) ) 

Case 4A: positive denormalized numbers :2: T127 

= !IEEE(31) & EXPOO & IEEE(22) 

Case 4B: positive denormalized numbers < 2-127 

= !IEEE(31) & EXPOO & !IEEE(22) & !MANTO 

Case 4C: negative denormalized numbers s (_1_2-23) x 2-127 

= IEEE(31) & EXPOO & IEEE(22) & !MANTO 

Case 4D: negative denormalized numbers> (_1_2-23) x 2-127 

= IEEE(31)& EXPOO & (IEEE(22) 1\ !MANTO) 

Case 5: positive and negative zero 

= EXPOO & !IEEE(22) & MANTO 

IEEE-to-TMS320C30 Conversion Algorithm Overview 

Table 5 shows the conversion algorithms used on the sign, exponent, and mantissa fields of 
IEEE numbers to produce the corresponding TMS320C30 fields. These fields are broken down into 
bit-specific algorithms in the following section. 

TMS320C30 IEEE Floating-Point Format Converter 377 



Table S. Conversion Algorithms from IEEE to TMS320C30 Format 

TMS320C30 

Case Exponent Sign Fraction 

l. elEEE SIEEE fIEEE 
2A. 7Fh SIEEE 7F FFFFh 
2B. 7Fh SIEEE OOOOOOh 
3A. eIEEE + 81h SIEEE fIEEE 

3B. elEEE + 81h SIEEE -fIEEE 

3C. elEEE " 80h SIEEE -fIEEE 
4A. 81h SIEEE 2 x flEEE 

4B. 80h SIEEE OOOOOOh 
4C. 81h SIEEE 2 x -fIEEE 

40. 80h 0 OOOOOOh 
5. 80h 0 OOOOOOh 

Note: Fraction, above, has only 23-bits 

IEEE-to-TMS320C30 Bit-Specific Conversion Algorithms 

These circuits were designed by examining Table 5 and finding all possible choices for each 
bit. The different choices were fed into data selectors, whose addresses were derived from the 
case-identifying logic described in the preceding section on control logic. 

For maximum performance, all data selectors were designed from NAND gates. This also 
permitted minimization by eliminating all NAND gates that had an input of 0 and by reducing the 
number of NAND inputs where a bit was always 1. However, for clarity, no minimization is shown 
here. Instead, that detail can be seen in the following figures. 

The following bit algorithms are shown in bit descending order, starting with IEEE bit 31. 

Figure S. IEEE Bit 31 to TMS320C30 Bit 23 

IEEE(31)---e>:=fD------~ f-----i.. TMS320C30(23) 

CASE4D : ' 

CASES --

378 TMS320C30 IEEE Floating-Point Format Converter 



Figure 6. IEEE Bit 30 to TMS320C30 Bit 31 

IEEE(30) :=) 
ab 

CASE3C 
"1" aB 

"0" Ab 

IEEEBIAS(30) AB 

b = CASEI , CASE2A , CASE2B , CASE3C 
B= !b 
A = CASE2A , CASE2B , CASE3A , CASE3B 
a= !A 

TMS320C30(31 ) 

Figure 7. IEEE Bit 0 to TMS320C30 Bit 0+1, Where 29 <!: 0 <!: 24 

IEEE(n) --------ef ab 

"1" ---------.t aB 
1----. TMS320C30(n+ 1) 

"0" ---------.t Ab 

IEEEBIAS(n) --------ef AB 

b = CASE2A , CASE2B , CASE3A , CASE3B 
B =!b 
a = CASE2A , CASE2B , CASEI , CASE3C 
A= !a 

Figure 8. IEEE Bit 23 to TMS320C30 Bit 24 

IEEE(23) ~ 
"1" aB 

"0" -"" Ab 

IEEEBIAS(23) .. AB 

/' 
b = CASEI , CASE3C , CASE4B , CASE4D , CASES 
B= !b 

~ TMS320C30(24) 

A = CASE4B , CASE4D , CASES' CASE3A' CASE3B 
a= !A 

TMS320C30 IEEE Floating-Point Format Converter 379 



Figure 9. IEEE Bit n to TMS320C30 Bit n, Where 22 ~ n ~ 1 

C = CASE2A I CASE3B I CASE3C I CASE4C 
c= !C 
b = CASEI I CASE2A I CASE3A I CASE4A I CASE4C 
B =!b 
A = CASE4A I CASE4C 
a= !A 

Figure 10. IEEE Bit 0 to TMS320C30 Bit 0 

IEEE(O) --------~ ab 

"1" --------~ as 

"0" --------~ Ab 

B=CASE2A 
b =!B 

1-----. TMS320C30(0) 

A = CASEI I CASE2A I CASE3A I CASE3B I CASE3C 
a= !A 

TMS320C30 Number Conversion 

This section describes the classifications of TMS320C30 numbers, how they are decoded, 
and the algorithms necessary to translate them to IEEE format. 

TMS320C30 Dynamic Range 

Shown in Table 6 is the dynamic range ofTMS320C30 numbers. As with Table 4, this table 
can be used to quickly determine case classification of a TMS320C30 number. 

380 TMS320C30 IEEE Floating-Point Format Converter 



Table 6. TMS320C30 Range of Numbers 

Exponent Sign Mantissa Value Type . Case 

7F 0 1.111...111 (2_r23)x21U Positive Number 6 
7F 0 1.111...110 (2_2-22)x2127 Positive Number 6 
7F 0 1.111...101 (2_r21+r23jx2127 Positive Number 6 
7F 0 1.111...100 (2_r21 )x212 Positive Number 6 

7F 0 1.000 ... 000 2127 Positive Number 6 
7E 0 1.111...111 (2_2-23)x2126 Positive Number 6 
7E 0 1.111...110 (2_r22)x2126 Positive Number 6 
7E 0 1.111...101 (2_2-21+2-23)x2126 Positive Number 6 

00 0 1.000 ... 000 1 Positive Number 6 
FF 0 1.111...111 1_2-24 Positive Number 6 
FF 0 1.111...110 1_2-23 Positive Number 6 
FF 0 1.111...101 1_r22+2-24 Positive Number 6 

FF 0 1.000 ... 000 r 1 Positive Number 6 
FE 0 1.111...111 (2_r23)xr2 Positive Number 6 
FE 0 1.111...110 (2_2-22)xr2 Positive Number 6 
FE 0 1.111...101 (2_2-21+2-23)x2-2 Positive Number 6 

82 0 1.000 ... 000 r 126 Positive Number 6 
81 0 1.111...111 (2_r23)xr127 Positive Number 7 (note 1) 
81 0 1.111...110 (2_2-22)xrI27 Positivr Number 7 (note 1) 
81 0 1.111...101 (2_2-21+2-23Jx2-127 Positive Number 7 (note 1) 
81 0 1.111...100 (2_2-21 )x2-1 7 Positive Number 7 (note 1) 

81 0 1.000 ... 010 (1 +2-22)xrI27 Positive Number 7 (note 1) 
81 0 1.000 ... 001 (1 +r23)xrI27 Positive Number 7 (note 1) 
81 0 1.000 ... 000 2-127 Positive Number 7 (note 1) 

80 0 0.111...111 (note 2) Implied Zero 8 
80 0 0.111...110 (note 2) Implied Zero 8 
80 0 0.111...101 (note 2) Implied Zero 8 

80 0 0.000 ... 001 (note 2) Implied Zero 8 

TMS320C30 IEEE Floating-Point Format Converter 381 



Table 6. TMS320C30 Range of Numbers (Concluded) 

Exponent Sign Mantissa Value Type Case 

80 0 0.000 ... 000 0.0 Zero 8 

80 1 10.111...111 (note 2) Implied Zero (note 3) 
80 1 10.111 ... 110 (note 2) Implied Zero (note 3) 
80 1 10.111 ... 101 (note 2) Implied Zero (note 3) 

80 1 10.000 ... 011 (note 2) Implied Zero (note 3) 
80 1 10.000 ... 010 (note 2) Implied Zero (note 3) 
80 1 10.000 ... 001 (note 2) Implied Zero (note 3) 

80 1 10.000 ... 000 (note 2) Implied Zero 8 

81 1 10.111...111 (_1_Z-23)xZ-127 Negative Number 9 (note 1) 
81 1 10.111...110 (_1_Z-22rz-127 Negative Number 9 (note 1) 
81 1 10.111...101 (-1-2-2 +2-23)x2-127 Negative Number 9 (note 1) 

81 1 10.000 ... 010 (_2+2-22)x2-127 Negative Number 9 (note 1) 
81 1 10.000 ... 001 (_2+Z-23)xZ-127 Negative Number 9 (note 1) 

81 1 10.000 ... 000 -(Z-126j Negative Number 10 
82 1 10.111...111 (-1-Z-2 )xZ-126 Negative Number 11 
82 1 10.111...110 (_1_Z-22)x2-126 Negative Number 11 
82 1 10.111...101 (_1_2-21+2-23)x2-126 Negative Number 11 

FF 1 10.000 ... 001 _1+Z-24 Negative Number 11 
FF 1 10.000 ... 000 -1 Negative Number 10 
00 1 10.111...111 (_1_2-23)x2-1 Negative Number 11 
00 1 10.111...110 (_1_Z-22)xZ-l Negative Number 11 
00 1 10.111 ... 101 (_1_2-21+2-23)x2-1 Negative Number 11 

00 1 10.000 ... 001 _2+2-23 Negative Number 11 
00 1 10.000 ... 000 -2 Negative Number 10 
01 1 10.111...111 _2_2-22 Negative Number 11 
01 1 10.111...110 _2_Z-21 Negative Number 11 
01 1 10.111 ... 101 _2_2-20+Z-22 Negative Number 11 

7F 1 10.000 ... 001 (_2+Z-23)x2127 Negative Number 11 
7F 1 10.000 ... 000 -(2128) Negative Number 12 

382 TMS320C30 IEEE Floating-Point Format Converter 



Notes: 1) Numbers converted to IEEE denormalized values lose one least significant bit of accuracy. 

2) The TMS320C30 does not produce these numbers under normal arithmetic operations. Because the exponent 
of these numbers is -128, the TMS320C30 considers them zero. TMS320C30 Boolean operations are capa­
ble of producing numbers of these forms. Because of this, proper conversion to IEEE format is unclear and 
should be avoided. See note 3. 

3) Case 8 & Case 9 are activated simultaneously. This is the only instance where the cases are not mutually ex­
clusive. The TMS320C30 does not produce these numbers under normal arithmetic operations. Because the 
exponent of these numbers is -128, the TMS320C30 considers them zero. TMS320C30 Boolean operations 
are capable of producing numbers of these forms. Because of this, proper conversion to IEEE format is un­
clear. This dilemma can be resolved with minor modification to the case qualifier logic. See note 2. 

TMS320C30-(o-IEEE Control Logic 

Conversion from TMS320C30 format to IEEE format is qualified with a different set of 
Boolean equations. To eliminate confusion between IEEE and TMS320C30 cases, different case 
numbers are used. 

The logic is simplified if the following three factors are used: 

EXPSO Sl = lC30(31) 
C30(27) 

EXP7F= lC30(31) 
C30(27) 

MANTO = C30(22) 
C30(lS) 
C30(14) 
C30(1O) 
C30(6) 
C30(2) 

Then, 

Case 6: positive numbers 2: r 126 

= lEXPSO_S1 & !C30(23) 

Case 7: positive numbers N such that 

(2_2-23) x 2-127 2: N 2: 2-127 

I C30(30) 
I C30(26) 

& C30(30) 
& C30(26) 

I C30(21) 
I C30(17) 
I C30(13) 
I C30(9) 
I C30(S) 
I C30(1) 

= EXPSO_S1 & C30(24) & lC30(23) 

Case 8: zero 

= EXPSO_81 & C30(24) 

TMS320C30 IEEE Floating-Point Format Converter 

I C30(29) 
I C30(2S) 

& C30(29) 
& C30(2S) 

I C30(20) 
I C30(16)· 
I C30(12) 
I C30(S) 
I C30(4) 
I C30(O) 

I C30(28) 

& C30(2S) & 
& C30(24) 

I C30(19) 
I C30(lS) 
I C30(1l) 
I C30(7) 
I C30(3) 

383 



Case 9: negative numbers N such that 

(_1_2-23)x2-127 ~ N ~ (_2+2-23)x2-127 

= EXP80_81.& C30(23) & lMANTO 

Case 10: negative numbers N such that 

-(2-126) ~ N ~ -(2127) and whose fraction is 0 

= l( EXP80_81 & lC30(24)) & lEXP7F & C30(23) & MANTO 

Case 11: negative numbers N such that 

-(2-126) > N > -(2128) and whose fraction ;0' 0 

= lEXP80_81 & C30(23) & lMANTO 

Case 12: negative 2128 

= EXP7F & C30(23) & MANTO 

TMS320C30-to-IEEE Conversion Algorithm Overview 

Table 7 shows the conversion algorithms used on the sign, exponent, and mantissa fields of 
TMS320C30 numbers to produce the corresponding IEEE fields. These fields are broken down into 
bit-specific algorithms in the next section. 

Table 7. Conversion Algorithms from TMS320C30 to IEEE Format 

IEEE 

Case Sign Exponent Fraction 

6 sC30 eC30+7Fh fC30 
7 sC30 00 ( fC3Oi'2)+400000h 
8 0 00 OOOOOOh 
9 sC30 00 (fC30+ 1 )/2+400000h 
10 sC30 eC30+80h OOOOOOh 
11 sC30 eC30+7Fh fC30+ 1 
12 sC30 FFh OOOOOOh 

TMS320C30-to-IEEE Bit-Specific Conversion Algorithms 

These circuits were designed by examining Table 7 and finding all possible choices for each 
bit. The different choices were fed into data selectors whose addresses were derived from the 
case-identifying logic described in the preceding section on TMS320C30 to IEEE control logic. 

Just as in the IEEE case-identifying logic, all data selectors were designed from NAND gates 
for maximum performance. This also permitted minimization by eliminating all NAND gates hav­
ing an input of 0 and by reducing the number of NAND inputs where a bit was always 1. However, 
for clarity, no minimization is shown here. Instead, that detail can be seen in the following figures. 

384 TMS320C30 IEEE Floating-Point Format Converter 



The following bit algorithms are shown in bit-descending order, starting with TMS320C30 
bit 31. 

Figure 11. TMS320C30 Bit 31 to IEEE Bit 30 

TMS320C30SIAS(31) --------~ ab 

"1" ------------~aB 

"0" ____________ ~ Ab 

TMS320C30(31) ~ 

CASE10 -+-/ 

B = CASEIO I CASE12 
b =!B 

)----.!AB 

a = CASE61 CASEll I CASE12 
A= !a 

(------. IEEE(30) 

Figure 12. TMS320C30 Bit n to IEEE Bit n-1, Where 31 :2: n :2: 24 

TMS320C30SIAS(n) ---------~ .. > 
"1" ~-------.. ~ aB 

"0" ------------~ Ab 

TMS320C30(n) --------~ AS 

V 
B = CASElO I CASE12 
b =!B 
a = CASE6 I CASEll I CASE12 
A= !a 

(------. IEEE(n·1) 

Figure 13. TMS320C30 Bit 23 to IEEE Bit 31 

TMS320C30(23) 0 
____ ---I 1---- IEEE(31) 

CASES . 

TMS320C30 IEEE Floating-Point Format Converter 385 



386 

Figure 14. TMS320C30 Bit 22 to IEEE Bit 22 

TMS320C30(22) ---------1~ ab 

"1" ---------i~ aB 
1-----+ IEEE(22) 

"0" --------~ Ab 

TMS320C30NEG(22) ---------1~ AB 

B = CASE71 CASE91 CASEll. 
b =!B 
a = CASE61 CASE71 CASE9 
A= !a 

Figure 15. TMS320C30 Bit D to IEEE Bit D, Where 21 ~ D ~ 1 

TMS320C30(n+1) --------~~ 
TMS320C30(n) --------~ 

"0" --------~ 

TMS320C30NEG(n+1) --------~ 

TMS320C30NEG(n) --------~ .. / 

C = CASE6 I CASE9 
c= !C 
b = CASE61 CASE71 CASEll 
B= !b 
A= CASEll 
a= !A 

1------1~. IEEE(n) 

TMS320C30 IEEE Floating-Point Format Converter 



Figure 16. TMS320C30 Bit 0 to IEEE Bit 0: 

.. ~ ab TMS320C30(O) ---------1~ 

TMS320C30(1) ---------1~ as 

.. "0" ---------pt 

.. TMS320C30NEG(1) ----------.t 

B = CASE7 I CASE9 
b =!B 
a = CASE61 CASE71 CASEll 
A= !a 

Scope of Conversion 

Ab 

AS 

/ 

.. IEEE(O) 

This section describes the actions taken by the converter when it converts to and from the 
IEEE format. When there is not a match between formats, the converter forces the translated num­
ber to the closest approximation. 

IEEE-to-TMS320C30 Exceptions 
The match is not exact in translating from four sets of IEEE numbers to TMS320C30 num­

bers. They are: NaN, ± infinity, ± zero and denormalized numbers too small to represent. 

NaN (Not a Number) 

The NaN format is especially useful in passing commands to another process. So that com­
mands can be passed through the converter, NaNs are not converted. However, the bit positions of 
the sign and exponent bits are altered. That is, the sign bit of the IEEE number is transferred to the 
sign bit of the TMS320C30 format. Likewise, the exponent field is transferred. In this way, the sign 
of the NaN is preserved which may aid in quick detection of the code. In other words, the 
TMS320C30 Branch on Positive instruction (BP) or Branch on Negative instruction (BN) are ef­
fective. So that the command can be acted on quickly, a NaN interrupt is generated. 

± Infinity 

When positive or negative infinity is passed through the converter, the most positive or nega­
tive TMS320C30 number is produced. 

Denormalized numbers whose magnitude < 2-126 

Half of the denormalized IEEE numbers are out of range of TMS320C30 numbers. These 
denormalized numbers have very small magnitudes and are therefore forced to zero when con­
verted. 

± Zero 

The IEEE format includes representations for positive and negative zero, but the 
TMS320C30 format does not. The converter forces each of these numbers to the singular 
TMS320C30 zero format. 

TMS320C30 IEEE Floating-Point Format Converter 387 



TMS320C30·to·IEEE Exceptions 

There are two sets ofTMS320C30 numbers that do not perfectly match IEEE numbers. One 
set consists of a single value (- 2127). The other consists of numbers converted to IEEE denormal­
ized numbers. 

_2127 

The single value, - 2127, is a very large negative number. When this number is translated, neg­
ative infinity is produced. 

Numbers Translated to Denormalized Values 

When the exponent is-127, denormalized IEEE numbers are produced, and one least signifi­
cant bit of accuracy is lost. This occurs because the TMS320C30 mantissa must be right-shifted 
one bit in order that the exponent be increased to -126, which is the most negative exponent the 
IEEE format can use. 

Converter Operating Modes 

The converter is controlled by the TMS320C30. Conversions occur when the converter's 
output enable pin (OE) is active (i.e., low) and the TMS320C30 performs a read or write over its 
primary (STRB active) or expansion (MSTRB active) buses. This requires the converter to be 
placed directly between the TMS320C30 and external memory. That memory is where IEEE data 
will be stored. If direct (Le., no conversion wanted) access to that memory is desired, transceivers 
like the SN74LS245 should be added in parallel with the converter. However, doing so requires that 
only one data path be enabled at a time. If unused, one of the XF pins of the TMS320C30 can be 
dedicated to perform this selection. 

During a read, data is converted from IEEE format to TMS320C30 format. During a write, 
data is converted from TMS320C30 format to IEEE format. This will happen if the TMS320C30 
R/W or XR/W pin is tied to the converter's direction (DIR) pin. Table 8 shows how to put the con­
verter into its two operating modes and briefly describes each mode. 

Table 8. Converter Operating Modes 

Mode Pin Description 

Memory PIPE=O Flow-Through Conversion Enabled - In this mode, the converter essentially 
behaves like a simple bus transceiver, such as an SN74LS245, except with an 
integrated floating-point format converter. When this mode is used, conver-
sions take two cycles. Because of this, the converter automatically generates a . 
wait state, which will halt the TMS320C30 for one cycle until the conversion 
is complete. 

Pipeline PIPE=l Converter's Pipeline Registers Enabled Internally - This mode permits 
single-cycle conversion. As one data value is being converted, a previously 
converted value is output. 

388 TMS320C30 IEEE Floating-Point Format Converter 



Memory Mode Operation 

In this mode, one wait cycle is automatically generated during conversions from 

• IEEE format to TMS320C30 format (reads) 

• TMS320C30 format to IEEE format (writes) 

The converter will not generate wait cycles of any other length and requires that the 
TMS320C30 HI clock pin be tied to the converter's CLK pin. Figure 17 sbows the timing diagram 
for this mode of operation. 

Figure 17. Memory Mode Timing Diagram 

elK 

f--~-
I 

Pipelined Operation 

Pipeline mode permits consecutive conversions every instruction cycle without wait cycles. 
However, because the pipeline has two internal stages, it takes two consecutive occurrences of the 
same operation (i.e., two reads or two writes) before it is filled. Therefore, the first read after a tran­
sition from a write will not provide properly converted data, and vice versa. 

There is an address skew of one address when consecutive data values are converted. This 
should not be a major problem when blocks of memory are converted. The only added task will 
be to perform one extra transfer (read or write) to convert the last value remaining in the pipeline. 
With this exception, operation is identical to the Memory mode. Figure 18 shows a timing diagram 
for this mode of operation. 

TMS320C30 IEEE Floating-Point Format Converter 389 



Figure 18. Pipeline Mode Timing Diagram 

elK 

DIR J, 
WAIT _____ "'--____ -'-_____ .__--"-____ ""'-_"'--____ -,-_ 

A(31:0) -~ 
I 

I 

: 'C30:IN 2 X JC I I 

8(31:0) --.\ 
I 

~: IEE~ OUT 1: ~ 
I , , 

Interrupts 

The converter automatically generates an interrupt whenever the conversion of an IEEE 
number classified as Not a Number (NaN) is attempted. The interrupt pulse is 1.5 HI cycles wide. 
This is compatible with the TMS320C30 edge-triggered interrupt types. Table 9 shows this inter­
rupt and its trigger. Note that the converter does not change the value of the NaN, but it does alter 
its bit positions. This assures that the sign bit of the IEEE number remains a sign bit in the 
TMS320C30 format. The same is true of the exponent field. The fractional field is left unchanged. 
If NaN is used to pass a code or command to the TMS320C30, interpretation of the code requires 
onl y the alteration of the comparison mask in software. For more information, refer to the previous 
subsection NaN (Not a Number). 

Table 9. NaN Interrupt 

Name Function Sources 

NAN Not a Number IEEE eASEl: NaN 

390 TMS320C30 IEEE Floating-Point Format Converter 



Software Application Examples 

Simple Nonpipelined Conversion 

If an external device (i.e., RAM, ROM, dual bus RAM, latch, etc.) contains a single-precision 
IEEE floating-point number and the corresponding TMS320C30 number is needed, the following 
TMS320C30 code will perform the required conversion: 

EXTO 
* 

.word 

LOI 
LOF 

0800000h 

@EXTO,ARO 
*ARO,RO 

put address of external device here 

load ARO w/address of external device 
RO=C30 formatted number 

The following example performs TMS320C30-to-IEEE format conversion: 

EXTO 
* 

* 

.word 

LOI 
STF 

0800000h 

@EXTO,ARO 
RO, *ARO 

Simple Pipelined Conversion 

put address of external device here 

load ARO w/address of external device 
location pointed to by ARO=IEEE formatted 

number 

This example illustrates the overhead when the converter's pipeline mode is used. Since a 
single value will be converted, it is necessary to read the converter one extra time to flush the pipe­
line. Once again, assume that an external device (i.e., RAM, ROM, dual bus RAM, latch, etc.) con­
tains a single-precision IEEE floating-point number, and the corresponding TMS320C30 number 
is needed. 

EXTO .word 0800000h put address of external device here 
* 

LOI @EXTO,ARO load ARO w/address of external device 
LOF *ARO,RO ignore loaded value, 1st load queues 

* pipeline 
LOF *ARO,RO RO=C30 formatted number, address is 

* immaterial 

The following example performs TMS320C30 to IEEE format conversion: 

EXTO 
* 

* 

.word 

LOI 
STF 
STF 

0800000h 

@EXTO,ARO 
RO,*ARO 
RO,*ARO 

Pipelined Block Conversions 

put address of external device here 

load ARO w/address of external device 
value stored not correct until 2nd store 
location pointed to by ARO=IEEE formatted 

number 

In the previous subsection, the pipeline was used, but not efficiently. This example shows a 
more typical application of pipeline mode. Again, external memory contains IEEE formatted data. 

N 
EXTO 
OAOR 
* 

.set 

.word 

.word 

03FFh 
0800000h 
0809800h 

TMS320C30 IEEE Floating-Point Format Converter 

N = # of values to convert - 1 
put external address here 
put destination address here 

391 



RCR: 
* 

N 
EXTO 
DAOR 
* 

* 
* 

II 

N 
EXTO 
SAOR 
* 

AC: 

N 
EXTO 
SAOR 

II 
* 

LOI 
LOI 
LOF 
LOI 
RPTB 
LOF 
STF 

@EXTO,ARO 
@OAOR,AR1 
*ARO++,RO 
N,RC 
RCR 
*ARO++,RO 
RO,*AR1++ 

This is more efficient: 

.set 03FEh 

.word 0800000h 

.word 0809800h 

LOI @EXTO,ARO 
LOI @OAOR,AR1 
LOF *ARO++,RO 
LOF *ARO++,RO 
RPTS N 

LOF *ARO++,RO 
STF RO, *AR1++ 

load ARO w/address of external device 
load AR1 w/destination address 
prime (preload) the converter's pipeline 
block will be repeated N (0400h) times 
specify end address of block repeat 
read converted values into RO 

; store converted values into on-chip 
memory 

N = # of values to convert - 2 
put external address here 
put destination address here 

load ARO w/address of external device 
load AR1 w/destination address 
prime (preload) the converter's pipeline 
read 1st converted value for 1st STF 
repeat next instruction N-1 (03FFh) 

times, extra loop is to store last 
value converted 

read converted values into RO 
store converted values into on-chip 

memory, 1st store will save junk 

The following example performs TMS320C30 to IEEE format conversion: 

.set 0400h 

.word 0800000h 

.word 0809800h 

LOI @EXTO,ARO 
LOI @SAOR,AR1 
LOI N,RC 

RPTB AC 
LOF *AR1++,RO 
STF RO,*ARO++ 

This is more efficient: 

.set 03FFh 

.word 0800000h 

.word 0809800h 

LOI @EXTO,ARO 
LOI @SAOR,AR1 
LOF *ARO++,RO 
RPTS N 

LOF *AR1++,RO 
STF RO,*ARO++ 

STF RO, *ARO++ 

N equals number of values to convert 
put external address here 
put source data address here 

load ARO wi address of external device 
load AR1 wi source data address 
block will be repeated N+1 (0401h) times, 

extra loop is to store last value 
converted 

specify end address of block repeat 
read TMS320C30 format numbers into RO 
store converted values into external 

device 

,N equals number of values to convert - 1 
put external address here 
put source data address here 

load ARO w/address of external device 
load AR1 wi source data address 
read 1st converted value for 1st STF 
repeat next instruction N (0400h) times, 

extra loop is to store last value 
converted 

read converted values into RO 
store converted values into external 

device 
store last value 

Using TMS320C30 External Flag 0 (XFO) 

As mentioned in the section on converter operating modes, one ofthe TMS320C30's XFpins 
can be tied to the converter's output enable (OE) pin to enable the data path through the converter 

392 TMS320C30 IEEE Floating-Point Format Converter 



or to bypass it, as the case may be. The following TMS320C30 code uses the TMS320C30 XFO 
pin to do this (see Hardware Applications Examples section later in this report for the hardware 
configuration). Nonpipelined mode is assumed. 

N 
EXTD 
SADR 
* 

II 
* 

.set 

.word 

.word 

LDI 
LDI 
LDI 
LDF 
RPTS 
LDF 
STF 

LDI 

03FFh 
OBOOOOOh 
OB09BOOh 

@EXTD,ARO 
@SADR,AR1 
2,IOF 
*ARO++,RO 
N 
*AR1++,RO 
RO,*AR1++ 

6,IOF 

N equals number of values to convert - 1 
put external address here 
put source data address here 

load ARO w/address of external device 
load AR1 wi source data address 
XFO=output=O, select the converter 
read 1st converted value for 1st STF 
repeat next instruction N+1 (0400h) times 
read converted values into RO 
store converted values into on-chip 

memory, 1st store will save junk 
XFO=output=l, deselect the converter 

Using the TMS320C30 DMA Capability 

The built-in TMS320C30 DMA controller can be used to read converted IEEE values. The 
TMS320C30 assembly code to set up the DMA is shown below. Non-pipelined mode is assumed. 

DMA 
GLBL 
N 
EXTD 
DADR 
* 

.word 

.word 

.set 

.word 

.word 

OBOBOOOh 
OC53h 
0400h 
OBOOOOOh 
0809800h 

* DMA controller setup 
* 

LDI 
LOI 
LOI 
LOI 
LDI 
STI 
STI 
STI 
STI 

@OMA,ARO 
@EXTO,RO 
@OAOR,Rl 
N,R2 
@GLBL,R3 
RO,*+ARO(4) 
Rl,*+ARO(6) 
R2,*+ARO(8) 
R3, *ARO 

base address of OMA registers 
OMA global regIster in it value 
N equals number of values to convert 
put external address here 
put destination data address here 

ARO -> OMA control registers 
RO address of IEEE data 
Rl = converted data destination address 
R2 = OMA transfer count 
R3 = OMA Global register initial value 
DMA will transfer from external device 
DMA will transfer to RAM block 0 
OMA will transfer N values 
start the OMA 

Hardware Application Examples 

IEEE Data Stored in TMS320C30 External MSTRB Memory 

Below is shown an example of interfacing the converter to TMS320C30 external memory 
containing only IEEE formatted data. In this configuration, it is likely that the memory would be 
dual bus RAM to enable a second processor to share data with the TMS320C30 through this 
memory. Figure 19 shows an interface to a static RAM (SRAM) bank. 

TMS320C30 IEEE Floating-Point Format Converter 393 



Figure 19. Interface to Static RAM 

I 
I 

I 

XA(12:0) ADDR(12:0) 

MSTRB CS 

IEEE CONVERTER 
T 
M OE 

SRAM 
5 ---- 8Kx32 
3 H1 ClK 
2 
0 

XRDY WAIT 

C XD(31:0) DA(31:0) DB(31:0) - DATA(31:0) 
3 

r-- DIR 
0 

XRiW WE 
r-

r-

~ OE r--
SN74AlS04 

Bypassing the Converter 

A previous subsection (Using TMS320C30 External Flag 0) showed TMS320C30 assembly 
code that used the TMS320C30 XFO pin either to steer data through the converter or to bypass the 
converter for direct, or unconverted, access to that memory. Figure 20 shows a circuit that can be 
used with that code. 

394 TMS320C30 IEEE Floating-Point Format Converter 



Figure 20. Steered Access to the Memory 

(4) SN74AlS245 

8(S:1) 
SN74AlS32 

@- G 

A(S:1) 

OIR 

XA(12:0) AOOR(12:0) 

MSTR8 CS 

IEEE CONVERTER 
T - =D-M OE 

SRAM 

S XFO 
SKx32 

3 
2 XO(31:0) OA(31:0) 

0 XROY WAIT 
C 08(31:0) f- OATA(31:0) 
3 H1 ClK 

0 ....-- OIR 

XRiW WE 

.~ OE 
SN74AlS04 

TMS320C30 IEEE Floating-Point Format Converter 395 



JTAG/IEEE-1149.1 Scan Interface 

Integrated circuit and board-level testing is increasingly important. JTAG or IEEE-1149.1 
is a standard test methodology. It is based on a 4-wire connection to a device and provides access 
to all I/O buffers (boundary scan) of a device. This permits stimulation and observation of internal 
logic. By allowing stimulation of output pins and observation of input pins, external circuitry can 
also be tested. If implemented completely, this can eliminate "bed of nails" test rigs. 

The TMS320C30-IEEE Floating-Point Format Converter is equipped with a JTAG/ 
IEEE-1149.1 compatible scan interface. The internal architecture is based on Texas Instruments' 
SCOPEtm design specifications. This provides for boundary-scanning of the device and inclusion 
of an eight-bit instruction register. 

Figure 21 shows the internal scan architecture and gives the naming conventions used to de­
scribe the device blocks: 

Figure 21. Scan Architecture 

BOUNDARY DATA REGISTER 

BYPASS DATA REGISTER 

TOO 

TDI INSTRUCTION REGISTER 

TMS 
TITAP >---+--- TIP 

TCK 

I/O Pin Description 

TCK 

The TCK input clock signal is the scan clock. It typically will be generated off-board by a 
test controller. All tests of the device are controlled by an external controller and proceed at the scan 
clock (TCK) speed. 

TMS 

The TMS input signal is clocked in by TCK. TMS controls the test mode of the device. Using 
TMS and TCK, a test controller can scan registers through the device, perform tests, or place the 
device in a normal functional mode. 

396 TMS320C30 IEEE Floating-Point Format Converter 



TDI 

The IDI input signal is used to input serial data through the registers in the device. All data 
is clocked in by TCK and shifts according to the state ofthe test logic set up by an external test con­
troller using TMS and TCK. 

TDO 

The IDO output signal is used to scan serial test data out of the device under the control of 
the test host. While shifting data, TDO is active-shifting data out on the falling edge ofTCK. When 
through shifting data, IDO is tri-stated. 

TIP 

TIP is an output indicating good or bad parity in the instruction register. The indication de­
faults to good if the external controller does not check for parity. To check parity, the test controller 
places the device in the instruction register pause state. While in this state, the device will output 
the actual (Le., hardware-determined) parity of the device's instruction register. A high logic level 
indicates good parity, while a low logic level indicates bad parity. 

Architectural Elements 

TITAP 

The Texas Instruments' Test Access Port (TITAP) is a 16-state state-machine designed ac­
cording to the JTAG and IEEE-1149.1 specifications. The TITAP controls the test logic and is con­
trolled by the TMS and TCK inputs to the device from an external test host controller. 

Instruction Register 

The Instruction Register is eight bits in length. Table 10 lists the instructions available for 
this device. 

Table 10. Test Instructions 

msb-> Isb Instruction 

00000000 Boundary Scan 
10000001 ID Register Scan 
10000010 Sample Boundary Scan 
00000011 Boundary Scan 
00000110 Control Boundary HI-Z 
10000111 Control Boundary 1/0 
00001010 Read Boundary-Normal 
10001011 Read Boundary-Test 
00001100 Boundary Selftest 
11111111 Bypass Scan 
All Others Bypass Scan 

The Instruction Register is preloaded with 00000001 (msb-Isb) in the instruction register 
capture state of the TITAP. This is not per the JTAGIIEEE-1148.1 standards. 

TMS320C30 IEEE Floating-Point Format Converter 397 



Boundary Scan Instruction 

This instruction places the device in test mode: all function inputs and outputs are controlled 
by the test logic. Function inputs and outputs are sampled in the data register capture state of the 
TITAP, and the boundary data register is selected in the data register scan path during data register 
scans. 

ID Register Scan Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The bypass data register is selected in the data register scan path during data 
register scans. 

Sample Boundary Scan Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. Function inputs and outputs are sampled in the data register capture state 
of the TITAP, and the boundary data register is selected in the data register scan path during data 
register scans. 

Control Boundary HI-Z Instruction 

This instruction places the device in test mode: all function outputs are tri-stated (if possible), 
while all function inputs operate in their normal mode. The bypass data register is selected in the 
data register scan path during data register scans. 

Control Boundary 1/0 Instruction 

This instruction places the device in test mode: all function inputs and outputs are controlled 
by the test logic. The bypass data register is selected in the data register scan path during data regis­
ter scans. 

Read Boundary - Normal Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The boundary data register retains its current state in the data register capture 
state of the TITAP, and the boundary data register is selected in the data register scan path during 
data register scans. 

Read Boundary - Test Instruction 

This instruction places the device in test mode: all function inputs and outputs are controlled 
by the test logic. The boundary data register retains its current state in the data register capture state 
of the TITAP, and the boundary data register is selected in the data register scan path during data 
register scans. 

Boundary Self-Test Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The boundary data register contents are toggled, and the data register cap­
tures the state of the TITAP. Also, the boundary data register is selected in the data register scan 
path during data register scans. 

398 TMS320C30 IEEE Floating-Point Format Converter 



Bypass Scan Instruction 

This instruction places the device in normal mode: all function inputs and outputs operate 
in their normal modes. The bypass data register is selected in the data register scan path during data 
register scans. 

Boundary Data Register 

The boundary data register contains 70 bits and is ordered according to Figure 22. 

Figure 22. Scan Path Bit Order 
TDI -> DIR -> PIPE -> CLK -> OEZ -> NAN -> WAIT-> 

DA31 -> DA30 -> ... -> DAl-> DAO-> 
DB31-> DB30 -> ... -> DB1-> DBO -----:> IDO 

Bypass Data Register 

The Bypass Data Register is one bit in length and is operated in accordance with the JTAG/ 
IEEE-1149.1 specifications. 

Scan References 

Refer to the following documents for further descriptions of the test logic of this device: 
1) A Test Access Port and Boundary Scan Architecture; Technical Sub-Committee of the 

Joint Test Action Group (JTAG). 
2) IEEE Standard 1149.1- IEEE Standard Test Access Port and Boundary-Scan Architec­

ture. 

TMS320C30 IEEE Floating-Point Format Converter 399 



400 TMS320C30 IEEE Floating-Point Format Converter 



Part IV. Telecommunications 
11. Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 

(Mark D. Grosen) 

401 



402 



Implementation of a CELP 
Speech Coder for the TMS320C30 

Using SPOX 

Mark D. Grosen 

Spectron Microsystems, Inc. 

403 



404 Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



Introduction 

Speech coders are critical to many speech transmission and store-and-forward systems. With 
the emergence of universal standards, it is possible to develop systems that are interoperable. Quali­
ty and bit rate for speech coders vary from toll quality at 32 kilobits/second (kbps) (CCITT 
ADPCM) to intelligible quality at 2.4 kbps (DOD LPC-lO). Recently, a new standard for 4.8 kbps 
with near toll-quality has been proposed and is based on code-excited linear prediction (CELP) 
techniques [1,2]. Unfortunately, products based on new coding algorithms are often slow to appear 
because of the considerable time and effort required to develop real-time implementations. 

The purpose of this article is to demonstrate how a CELP coder based on this new standard 
can be quickly developed using SPOX. Utilizing the power of the TMS320C30 DSP plus the ease 
of use provided by C and the SPOX DSP library, an efficient and portable coder can be written in 
a much shorter period of time than that required by conventional assembly language methods. Be­
cause of the portability of SPOX andC, the coder can also be compiled and executed on a variety 
of hardware platforms. 

A 4.8-kbps CELP Coder 

CELP coders were first introduced by Atal and Schroeder in 1984 [3]. These coders offer 
high quality at low bit rates, but at a high computational cost. Implementing the original systems 
directly required several hundred million instructions per second (MIPS). Much of the research on 
CELP techniques has concentrated on reducing this computational load to facilitate real-time im­
plementations. 

The proposed U. S. Federal Standard 4.8-kbps CELP coder (USFS CELP), Version 2.3, uses 
several techniques to reduce the complexity to a level where a one- or two-processor implementa­
tion is possible. These are the main characteristics of the coder: 

o 240-sample frame size at 8-kHz sampling rate 

o Tenth-order short-term predictor 
- Calculated once per frame, open loop 
- Autocorrelation with Hamming window 
- LSP quantization 

o Four subframes (60 samples) 
- One tap pitch predictor 

1) Closed loop analysis 
2) Even/odd subframe delta search method 

- I024-e1ement codebook 
1) Overlapped by 2 (see Pitch and Codebook Search) 
2) 75% of elements are zero 

Block diagrams of the decoder and encoder are shown in Figure 1. 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 405 



Figure 1. USFS CELP Decoder and Encoder Structures 

.'NDEH_Gf :--r=-J------J 

ADAPTIVE 
POSTFILTER 

SYNTHESIZED 
SPEECH 

CODEBOOK ~ 

~ 

INPUT 
SPEECH 

I 
FROM CHANNEL 

DECODER 

LSP 
-+- CODES -"I 

r-------.J 
I 
I 
I 
I 
I 
I 
I 
I 

I r-------------------~ 

DELAY! INDEX! I 
GAIN GAIN I 

L ____ , : r-J 

~ • TO CHANNEL 

ENCODER 

Bit allocations are given in Table 1 [2,4]. 

Table 1. 4.8.kbps CELP Parameters 

Spectrum Pitch Codebook 

Update 30 ms (240 samples) 7.5 ms (60) 7.5 ms (60) 
Parameters 10 LSP 1 delay, 1 gain 1 of 1024 index, 1 gain 
Bps 1133.3 1466.7 2000 

Remaining 200 bps reserved for expansion, error protection, and synchronization 

406 Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



The standard also specifies an error protection scheme utilizing forward error-correcting 
Hamming code and parameter smoothing. 

The major computational parts of the algorithm are the pitch search and the codebook search, 
both of which are performed four times per frame. An important technique to reduce the computa­
tions is the end-correction convolution technique (see Pitch and Codebook Search). This is a recur­
sive convolution method that reduces the number of multiply-adds by an order of magnitude. 

In addition, the codebook is designed to have approximately 75% of the samples equal to 
zero. This allows many of the convolution updates in the codebook search to be reduced to a simple 
shift of a vector of samples. On DSP processors with circular addressing, this shift can be replaced 
by using circular buffers. 

To further reduce complexity, the pitch search is limited in range for every other subframe. 
During even-numbered subframes, the optimal pitch value is performed over the range 20 to 147 
(128 values). On the odd subframes, the search is only over the range 16 from the previous pitch 
value. This also decreases the bit rate with a negligible effect on speech quality. 

If adequate processing power is not available, you can implement an interoperable coder by 
using a subset of the full codebook. For example, if only the first 128 vectors from the codebook 
could be used, the sub-optimal coder would work with an optimal coder if the same frame structure 
and bit rate were used. 

These techniques produce complexity estimates for the USFS CELP coder ranging from 5.3 
MIPS to 16.0 MIPS for a 128-vector and 1024-vector codebook, respectively[4]. 

Using SPOX in Development 

The computational complexity of CELP coders, even with use of the various techniques to 
reduce it, has made real-time implementations impractical on first- and second-generation DSPs. 
The recent introduction of the third-generation TMS320C30[5], however, makes it feasible to im­
plement the USFS CELP coder with one or two processors. Furthermore, because of the general­
purpose capabilities of the TMS320C30 and the availability ofa C compiler and SPOX, develop­
ment of a real-time coder can be significantly expedited. 

In particular, SPOX provides the following functions to facilitate software development. 

• C standard I/O functions 
- printf(), seanf( ) 
- fopen(), fread( ), fwrite( ) 

• Stream I/O to move data efficiently 

• Standard set of DSP math functions 
- Filters 
- Vector operations 
- Windows 
- Levinson-Durbin algorithm 

• Processor independence 

Both FORTRAN and Cversions of the Version 2.3 USFS CELP coder were available as start­
ing points for the real-time implementation. The initial development was done on a Sun worksta-

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 407 



tion equipped with SPOX/SUN [6] and the usual UNIX programming tools, such as the symbolic 
debugger dbx. SPOX/SUN is a library of SPOX DSP math functions that can be used for develop­
ing SPOX applications on Sun workstations. The new version of the coder utilizing SPOX was 
checked against the existing implementation for correctness. After the new version was debugged 
on the workstation, the source code was recompiled employing the Texas Instruments TMS320C30 
C compiler and linked with the SPOX;XDS library for the XDSlOOO development system. 

The same facilities for testing the code on the workstation were available on the XDSIOOO. 
A SPOX stream function (see Input/Output section) read digitized speech from a disk file. Status 
information was printed to the console screen. Command line arguments were used to vary the en­
coder's parameters such as the codebook size. 

The software development process for the USFS CELP coder followed three evolutionary 
steps: 

• C program using standard I/O 

• C program using SPOX functions for faster math and I/O 

• C program using SPOX and assembly language optimizations 

The first step was taken because an existing C implementation was available. The C standard 
I/O provided by SPOX made it possible to run the application code written in C directly on the 
XDSIOOO. For example, functions (fscanf(» that read control information from a disk file on the 
Sun also worked on the XDSIOOO using the PC's hard disk. 

In general, it would have been easier to start with the SPOX library functions to implement 
some of the common operations contained in the coder. Many of the functions needed (filtering, 
correlation, dot-product) are in the SPOX DSP library. In this case, the C implementations ofthese 
standard vector and filter functions in the existing program were replaced with the corresponding 
SPOX functions. The SPOX functions, written in optimized assembly language, execute several 
times faster than the corresponding C functions. 

The last step was needed to meet real-time constraints. XDS 1 000 timing capabilities allowed 
the identification of two time-critical sections of the code which were then rewritten in 
TMS320C30 assembly code. Since the interface to the SPOX math functions is open, new math 
functions can be written that work with SPOX data structures such as vectors and filters. 

Implementation 

Several major parts of the USFS CELP encoder are implemented with a mixture of C, SPOX, 
and TMS320C30 assembly language functions. The decoder can be easily constructed from the 
material presented here. An adaptive postfilter for the decoder is not described here. 

The framework of the resulting encoder is shown in Figure· 2. A description of the major 
functions performed can be found in the following sections. Appendix A provides a short summary 
of the SPOX functions employed in the next four sections (Input/Output, Spectrum Analysis, Fil­
ters, and Pitch and Codebook Search). 

408 Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



Figure 2. Structure of the Encoder Function 

encoder(instream, outstream) 
SS stream instream; 
Ss=stream outstream; 

while ( SS_get(instream, SV_array(speech» ) { 

/* Apply a high pass filter to the input speech */ 
SF_apply(hpfilter, speech, speech); 

/* Find the coefficients of the short-term prediction filter */ 
calculateLP(speech, invcoeffs); 

/* 
* Convert the direct form coefficients to line spectrum pairs. 
* Then quantize the LSP's and convert back to direct form. 
*/ 

/* 

SV_a2lsp(invcoeffs, lsps); 
quantizeLSP(lsps, qntzlsps); 
SV_lsp2a(qntzlsps, invcoeffs); 

* For each of the 4 subframes, determine the pitch prediction 
* parameters and codebook (excitation) parameters 
*/ 

for (i = 0; i < 4; i++) { 

genShortResidual(s[i], res[i]);/* generate short term residual */ 
pitchSearch(s[i], res[i]); /* find optimum pitch predictor */ 
genFullResidual(s[i], res[i]); l* generate residual */ 
codeSearch(res[i], reshat); /* find best code book vector */ 
updateFilters(reshat); /* update filter states */ 

} 
packParams(); /* pack parameters into output array */ 
SS~ut(outstream, params); 

Input/Output 

Input speech samples are obtained by employing a function (SS Jet( », which reads data 
from a named stream (instream). The creation of instream during program initialization deter­
mines the source of the data. During development, the easiest source is a disk file with digitized 
speech. When real-time testing is needed, a codec connected to a TMS320C30 serial port could be 
utilized. For example, instream could be created to read from standard input with the following 
code segment. 

#define FRAMESIZE 240 * sizeof(Float) 

instream = SS_create(DF_FILE, DF_STDIN, FRAMESIZE, NULL); 

The output stream (outstream) consists of the packed frame parameters. It could also go to 
a disk file or a serial port by using SSJ>ut(). 

Spectrum Analysis 

After preconditioning the signal with a highpass filter (see the Filters section), the coeffi­
cients of the short term prediction filter can be found by using the function calcuIateLP( ) shown 
below. 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 409 



window, rc, error, cor, gammavec; 

calculateLP(S, coeffs) 
SV_Vector s, coeffs; 

SV window(s, window, s); 
Sv=corr(s, s, cor); 
SV autorc(cor, coeffs, rc, error); 
sv=mu12(gammavec, coeffs); 

/* window the speech in-place */ 
/* autocorrelation */ 
/* Levinson-Durbin */ 
/* bandwidth expansion */ 

The vector window is initialized to contain the desired window; in this case, a Hamming win­
dow is used. The autocorrelation terms are stored in the vector cor that has the same length as the 
order of the short term filter. SV _autorc() uses a Levinson-Durbin type algorithm to compute the 
inverse filter coefficients. As a side effect, the reflection coefficients are also stored in rc. Finally, 
a IS-Hz bandwidth expansion is produced by the multiplication of the inverse filter coefficient vec­
tor by a vector (gammavec) consisting of the terms 

g[i] = 0.994 i for i = 0, 1, •.• , m-1 

Efficient quantization is obtained by: 

• Transforming the prediction coefficients into line spectrum pairs (LSPs) 

• Then quantizing the LSPs 

The conversions between prediction coefficients and LSPs are not currently in the SPOX li­
brary. The existing C implementation evaluates cosine values directly, which is too expensive com­
putationally. A more efficient routine (SV _a2Isp()), that employs table-lookup of cosine values, 
has been written utilizing the algorithm outlined in [7]. The quantized LSPs are transformed back 
to direct-form coefficients for use in the short-term predictor. 

Filters 

Three filters in the encoder can be realized by use of SPOX filter objects. The inverse filter 
A(z) and the short term predictor l/A(z) share the same fiitercoefficients. The former is an FIR filter 
and the latter an all-pole filter. The final filter is the all-pole weighting filter W(z) with coefficients 
given by l/A( f... z), with f... = 0.8. 

During the initialization of the encoder, the filters are created with the code fragment shown 
below. 

410 

#define FILTERSIZE 

SF Filter 
SV-Vector 
SA=Array 

11 * sizeof(Float) 

invfilter, predfilter, wgtfilter; 
invcoeffs, wgtcoeffs; 
array; 

array = SA create(SG CHIP, FILTERSIZE, NULL); 
invfilter ~ SF create(array, NULL, NULL); 
SF_bind(invfilter, invcoeffs, NULL); 

array = SA create(SG CHIP, FILTERSIZE, NULL); 
predfilter-= SF_create (NULL, array, NULL); 
SF_bind(predfilter, NULL, invcoeffs); 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



array = SA_create(SG_CHIP, FILTERSIZE, NULL); 
wgtfilter.= SF create(NULL, array, NULL); 
SF_bind(invfilter, NULL, wgtcoeffs); 

Note that the inverse and prediction filters are both bound to the same coefficient vector. For 
each new frame of speech, this vector is updated when it is passed to calculateLP(). 

An important consideration is that the filters are used more than once during a frame. A dif­
ferent signal is filtered each time, but the state (history) of the filter must be the same. This is ac­
complished before each filter operation by using the 

o SF _getstate() function to recover a vector with the state of the filter at the end of the pre­
vious frame 

• SF _setstate() function to restore the filter's state 

The following code segment shows how the short term prediction residual is generated for 
the pitch search. 

SF setstate(predfilter, NULL, predstate); 
SV-fill(residual, 0.0); 
SF=apply(predfilter, residual, residual); /* zero input of filter */ 

SV_sub3(residual, speech, residual); /* speech - history */ 

SF_setstate(invfilter, invstate, NULL); 
SF_apply(invfilter, residual, residual); /* filter with inverse */ 

SF_setstate(wgtfilter, NULL, wgtstate); 
SF_apply(wgtfilter, residual, residual); /* filter with weighting */ 

Pitch and Codebook Search 

After the program finds the short-term predictor and generates the corresponding residual, 
the pitch predictor and code book parameters are found for each of the four subframes. The pitch 
and codebook search functions are similar: both search over a set of values to minimize an error 
term. In this section, only the codebook search is illustrated (see Figure 3). Many of the functions, 
however, can be applied to the pitch predictor calculations. 

Ii 
CODEBOOK 

Figure 3. Codebook Search Block Diagram 

h 
(WEIGHTING FILTER 

IMPULSE RESPONSE) 

r 
(RESIDUAL) 

ERROR 

i----...-__+ GAIN 

The search in Figure 3 minimizes the distance between the input vector and one of many gen­
erated vectors. The quantity being minimized is the Euclidean norm: 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 411 



e = II r-r W (1) 
= r' r - 2 r' r + r' r 

where 

r = the original residual 
r = the synthesized residual 

It can be seen from the vector definition that only two terms need to be computed - the corre­

lation of rand r and the energy of r ;' this is because the energy of the original residual is invariant 
over all the generated residuals. It appears that there would be N convolutions and 2N dot products 
to perform for each sub-frame. Implemented directly, the codebook search would thus require 66 
MIPS if N = 256 and a sub-frame length of 60 are specified. 

Instead, the USFS CELP coder uses a specially structured codebook that greatly reduces the 
computational load. The biggest savings comes from the elimination of all but one of the convolu­
tions for each subframe. The codebook is overlapped, as shown in Figure 4. 

Figure 4. Structure of Overlapped Codebook 

~~ X3 

ESt X2 

X1 

XO 

This. structure permits a recursive convolution computation. The first code book vector is 
convolved normally with the weighting filter. Subsequent convolutions, however, make use of the 
following relationships. 

Vi+l(Z) = z-IR;(z) + Xi+l[l ]H(z) 
Ri + l(z) = Z-IVi+1(Z) + Xi+l[O]H(z) 

(2) 

where R;(z) is the Z-transform of the generated residual. Given the convolution of the pre­

vious codebook vector with the weighting filter, the convolution employing the next vector can be 
found with only 120 (2 x 60) multiplies and adds. 

This number can be further reduced by another property of the codebook. The vectors are 
generated by center-clipping a gaussian noise source, which causes approximately 75% of the ele­
ments to be zero. Thus, 75% of the updates to the convolutions require no multiplications or addi­
tions; however, the convolution elements must still be shifted. The following function update( ) 
implements the recursive update operation. Note that it must be called twice per codebook vector, 
once for each new term. 

412 Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



update(x, res, wgtirnpulse) 
Float x; 
SV Vector res, wgtirnpulse; 

Float 
Int 

*rptr, *rptrrnl, *wptr; 
len; 

len SV_getlength(res); 
rptr = (Float *) SV_loc(res, len - 1); 
rptrrnl = rptr 1; 

if ( x == 0.0 ) { 

} 

for (; len> 1; len--) { 
*rptr- - = :*rptrrnl--; 

} 
*rptr = 0.0; 

else { 
wptr = (Float *) SV_loc(wgtirnpulse, len 
for (; len> 1; len--) { 

*rptr-- = *rptrrnl-- + x * *wptr--; 

*rptr = x * *wptr; 

/* no input, so just shift */ 

/* update using new input */ 
- 1); 

Once the convolution has been determined, the corresponding error and gain can be found. 

The following function calculates the error and gain terms. 

Float error(res, reshat, gain) 
SV Vector res, reshat; 
Float *gain; 

Float cor, energy; 

SV_dotp(reshat, reshat, &energy); 
SV_dotp(reshat, res, &cor); 
*gain = cor / energy; 
return( *gain * cor ); 

The codebook search function with update( ) and errore ) functions is shown below. The 
first convolution must be calculated directly, so it is done outside of the main for loop. The error 
for each entry is compared against the current maximum; if it is greater than the maximum, this 
entry becomes the new best vector. The process is repeated for each of the N vectors. 

codebook, wgtirnpulse; 

codeSearch(res, reshat) 
SV_Vector res, reshat; 

Float 
Float 
Int 

errrnax, gain, err; 
*cbptr; 
i, best; 

findlrnpulse(wgtirnpulse); 

SV_setbase(codebook, FIRSTVEC); 

convolve (codebook, wgtirnpulse, reshat); 
errrnax = error(res, reshat, &gain); 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 413 



best = 0; 
cbptr = (Float *) SV_loc(codebook, 0) - 1; 

for (i = 1; i < N; i++) { 
update(*cbptr--, reshat, wgtimpulse); 
update(*cbptr--, reshat, wgtimpulse); 
if ( (err = error(res, reshat, &gain)) > errmax ) { 

errmax = err; 
best = i; 

After the search is completed, the gain of the best vector is recomputed and quantized. The 
corresponding gain index and index of the codebook element can then be readied for transmission. 

Assembly Language Enhancements 

The codebook and pitch searches require the largest share of the computation cycles in the 
encoder. One way to increase performance is to recode critical parts of these functions in assembly 
language. One such function is the update() function described above for the recursive convolu­
tion computation. 

An assembly language version of update() was written to take advantage of the parallel in­
structions and repeat block capabilities of the TMS320C30. The assembly language function uti­
lizes the same calling structure as the C version. The function was written using the assembly lan­
guage macros provided with spa X to work with the vector, matrix, and filter objects in the DSP 
library[8]. The new version of update() is listed in Figure 5. 

414 Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



Figure 5. Update Function Written in TMS320C30 Assembly Language 

* 
* Synopsis: 
* 
* 
* 
* 
* 

Void update(x, res, wgtimpulse) 
Float X; 
SV Vector res, wgtimpulse; 

#include <sv30.h> 

FP .set ar3 
.global _update 

.text 

_update: 
push 
ldi 

* 

FP 
sp, FP 

* 
* 

Set the 
arO 
arl 
rc 
r2 

following registers by using 
- SV_loc(wgtimpulse, 0) 

* 
* 
* 

* 

* 
* 
* 

ldi 
SV_getl 
ldi 
SV_get2 

ldf 
bzd 
subi 
addi 
ldi 

General case 

addi 
subi 

mpyf 
addf 

SV loc(res, 0) 
- the length of the vectors 
- X 

*-FP(2), ar2 
ar2, SV LOCO, arO 
*-FP(3)-; ar2 
ar2, SV_LENlsV_LOCO, 

*-FP(4), rl 
shift 
1, rc 
rc, ar1 
arl, ar2 

when x 1= 0.0 

rc, arO 
2, rc 

r1, *arO--, r2 
r2, *--ar2, rO 

rc, arl 

rptb lp20 
*arO--, mpyf rl, r2 

1120 : 
addf r2, *- -ar2, rO 
stf rO, *ar1--

bud end 
stf rO, *arl--
mpyf rl, *arO, rO 
stf rO , *arl 

* 
* Case for x -- 0.0 
* 
shift: subi 2, rc 

Idf *--ar2 I rO 

rptb slp 
slp: ldf *--ar2, rO 
II stf rO, *ar1--

stf rO, *ar1--
ldf 0.0, rO 
stf rO, *ar1 

* 
end: pop FP 

rets 

vector object macros 

x 
x is 0 so just shift 

ar1 -> res[l 1] 
ar2 -> res[i 1] 

arO -> wgt[l - 1] 
set loop count 

x * wgt[i] 

x * wgt[i] 

res[O] x*wgt[O] 

loop 1 - 1 times 
prime the pipe 

final store 
first term = 0.0 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 415 



Performance 

A complete CELP encoder was implemented as described above. Two versions were tested: 

• One encompassing C and standard SPOX functions 

• One having C, SPOX, and two custom TMS320C30 assembly language functions 

Table 2 shows the execution times for different combinations of codebook size, processor, 
and implementation. To achieve near real-time performance for a codebook with 128 vectors, the 
codebook and pitch search functions were completely rewritten in assembly language. Each func­
tion required approximately 130 lines of assembly code. 

Table 2. Timing of Various Implementations of the CELP Encoder 
for One Frame of Speech 

Codebook Size Sun (C/SPOX) C30 (C/SPOX) C30 (C/SPOX/ASM) 

128 16,000 IDS 88.2 IDS 39.0 IDS 

256 24,000 IDS 114.6 IDS 54.3 IDS 

Memory requirements for the program on the TMS320C30 were approximately 14,000 
words for instructions and approximately 6,000 words for data. The application code required ap­
proximately 4500 words of instructions. The SPOX operating system and DSP math functions con­
sumed the remaining 9500 words of memory. This figure reflects many functions that are essential 
for easing development but unnecessary for a real-time implementation. 

Once a real-time implementation has been achieved, the SPOX memory requirements can 
be greatly reduced by porting (or customizing) SPOX to a custom hardware implementation. In this 
case, the SPOX memory requirements can be reduced to approximately 4000 words, making a 
12K-word implementation feasible (both data and instruction memory requirements). 

These timings show that a real-time CELP coder can be implemented on a single 
TMS320C30. They also illustrate the power of the TMS320C30 compared to a standard micropro­
cessor. Note that a TMS320C30 implementation has approximately 500,000 instruction cycles 
available in a 30-ms frame. 

Version 3.0 of the USFS CELP coder has significant improvements in computational com-
plexity, including: 

• Ternary codebook to eliminate multiplications 

• Shorter codebook 

• Faster LSP conversion and quantization 

Work to bring the SPOX implementation up to Version 3.0 is continuing. An investigation 
of a two-processor implementation is also being performed. 

416 Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



Summary 

A 4.8-kbps CELP coder based on a Department of Defense-proposed standard has been im­
plemented on a TMS320C30. Several of the functions used in the encoder were illustrated. A sub­
optimal implementation of the encoder using a 128-vector codebook is possible on only one 
TMS320C30. Work is continuing on both the algorithm and the software implementation to im­
prove the coder's real-time performance. 

With SPOX, the encoder was developed in less than one month. The resulting source (with 
the exception of two TMS320C30 assembly language functions) can be compiled and run on a Sun 
workstation, a PC, or a TMS320C30 system such as the Texas Instruments XDS1000. This repre­
sents a considerable improvement in development time and effort over previous implementation 
methods. 

References 

1) Kemp, D.P., Sueda, R. A., and Tremain, T. E., "An Evaluation of 4800 bps Voice Cod­
ers," Proceedings of ICASSP '89, IEEE, May 1989. 

2) Campbell, J. P., Welch, V. c., and Tremain, T. E., "An Expandable Error-Protected 4800 
bps CELP Coder," Proceedings of ICASSP '89, IEEE, May 1989. 

3) Atal, B. S., and Schroeder, M. R., "Stochastic Coding of Speech at Very Low Bit Rates," 
Proceedings of ICC '84, pages 1610-1613, 1984. 

4) Tremain, T. E., Campbell, J. P., and Welch, V. c., "A 4.8 kbps Code Excited Linear Pre- . 
dictive Coder," Proceedings of Mobile Satellite Conference, pages 491-496, May 1988. 

5) Texas Instruments, Inc., Third-Generation TMS320 User's Guide, 1988. 
6) Spectron MicroSystems, Inc., SPOX/SUN User's Guide, April 1989. 
7) Soong, F. K., and Juang, B. H., "Line Spectrum Pair (LSP) and Speech Data Compres­

sion," Proceedings of ICASSP '84, pages 1.10.1-1.10.4, IEEE, 1984. 
8) Spectron MicroSystems, Inc., Adding Math Functions to SPOX, March 1989. 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 417 



Appendix A 

The SPOX functions used in the code examples are briefly described below. Complete de­
scriptions can be found in Getting Started With SPOX and the SPOX Programming Reference M an­
ual. These manuals are supplied with the XDSIOOO. They are also available from Spectron Micro­
Systems, Inc. 

418 

Stream Functions 

Ss_get - get data from a stream into an array 

lnt SS get(stream, array) 
SS=stream stream; 
SA_Array array; 

SS_put - put data from an array to a stream 

lnt SS_put(stream, array) 
SS_Stream stream; 
SA_Array array; 

Vector Functions 

sv_autorc - perform inverse filter calculations 

void SV_autorc(cor, inv, rc, alpha) 
SV vector cor; 
SV-Vector inv; 
SV-Vector rc; 
sv=vector alpha; 

SV_corr calculate correlation of two vectors 

SV Vector SV corr(srcl, src2, dst) 
SV Vector srcI; 
SV-vector src2; 
Sv=vector dst; 

SV_dotp - calculate the dot product of two vectors 

SV Vector SV_corr(srcl, src2, result) 
SV Vector srcI; 
SV-Vector src2; 
Float *result; 

fill a vector with a value 

SV Vector SV fill(vector, value) 
- SV Vector vector; 

Float value; 

SV_getlength - return the length of a vector 

lnt SV getlength(vector) 
Sv=vector vector; 

return the address of a vector element 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



Ptr SV loc{vector, num) 
SV-Vector vector; 
Int num; 

SV mu12 multiply elements of two vectors 

SV_Vector SV_mu12{src, dst) 
SV vector src; 
sv=vector dst; 

SV_setbase - set the base of a vector 

SV sub3 

SV window 

void Sv_setbase{vector, base) 
SV Vector vector; 
Int base; 

subtract elements of two vectors and store results in a third 
vector 

SV Vector SV sub3{srcl, src2, dst) 
SV Vector srcl; 
SV-Vector src2; 
Sv=vector dst; 

apply a symmetric window to a vector 

SV Vector SV window{src, wnd, dst) 
SV Vector src; 
SV-Vector wnd; 
sv=vector dst; 

Filter Functions 

SF_apply - apply a filter to a vector 

SV_Vector SF_apply(filter, input, output) 
SF Filter filter; 
Sv-vector input; 
SV-Vector output; 

SF_bind bind coefficient vectors to a filter 

Void SF bind(filter, num, den) 
SF Filter filter; 
SV-Vector num; 
sv=vector den; 

SF_getstate - copy filter state arrays into vectors 

void SF getstate(filter, hisinv, hisoutv} 
SF Filter filter; 
SV-Vector hisinv; 
sv=vector hisoutv; 

SF_setstate - copy vectors into filter state arrays 

Void SF setstate(filter, hisinv, hisoutv} 
SF Filter filter; -
Sv-vector hisinv; 
sv=vector hisoutv; 

Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 419 



420 Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX 



Part V. Computers 
12. A DSP-Based Three-Dimensional Graphics System 

(Nat Seshan) 

421 



422 



A DSP-Based 
Three-Dimensional Graphics System 

Nat Seshan 

Digital Signal Processor Products-Semiconductor Group 
Texas Instruments 

423 



424 A DSP-Based Three-Dimensional Graphics System 



This application report is based on the author's bachelor's thesis at the Massachusetts Insti­
tute of Technology. 

The placement of a high-performance computational engine, such as an advanced digital sig­
nal processor, between the host processor and the video controller in a graphics system can improve 
performance tremendously. Several factors make the Texas Instruments TMS320C30 Digital Sig­
nal Processor well-suited to this task: 

• 32-bit floating point arithmetic provides both high-resolution and large dynamic range in 
calculation. 

.. Single-cycle, 60-ns instruction execution and parallel bus access greatly improve system 
throughput. 

• A hardware single-cycle multiplier facilitates the matrix arithmetic, which is frequently 
required in 3D graphics. 

• The ease of programmability allows the design of flexible and expandable systems. 

• Software tools, such as simulators[1], assembler/linkers[2], and high-level language de-
buggers/compilers[3], decrease product development time. 

• In-circuit scan-path emulators[4], decrease hardware prototyping and debugging time. 

• The use of a standard device lowers the overall system cost. 

With the use of the TMS320C30, the host processor can request higher-level commands of 
the rest of the system. Instead of issuing requests for line-draws or screen clears, it can, for example, 
request that a 3D object be rotated 90 degrees and then be redrawn. In addition, a rendering element 
(usually a video controller or graphics system processor) can devote its resources solely to screen 
management rather than doing some portion of the computationally intensive processing. The fol­
lowing pages provide a description of how a 3D graphics system used the TMS320C30 to compute 
object transformations. 

The digital signal processor resides on the TMS320C30 Application Board (C30AB) de­
signed for the IBM PC/AT or compatible. The PC's 80x86 acts as the host processor and communi­
cates to the C30AB through an 8-bit bus slot. Also resident on the bus is a Texas Instruments 
TMS34010 Software Development Board (SDB)[5,6]. The SDB contains a TMS34010 Graphics 
System Processor (GSP) [7], which manages the screen memory and drives the video display. 
Overall, this system is meant to serve as an instructional model of how a graphics system can be 
designed using an advanced digital signal processor. 

The Potential for Graphics Pipelines 

A mechanical engineer for an automobile manufacturer wants to design a robot arm for plant 
automation. Before building a prototype machine, he wishes to compare the ways in which various 
designs can pick up and assemble components. To do this,the engineer needs a CAD system capable 
of creating, storing, and adjusting representations of 3D objects and then rendering the images on 
a video display. The CAD system has four basic aspects: 

1) A user interface for command entry. 
2) A data management system to store objects and their screen representations. 
3) One or more computational engines to perform high-speed calculations for applications 

such as transformations, clipping, lighting/shading, and fractal graphics. 

A DSP-Based Three-Dimensional Graphics System 425 



4) A rendering engine to control the video memory and to drive the video display. 

These four tasks are common to many graphics systems, whether they be intended for CADI 
CAM, fractal graphics, heads-up displays in fighter aircraft, or Postscript printer control. If one or 
more processors are assigned to each function, the resulting pipeline will achieve greatly improved 
system throughput. 

In a single-processor system, the CPU is directly responsible for all computations. It must 
write to video memory, perform all necessary computations, interface to the user, and manage all 
data storage and recovery. Although additions to the system, such as a video-memory controller 
or a floating-point coprocessor, may speed up the system, the CPU remains overly burdened as the 
only intelligent component of the system. 

Independent Screen Management 

A two-processor system can use a GSP to drive the CRT and to control the video memory. 
To control the display, the GSP either must interface to an analog monitor through a color palette 
or must directly drive a digital monitor. If the video memory is volatile, the processor needs a re­
fresh controller that runs in parallel with other processor actions. Special hardware can be devel­
oped for screen clears and polygon fills. For flexibility of data representation, the processor should 
to be able to access pixels of varying bit-widths. At the instruction level, specialized operations 
could be created to speed pixel processing. Libraries of subroutines for windowing, drawing, and 
text management enable the rendering engine to execute higher-level commands. Overall, these 
features allow the CPU to send more powerful directives to the GSP. 

A Multiprocessor Pipeline 

Adding more links in the graphics pipeline can further relieve the CPU of burdensome tasks. 
Performance improvements result from each stage being optimized for a particular function. In ad­
dition, throughput increases with the number of stages. The pipeline may also contain multiple pro­
cessors running in parallel at a particular stage to further improve the latency of that stage. Figure 
1 shows a full-scale implementation of a graphics pipeline for 3D graphics. 

426 A DSP-Based Three-Dimensional Graphics System 



0 

0 

<> 

Figure 1. A Full Scale Graphics Pipeline 

CLIPPING AND 
)+----1 PERSPECTIVE 1----+1 

ENGINE 

DIGITAL 
SIGNAL 
PROCESSOR 

GENERAL 
PURPOSE 
CPU 

GRAPHICS 
SYSTEM 
PROCESSOR 

TRANSFORM 
ENGINE 

LIGHTING 
ENGINE 

In a large-scale graphics pipeline, the host processor runs the applications program. The user 
may be trying to use a CAD program, model the formation of galaxies, animate 3D objects, etc. 
The host runs these programs at the top level, provides the user interface, and communicates to all 
I/O devices, including mass storage systems. For numerically intensive applications it may be ap­
propriate to have a digital signal processor as this host. For example, modeling the formation of 
galaxies requires numerical solutions to systems of differential equations. But even in such a case, 
it would be reasonable to have a more general-purpose CPU act as a user front end to the digital 
signal processor. 

The purpose of the object manager is to communicate with the host by receiving data and 
transferring it to other processors in the system. It manages the global representation of all screen 
parameters and objects. A Reduced Instruction Set Computer (RISC) processor would be 
well-suited as either the host or the object manager because of its high-performance general-pur­
pose architecture. 

Because a DSP has a highly parallel architecture, a fast execution cycle time, an instruction 
set optimized for numerical processing, and several development tools, it would perform well as 
any of the computational stages in a graphics pipeline. For example, a DSP could act as a transform 
manager that calculates the new universal coordinates of globally stored objects according to rota-

A DSP-Based Three-Dimensional Graphics System 427 



tion, translation, and scaling commands from the object manager. Also, the DSP could act as a light­
ing manager that accepts parameters of environmental lighting settings from the object manager 
and applies them to the transformed objects. For example, the user may set ambient intensities as 
well as other sources of varying geometries, intensities, and colors. The lighting manager then ap­
plies these light sources to the surfaces of the objects, which may have varying degrees of specular 
or diffuse reflection, to compute the necessary shading. 

Although the perspective and clipping stage of the system is represented in Figure 1 by a 
single processing unit, the task may be further partitioned to several DSPs working in series. The 
perspective calculation takes viewing parameters from the object manager, such as direction of 
view, location of viewer, and zoom, and produces a two-dimensional projection for the screen. Ob­
jects that are too high, too low, or too far right or left can be clipped automatically because the result­
ing two-dimensional coordinates are off screen. However, clipping objects fully or partially ob­
scured by other objects may require additional stages. Also, objects behind the viewer and those 
too far away for the user to recognize should be clipped appropriately. 

Although digital signal processors are well-suited to be the computational stages of a graph­
ics pipeline, a processor optimized to be a rendering engine might serve better to drive the video 
display and manage the video memory. Such a processor could also help with the clipping tasks 
described above. A z-buffer could hold the transformed z-coordinate of each pixel that is projected 
on to the x-y plane of the screen to facilitate hidden surface removal. Adevice such the Texas Instru­
ments TMS34010 or the recently introduced TMS34020 could serve as the rendering engine in a 
full scale system. Both these processors have 32-bit general-purpose architectures with instruction 
sets and external memory interfaces optimized for graphics. 

An Overview of This Implementation 

The system shown in Figure 2 is not intended to be a marketable product. Rather, it is targeted 
toward those who have the intention of designing products in the graphics market. Firms having 
experience in graphics will be able to resolve the tougher issues of graphics system design without 
presentation of the described system. The system shown in this report illustrates an attractive option 
for designing a fast, reliable, portable graphics system with quick turn-arounc:i time. 

428 

Figure 2. A Simple Three-Processor Graphics Pipeline 

IBM PCXT 
BUS 

INTEL 80X86/7 

TRANSFORM 
AND 

PERSPECTIVE 

TI TMS320C30 TITMS34010 

A DSP-Based Three-Dimensional Graphics System 



One strength of this system is its complete use of standard, commercially available parts. In 
general, use of standard parts allows for faster design and manufacturing, as well as a more reliable, 
easier-to-support product. Even the three hardware subsystems can be found on the market: 

1) The IBM PC compatible host 
2) The TMS320C30 Application Board object manager and transform engine subsystem 
3) The TMS34010 Software Development Board rendering subsystem 

Another strength of this system is the complete use of portable software. Use of portable soft­
ware often speeds design times because system software can be mostly debugged before the actual 
target hardware is available. All software for this system was written in Kernigan and Ritchie C. 
The command and rendering routine was first debugged on the PC and GSP with the intermediary 
stage removed. Once debugged, the computationally intensive portion of the software was ported 
to the DSP, which then assumed control of the GSP. The software on the TMS34010 SDB used 
many of the graphics routines in the TMS34010 Graphics/Math Library. These routines have been 
used in many other graphics systems using the TMS3401O. 

System Hardware 

The IBM PC was chosen as the host because of its extensive support by TI development tools. 
In addition, a large amount of documentation is available concerning interfacing to the PC bus. The 
system described in this report is designed to run best on an 80386-based IBM PC compatible with 
an AT power supply and an 80387 floating-point coprocessor. However, either Intel 8086 or 80286 
general-purpose microprocessors can also act as the host to the computational engine. The host 
computer sends commands to 

• Load and delete objects 

• Target an object for adjustment 

• Adjust a particular object 

• Recalculate the perspective or 

• Redraw the screen. 

The 80X87 floating-point coprocessor is not absolutely necessary but greatly improves the 
time to generate floating-point parameters for the next stage. 

This graphics demonstration was the first application developed using the TMS320C30 
Application Board (C30AB). Since that time, the C30AB has been included as a part of the 
XDS1000 emulation system for the TMS320C30 Digital Signal Processor. The TMS320C30's fea­
tures include 

• 60-ns single-cycle execution time (more than 33 MFLOPS) 

• 2K x 32-bit dual-access RAM 

• 4K x 32-bit dual-access ROM 

• 64 x 32-bit instruction cache 

• Two 32-bit external memory expansion buses 

• Single-cycle floating-point multiply/accumulate 

• 1\vo external 32-bit memory ports 

A DSP-Based Three-Dimensional Graphics System 429 



• On-chip DMA controller 

• Zero-overhead loops and single-cycle branches 

• Two on-chip timers and two serial ports 

• Floating-point/integer and logical 32/40-bit ALU 

• 16M-word memory space 

• Register-based CPU 

• Development tools, including a simulator, assembler/linker, optimizing C compiler, C­
source debugger, and an in-circuit emulator/debugger 

• On-chip scan-path emulation logic 

• Low-power CMOS technology 

The TMS320C30 executes commands from the 80X86 to transform objects, load objects into 
or delete objects from the system, and compute the projection oOD objects on the 2D screen. When 
given a directive to draw the screen, it sends a command to the rendering engine to clear the current 
screen. Then, the TMS320C30 transfers lists oflines, points, and polygons for the next stage to ren­
der. 

The TMS34010 Software Development Board (SDB) has been used in TMS34010 develop­
ment support since 1987. It is configurable for a variety of monitors. The board supports the 
TMS34010 Graphics/Math Function Library [8] (a library of high-level routines callable from any 
C program). This board was slightly modified to receive commands from the C30AB as well as 
from the PC host. Program loaders, C compilers [9], assemblers, and C language standard I/O li­
brary support have been developed for this board, as well as for the C30AB. Both cards interface 
to an IBM PC through an 8-bit slot on the AT bus. The TMS34010 GSP on the SDB is an advanced 
high-performance CMOS 32-bit microprocessor optimized for graphics display systems. Its key 
features include: 

• 160-ns instruction cycle time 

• FuIJy programmable 32-bit general-purpose processor with a 128M-byte address range 

• Pixel processing, X-Y addressing, and window clip/pick built into the instruction set 

• Programmable pixel size with 16 boolean and 6 arithmetic pixel processing options (Ras-
ter-Ops) 

• 31 general purpose 32-bit registers 

• 256-byte LRU on-chip instruction cache 

• Direct interfacing to both conventional DRAM and multipart video RAM 

• Dedicated 8116-bit host processor interface and HOLD/HLD interface 

• Programmable CRT control (HSYNC, VSYNC, BLANK) 

• FuII line of hardware and software development tools, including a C compiler 

The TMS34010 GSP receives commands from the TMS320C30, along with arrays of points, 
lines, and filled polygons to be drawn. It then uses library routines to render these images on the 
video display. 

430. A DSP-Based Three-Dimensional Graphics System 



System Limitations 

The system described here is an instructional system built in a limited development time. As­
pects of the system could be optimized for speed and for memory usage. A high-speed 3D graphics 
system has many features that were not implemented. 

This design is non-optimal in several ways. The C routines could be hand-coded to execute 
faster. A 32-bit host bus interface would allow word-at-a-time data transfers to the TMS320C30. 
The GSP could be interfaced to faster video memory. At the time of this writing, the TMS34020 
second-generation graphics system processor is available. The entire TMS320C30 program could 
be configured to run from internal memory. Many of these optimizations were not realized because 
of the limited time available for developing the system. 

Many operations that an advanced digital signal processor could easily perform were not de­
signed into this system. These tasks include curved and textured surface generation, lighting, shad­
ing, and front and back clipping. For demonstrative purposes, only the endpoint transformation and 
perspective calculations were implemented. 

Similarly, the capabilities of the GSP are clearly underutilized in this pipeline. The GSP is 
adept at managing multiple windows for display. It can also display text in various fonts. The pres­
ented system simply requires that the GSP manage a single graphics-only (no text) window. 

Representation of Graphics Elements 

Any graphics system must have a method of representing the image to be portrayed on the 
screen. This method requires a system that is able to store and display primitive elements. These 
elements could range in complexity from three coordinates describing a point to a set of parametric 
equations representing an irregular three-dimensional surface. However, simply defining a set of 
primitive drawing structures does not result in an adequate graphics data representation. The engi­
neer designing the robot does not think of the system as several sheet-metal polygons welded to­
gether. He more likely conceives of the arm as a clamp attached to a hand, which, in turn, is attached 
to an arm, etc. A powerful graphics system must not only describe the primitives to be rendered 
on the CRT, but also how the primitives are organized or related. 

Frames of reference play the central role in the organization of graphics primitives. Any set 
of graphics primitives rigid with respect to each other can be said to exist in the same, constant 
frame. When the primitives move, they move as a single unit and remain in the same orientation 
with respect to each other. In this system, any such set of primitives is called an object. The transfor­
mational state of any object is determined by three sets of three parameters each. These sets of the 
object correspond to the 

• Translation 

• Scale 

• Rotation 

Translation of an object within its frame simply amounts to moving all locations in that frame 
a specified distance along the X-, y-, and z-axes. Thus, each object must hold a set of translation 
factors, denoted in this system's software by dx, dy, and dz (See Listing 1 in the Appendix). Simi-

A DSP-Based Three-Dimensional Graphics System 431 



larly, SX, sy, and sz determine the scale of an object. These factors determine how many units of 
the untransformed object's coordinates are represented by one unit of the transformed object's 
coordinates. The three parameters shown in Appendix Listing 1 that represent all possible orienta­
tions of an object (theta, phi, and omega) are described in Table 1. 

Table 1. Angles of Rotation 

Angle 
Axis Rotation is Direction of 

Zero Value Around Positive Rotation 

e z x to y Positive x-axis 

(J) x y to z Positive y-axis 

<j> y z to x Positive z-axis 

The Object Data Structure 

Every object contains one or more sets of locations, which are referenced by the drawing 
primitives within the object. The locnum field of the object structure (see Listing 1) represents the 
number of locations available to be referenced by primitives within the object. This and other array 
sizes are kept for end points in For/Next-type loops and to allocate the appropriate space for the 
array contained within an object. Every location (see Appendix Listing 2) contains three float­
ing-point numbers representing a coordinate in 3D space: x, y, and z. Their integer x-y locations 
on screen are also saved: a, b. To reference a location, a primitive needs only to know the index 
in the locs array. This allows many primitives to reference the same location. 

Three different primitives were implemented to be rendered on the screen: 

• Points 

• Line segments 

• Filled polygons 

Points are rendered as single pixels on the screen. The point structure shown in Listing 3 of 
the Appendix contains the color to draw the point and the index to the location (Iocn) that is refer­
enced by that point. The line structure in Listing 4 ofthe Appendix contains a color and two indices 
(startlocn and endlocn) to two end-points of the segment. Finally, the filled polygon shown in List­
ing 5 of the Appendix contains, in addition to the color, the number of vertices (vertnum) for the 
polygon, and a pointer (*vertlocn) to an array of vertex location indices listed in the order in which 
they are connected). The last location in the vertex array is connected back to the first, closing the 
polygon. 

Hierarchy 

The final array contained within an object (the parent object) is a list of pointers to child ob­
jects defined with respect to the transformed frame of the parent. The number of potential internal 
objects, MAXOB, sets the static size of the array of pointers to child objects. (In this implementa­
tion, MAXOB = 10.) In addition, the parameter obnum keeps track of how many of these potential 
child objects are utilized. The final bookkeeping parameter is subnum. If subnum equals n, then 
the object was the nth object pointed to in its parent object's child-object array. 

432 A DSP-Based Three-Dimensional Graphics System 



Figure 3. Hierarchical Representation of the Solar System 

SUN 

OBNUM=9 

SUBNUM=1 

MERCURY EARTH PLUTO 

OBNUM=O 0 OBNUM=1 00000 OBNUM=1 

SUBNUM=1 SUBNUM=3 SUBNUM=9 

1 
MOON CHARON 

OBNUM=O OBNUM=O 

SUBNUM=1 SUBNUM=1 

The solar system (Figure 3) represents a classical example of a hierarchical structure. The 
sun slowly revolves around the galaxy. Wherever the sun travels, the planets follow in the same 
frame. In turn, each planet may have satellites that revolve around them. The planet is defined with 
a certain offset (radius of orbit) from the sun, and the satellite is defined similarly with an offset 
from the planet. To describe the movement ofthe earth over a period of time, you need only to adjust 
for its revolution around the sun and the revolution of the moon around the earth. You do not need 
to describe the rotation of the moon around the sun because when a planet is moved, its satellites 
automatically move with it. 

Transformation parameters are referenced to the frame of the object's parent. Thus, to fully 
describe a planet orbiting the sun, one must define an empty frame revolving about the sun at some 
offset, and then define a planet within that frame rotating about some axis. The levels of abstraction 
within this hierarchy give this data representation its power. 

The flexibility of the object structure permits the system to model the viewer. The viewer 
is considered to be at the absolute origin of the system. At system initialization, the first object 
loaded is the universal object *universe. An appropriate choice for such an object would be a set 
of axes. The view is then adjusted by modifications to the parameters of the *universe: 

dx, dy, dz - Object translation (viewing position) 

sx, sy, sz - Object scale (zoom) 

theta, phi, omega - Object orientation (pan) 

A DSP-Based Three-Dimensional Graphics System 433 



These three sets of parameters respectivel y represent the position of the origin of the universe 
with respect to the viewer (viewing position), how much the view is magnified to the user (zoom), 
and where the origin is with respect to the user (pan). 

Transformations 

Transformations of locations in 3D space can be reduced to four-dimensional matrix arith­
metic[10]. A location in space can be represented by a four-dimensional row vector (x y z 1). When 
this vector left-multiplies any 4-by-4 transformation matrix, the resulting row vector represents the 
transformed point. Tables 2, 3, and 4 illustrate the 4-by-4 transformation matrices for rotation 
around each axis. 

Table 2. Z-Axis Rotation Matrix 

[ cos sine 0 0 ] -sin cos 0 0 

0 0 1 0 

0 0 0 1 

Table 3. Y-Axis Rotation Matrix 

[ cos 0 -sin 0 ] 0 1 0 0 
sin 0 cos 0 

0 0 0 1 

Table 4. X-Axis Rotation Matrix 

[ 1 0 0 0 ] 0 cos sin 0 

0 -sin cos 0 

0 0 0 1 

It can be shown that these matrices can be used to account for a rotation about any arbitrary 
axis passing through the origin. The transformation matrix shown in Table 5 corresponds to scaling 
a location by (sx, sy, and sz) and then moving it by (dx, dy, and dz). 

434 A DSP-Based Three-Dimensional Graphics System 



Table 5. Translation and Scaling Matrix 

[ sx 0 0 0 ] 0 sy 0 0 

0 0 sz 0 

dx dy dz 1 

The arbitrary transformation of a frame can be defined by a matrix resulting from a multipli­
cation of a subset of the above transformation matrices. However, this multiplication is in general, 
not commutative. That is, rotating around the x-axis and then translating is not the same as translat­
ing and then rotating about the x-axis. By sending values for the nine parameters, the host can re­
quest the adjustment of an object. However, this system defines these operation as always taking 
place in the order below: 

1) Scale object by (sx, sy, and sz) 
2) Translate object by (dx, dy, and dz) 
3) Rotate object around z-axis by theta. 
4) Rotate object around x-axis by omega. 
5) Rotate object around y-axis by phi. 

When the matrices shown in Tables 2 through 5 are multiplied, the resulting matrix always 
contains (000 I)T as its final column. Thus, to denote an arbitrary transformation, you need only 
remember the first three columns of the composite matrix. If you were to apply the transformations 
in the order stated previously, the resulting equations in Table 6 would determine the element of 
the transformation matrix R. 

A DSP-Based Three-Dimensional Graphics System 435 



Table 6. Transformation Equations 

fI2 = sysin8 (2.2) 

r13 = szsinQ (2.3) 

r14 = cosQ (dxcos8 -dysin8 )+dzsinQ (2.4) 

r21 = sx(sin8 costj> +cos8 sinQ sintj> ) (2.5) 

r22 = syCcos8 costj> -sin8 sinQ sintj> ) (2.6) 

r23 = -szcosQ sintj> (2.7) 

r24 = sintj> (sinQ (dxcos8 -dysin8 )-dzcosQ )+cos<jJ (dxsin8 +dycos8 ) (2.8) 

r31 = sxCsin8 sin<jJ -cos8 sinQ cos<jJ ) (2.9) 

r32 = Sy( cos8 cos<jJ +sin8 sinQ cos<jJ ) (2.10) . 

r33 = szcosQ cos<jJ (2.11) 

r34 = cos<jJ (sinQ (-dxcos8 +dysin8 +dzcosQ )+sin<jJ (dxsin8 +dycos8 ) (2.12) 

Note that there also exists a matrix p[3][4] (see Listing 1 in the Appendix) that represents 
the product of all the ancestral transform matrices of an object and that object's R matrix. This ma­
trix represents the object's transformation from the absolute origin of the system. 

The Host Processor's Access to Objects 

The 80X86 host can exert its control over objects in the following ways: 
1) Target Objects - The host can set the target object for adjustment, deletion, or insertion 

of a child object by either targeting the parent object or a particular child object of the 
currently targeted object. 

2) Load and Delete Objects - The host has the ability to add objects to the system with initial 
transform parameters. In addition, it can remove objects from the system (including all 
objects within the deleted objects). When the targeted object is deleted, the new target 
object defaults to being the object's parent. 

3) Adjust Objects - By specifying the nine transform parameters, the host can adjust an ob­
ject in its parent's frame. 

4) Change Perspective - To change the viewing perspective, the host must request that the 
*universe be adjusted. 

5) Update Screen Representation - The host can request that the targeted object and its child 
objects have their location array's screen representations updated. 

6) Redraw View - Once all adjustments and updates of screen coordinates are re-specified, 
the host can request that the view be updated. 

Overall, the object structure serves well as a data representation for 3D graphics. A single 
set of locations is available to be referenced by the points, line segments, and filled polygons to be 
rendered on the screen. Each object contains parameters and matrices that specify the transformed 
state of the object. Thus, at any time these matrices could be applied to the original co-ordinates 

436 A DSP-Based Three-Dimensional Graphics System 



loaded into the system to calculate the transformed location of the point. Therefore, as the transfor­
mation and the projection on to two-dimensional co-ordinates are done in one step, the original 3D 
coordinates can be retained and only the final modified two-dimensional screen representation 
need be updated. The point of view can simply be modified by adjusting the *universe as one would 
adjust any other object. Overall, the hierarchical object structure provides a powerful and flexible 
way to manage graphical data. 

DSP Command Execution 

The digital signal processor assumes the role of the object manager and keeps track of the 
representations. Before examining the precise manner in which the TMS320C30 processes the 
commands from the host, one needs to understand the underlying hardware of this subsystem. A 
description of the TMS320C30 Application Board can be found in the application report 
TMS320C30ApplicationBoard Functional Description, located in this book. The report describes 
the avenues of communication between the C30AB and the PC over the PC's bus. An examination 
of how the TMS320C30 receives and processes data and commands from the 80X86/7 follows. 

Initialization 

As its first initialization task, the PC maps the dual-port SRAM of the C30AB into its address 
space by writing the 8 MSBs of address to the mapping register. It then brings the C30AB out of 
reset by writing a 1 to the SWRESET in the C30AB's control register. The PC then loads the 
TMS320C30 application program into the dual-port SRAM. Loader support software on the 
C30AB EEPROM moves the code to the proper location in the TMS320C30's address space. Final­
ly, the PC switches the TMS320C30's memory map into run mode to start program execution. The 
first part of the main routine initializes the system (see Listing 8 in the Appendix). 

For the system software to run properly, the DSP software must initialize several different 
items. 

1) It enables the on-chip instruction cache. 
2) It sets the external flag bit on the C30AB target connector to transfer control of the ren­

dering system from the PC to the C30AB (This assumes that the PC loaded the rendering 
software before it started up the C30AB). 

3) It configures both the primary and the expansion bus with zero software wait-states. 
Thus, all wait states are generated by the address-decoding PALs on the C30AB. 

In addition, the linker configures 
1) Primary bus SRAM as program storage 
2) Expansion bus SRAM as heap memory allocation 
3) Zeroth page of internal RAM as space for system constants 
4) First page of internal RAM as the system stack. This configuration maximizes the poten­

tial for parallel data and instruction accesses 

A DSP-Based Three-Dimensional Graphics System 437 



ing 
The initialization procedure then appropriates several local variables for system use, includ-

1) Two registered looping variables, i andj 
2) The constant 2 PI 
3) Registered pointers to the communication registers of the rendering subsystem, 

*hstdata and *hstcntl 

The TMS320C30 initially sets the contents of these GSP registers to indicate that the compu­
tational stage does not have any requests of the rendering stage. 

The TMS320C30 system software contains the global variables shown in Listing 7 oftheAp­
pendix. The dual-port SRAM pointer dual_port is initialized to point to the lowest location on the 
I/O expansion bus. This pointer points to an integer array that contains all data and command from 
the Pc. Another pointer to the currently targeted object (*to) is set to reference the universe. The 
*universe is set as its own parent with an obnum of 0, indicating no internal objects are loaded. 

During the final part of initialization, the C30AB software waits for the PC to load the static 
*universe object. To understand how the PC loads objects into the system, you must comprehend 
the general communications protocol between the TMS320C30 and the 80X86. 

Host to DSP Communication 

A two-way polling scheme arbitrates access of the dual-port SRAM. The software allocates 
the first two words of the SRAM as COMMAND and ACKNOWLEDGE signals, respectively 
(see Listing 6 in the Appendix). Remember that the TMS320C30 must mask off the 24 MSBs of 
dual-port data to receive the proper 8-bit value. The processors poll and write to these two words 
in order to send requests and acknowledgments. During initialization, the TMS320C30 clears both 
the COMMAND and ACKNOWLEDGE locations of the dual-port SRAM. The PC graphics 
application software must run after this point to ensure that this phase of the initialization does not 
clear a command from the Pc. Once the system software starts executing on both the PC and the 
TMS320C30, the following sequence enables the PC to send a command to the C30AB: 

1) The PC waits for the dual-port SRAM to become free by polling the ACKNOWL-
EDGE word for a zero. 

2) The PC loads all command parameters into the dual-port SRAM. 
3) The PC then loads the appropriate command byte into COMMAND. 
4) Once the TMS320C30 returns to its command detection loop, it acknowledges a re­

ceived command by writing the same byte into the ACKNOWLEDGE word. 
5) The PC sees that the TMS320C30 has acknowledged the command and writes OOh into 

COMMAND to withdraw its command. The PC thereby relinquishes control of the 
dual-port SRAM. 

6) The TMS320C30 reads all necessary p&rameters into its main memory. 
7) The TMS320C30, by writing a zero to the ACKNOWLEDGE word, indicates that the 

PC can request another command. This returns the sequence to step (1). 
. . 

The TMS320C30 treats all of its data types as 32-bit values, but it can read only one byte of 
valid data from the dual-port SRAM. Thus, the TMS320C30 must mask and concatenate the bytes 
that the PC maps into contiguous locations to form multibyte words. In addition, since Intel and 

438 A DSP-Based Three-Dimensional Graphics System 



the TMS320C30 have different standards, floating-point values from the PC must be converted be­
fore the TMS320C30 can use them. 

The TMS320C30 can receive either unsigned 8-bit chars or unsigned 16-bit short integers 
from the Pc. The macros shown in Listing 6 of the Appendix are used to access thes'e data types 
from the dual-port SRAM. The DPLONG macro takes a certain location in the dual-port, finds the 
short integer located there, and concatenates it into a 32-bit value for the TMS320C30. The word 
LONG in the macro indicates all integers whether chars, shorts, or longs are represented as 32-bit 
values by the TMS320C30. 

Table 7. Comparison ofIntel and TMS320C30 32-Bit Floating-Point Formats 

Standard 
Exponent Exponent Sign Mantissa Mantissa 
Field Bits Format Bit Field Format 

TMS320C30 31-24 mo's Complement 23 22-0 Two's Complement 
Intel 30-23 Offset Binary 31 22-0 Magnitude 

Table 7 illtistrates the differences between the TMS320C30 and the Intel single-precision 
floating-point formats. For every floating-point value that the TMS320C30 receives, it must ex­
tract the appropriate fields, convert the fields to the appropriate numerical representation, and then 
reassemble the fields in TMS320C30 floating-point format. The dpfloat routine shown in Listing 
9 of the Appendix uses the union structure flIong shown in Listing 6 ofthe Appendix to allow ma­
nipulations normally available only for integers on the floating-point value. The program first con­
catenates the four-byte value in the dual-port SRAM into a single 32-bit integer and then converts 
this word to TMS320C30 format. 

Computational Subsystem Software 

Using the communication techniques described in the last section, the TMS320C30 pro­
cesses the graphics command from the Pc. After performing C30AB initialization, the program 
main enters a command detection/execution loop. For each valid value of the COMMAND byte, 
a C case statement executes the appropriate code. Since these routines are, in general, too long to 
be discussed in exhaustive detail, the rest of this section merely summarizes how they work. 

When the PC wants to load an object, it first loads the initial nine floating-point transforma-
tion parameters into the dual-port SRAM. It then loads the number of 

1) Locations 
2) Drawn points 
3) Lines 
4) Filled polygons 

These values are limited to 16 bits, thereby allowing for only 65,535 primitives of each type. 
The size of the dual-port SRAM further limits the array sizes in this implementation. Then the PC 
loads three floating-point parameters, (x,y, andz), for each location. The size of the dual port limits 
the number of locations to 377. Once these parameters are loaded into the memory, the host places 
the command byte for an object load into COMMAND. Upon reception of these parameters, the 
TMS320C30 allocates space for the object as a child of the current target object and also allocates 

A DSP-Based Three-Dimensional Graphics System 439 



space for the location, point, and line arrays. Because the size of each polygon varies, space is allo­
cated as each polygon is read. 

After allocating global space for the new object and loading the locations, the TMS320C30 
requests more data from the PC. It first requests the points, then the lines, then each polygon. The 
dual-port SRAM limits the primitive arrays to 2047 points and 1364 lines. In addition, each poly­
gon is limited to 4092 vertices. The TMS320C30 makes a data request by replacing the current 
COMMAND byte that it wrote in ACKNOWLEDGE with 127, the flag for the PC to load more 
data. Although the roles of ACKNOWLEDGE and COMMAND are reversed in this case, the 
TMS320C30 requests data in much the same way the PC requests commands. Once the 
TMS320C30 completes loading the object, it selects the object as the new target object. Finally, 
using the equations in Table 6, the TMS320C30 calculates the initial value of the object's transfor­
mation matrix. 

The target object is the object in the hierarchy selected for adjustment, deletion, or calculation 
of screen coordinates. The PC can either target an object's parent or one of the object's child objects. 
The command to target a child requires the PC to specify either the child object's sibling number 
or subnum. Thus, when selecting objects for adjustment, the PC must remember where it loaded 
objects into the hierarchy. 

To adjust the transformation parameters of a given object, the PC simply loads the new pa­
rameters into the dual-port SRAM. The TMS320C30 adds the values of the new angles of rotation 
and translation factors to the previous ones. In addition, the TMS320C30 multiplies the old scaling 
factors by the new ones. Then, the TMS320C30 calculates the transformation matrix of the object 
by using the equations in Table 6. It does not recalculate screen locations, however, until this is spe­
cifically requested by the pc. The TMS320C30 can thus avoid calculating screen coordinates until 
all adjustments have been made. 

Once the PC requests all the changes for a frame on the display, it requests recalculation of 
screen coordinates at each node it changed. The PC can request recalculation for a particular object 
and thus update its internal objects as well. This allows the TMS320C30 to avoid recalculating 
screen coordinates of unchanged locations. For maximum efficiency, the PC must request recalcu­
lation in the highest node that it adjusted along any particular path. Thus, in the planetary example 
given earlier, if, in a period of time, only Pluto and its moon Charon were moved (the other bodies 
miraculously standing still), only Pluto would need to be targeted for recalculation. 

To calculate transformations, the TMS320C30 multiplies the object's transformation matrix 
by its parent's parent transformation matrix to obtain its own parent transformation matrix, p[3] [4]. 
The TMS320C30 right-multiplies all locations within that object by this matrix to achieve the 
transformation from the absolute origin of the system. The computational engine calculates per­
spective by dividing the transformed x- and y-coordinate by the transformed z-coordinate so that 
locations farther away appear closer together. The plane z=O is defined to be the plane of the screen. 
This also has the feature that objects behind the viewer appear upside-down in front of the viewer 
because the objects' z-coordinates are negative. Thus, the program running on the PC must main­
tain all objects in front of the viewer. Then, the TMS320C30 recursively executes this procedure 
for each object within the targeted object. 

Unlike the recalculation of screen coordinates, the redrawing of objects is done for all objects 
within the system. Thus, the draw_object routine is called with the *universe as the argument. The 

440 A DSP-Based Three-Dimensional Graphics System 



precise manner in which the TMS320C30 uses this program to redraw the screen is described in 
the TMS320C30 Drawing Routine Section found later in this report. 

Summary of DSP Command Execution 

The dual-port SRAM on the C30AB provides all means of communication between the PC 
and the TMS320C30. A two-way:polling scheme arbitrates the TMS320C30'sand the PC's access 
to this SRAM. Using this protocol, the PC can request object loading, deletion, or adjustment, but 
can request only modification of the object currently targeted for these changes. Also, at the host's 
request, the computational engine may recalculate the screen representation of all locations within 
the targeted object. Once all updates for a particular view are made, the PC may request a redrawing 
ofthe display. The description of the rendering subsystem, presented next, facilitates a better under­
standing of how the TMS320C30 requests rendering commands of the GSP. 

The Rendering Subsystem 

A modified version of the TMS34010 Software Development Board serves as the rendering 
stage of this graphics pipeline. A complete overview of this PC-based card can be found in the 
TMS34010 Software Development BoardUser's Guide [2]. Because only minor modifications 
were made to the commercially available SDB, the hardware aspects of the rendering subsystem 
are discussed in less detail than the computational stage. The same holds true for many software 
routines taken from the TMS34010 Math/Graphics Function Library.[8] After presenting over­
views of the TMS34010 and the SDB, this section focuses on the C30AB/SDB interface and the 
communications protocol used for command and data transfer between the TMS320C30 and the 
GSP. 

The TMS34010 Graphics System Processor 

The TMS3401 0 combines the best features of general-purpose processors and graphics con­
trollers in one powerful and flexible Graphics System Processor, Key features of the TMS34010 
are its speed, high degree of programmability, and efficient manipulation of hardware-supported 
data types, such as pixels and two-dimensional pixel arrays. 

The TMS34010's unique memory interface reduces the time needed to perform tasks such 
as bit alignment and masking. The 32-bit architecture supplies the large blocks of continuously-ad­
dressable memory that are necessary in graphics applications. TMS34010 system designs can take 
advantage of video RAM technology to facilitate applications such as high-bandwidth frame buff­
ers; this circumvents the bottleneck often encountered when using conventional DRAMs are used 
in graphics systems. 

The TMS3401O's instruction set includes a full complement of general-purpose instructions, 
as well as graphics functions frorn.which you can construct efficient high-level functions. The in­
structions support arithmetic and~oolean operations, data moves, conditional jumps, plus subrou­
tine calls and returns. 

A DSP-Based Three-Dimensional Graphics System 441 



The TMS34010 architecture supports a variety of pixel sizes, frame buffer sizes, and screen 
sizes. On-chip functions have been carefully selected so that no functions tie the TMS34010 to a 
particular display resolution. This enhances the portability of graphics software and allows the 
TMS34010 to adapt to graphics standards such as MIT's X, CGIICGM, GKS, NAPLPS, PHIGS, 
and other evolving industry and display management standards, 

TMS34010 Software Development Board 

Figure 4 shows the block diagram of the modified TMS34010 SDB. The graphics SDB is a 
single card designed around the IBM PC/XT Expansion Bus and serves as a software development 
tool for programmers writing application software for the TMS34010 Graphics System Processor. 
The development of a high-performance bit-mapped graphics display in this application report 

demonstrates the simplicity of hardware design using the TMS34010 SDB. 

442 A DSP-Based Three-Dimensional Graphics System 



Figure 4. Modified TMS34010 Software Development Board Block Diagram 

R i Gj Bj RiGiBjlj 

TMS34070 
DOTCLK COLOR DIGITAL 

PALETTE INTERFACE 

T r i T 

+ L 

f-i~ 
DRAM VRAM VRAM PROM 
512K 128K 128K 1K BYTES USART 

BYTES BYTES BYTES OPTIONAL 

T T T 
+ + + DATA 

t ADDRESS • ... 

ADDRESS 
CONTROL DATA LATCH 
BUFFER TRANSCEIVER AND 

DECODE 
VIDEO SIGNALS 

I I T T 
1 LAD 

1 
..r ..J..J 0 

<to <t 8 00:: J: ..J S 01- oJ, !z <t SYSTEM W ..JZ J: I--0 0 0 oJ, CLOCK D 0 l<: <t I- 0 S ..J J: en TMS34010 
0 0 <t 
> J: J: 

T 

~ I A 
HDATA R 

G 
ADDRESS E 

CLOCKOUT VIDEO HOST DATA T 

TIMING INTERFACE CONTROL C 
0 
N 

..J en N 0 en 

~ E 0:: W 
I- 0:: C Z 0 
0 0 0 T 
0 <t 0 

\ PC XT BUS \ R 

l/' 

This board comes with interactive debug software. Its features include software breakpoints, 
software single-step and run with count. At the same time, current machine status is displayed on 
the top half of the host monitor. 

The SDB contains 512K bytes of program RAM for the TMS34010 to execute drawing func­
tions, application programs, and displays. Both the program RAM and the frame buffer are accessi­
ble to the host through the TMS3401O's memory-mapped host port. 

A DSP-Based Three-Dimensional Graphics System 443 



The frame buffer consists of eight SIP memory modules organized into four color planes. 
This allows 16 colors per frame from the digital monitor. The TMS34070 color palette incorporates 
a 12-bit color lookup table to give you a choice of 16 colors in a frame from a 4096-color palette. 
Furthermore, the palette incorporates a variety of unique line load features to allow the color lookup 
table to be reloaded on every line; this means that 16 of 4096 colors can be displayed per line. 

The TMS34010 Host Interface 

The GSP has two 16-bit buses: one interfaces with the video and program memory, and a sec- . 
and interfaces to a host processor. The host can access the GSP by writing and reading four internal 
memory-mapped GSP 16-bit registers: 

444 

• HSTADRL and HSTADRH together form a 32-bit pointer to a location in the GSP's ad­
dress space. 

• HSTCNTL contains several programmable fields that control host interface functions. 

• HSTDATA buffers data that is transferred through the host interface between the GSP's 
local memory and the host processor. 

Several signals are available for communications between the host and the GSP. 

• HD15 through HDO are the actual data lines. 

• HCS is the interface select signal strobe from the host. 

• HSFI and HSFO select which host register is being addressed. 

• HREAD and HWRITE are, respectively, the read and write strobes from the host. 

Table 8 shows how the above signals address the four host registers. 

• HLDS and HUDS signals, respectively, select the low byte or the high byte of the host 
interface registers. 

• HRDY informs the host when the GSP is ready to complete a transaction. 

• HINT is the interrupt signal from the host to the GSP. 

A DSP-Based Three-Dimensional Graphics System 



Table 8. TMS34010 Signals Controlling Host Port Interface 

Host Interface Control Signals 

HCS 
HSFI & 

HREAD HWRITE Operation HSFO 

1 XX X X No Operation 
0 00 0 1 HSTADRL read 
0 00 1 0 HSTADRL write 
0 01 0 1 HSTADRH read 
9 01 1 a HSTADRH write 
0 10 0 1 HSTDATA read 
0 10 1 0 HSTDATA write 
0 11 0 1 HSTCNTL read 
0 11 1 0 HSTCNTL write 

The fields in HSTCNTLcontrol host interrupt processing, auto-incrementing ofthe host ad­
dress register, and protocol in byte-at-a-timeaccesses to the 16-bit host port (whether the lower or 
the higher byte comes first). HSTCNTL also contains the status of interrupts from the host to the 
GSP and from the GSP to the host and a three-bit message word in either direction. These control 
bits are shown in Table 9. 

Table 9. TMS34010 Host Control Register Fields 

Field Name Purpose Write Access 

0-2 MSGIN Input Message Buffer Host Only 
3 INTIN Input Interrupt Bit Host Only 
4-6 MSGOUT Output Message Buffer GSP Only 
8 INTOUT Output Interrupt Bit GSP Only 
8 NMI Nonmaskable Interrupt Host Only 
9 NMIN Nonmaskable Interrupt GSP and Host 
10 Unused Unused Neither 
11 INCW Increment Pointer Address on Write GSP and Host 
12 INCR Increment Pointer address on Read GSP and Host 
13 LBL Lower Byte Last GSP and Host 
14 CF Cache Flush GSP and Host 
15 HLT Halt TMS34010 Processing GSP and Host 

TMS320C30 Application Board Interface 

In its unmodified form, the SDB communicates to the PC host through a single transceiver. 
A PAL decodes the PC address into the appropriate register selection signals. The registers are 
mapped redundantly into blocks of PC memory address space, as shown in Table 10. The board was 
modified by the addition of a connector to a cable from the C30AB's target connector. The 
TMS320C30 sends to the modified SDB the following: 

• The TMS320C30s expansion bus address 

• The TMS320C30s data signals 

• I/O address space access strobe 

• Expansion bus read and write strobes 

A DSP-Based Three-Dimensional Graphics System 445 



These signals map the GSP's host interface registers in the TMS320C30's address space (also 
shown in Table 10). The TMS320C30 mapping is actually replicated in four-word blocks untilloca­
tion 8057FFh. 

Table 10. Mapping ofTMS34010 Host Control Registers 

Register PC Mapping TMS320C30 Mapping 

HSTDATAO C7000h - C7CFFh 805002h 
HSTCNTL C7DOOh - C7DFFh 805003h 
HSTADRL C7EOOh - C7EFFI1 80500011 
HSTADRH C7FOOh - C7FFFh 805001h 

The modified SDB board must be able to select either the PC or the C30AB as its host. The 
C30AB target connector makes the two external flag bits XFO and XFl available to the SDB. The 
TMS320C30 can configure these flags as either input or output pins. Upon leaving reset, these pins 
default to inputs and remain in the high-impedance state. XFO is pulled Iowan the SDB to appear 
off when the TMS320C30 is in reset. After the PC loads the rendering software into the GSP, it acti­
vates the C30AB and loads the TMS320C30's software. As discussed earlier, the TMS320C30, 
during initialization, configures XFO as an output and loads it with a one. The address-decoding 
PALs on the SDB use this signal to select the C30AB as the SDB's host. When the TMS320C30 
controls the SDB, it communicates through a full 16-bit interface to the GSP. Thus, before the inte­
ger screen coordinates are sent in two's-complement form to the GSP, they must be clipped to a 
range of -32,768 to 32,767. Fortunately, this range is still two orders of magnitude greater than the 
resolution of most monitors. 

In general, the above interface is fairly straightforward. The only complication is that the de­
signers of the GSP expected a relatively slow microcoded general-purpose processor as a host. This 
allows the GSP to actually assert its HRDY line 80 ns before it is actually ready to process a transac­
tion. When interfacing to the TMS320C30, PALs become necessary as state machines to create the 
appropriate number of wait-states on host reads and writes and thus ensure proper interprocessor 
communication. 

DSP to GSP Communication 

The TMS320C30 loads all commands and data into a command buffer contained within a 
space not usually mapped by the SDB's C compiler configuration. This portion of GSP address 
space, the Shadow RAM, is normally reserved for optional PROMs. However, by writing a 1 to 
an RS latch in the GSP's memory space, this area becomes occupied by the topmost portion of pro­
gram/data DRAM. Before the TMS320C30 starts writing to HSTDATA to access this memory, 
it configures the host address to autoincrement. Once the GSP finishes processing data in the shad­
ow RAM, it resets the value of the address registers to point to the beginning of the shadow RAM 
in order to allow the TMS320C30 to properly load its next command and data. 

The communication protocol between the TMS320C30 and the GSP closely resembles the 
protocol between the PC and the TMS320C30. The MSGIN and MSGOUT fields, respectively, 
replace the COMMAND and ACKNOWLEDGE words. However, rather than these fields con-

446 A DSP-Based Three-Dimensional Graphics System 



taining a particular value for a command, the value of 3 (binary 011) in either of these fields indi­
cates that a command or an acknowledge exists. Upon reception of a command request, the GSP 
refers to the first location of the shadow RAM for a command word from the TMS320C30. Thus, 
the overall command scheme proceeds as follows: 

1) The TMS320C30 waits until it sees that the MSGOUT field contains a O. 
2) The TMS320C30 stores all command and data into the shadow RAM. 
3) The TMS320C30 writes a 3 to the MSGIN field and waits for acknowledgment. 
4) The GSP acknowledges the reception of a command by writing a 3 to the MSGOUT 

field. 
5) The TMS320C30 withdraws its request by writing a 0 to MSGIN. 
6) The GSP reads the first word of the shadow RAM for the command and jumps to the 

appropriate case to process it. 
7) Once the GSP is finished with all data in the shadow RAM, it resets the values of the 

host address registers and then writes a 0 to the MSGOUT bit, indicating that the 
TMS320C30 is free to request another command. 

The TMS320C30 Drawing Routine 

When the TMS320C30 receives a redraw-screen request from the PC, it sends a command 
to the GSP to clear the screen after the monitor has drawn the bottom line; this ensures that the last 
view was drawn in its entirety. The TMS320C30 then calls its draw_object routine with *universe 
as an argument. For each array of primitives within the object, the TMS320C30 sends the size of 
the array and the array of screen representations of the primitives themselves to the TMS34010. 
Thus, the TMS320C30 can request the GSP to draw arrays of points, lines, or filled polygons. Once 
all arrays are drawn, draw_object recursively executes for all child objects within the universe. 
In this manner, all objects defined within the system are drawn. 

GSP System Initialization 

Several initialization routines are provided in the TMS34010 Math/Graphics Function Li­
brary User s Guide [8]. The GSP executes these programs to properly configure the system before 
it begins its command detection loop: 

• The call to init_ video configures the graphics buffer for an NEC Multisync Monitor dis­
playing 640 x 480 resolution. 

• The init~raphics function initializes the graphics environment by setting up the data 
structures for the graphics functions and assigning default values to system parameters. 

• The init_screen command initializes the screen. The entire frame buffer is cleared, and 
a color lookup table is loaded with the default color palette. 

• The init_ vuport function initializes the viewport data structures and opens viewport 0, 
the system, or root window. 

• The set_origin command sets the origin of the system to the center of the screen. 

Drawing Routines 

Several drawing routines are also provided in the TMS34010 Math/Graphics Function Li­
brary User's Guide [8]: 

A DSP-Based Three-Dimensional Graphics System 447 



• For each primitive in an array sent from the TMS320C30, the GSP sets the proper drawing 
color with the set_color command. 

• The TMS320C30 commands the GSP to execute to the clear_screen before it starts to re­
quest drawing of primitives for the next view. 

• The TMS320C30 requests a wait_scan execution from the GSP to ensure that the GSP 
has fully displayed the last view before drawing the current view. 

• The GSP uses the drawyoint(x,y) function to render a point on the display. 

• Similarly, it uses the draw Jine(xl,yl,x2,y2) command to draw a line. The arguments are 
the screen coordinates of the two end-points of the segment. 

• The fillyolygon (n, Iinelist, ptIist) function takes as arguments of the number of vertices, 
an array of the line segments forming the sides of the polygon, and a list of screen coordi­
nates referenced by the linelist. 

Summary 

The TMS34010 Software Development board provides a good rendering module for this 
graphics system. The support hardware has been debugged and used in industry since 1987 and thus 
makes a reliable rendering subsystem. The target connector to the C30AB provides access to the 
TMS320C30 as an alternate host. Three PALs and two transceivers allow the TMS320C30 to as­
sume control of the GSP, once both have started running their software. The draw_object program 
on the TMS320C30 can command the GSP to draw graphics primitives. Functions in the 
TMS3401 0 M ath/G raphics Function Library User s Guide [8] allow the GSP to initialize the moni­
tor interface, clear the screen, ensure that an entire screen has been drawn, and draw the graphics 
primitives. Overall, the TMS34010 development tools provide an easy means to develop a render­
ing subsystem for this graphics pipeline. 

Possible Improvements 

Several changes may be incorporated into the system to improve performance. Some simple 
enhancements involve modifications of the computational subsystem's software to allow faster and 
more transparent command execution. Restructuring the method in which the data and command 
pass through the pipeline, a more complex modification, can greatly increase throughput. Addi" 
tional features such as more complex primitives, lighting, windowing, and text display would re­
quire major software modifications to the system. However, any such modifications would not 
need to change the communication protocols or the command detection loops significantly. Finally, 
although the TMS320C30 represents the state-of-the-art in digital signal processing, the host pro­
cessor and the rendering engine may be improved. 

Computational Subsystem Software 

The drawing routine currently sends the primitive arrays of an object one at a time to the GSP. 
Instead, it should send all primitive arrays for all objects to be redrawn in a single pass. The GSP 
should then process the contents of this stack of commands and data. 

Currently, as soon as the PC finishes requesting objects adjustments, it must request recalcu­
lations of the screen coordinates of location arrays. The screen_object routine must operate on aU 

448 A DSP-Based Three-Dimensional Graphics System 



objects that have been adjusted directly or indirectly by having their ancestors adjusted. Instead, 
this routine should be called once with the *universe as the argument. The object structure should 
contain a flag that is set when an object is adjusted and reset when it is drawn. Thus, the new 
screen_object procedure would recursively search down the hierarchy of objects until it encoun­
ters an object that has been adjusted and then should recalculate all the screen coordinates for it and 
those of its internal objects. Upon completion, it should search the rest of the hierarchy for adjusted 
objects. Thus, the host would have to request only adjustment, targeting, and draw commands. 
Screen representations would be automatically recalculated whenever a draw command is ex­
ecuted. 

Rendering Subsystem Software 

Rendering subsystem drawing routines could be improved by designing functions coded to 
handle the primitive arrays rather than individual programming elements. These functions may be 
able to fit in the GSP's instruction cache and improve execution time. 

Improved Data Flow 

One problem consistent at all stages of the system is the method of buffering. A single buffer 
usually contains all data and commands to be transferred from one stage to the next. Thus, during 
command execution one processor may wait for the other to relinquish control bfthe command 
buffer. 

The first of two methods to improve the dual-port SRAM connecting the PC and the DSP 
is to divide the SRAM into two buffers. The PC writes the current command to one buffer, while 
the TMS320C30 processes commands and data stored in the other. This prevents contention for 
the dual-port SRAM. The particular buffer which each processor controls is swapped on each com­
mand request. Second, adding three more 4K x 8 dual-port SRAMS in parallel would allow the PC 
to communicate to the TMS320C30 with full 32-bit wide words. Thus, the masking and concatena­
tion necessary to receive larger data types would become unnecessary. On the original design the 
potential addition of these RAMs consumed a prohibitive amount of board space. Full word size 
is possible only if space constraints are eased. 

The splitting of the command buffer between the TMS320C30 and the GSP allows the GSP 
to drawthe current screen while the TMS320C30 sends the primitive arrays for the next. Similarly, 
two display buffers allow one buffer to be displayed on the monitor while the GSP draws the next 
view to the other. 

Computational Features 

The DSP is suited to perform many other types of computational features. Because these 
functions are more complex, they were not implemented in the limited design time available. This 
system truncates objects that are too high, too low, too far right, or too far left by using the GSP's 
drawing routines that automatically clip coordinates outside the screen boundaries. However, the 
system cannot determine whether one object is in front of another and draw the objects appropriate­
ly. Functions to do this hidden-surface removal require complex algorithms to determine whether 

A DSP-Based Three-Dimensional Graphics System 449 



one 3D surface obscures another. Simpler routines could be made to clip objects that are too far 
away to see or objects that are behind the viewer. 

A lighting feature would allow appropriate factors of light intensity and reflection to deter­
mine the shading of surfaces. Lighting may be ambient (equal everywhere) or come from several 
possible source geometries. Reflections could either be diffuse and scatter light equally in all direc­

tions, or be specular like those off any shiny surface. With these parameters, the TMS320C30 can 
compute the appropriate shading of a given pixel. In this scenario, the GSP is reduced to drawing 
single points with a given color. Thus, any lighting function would slow rendering time. 

More complex primitives can be produced by using the TMS320C30 to generate arrays of 
pixels representing solutions to equations. The PC could dispatch a command to draw a primitive 
based on a particular type of equation (such as the parametric equations representing a sphere) and 
then load the appropriate parameters for that equation. The DSP would generate the appropriate set 
of pixels for that object and send it to the GSP as arrays of points. 

Rendering Features 

The TMS34010 Math/Graphics Function Library [8] permits the user to create and select 
various windows for display. Once a window is selected the DSP can run the existing system soft­
ware within that window. Thus, the host would also need to be able to direct the DSP to tell the GSP 
how to manipulate its windows. The Library also enables the GSP to print text on the screen. This 
feature also would not be very difficult to implement. 

A More Advanced Host 

A more advanced host could be a high-speed RISCprocessor such as SPARe. This unit could 
communicate with the DSP at faster rates, so command transfers would consume less time. In addi­
tion, SPARC is a 32-bit machine, which could allow word transfers between host and DSP in a 
single instruction. 

A More Advanced Rendering Engine 

The TMS34010's performance as a rendering engine could be improved. If the GSP could 
be ready to complete a transaction when the HRDY line is asserted and not some period of time 
later, the C30AB to SDB interface would be more straightforward and not require as "many wait 
states. This problem is corrected in the second-generation GSP TMS34020, which was not avail­
able at the time of the design of this system. In addition, the TMS34020 also allows the host to trans­
parently access the GSP's bus while the GSP continues processor functions. 

Conclusion 

Despite its shortcomings, this system still demonstrates the dataflow in a graphics pipeline 
using a digital signal processor as a computational element. One main benefit of the digital signal 

450 A DSP-Based Three-Dimensional Graphics System 



processor is the availability of development tools such as C compilers, assemblerllinkers, software 
development boards, and in-circuit emulators that accelerate design time. The TMS320C30 also 
provides speeds comparable to many bit-slice processors that require programmers to develop ex­
tensive microcode routines. The hardware multiplier, floating-point capability, RISC architecture, 
and parallel bus access facilitate fast, precise graphics calculations. Overall, a digital signal proces­
sor provides an attractive option to the graphics system designer interested in making high-per­
formance systems with quick turnaround time. 

References 

1) TMS320C30 Simulator User's Guide (literature number SPRU017), Texas Instruments, 
1989. 

2) Third-Generation TMS320 User's Guide (literature number SPRU031), Texas Instru­
ments, 1988. 

3) TMS320C30 C Compiler User's Guide (literature number SPRU034), Texas Instru­
ments, 1988. 

4) TMS320C30 Assembly Language Tools User's Guide (literature number SPRU035), 
Texas Instruments, 1989. 

5) TMS34010 Software Development Board Schematics (literature number SPVU003), 
Texas Instruments, 1986. 

6) TMS3401 0 Software DevelopmentBoard User's Guide (literature number SPVU002A), 
Texas Instruments, 1987. 

7) TMS34010 User's Guide (literature number SPVU001A), Texas Instruments, 1988. 
8) TMS34010 Math/Graphics Function Library User's Guide (literature number 

SPVU006), Texas Instruments, 1987. 
9) TMS34010 C Compiler Reference Guide (literature number SPVU005A), Texas Instru­

ments, 1986. 
10) Foley, J.D. and Van Dam, A., Fundamentalsoflnteractive Computer Graphics, Addison 

Wesley, 1984. 

A DSP-Based Three-Dimensional Graphics System 451 



452 A DSP-Based Three-Dimensional Graphics System 



Appendix A 

Graphics Programs 

Listing Name 

1 TMS320C30 C Structure Representing an Object 
2 TMS320C30 C Structure Representing a Location 
3 TMS320C30 C Structure Representing a Point 
4 TMS320C30 C Structure Representing a Line 
5 TMS320C30 C Structure Representing a Filled Polygon 
6 TMS320C30 Communications Macros 
7 TMS320C30 Global Variables 
8 TMS320C30 Main Command Execution Loop 
9 TMS320C30 Floating-Point Conversion Routine 
10 TMS320C30 Object Loading Routine 
11 TMS320C30 Screen Coordinate Calculation Routine 
12 TMS320C30 Transformation Matrix Evaluation Routine 
13 TMS320C30 Object Deletion Routine 
14 TMS320C30 Request for Additional Data in Object Load 
15 TMS320C30 Object Drawing Routine 
16 TMS34010 Point Structure 
17 TMS34010 Line Structure 
18 TMS34010 Color Array 
19 TMS34010 Color Palette 
20 TMS34010 Main Command Execution Routine 
21 PC Object Loading Data Structure 
22 PC Communications Macros 
23 PC Global Variables 
24 . PC Targeted Object Adjustment Routine 
25 PC Routine to Set Parameters for an Object Load 
26 PC Routine to Target Parent of Current Target Object 
27 PC Routine to Target a Child of Current Target Object 
28 PC Routine to Redraw Screen 
29 PC Routine to Load the Primitives of a Wireframe Cube 
30 PC Main Routine to Draw a "Planetary System of' Cubes 

A DSP-Based Three-Dimensional Graphics System 453 



~ 
.j>. 

::.... 
tl 
~ 

~ 
~ 
;;l 
~ 

~ 
~ 
[ 
G'l 
~ 
'g. 
~. 

~ 

~ 

****f**fUHffHHfHHHHIHHffHnHIUHffHfffHHfHHHfffHflffHfltt 

--)listing 1: TI'IS320C30 C Structure Representing an Object 

struct object 
( 

str-uct object fparent;!f object within who's frall€ the object is defined *1 
long subnulrt; /1 sibling number of object ., 
long locfllJm: /f nUlilber of locations *1 
1 clOg ~tnlJm; /1 nlJmber of points 1/ 
long 1 nnUIrI; /f nUllber of 1 ines *1 
long pgnum: 1* number of polygons 1/ 
long oonulI; /1 nUllber of daughter objects 1/ 
float sx; float sy; float sz; 1* scale factors 1/ 
float dx; float dy; float dz; /f offsets 1/ 
float theta; /f angle of rotation around z-axis (x to y) 1/ 
float phil 1* angle of I'otation al'ound x-axis (y to zl *1 
float omega; 1* angle of rotation around y-a.xis (z to xl II 
floa.t r[3H41; 1* matl'ix formed by scale, the offset, then rotate II 
float 0(3)[4]; 1* ascending product of all ancestral I' matrices II 
loc *locs; 1* poirlter to location array II 
point fpointsl 1* pointer to point array II 
line llines: 1* pointer to line arr-ay . II 
polygon "polygons; II pointer to polygon array II 
struct object fobjects[!1AXOB1; II pointer to anay of *1 

Ilpointers to child objects +I 
l, 

H***HfHfllfffHHHIHfHHHffHHHHflflfffHIfHHHlfHHffHfffffflff 

fHHfHfHH"*UHfIHUfHfHHftfHfffllllffffHfHfflHlffHfHffHllfflf 

-)Listing 2: TI1S32OC3O C Structure Representing a Location 

typedef struct 
{ 

float x; 
long a; 

} toc; 

float y; 
long b; 

float z; II world coordinates *1 
1* screen cMrdinates II 

ttffffftfHffHffHffffIHHlffHfHlfflffffHlffl*HfffHllfflfHffH***lflff 

HHflHlflHffHHHUHHHHHIHIHHfHflffHHHHHHlfHHHffHfHflf 

--)Listing 3: TMS320C30 C Structure Representing a. Point 

typedef struct 

long color-; 
long locn; 

} point; 
II nUlilber of location in location array *1 

lHf*************I****HfIHIIH*IHIHfHffffHfHfflf-ffllfflfflffffffIIHffHI 

flllffIHfffflffH+HI**Uffff*-HlffIHH*HfllffIHIfIUIIIIIIIIHIHIIHfflf 

--)Usting 4: Tl'\S320C30 C Structure Representing a Line 

typedef struct 
{ 

long color; 
long startlocn; 
long endlocn; 

} line; 

II start loc number II 
If end loc number II 

tHlfttffftlfff*ffffttHlfnffffHlfflHffllHflfHIHHflllHlffllfflfffffIff 

HHftHflfffllfHlfflfHffHffltfHfffffUUHHHHlfffHHHHIH+HlffffH 

--)Usting 5: Tl'1S320C30 C Structure Representing a Filled Polygon 

typedef struct 
{ 

long color-; 
long vertnum; 
10llg tvertlocn; 

} polygon; 

II number of vertices *1 
1* array of vertices 1 (lC numbers H 

********lflfffIHHHHH-*lIH**HHHffHfIHfffffHfffHHfffffffHflfffffH 



~ 

tl 
~ g, 
'" a 
~ 
~ 
~ 

6 
I· 
[ 
C) 
~ 
'g. 
~. 

~ 

~ 

~ 

IHIHHHHflfHHHfHHHffffHHfffHfHfHfHfHfHfHffflffHHtHIHHf 

--)Usting b: TttS320C30 CouuniCltions ",eros 

/1--------------------------------11 
/1 COI1IUUCATIOOS I1ACROS TO GSP 1/ 
/1-------------------------------1/ 
Ide fine CTLfRf[ 0x0800 
Idefine CTLREQ 0><0803 
'define CTLACI( 0x0033 
#define CTLWITH 0x0830 
Ide fine HOSTCNTL ('h.tcntl ~ OxOOfFF) 
/1-------------------· --------.,.---------------1/ 
/1 IIIIUII.II1 NI.ItBER IF INTERIIAI. OOJECTS 1/ 
/*--------------------------------------1/ 
'deline l1li108 10 
/1-----------------------------------------1/ 
/1 PC COItI..WlCATIOO LOCATIONS f/ 
/1--------------------------------------------'---1-, 
'define rottAND (Idual-port Ie 0x0fF1 
Idefine ACKNOII.EOOE duo LporW I 
/.------------------------------------------------*, '* DATA·RECO'.{RY FROI1 THE lXW. POOT *' 
/1-----------------------------------------------1/ 
'define [fOCal 
Idefint [fI(al 
.define lP2Cai 
'define [f3(il 
Idefine DPl(ttJ(a) 

dual_por-t[aJ 
dual-porth. + 1] 
dUil_port[a + 2] 

duaLporHa + 3] 

(liongi {{iPUol ~ OxOOFFl « B : (OPO(al ~ OxQIlFFill 

.. IU .... H*HfIHlfHHHH.HflfffHffHlllffHHIHffHIIHIHlffH.H.ffH 

*.I*'HIHf*IHffltHIHfI*Hf-HHfHfHftIHHHHfHfH-fffHIII"fffHHfffl 

--)llsting 7: ll1S32OC30 Globa.l Viriables 

long k,l; 
struct object luniverse, fto, Ino; 
urlsigned long IduaLport; 
unIon 
{ 

float f; 
unsigned long i; 
} fllong; 

/1 teaporary inO looping varia.bles II 
/1 univer-se, target object, next object 1/ 
/1 dUll port SRAtI 1/ 
/f variable to construct a c30 forllat 1/ 
/f float froll inbl forINt allollling 1/ 
/1 bit Nnipulation on a float 1/ 

fIHfHflflffHfHf.HIHHfHHffffHUHHfffffHIHfffHIHffHIHU.HHH 

HffHfHfHffHfffHfHffHHfHtHHHfftHHfHHftHHHfHfftHlfHfHfff 

-)listing 8: lltS320C30 tlain Couand Execution Loop 

void Hine) 
{ 

register float hlopi = 6.28318S308; 
register long i, j; 
register long fhstdat.a = (long *' OxSOSOO2; /* 340 host data register *1 
register long *tlstcnt! = (long *1 0xa05003; 1* 340 host control registerll 
duaLport = (unsigned long *1 0x804000; 
asm(" OR OBOOh,SPI;I* enable cache II 
aSll M LDI 02h,IOF"I; If set XFO and aSSUile control of 340SDB */ 

/* set for zero internal wait states on both buses II 
I«unsigned long II 0x8080bOl = 0; 
*«unsigned long *1 OxB080641 = OxlOOO; 
Ihstcntl = CTlFREE;/1 turn- off any request to TMS34010 II 
*duaLport = 0; 1* turn off- any request frorJ the PC II 
ACKNOWlEOOE = 0; /1 turn off any acknolillegeraent to the PC 1/ 

/. allocate space for the internal object 1/ 
universe = (struct ObjHt II /lilloc (sizeoHstruct object); 
to = universe; II target universe 1/ 
to-)subnull = 0; /1 set universe sibling number to 0 */ 
to-)parent = to; /* universal object is its oltn parent 4/ 
klhile(COI'V1AND != 11; /1 first COlaand must be a load object */ 
ACKOOWlEDGE = 1; /* acknowledge that c30 is ready 1/ 
IIIhilelCOI"MND != 0); /1 wait for pc to lIIithdralll requfSt 1/ 
Ioad_objectll; /* IOid universe 1/ 
ACKNOWl.EOOE = 0; II sho~ that dual port is free */ 

llitrixll; /f calcul.ate transforlition latrix 1/ 
fori;; I /1 infinite loop for PC COHand detectionl/ 
( 

.hile(COI1I1AHlJ == 01, 
j = COMAND, 
ACKNIREOOE = j, 
IiIhilelCUV1AND != 0); 
switch Ij) 

/1 wait for PC to request service 
/1 save cOlH\ind 
1* .acknowledge request 
/1 wait for PC to withdraw request 
/1 execute requested conand nUlber 

*' I' 
*' f/ 

*' { 

co .. U 'I LOAD A lIAlilHTER OBJECT *' 
if (to-)obnull = I'IAXOB) break; /* abort if ) !taxi.um objects 1/ 
j = Hto-)obnulI; /1 increase nuaber of daughter objects */ 

/1 allocate space for nelll object 1/ 
to-)objects[jl = (str-uct object II Iftil10c (sizeof(struct object)); 

no = to-)objects[jl; /1 next object is daughter object 1/ 
no-)subnua = j; /1 set sibling nuaber of next object 1/ 
no-)parent = to; /1 assign current objfCt as no's paret II 
to = no; /1 target daughter object */ 
10ad_object(); /1 load daughter object I' 
ACKNltA.EOOE = 0; /1 show that dual port is free */ 
I'Iitrixll; /* calculate transform r.atrix 1/ 
break; 

case 2: ,. TARGET A lIAUlHTER OOJECT *' j = IPl.(HH21, /1 get daughter object nuaber to target ./ 



~ 
0\ 

~ 

I:;:, 

~ 

~ 
~ 
;;i 
~ 
"' '6 
§' 
~ 
'" [ 
~ 
.§ 
~ 

~' 

~ 
'" 1\ 
;!! 

ACktOA..EJ&: = 0; If sholl! thit dual port is free ., 
if (j ) to-)obnulII) break; /. can only target existing object 1/ 
to = to-)objecb[Jl; /1 h,rget daughter object ./ 
break; 

me 3' '".TARGET PIIREHT 08JECT "' 
ACKtOLEOOE = 0; /f sholll that dual port is free 1/ 
to = to-)parent; /f set targeted object to parent ./ 
brnk; 

case 4' '" DELETE TARGETED OMCT ., 
ACktOA..EJ&: = 0; If, shOll! that request dual port is free 1/ 
if (to = universe) break;/' don't allow deletion of universef , 

j = to-)subnUfD + 1; /f get nUlllber of next sibling f/-
no = to-)parent; /f set next object to parent 1/ 
delete_object(to); /* delete current object 1/ 
to -= no; ,. target parent object f/ 
1 -= to-)obnul; /f find total nUMber of siblings 1/ 

/1 decreHnt sibling nulber on all younger siblings ./ 
forB = j; i (= I; ++iI -to-)objects[il-)subnlJl; 
--t-o-}obnul; /. decreHnt total nUlber of daughter objects ./ 
brnk; 

ClSe 5: '" Al\JJST TARGETED OBJECT *' to-)sx 1= dpfloaU21; /1 adjust scales ., 
to-)sy .. dpll .. U6), 
to-)sz .= dpf1.itH01, 
to-)dx += dpfloat(14); /1 adjust offsets *' I.-)dy += dpfloItHS); 
to-}dz += dpf1 • .t(22), 
to-)theta += dpflodI261;. /1 idjust ingles *, 
I.-)phi to dpf1.1I13()), 
to-}oltga += dpfloat(34); 
AOO«N.EDGE : 0, /1 sho. that dua.l port is. free ., 
'* keep angles in the IO,2pU range) ., 
to-)theta. = flodlto-)theta, hlopi); 
I.-)phi = flodUo-}phi ,tlllopi); 
to-)oltga = f.odUo-)o~ga, tIilOPU; 
Ihltrix(to); /1 recalcula.te tra.nsform latrix ./ 
break; 

Cise 6: ,. DRAW LIlI VERSE ., 
~=.O, /1 shot! tha.t dual port is free I' 
whilell4lSTCNTL ~= CTLFREE); /* wa.it for 340 to be free I' 
'h.ldili = 4, It enter cOlRnd for a screen clea.r II 
.h.le.11 : CTl.REQ, /1 tequest service frOM 340 ., 
.hiltlHOSTCNTL != CTLACK); /i "'it for icknOlllledgement "' 'h,le.11 = CTlWITH, /f ~ithdrh request "' 
draw-object( uni verse); /i dra. .. universe "' 

IIfhiltU-KlSTCHTl != CTLFREE); /. lH.it for 340 to be free 
fhstdati. = b; /f enter cOlIINnd for i sCinline 
fhstcntl = CTLREQ; /. request service fro. 340 
while(HOSTCNTl != CTLACK); /f wait fro. acknollliedgeaent 
.hstcntl = CTlWITH; /. "ithdra~ request 
brtik; 

case 7: ,. Cl'Lcw\TE SCREEN COORDINATES 

., ., ., 

./ ., 

., 
/f ++tWARNING+++ the PC user lust execute a s.creen colltNnd- to 1/ 
/1 screen all objects that have been adusted since t~e last ./ 
/. dra.1II before the next dralil. However, if an object is 1/ 
/f screened all daughter objects are as well. ./ 
IIOaOl.EDX ::;: 0; /1 show that dual pClrt is free 1/ 
screen_objectlto); /1 calcuclate screen coordini.tes 1/ 
break; 

default: 
AtmlIUDGE : 0, 
break; 

/. show that dual port is free 1/ 

'1IIIfffIffIfIffHIfHfIHff'lffIHfIHllIfIfHlIHlf-H-fIHffHffIIHfffHfffff 

HUffIIHlffUHIHfHHHHlfffflffltHtfffff-ffHHHHHfHHfHHIfffH-H1 

--)Usting 9: TI'IS320C30 Floating-Point Conversion Routine 

llOit dpllOiI (0) 
register unSigned long i; 
( 

r"egister unsigned long sign; 
unsigned long flant, ex; 

a = IDP)I.) « 24 
IIP2la) & OxOOFf) « lb 
IOPH.) ~ OxOOfF) « B 
IDPQli) ~ OxOOFF)), 

.ign : Ii & oxsooooooo) » 8, 
ex : I Ii & OxlF800(00) 

- Ox31800000) « 1, 
if (sign) 
{ 

/1 offset froll start of dual port SRM *1 

/1 concatenate 4-byte va.lue 

/1 extract and reposition sign bit 
/1 extract exponent 
If. converts to 2f s cOlpleatnt 

./ 

., ., ., 
IMont = (- a) &I 0x007FFFFF; /t hkes 2/s cOlpleltnt of IFIintissa 1/ 
if (IIIlnt = 0) ex -= Ox010OOOOO; /f checks for input IN.ntissa of -2 1/ 

else liant -= a &: OxOO7FFFFF; 
a = sign + Nnt + ex; 
fl1ong.i = i; 
return fllong.f; 

/f otherwise leave Mntissa a.lone 
/1 reconstruct floating-point fields 

/1 return reconstructed float 

., ., 
"' 

fHlffflfffffHHlflffffHfffflfHfflllffHfffftulftHHHHfflHlfHllHlH-I 



::a,. 
tl 
~ 
~ 
'" ~ 
~ 
~ 
'I> 

6 
I· 
[ 
~ 
{3 
~ 
~. 

~ 

~ 

~ 

tHHHHtHHHHtflfttH+HHHflHHtHHffHffHffHffffftHHHHHfHfH 

--}Listing 10;. 'ft'IS32OC3O Objed l~ding Routin. 

void load_object() 
( 

tIghter long i, j; 
register struct object to; 
register IDe ft •• ploe; 

/f t.lporary and looping variables *1 
1* pointer to target object 1/ 
If tHporary location pointer 'II 

register- Jine tte.pln; /f temporary line pointer 1/ 
polygon fteappg; /f ttlporary polygon pointer 1/ 
point t-t.rtppt; 'f t.llporary -point pointer 1/ 
long Ie • DPUlIGI21, 
long pi • 1PL(N;141, 
long In '1PL(N;lbl, 
long pg • IPL(N;ISI, 

If nUllber of coordinate locations 1/ 
If nullber of points 1/ 
/f nultber of 1 ines 1/ 
/f nulIOel' of polygons ., 

o = to; /f set til'get object is object for loading / 

/f initializf prillitiv@ nUlibers and transforr. paralettl's 
o·)tocnu. = Ie; 
o-)ptnuli = pt; 
0-)1nolllll = In; 
0-)pgnuD = pg; 
o-)obntlll = -1; 

*, 

o-)sx • dpfloolllOI o-).y = dpfl.ol1l41 
o-)dy • dpfl.otl2bl 
.-)p.i • dpfl.oll381 

o-)sz = dpfloat(18J 
.-)dx • dpfl.otlnl o-)dz • dpfl .. tlJOI 
0-)1.,10 • dpflootl341 '-)0"9' = dpflool1421 

'* ALLOCATE SPACE FOR OMCT PRI"JTJ~ f/ 
0-}10[S = (loc oil Nltoc (sizeof (Ioc) I Ie); 
o-)points = (point II N,l1oc (sizeof (point I t pt); 
o-)1ines = (line II tilloe (sizeof (line I f Inl; 
0-)p01Y90ns = (polygon II IrIllloc (sizeof (polygon) I pg); 

'* LOAD \!'TO 3n LOCATIOOS PER OBJECT 
for Ii = 0, j=46; i < 1C; +ti, j += 12) 
{ 

*, 
ttlpJoc = &:(o-)locs[Bl; 
I •• ploc-»( • dpflot!ljl, 

/1 stye teaporary location ./ 
/f load .. orld coordin.ates 1/ 

I •• ploo-)y' dpflodlj + 41, 
tellllploc-)z z dpfloatlj + 8); 

't LOAD LI'T 2047 POINTS PER OBJECT 
if Ipll 

I' 
( 

.ore_datal); 
for H c Or j.2 ; i < pt; ++i" j += 4) 
{ 

ItllPPI • LI,-)pointsCill; 'f s.t leeporary poinl locati.n I' 
toppt-)color'.'IPLCNjejJ; 'f 9ft point color " 
I .. ppt-)l.en • DPI.DIIGlj + 21; 'I"gtl poinl locatio. t' 

,. LOAD \l'TO 1364 LINES 
if (lnl 
( 

more_dataO; 
for Ii = 0, j=2 ; i Cln; +ti, j += b) 
( 

tempTn = &:(o-}JintS[ill; 
ttll:pln->color = lPLCN3(j); 
tellpln-)startlocn = DPLOOOCj + 2); 
hllpln-)endlocn = rPL(NJ(j + 4): 

'* LOAD 1M POL\'OO>I AT A TltE 
if Ipgl 
( 

for (i :: 0; i ( P9; Hi) 
{ 

lI:orf_d.at.a( I; 
ttllppg 
hlllppg-)co 101' 
I 
tellpP9-}vertnufI 

= &(o-)polygonsfil); 
= [l>L~121, 
= D!'LlI'«lI41, 
• I, 

I' 

/t set telpon,ry line t/ 
/f get color tl 
It get starting location II 't get ending location I' 

I' 

'f set hmpQl'ary polygQn */ 
'I get colQr 1/ 
/t get number of verteces f/ 'f set number of verteces 1/ 

/1 al1oc.ate space for vertex location list 1/ 
terappg-)vertlocn = {long II milloc (sizeof (\ong) f 1l; 

for (k = 0, j = 6; k ( 1; +tk, j += 2) /f load verteres f/ 
( 

tuppg-}vertlocn[kl = DPlONO(j I; /f set vertex location ., 

IfUfitUHf.HffHfflHfHlfHffHlIHtfHfflHfftftffHHlfHflffliHffffffff 



~ 
00 

::to.. 
tl 
~ 

[ 
;;l 
~ 
~ 

r 
[ 
G) 

~ 
'g. 
~. 

~ 

~ 

-)Listing 111 TtIS32OC3O SCl'ten Coordinde calculation Routine 

void serNn_object(ol 
register struct object 10; 
{ 

register long i , j; 
register loc fteap1oc; 

/f tuporuy and looping variables *1 
1* te.ponry location pointer 1/ 

register struct object ftellpob; 
register float x,Y; 

If telportry object pointer *' 
/f co-ordinate floating point values 1/ 
If ind perspective constant 1/ fI .. t z,d, 

teapob = o-)parent; /f set teaporary object.to parent object 1/ 

/1 CQ!PUTE PIiRENT MATRIX 1/ 
1/ /f if object is universe set partnt Ntrix to transfor" litrix r 

if (0 = univtrstl 
{ 

forti = 0; i < 3; +tiJ for(j = 0; j (4; ++jl o-)p[iHjl = o-)r[i][jl; 

'I atnerWiSt p !latrix is product of r llitrix and parentIs p Htrix I' 
else forH = 0; i ( 3; ++i) 
( 

.->p[iJ[Ol = 0-),[0][01 • t .. pob-)p[i][Ol • o-),[1]{Ol I t •• pob-)p{iJ[11 
+ o-)r[2][0] I teapob-)p[iH21; 

.-)p[i1ll1 = 0-),[0][\1 I t •• pob-)p[iJ[Ol • 0-),[1H11 I te.pob-)p[iJ{!l 
• 0-),[21111 I teopob-)p{iJ[21, 

0-)p[iJ[21 = 0-)r[0]{21 I t.opob-)p[iJ[Ol • 0-),{1]{21 * te.pob-)p{i]{1J 
• 0-),[2l!2] I t •• pob-)p{iJ{2], 

0->p[i]{31 = 0-)r[0]{3] I t •• pob-)p{iJ{Ol • o-),[1]{3] I t •• poHp{iJ[!l 
• 0-),[2][3] I teopob-)p[iJ[21 • t"pob-)p{iJ[3], 

/1 arFUTE SCREEN COORDINATES 
j = o-)locnuI; 

./ 
1* get number of locations II 

for Ii = 0; i { j; +t:i> 
( 

tellploc = ItCo-)locs[i)j 

II Sive globi,l coordinates 
x = tnploc-)x; Y = tt!lploe-)y; 

/1 set telporary location II 

1/ 
Z = tuploc-)z; 

'I eileulit. z vatu" add offs.t of S, and invert for perspective " 
d = lI(x I 0-)p{21[01 • Y •• -)p[2I[!l • Z I 0-)p[2l!21 • 0-)p{2I[31 • 10), 

1* cilculat. trinsforlHd x ind-y, add p.rspectiVf, ind scale to scr@enl, 
k = 1I0ng) ((x I 0-)p{OII01 + Y • o-)p{Ol[1J 

+ Z • 0-)p[0l!21 • o-)p[OI[3]) I d I 200), 
I = (long) «x .... >p[1J{OI + y I '-)p{IJ[]I 

• Z I 0-)P[1J{21 • o-)p[J]{3]) I d I 200), 

,. clip to a 16 bit integer II 

if 
if 

(k) 32000) k = 32000, el" if (k < -32000) k = -32000, 
(I ) 32000) I = 32000, else if (I < -32000) I = -32000, 

1* Sft screen coordinates 
tellploc-)a = k; 

/f screen ill internal objects 
j = 0-)obnuln; 

t.oploc-)b = I, 

for (j = 0; i (= j; ++i> sCl'een_objectlo-)objects[ill; 

1/ 

1/ 

ffHfllffflffffffffHffflffHHHftHHHfHfHHHHlfHHHHHHtHffHlHf 

fHffHffHffHflfHfHlHffHflfHHHl-tHHlllHfflHHffffflHHHfffHffH 

-}Listing 12: TMS32OC3O Transforation Matrix Evaluation Routine 

Mtrix() 
{ 

register float cost, sint; /1 transfotl'l telllporary I' 
float coso, sino, cosp~ sinp;/l.variables II 
register struct object 10; 

o = to; 
cost = coslo-}thetal 
sint = sinlo-)theta) 
coso = cos(o-}oIHQil 
sino = sinlo-)oltgal 
cosp = cos(o-)phil; 
sinp = sin(o-)phi I; 
o-)r[O](Ol = o-)sx I cost I- coso; 
o-)r[O](l] = - o-)sy I sint I coso; 
o-)r[O][21 = o-}sz I sino; 
0-)rCOH31 = (o-)dx I cost - o-)dy I sintl I- coso + o-)dz I sino; 
o-)r[t](O] = o-)sx I Isint I cosp + cost. sino f sinp); 
o-}rCl](U = o-)sy .. (cost .. cosp - siot f sino f sinp); 
0-}r[t][2J = - o-)sz I coso I sinp; 
o-}rU](31 = ((o-)dx" cost - 6-)dy f sint) * sino - o-)dz * coso) f sinp 

+ (o-}dx I sint + o-)dy .. cost) f cosp; 
0-)r[2](O] = o-)sx .. (sint * sinp - cost * sino" cosp); 
0-)r[2](1] = o-)sy f Icost * sinp + sint I sino * (osp); 
o-)r[2H21 = o-}sz f coso f cosp; 
o-)r(2H31 = «- o-)dx I cost + o-)dy f sint) * sino t o-)dz f coso) 

f cosp + (o-)dx f sint + o-)dy * costl I sinp; 

IlfllffflfllfflflfflfffftfflHfftfffHffHffffffHllHlflfflHIIHIIHIHfHff 



;:... 
t:I 
~ 
~ 
~ 
~ 

i-
t 
c;) 
i:! 
~ 
5· 
~ 
'" ~ ;: 

~ 

fftfHfHfffHffHffHHfIHHUlffH****fHffHftHHHffHffHftHffHfHfH 

--)Ushng 13: n1S320C30 Object Deletion Routine 

void delete_object (0) 
regishr struct object 10; 

register long i, j; /f tellp~rary, looping variables *1 

free (0-)10(50); II delete location array t/ 
free (o-)points); II delete point array II 
free (o-)lines); II delete line array 1/ 
j = o-)pgnulII; /1 get number of polygons II 
for (i = 0; i {= j: +ti) free (o-)polygons[i).vertIClcn); II deleh II 
for (i = 0; i (= j; Hil free (o-)polygonsl; II polygons 1/ 

j = Cl-)obnulI; /1 get number- of daughhr objects 1/ 
for (i = 0; t (= j;++i) delete_object(o-)objectsfi)); II delete objects 1/ 
free (0); II deJete object 1/ 

1******ftHHI**HfllllffHlfH**fUfH**HffffH*HHffff*ff**IHIIUIHH+f1 

HffHIHffffffffIHffH-f+flffl**I*,**I+f****I****IHfffHH**HlffffIHI**lff 

--)Usting 14: TI'IS320C30 Request for Additional Data in Object Load 

void aore_data{) 
( 

ACKNIlWlED6E = 127; 
IIIhile(CM'1AND ~= 127); 
ACKI«lWlEDGE = 1; 
while(COMl'1AND != 0); 

II request mort! data 1/ 
II lllait for mor-e data */ 
II restore old acknowledge *1 
/* lllait for PC to reSUllle old command */ 

IfUHfIIHUflnfllnl"*fln****Ulffl**U'UffffIHff+flUfI****ffH***'**f 

fH********fHHHfffftHlfHHHffHHfHftHfffUHHfftHffHftfffHffffHI 

--)listing 15: TI1S320C30 Object Drawing Routine 

VOid drallubject (0) 

register struct object fO; 

register long 1; /f telporary, looping variable 1/ 
register loc ftellploc; 1* teRlpol'ary location pointer IJ 
point ftelllppt; /f temporary point pointer 1/ 
register line fteltpln; 1* tuporary line pointer II 
polygon *teIlPP9; /f telporary point pointer *1 
register long fhstdata ::: (long *J 0:<805002; /f 340 host data register 1/ 
register long- fhstcntl = (long *l Ox805003; /f 340 host control register II 
register j = o-)lnnulII; II~tellporary, looping variable II 

,. OOAW ANY LINES 
If (j) 

., 
( 

IIIhile (HOSTCNTL != CTlFREE); 
Ihstdata = 123; 
Ihstenti = CTLREQ; 
Ihstdata = j; 
for(i=O; i ( j; ++iI 
( 

templrl = ~do-)lines(i]); 
Ihstdata = tupln-)color; 

II wait till 340 is free 1/ 
/1 send cOlIIIN.nd to dralll object II 
/1 request service from 340 1/ 
/1 send nUllber of lines 1/ 
II send 1 tnes 1/ 

/' save line pointer 1/ 
/1 send color 1/ 

thstdata = o-)!ocs{tupln-)startlocnJ.a: /1 send start 1/ 
Ihstdata = o-)locs[tellpin-)startlocnJ.b; 
Ihstdata = o-)locs[tellpln-)endlocnJ.il; 
Ihstdata = o-)locs[tempin-)endlocnLb; 

/'1 coordinates 1/ 
II send end II 
/'1 coordinates 1/ 

IIlhile(HOSTCNTL != CTLAClO; II wait for 340 to a.cknolwedge request II 
fhstClltl = CTlWITH; II lIIithdralil r-equest II 

,. DRAW ANY POINTS 
j = 0-)ptnulI; If get nUliber of points 

f' f' 
If (j) 
( 

.hi I, (HOSTCNTL '= CTtFREEl; 
fhstdata = 1; 
Ihstcnt1 = CTlREQ; 
Ihstdata = j; 
for(i=O; i ( j; Hi) 
( 

temppt = &Co-)points(iJ); 
Ihstdata = tellppt-)coior; 

II llliit till 340 is free 1/ 
If send collltind to drall! object 1/ 
/f request service frOIl 340 II 
II send nUliber of points 1/ 
/'1 send points */ 

II saye point pointer *1 
/1 send color II 

Ihstdah = o-)loes[tellppt-)locnJ.a; 
thstdata = o-)locs[telllppt-)locnJ.b; 

/f send scrfen coordinhs '1/ 

.hil.(HOSTCNTL '= CTLACK), 
fh.tentl = CTLUITH, 

If I&la.it for 340 to acknolwedge request II 
I. withdrilf request '/ 



§ 

~ 

t:J 
~ 

~ 
~ 
~ 
~ 
'" 
~ 
~ 
'" [ 
C':l 
i:l 
'g. 
~. 

~ 

~ 

'I mAW MY PCl. VG()IS 
1 = o-}pgnul; 
if (1) 

{ 

for(i = 0; i < 1; ++il 
{ 

/f dra~ polygons 

hlllPP9 = Mo-)polygons(i1l; /f llliit till 340 is free 
j = tuppg-)vertnuI; 1* send cOlf\flolnd to dralll object 
.. hilt (HOSTCNTL != CTLFREE); /f request service frolll 340 
IRstdata. = 5; If send flUlllber of- points 
.nstentl = CTLREQ; /1 send p'oints 
fhstdah. = telppg-)color; /f send color 
'ths,tdata = j: /'1 send nUlIober of vertects 

*' 

I' 
*' *' ., 
*' *' *' *' 

II send point connect list (0,1 , 1,2, 2,3 .... j-2,j-l , j-l,O *1 
fhstdata = 0; 
forlk '=, 1; Ie ( j; ++Ie) 
( 

fhstdata = k; 

fhstdata = 0; 

fhstdata = k; 

II send vertex location list tl 
forlle = 0; k ( j; +tk) 
( 

teillploc = ltlo-)locs(tellppg-)vertlocn[k)]); II save point II 
thstdata = telllploc-)a; Ihstdah = tellploc-)b; 

whilelHOSTCNTL != CTLACK); If wait for 340 to ilcknQl~ed9t requestll 
Ihstcntl = CTLWITH; II ~ithdralll request II 

'* DRAW. ANY OOUGHTER OBJECTS *' j = o-)obnulI; II get daughter objects f/ 
for {i = 0; i (= j; ++i) drilll_objectlo-)objects[iJl; 

fHHfHflHHIHHHfHlIHHHfHHfHffHllHffHlflfHIHIfHHfHffHfffl 

fHfHHffffffffflffHlffffflHfHHHfllffffHHfffllllffffHfffffHffHHHf 

-->Listin9 16: TMS34010 Point Structure 

typedef struct 

short colOor; 
short x;, 
short y; 

} pOint; 

1* point color 
II x co-ordinate 
II y co-ordinate 

,. POINT ., 

*/ 

*' *' 
ffHHflHHIIHHfHfHtHfHfHlffHlfllffHllHllHlfHfflflflHHlllflflH 

ffftHHffHffHtHffftHfHHfHftffHHtHffffffffffffffffHHHffHHfHHf 

--)Listinll 17: TI1S34010 Line Structure 

typedef str-uet 
{ 

/f Uti: 1/ 

short color; /f line color 
short xl; /1 x co-ordinate of starting point 
short yl; /f Y co-ordinate of startii'l9 point 
short x2; /1 x co-ordinate of end point 
short y2; ,. y co-orainate of end point 

} line; 

*' *' *' *' 
*' 

ftfffffffffHHffffHfffHffffffHffHHHIHfUfffHHHHflHIHtlHllHllf1 

ttIHH**f******fHIHHfHHHHIHfIHHIHIHtllHHfHHIIHIItHHHHIH 

-)Usting 18: TMS34010 Color Array 

10)0<1 color[1~) = { 
ceo. ect, CC2, CC3, CC4, CC5, ceo, CCl, CC8, CC9, CCIO, CCII, CC12, 
CC13, CCI4, CCI5), 

t******f*ttf*lftll**fHfH**fHIHftIHffItIlHHlfffItIHHffIHtlfltIHtIHt 

ItHHHHfHfHffHfIHffHHHHHffHflHllffHHffffftHHffHHHftHHH 

I-)Usting 19: ntS34010 Color Palette 

short mypaleHlb) = { 
OxOOoo, OxFOOO, OxOOFO, OxFOFO, 0x0F00, OxFfOO, OxOFFO, OxFFFO, 
OxOAFO, 0,0900, OxfAlO, Oxf4AO, 0xI7BO, OxbbOO, Oxmo, OxBBBO I; 

flfttfflfffffHttHfffffHfHfflHHHffHlffHfHfffHfflllHllHlfHlfHIHI 



::to. 
tl 
~ 

~ 
~ 
~ 
~ 
6 
§" 
~ 
Co 

[ 
~ 
{3 
;:-
~" 

~ 

~ 

~ -

HHHIHU**.*HfHf'fHffIfHUtUfUHUHfHffUffHffHHlfffffHfffHfff 

--)Llstlng 20: TMS34010 Main Coltllind Execution Routine 

lMin() 
( 

regISter lIne *telhplrll /f tuporary line pointer II 
regIster point fttlllppt; /f tellporary point pointer 1/ 
r-egister short tempint; /t tuparary integer 1/ 
r-egister short i; /f looping variable 1/ 
1 iot flines; /1 pointer to line array 1/ 
[loint .. points; /1 pointer to point array 1/ 
shOrt *irstadrh, *hstadr J. f hstctll, Inullber, .pgnull, "pointer, adr I, aorh; 
f«short f) Ox04000000J = OxOO01; 1* turn on sha-dOIl! ram il 
*( (short *i OxCOOOOOBO) &= Ox7FFF; If enable cache *1 
hstctll = (short 'I) OxCOOOOOfO; 1* host control register 10111 byte fl 
hstadrh = (short I) OxCOOOOOEO; Ii host address register high lIIord fl 
hstadrl = (short f) OxCOOOOODO; 1* host address register 10111 1II0rd *1 
pOInter = (short *J OxFFFOOOOO; II pointer to beginning of shadow ram il 
lines = (line *) (QxFFFOOO20J; 1* starting point of line array fl 
pOInts = (polnt *) (OxFFF00020); Ii starting point of point arra.y *1 
Dgnum = (short ii (OxFFFOO020); Iflocation of nUlllber of polygon vertecesil 
numbH = (short II (OxFFFOOOI0); Ii number- of primitives to dralll *1 
adrl = (shor-t) (((long) pointer) ~ OxOOOOFFFF); 
adrh = (short) j{({JongJ pointer) » 16) It: OxOOOOFFFF) 
inlLvideo(ll; 1* configure for a NEe tiULTISYNC, non-interlaced, 60Hz il 
inlLgrafIx(); II initialize graphics environrttnt *1 
IniLscreen(); 1* initialize screen il 
iniLvuportCl; Ii initialize viellliog windolll *1 
seLoriginf320,240); 1* place origin at center of scr-een il 
*hstadrn = adr-tl; If reset stut data address *1 
thstadrl = adrll 
thstctll = 0; 1* turn off any command to the 340 II 
for (;; ) 
{ 

IIIhile (*hstctll ~= OxOOO3); 
*hstctll = Ox0030; 

II lllii t for request from the C30 *1 
If ackno~ledge request .1 

!IIhile (*hstctll != OXOO30); 
slii tcn (*pointer) 

IIlIIait for c30 to load data &: withdra~11 
i. decode comand *1 

{ 

case 123: 
tempint = IhunDer; 
for {i = 0; i ( hlllpint; ++i) 

( 

templn = t(lioes(i)); 
set_co 1 01'1 (co Jor[terlp 1 n-)col or] J; 
draw_line! templn-)xl, 

telllpln-)yl, 
templn-)x2, 
tellpln-)y2J; 

,< ffiAW LINES " 
1* get number II 
1* of 1 ines .1 

Ifset line pointfl 
II set color II 
II draw line II 

*l1stadrh = adrh; 
*hstadrl = adr!; 
fnstctll = 0; 

II reset start dah address II 

1* turn off any cOll'Aand to the 340 *1 

brea.k; 
Cise 1: 

telpint = fnullber; 
for (i=O; i < ttl'lpint; ++i) 

( 

,< DRAW POINTS <, 
/1 get number Offl 
/f points *1 

te&ppt = Ic<points[i]); /f savt point *1 
1* set colors tJ 
/1 dr-alii point */ 

set_co lorl (co 1 or[tuppt-)co lor] 1; 
dralll_point( tellppt-)x, 

t"ppt-)yl, 

fhshdrh = adr-h; 
*hsh.drl = adrl; 
Ihstctl1 = 0; 
break; 

If reset start data address II 

II turn off any command to the 340 *1 

case 3: ,< SET SCREEN BOCKGROLffiI *' 
nelll_screen(color(fnulllber),aypalet); II clear screen 
*hshdrh = 'ldrh; If reset start data address 
Ihstadrl = adrl; 
Ihstctll = 0; 
Dreak; 

II turn off any COMand to the 340 

<, 
*, 
*, 

cas~ 41 ,< SET BACKGROUND BLACK *' 
instadrh = adrh; 
Ihstadrl = adrl; 

If reset start data address " 
ihstdll = 0; 1* turn off any cOlfllDand to the 340 *1 
nelll_screenfO,mypalet); 1* clear screen 
break; " 

case 5: If MAW A FILLED POLYGON *1 
seLcolort(color[*nulllberl); 1* set polygon color *1 
tempint = 'IpghUIt; If get number of verteces *1 
fiILpolygon(tempint, 1* fill polygon il 

(short f) (pointer + 3), 
(short f) (pointer + 3 + (telllpint « 1))); 

fhstadrh = adrn; II reset start data addr~ss <, 
*hsta~rl = adrl; 
Instctll = 0; 
break; 

case 6: 
*hstadrh = adrh; 
fhstadrl = adrl; 
Ihstdll = 0; 
waiLscan(Q); 
waiLscan(479); 
break; 

default: 
lostadrh = adrh; 
'nstadrl = adrl; 
*hstdll = 0; 
break; 

If turn off any cOllllr!a.nd to. the 340 " 
,< WAIT FOR COIIPLETE SCREEN RESCAN ., 
1* res!t start data addr~ss ., 
II turn off any cO/lllind to the 340 *1 
I*lalait ti 11 scan reaches top of screenil 

Iflalait till scan reaches bottoll (line 479)11 

II reset start data address *, 
1* turn off any COllilind to. the 340 *' 

"fffffffHIHfHfffffffffffffffHftH*fHffHfHfftHflfHIHffH*ffHIHltH 



.j>. 

~ 

;:.. 
I:;:j 

~ 

~ 
~ 
~ 
~ 
'" 6 
ff 
~ 
[ 
~ 
.§ 
;:,-
~. 

~ 
'" ~ 
;:;: 

HHHHtfHtlHH****fHH*****fIHfHHfHfHHHHffHHHfHfffffHffHHf 

--)Ustil'lg 21: PC Object Loading Data Structure 

tYDedef struct 
( 

shOrt ptnum; 
shor·t dtnlJlfI; 
short lnliYllj 
short pgnUJII; 
float 5Xj 

float dx; 
float theta; 

} trans; 

tf number of points (locatioi'll 
1* nUll'lber of draliln dots 
If: number of 1 ines 
1* number of fi 11ed polygons 

floa.t sYi float sz; /f scale factors 
float dYi float dz; 1* offset factors 
float phi; float o~9a.i /f angles of T'otation 

*' f/ 

*' f/ *, 
./ 

*, 
fH**HltHIHnt**HHU***HlnH***ffHftHHffnH*tHIUfHHfUlfHHfH 

f1HfHfHfHfHfHfHHHHHHHHHHffHfHHHlffHlffHHHHfHHH**** 

--)Usting 22: PC COlIWunications I1a.cros 

Itdefine DATASHORT(a) It (unsigned short II (dual-port t a)) 
#define OOTAFLOAHa) IHfloat II (duaLport + a)) 
#defint! COItlAND fduaLport 
#define ACKNOWLEDGE i( (unsigned char II OxEOOOBOO1) 

HHlfIHfHfHH**HHHHHffH*HHHfIHlfHHHH***HHfHffHlfHfHHf 

.... *I************I**llffHI**HltIHIHHHII**lfHl**II**IIHIHHIHHfffnH 

--)llstll"lg 23: PC Global Val'iables 

chal' fdllaL?ort; 
tr-ans Illata; 

/1 dual part sr-arl connecting to (30 SWDSII 

***II*****lt"HIII**I****HHllfH*HfH****I**HffftffftflffHlfllffIIHffHf 

HHHfH**H**HfHHHHHfHfIIHHHfHHH"UtHIHHfHHHIHIHHIHlfl 

--)listing 24: PC Targl1ted Object Adjustllel\t Routine 

void adjusLobjectlsx, sy, sz, dx, dy, dz, theta, phi, omega) 
double sx, sY. sz, dx, dy, dz, theta, phi, oaegaj 
( 

IIlhi1e(ACK~lEDGE ~= OJ; 
DATAFLOATl21 = >x, DATlifLIlATl61 = sy, 
IlATlifLOATI141 = dx, DATIlfLOAH181 = dy, 
DATAFLOATl261 = thet., IlATAFLIlATI~1 = phi, 
COMMAND = 5, 
Ifhi le(ACKNOWlEDGE != 5); 
COMMAND = 0, 

DATlifLOATll01 = sz, 
IlATlifLOATl221 = dz, 
DATIifLOAT!341 = ,meg', 

'H*I**lfll-+HHHtH'H**HffH4fH*lfIHHHHHHfHfIIHHHHfffIHIHHHf 

**H*fIHIII*f*HUHfHH·H+HHIHfHffHHlfHHHfHHHflflfHtIHHHHf 

--)llsting 25: PC Routine to ~t Paralfleters for an Object Load 

''';(.jd seLparalfieters(sx, sy, SZ, dx, dy, dz, theta, phi, ortega) 
.:l(Euble sx, sy. sz, dx, dy, dz, theta, phi, o~ga; 

Ulhi le CACKNmjlEOOE ~= 0); /1 wai t for- C30 to be fr-ee *' data-)sx = sx; dah,-)sy = sy; data-)sz = sz; 
11a.ta-)dx = dx; d.t.-)dy = dy, data-)dz = dz; 
tlata-)theta = theta; data-)phi ': p~i; data-)oJlega = omega; 

flfflflllft***fHHHfHIltIHllfHHflffHfffHHIIHllltlfffffffflllfffIHHI 

fll**lfIHHHtHHHIfHfH+IIHIHfIIHIHlfHIIUttHfflHItItHffHlfHHI 

--)Usting 26: PC Routine to Tar-get Parent of Current Target Object 

void targeLparent() 
( 

while(ACKNOWlEDGE ~= 01; 
COMAND = 3, 
IIIhile(ACKOOWlEDGE ~= 3); 
COI1I1AND = 0, 

/1 blai t for C30 to be free 1/ 
/1 COMland to tal'get parent object 1/ 
/f wait for C30 to acknolllege request*1 
/'1 lIIi thdl'iUI request II 

1**11**f1HIIHlfflUflllnll**fIHllflHHHfIIHfflf***ttlttttt***HtH"**I* 



~ 

tl 
~ 
~ 
~ 
~ 
~ 
~ 

t::, 

I' 
t 
~ 
-§ 
~ 
~. 

~ 

~ 

~ 

U*HfHHfHf*****HHHfHHfffHHHHHfffHHHHffffffffHlfHfHffHfH 

--)Listing 27: PC Routine to Target a C~i1d of Current Target Object 

void h.rgeLchildlx) 
int X; 
( 

.hi!eIACKNOWlEDGE !- 0), 
DATASHORT(2) - x, 
COI1I'I\ND - 2, 
whilelACI<NtU.EDGE != 2); 

COI1I'I\ND - 0, 

/f lRit for C30 to be frte 1/ 
/f target 1st daughter object 1/ 
If cOlMMnd to target daughter object *1 
/f ~it for C30 to acknolll1ege request_I 
/f lIIithdralil request 1/ 

fffHffffHHHUHffH*Hf4HHtfHffUHof,HHHlffHffffHffHffHffHHfH 

HH4HffHUfffHiHffHffHHHffHHHflHffffffHffllfflfflffffffUI,UfH 

--)Usting 28: PC Routine to R.dralll Screen 

void driILobject() 
( 

IIIhileCACKtOlEDGE !== 01; 

catWID - 7, 
whil.i_EDGE !- 7), 
catWID - 0; 
tlhileCACKMJWlEDGE !== 01; 
00'I1ANIl ; 6, 
IIIIhi leCACKNlIUOOE != 6); 
OOWIND - 0, 

II wi t fo/' C30 to be fre-e 1/ 
/1 cOMand to cOIiPute screen co-ords 1/ 
/1 lRi t for C30 to acknolillege requestt/ 
/1 lIIithdrillll request 1/ 
/1 wait for C30 to be free 1/ 
/1 couand to draill screen 1/ 
/1 wait for C30 to icknollllitge requestl' 
/1 lliitMrillll request II 

IHfIHffHlfHfHHHIHfHHffHffHHHIHfffffflffHHHIHHlfffflffHfH 

ffH*ffl*ffffIHffffHHfHHHHHHf~HHHt,tHfftHHHfHffHffHtHHf 

--)listing 29: PC Routine to Load the Prillitives of a Wirefrue ,Cube 

void cubelcl 
long c; 
( 

data-}ptnull = 8; 
data.-)dtnul = 0; 
data-)lnnun = 12; 
data-)pgnum = 0; 

" nu.ber of points Ccube verteces) 1/ 
/1 no dots 1/ 
II helve lines (cube edges) 1/ 
/1 no fi1Jed polygons 

/* ---I COORDlNATE--- ---V CDollIllNATE-~ --1 CDollIllNATE-
1/ 
1/ 

DATAFLOATl4b) 1, 
DATAFLOATlSS) - I, 
DATIiFLOAT(70) - I, 
DATIIFLOATlS2) - I, 
DATIiFLOAT(94) - -I, 
DATIIFLOAHlOb) - -I, 
DATAFLOATU1S) - -1, 
DATAFlOATlI30) - -I, 
COMMND - I, 

DATAFLOATlSO) - 1, DATAFLOATl54) - 1, 
DATAFLOAT(62) - -1, DATAFlOAT(66) - 1, 
DATAFLDAT(74) - -1, DATAfLOATl7B) - -I, 
DATAFLOATlBb) - 1, DATAFLOAT(90) - -1, 
DATAFLOAT(98) - 1, DATAflOATIl02) - 1, 
DATAFLOATlll0) - -I, DATAFlOATl114) - I, 
DATAFLOATIl22) - -1, DATAFLOATIl26) - -1, 
DATAFLOATIl34) - 1, DATAfLOATIl3B) - -1, 

\lIhile (ACKNOWlEDGE != 1); 

COIWIND - 0, 

/1 cOllllind to load object II 
/1 lllait for C30 to acknowledge request.1 
It tlHhdralil request II 

.hll. IACKoo.tEDGE '- 127), 
COIWINll - 127, 

/1 !Hi t for C30 request lines II 
II cOlIHnd to IOid Jines II 

I< llt£ COLOR---
DATASHClRT(2) - c, 
DATASHORTlS) -" 
DATASHORTiI4) - " 
DATASlmTl20) - " 
DATASHORTI2b) - " 
DATASHORTl32) - " 
DATASHORT(38) - " 
DATASlIJRT(44) - " 
DATASlIJRTlSO) - " 
DATASl()RTl5Io) - c, 
DATASHORTlb2) - c, 
DATASHORTlbS) - " 
while IACKNClLEOOE _-0, 

START POINT----- ENDPOINT---- 1/ 
DATASl«JRT(4) - 0, DATASHORTlb) - 1, 
DATASHQRTIlO) - 1, DATASl()RTIl2) - 2, 
DATASHORTI W - 2, DATASHollTllB) - 3, 
DATASHORT(22) - 3; DATASl()RTl24) - 0, 
DATASHORTl2S) ; 4, DATASHORT(30) - 5, 
DATASHORT(34) - 5, DATASHORT(36) - 6, 
DATASHORT(40) - b, DATASHORT(42) - 7, 
DATASHORTl46) - 7, DATASl()RTl4S); 4, 
DATASHORTiS2) - 0, DATASHollT(54) - 4, 
DATASHORTlSS) - 1, OATASHORTlbO) - 5, 
DATASHORTlM) - 2, DATASHORT(66) - b, 
DATASHORT(70) - 3, DATASl()RTl72) - 7, 
!== 11; /1 lH.it for C30 to resulle loading II 

II shotl no requests 1/ 

HllfHfffffffffffffoHfffffflHfoHlfffftfHlHlffHltHHHIHffHffHflffflH 



~ 

~ 

tI 
~ 
~ 
'" a. 
~ 
~ 
'l' 

~ 
~ 
[ 
~ 
{l 
;:-
~. 

~ 

~ 

HHIIIIII ...... II.II.IIIIIIII ................. IIIIIIIIIIIIIHHHftIHHHfH 

->Lilli., 30' PC lIIi. Rolli .. 10, Dr ... 'Pl ... lvy 51,1 .. 01' Cub .. 

.ioll 
( 

rt9i1ttr ilt. XI 
"1_ptf't • lew I) 0xEOOO8OOO; 'I location 01 dlJll port StU ., 
ddt • (traM I) 0lE0008002; /. locltion of object dltl ./ 
CCIIWD·O; 
•• t-wutt ... '.OOOI •• OOOI •• OOOI.O.,O •• O •• O •• O •• O. I, 
c,,"(31, 
.. 1_,... ... 1 ... 1.4 •• 4 •• 4.0 •• 0 •• 8 •• 0 •• 0 •• 0. I, 
c,,"121, 
•• 1_1 .... 1.2 •• 2 •• 2.0 •• 5 •• 0 •• 0 •• 0.,0.1, 
c,,"l61, 
l ... gtt-ll .... oIO, 
Itt_pttllltt.rs(. 2 •• 2, .2,0. t -5. to. 10. ,0., 0.); 
M.W, 
targtl_Pll'tfttll, 
targtt-w.nW , 
Ht..parllltt.rst.3,.3, .3.0.,0,,6 .• 0.,0.,0. I; 
c.m.m, 
t ... gtt_Pll'tntl I, 
5.t-PU'IMt.ts( .3, .3 •• 3, O •• 6. 10., 0 •• 0 •• 0.); 
c,,"III, 
t,rgtt_par.nt( J; 
Stt-fll'lIltt.rs(.3,.3.o3,O. ,0. ,-6. ,0. ,0.,0.); 
c,,"151, 
targtl-lll .. ntl', 
Ht ... ,tl"Ultters(.3, .3,.3,0.,-6.,0.,0. ,0-.,0.); 
c,,"UI, 
t ... gtt-lll/'tnto, 
Iorlx • 0, x < 1000; ++xl 
( 

14ju.t..objllCt( 1.00000.I.OO92h,I.0092h. 0 •• 0 •• 0 •• 0., 0., .21, 
tarttt_chil dCll, 
adju.l_obj.ctll •• 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 2.0.1, 
ttrgtt-lllrtnW, 
t ... gtt-<M 1 d121, 
adj .. Lobjtetl1., 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 2.0.1, 
largtt-Wtft" I, 
t .. ,.t_chiI4l31, 
.djusLobjedU."" 1.,0.,0. ,0. ,0.,.2,0. I; 
tUltt_partBt(); 
hrgtt_cbildl4l, 
adjust.obj.cllI •• 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 2.0.1, 
t&rgtt-w.nt( I, 
targtt_childIOl, 
tdjusl-Objecl II •• 1 •• 1 •• 0 •• 0 •• O •• 0 •• 0 •• -. 41, 
t&rttt_chiidlOI, 
idjust_o~jtd( 1.,1. ,1 •• 0.,0.,0.,.4,0. ,0.); 
l"gtt_W, 
largtt_chil d Ill, 

.'juit ... objedU. ,1. ,1. ,0. 10. ,0'1.4,0.,0.), 
'vg.l-WtfttO, 
t .. ,et-pu'.W, 
.m .... objectll, 
.drUl...Scrttn( l; 

I,,'x 00, x < lillO, ++xl 
( 

adju,I_.bj.ct( I., I., I., O •• 0 •• O •• 0 ••• 005 •• 21, 
tar,.t_childlll, 
Idjust_obj.dll.,l •• 1.,0. ,0. ,0. ,0., .25,0.); 
tarttt-WtnW, 
targtt_cM 1 dl2l, 
&djust_o"jt.ctct~, 1.,1.,0. ,0.,0. ,0.,. 25,0.); 
targtt-w.nW, 
tarttt_cbild'3I, 
adjust_objtetll •• 1 •• 1 •• 0 •• 0 •• 0 •• 0 ••• 25.0. I, 
tlrltt_pattntt); 
larg.t_,bi Idl41, 
a.djust_o'i.ctCl.,l., J. ,0. ,0. ,0. ,0. ,.15,0.); 
t&rg.t..pltent (); 
tarttl .. dild'OI, 
Idjust_objtctU., 1., •. ,0.,0.,0.,0. ,0.,-.4); 
targtt_chi IdlOl, 
idjusLob-jtctet., 1.,1.,0. ,0.,0. ,.3,0. ,0. It 
larg.t-w.nW, 
I .. ttt_,hildlll, 
adjust_objectll •• 1 •• 1 •• 0. ,0 •• 0 ••• 3.0 •• 0.1, 
targtt-lllrtnW, 
targ.LporfOW, 
sctHft..objtctCI; 
drtILscreH()C 

11111111111111111.11111111.111 •••• 1.1.111111111 ... 111111111111111111111111111. 



Part VI. Tools 
13. The TMS320C30 Applications Board Functional Description 

(Tony Coomes and Nat Seshan) 



466 



The TMS320C30 
Applications Board 

Functional Description 

Tony Coomes-Software Development Systems 
Nat Seshan-Digital Signal Processor Products 

Semiconductor Group 
Texas Instruments 

467 



468 The TMS320C30 Applications Board Functional Description 



Introduction 

This report describes the architecture of the TMS320C30 Applications Board (APPB), 
which is part of the TMS320C30 XDSlOOO Development System. The XDS1000 is an in-circuit 
emulation tool for TMS320C30 hardware/software system development. The APPB was designed 
with two goals: to provide a basic platform for software development and to provide a variety of 
interfaces to the TMS32C30. There are four key interfaces used on the APPB: 

1) SRAM 
2) EPROM 
3) Dual-port SRAM 
4) DRAM 

The SRAM and EPROM interfaces on the APPB are quite simple; thus, this report focuses 
on the dual-port SRAM and the DRAM interfaces. Figure 1 shows a basic block diagram of the 
APPB. 

Figure 1. TMS320C30 Applications Board (APPB) Block Diagram 

8-BIT DATA BUS 8 XDS/SOO 32 
4Kx8 0 f-+- EMULATOR 10 2K x 32 1 DUAL·PORT PORT A EPROM - SRAM A 1-+-'-' 12 { 

DUAL·PORT 13 
32 32 

SRAM 32 
~ TMS320C3~ 

32 

10 16K x 321 ADDRESS 16K x 32 Of-+-
MAPPER SRAM A SRAM 

iii' AI--
0 .J 32 32 (t 0 I/O AI-+- 10 512K x 32 1 a: a: 
w I- EXPANSION A DRAM 
I- z BUS 

Drt-~ 0 
I- 0 

iii .J 
~ II) e z ::::l II) 
a: In ::::l II) W In ::::l I- Z 

In ~ 0 > 
en a: 

0 ~ 11. Z ::E 
~ ex: >< 11. 

CONTROL w 
REG. 

The APPB features include the following: 

• TMS320C30/host communications via a designated, relocatable 4K-byte dual-bus 
SRAM memory block. 

• 16K-words (64K-bytes) zero wait-state SRAM on the TMS320C30 primary bus (STRB). 

• 2K-words of one wait-state EPROM for interrupt and reset vectors on the TMS320C30 
primary bus. 

• 16K-words (64K-bytes) zero wait-state SRAM on the TMS320C30 expansion bus 
(MSTRB). The SRAM can be selected in either one of two 8K-word banks. 

The TMS320C30 Applications Board Functional Description 469 



• I/O expansion bus. 

• 512K-words of DRAM on the TMS320C30 primary bus. 

• Emulation port. 

• IBM PC, PC/XT, PC/AT support. 

The remainder of this document describes each interface in more detail. 

Host/TMS320C30 Interface 

The host/TMS320C30 interface is composed of two basic blocks, the dual-port SRAM and 
the control logic. The control logic consists of address decoding, a read/write control register, and 
a write-only mapping register. The control registers are mapped into the host I/O space as shown 
in Table 1. Figure 2 is a block diagram of the host interface. 

470 

en 
:::I 
ID 
I­en o 
::J: 
o 
Q. 

-

I--

Table 1. Host I/O Memory Locations for Control Registers 

Host I/O Memory Locations Contents 

0330 - 0337 Semaphores (LSB is the only valid bit) 

0338 Dual-port SRAM mapping register Q 

0339 Control register R 

Figure 2. Host Interface Block Diagram 

TMS320C30 EXPANSION BUS 

I 
DUAL-PORT SRAM 

DATA BUS (a-BITS) I a: 
w 

I I u. u. 
:::I 
ID DPRAM 
~ 

CONTROL 
NAP 

<t REGISTER 
REGISTER 0 

CONTROL 
a: BUS 
w 

1 
u. u. 
:::I 
ID 
oJ 
I- HOST/DPRAM CONTROL z 
~ a: , 
0 
0 
<{ 

TMS320C30 Applications Board Functional Description 



One of the major problems in developing an application for a PC is finding a block of memory 
that does not conflict with other memory-mapped cards. To ease this problem, the dual port SRAM 
interface has been designed to be relocatable on 4K-byte boundries throughout the lower 1M-bytes 
of host memory space. A software example of how to map the dual-port SRAM into this space is 
given later in this report. 

Writing a value to a hardware mapping register on the APPB relocates the dual-port SRAM. 
When a host memory access is generated, the value in the mapping register is compared to host ad­
dress bits A12-A19. If they match, a dual-port SRAM access is allowed. To ensure PC and PC/XT 
compatibility, the dual-port SRAM can be located only in the lower 1M-bytes of host memory. 

The APPB contains one general-purpose control register. This register is broken into two 
four-bit nibbles. The lower nibble can be read from and written to by the host and read by the 
TMS320C30. The upper nibble can be read from and written to by the TMS320C30 and read by 
the host. The lower nibble of the control register is cleared by any reset to or from the host Pc. The 
upper nibble of the control register is cleared by any reset to the TMS320C30. The names of the 
APPB control register bits and host/TMS320C30 access capabilities are given in Table 2. Table 3 
gives the control register bit definitions. 

Table 2. APPB General-Purpose Control Register Bits 

Bit Name Host Access C30 Access 

0 CINT Write/Read Read only 
1 XINTCLR Write/Read Read only 
2 DPSEL WritelRead Read only 
3 SWRESET Write/Read Read only 
4 XINT Read only WritelRead 
5 CINTCLR Read only Write/Read 
6 MBANK Read only WritelRead 
7 MSWAP Read only WritelRead 

TMS320C30 Applications Board Functional Description 471 



Table 3. APPB General·Purpose Control Register Bit Definitions 

Bit Name Function 

0 CINT Clears and disables interrupts from the TMS320C30 to the host 
(XINT). XINTCLR must be set to 1 before the TMS320C30 can gener-
ate an interrupt to the host. The host clears and reenables XINTby writ-
ing 0, then 1 to XINTCLR. On reset, XINTCLR is read as a O. 

1 XINTCLR Interrupt (INTO) to the TMS320C30. The host may interrupt the 
TMS320C30 by setting this bit to 1. The TMS320C30 clears and re-en-
abIes the CINT by writing 0, then 1 to CINTCLR. The host cannot gen-
erate an interrupt to the TMS320C30 while CINTCLR = O. On reset, 
CINT is read as a O. 

2 DPSEL Dual-port SRAM select. When this bit is set to 1, the dual-port SRAM 
is memory-mapped in the 4K-byte space of the host PC specified by 
the 8-bit value in register Q. When DPSEL = 0, the dual-port SRAM 
will not be mapped in the host PC's address space. On reset, DPSEL 
is read as a O. 

3 SWRESET TMS320C30 SWDS soft reset. SWRESET = 0 resets the TMS320C30 
SWDS. SWRESET must be set to 1 to take the SWDS out of the reset 
state. On.reset (power on), SWRESET is read as a O. 

4 XINT Interrupt to the host Pc. The TMS320C30 may interrupt the host by 
setting this bit to 1. The host clears and re-enables XINT by writing 0, 
then 1 to XINTCLR. The TMS320C30 cannot generate an interrupt to 
the host while XINTCLR = O. On reset, XINT is read as a O. 

5 CINTCLR Clears and disables interrupts from the the host to the TMS320C30 
(CINT). CINTCLR must be set to 1 before the host can generate an in-
terrupt to the TMS320C30. The TMS320C30 clears and re-enables 
CINT by writing 0, then 1 to CINTCLR. On reset, CINTCLR is read 
as a O. 

6 MBANK Memory bank select. The 16K-word bank of memory on the 
TMS320C30 parallel I/O Bus (SRAM space 1) is mapped as two over-
lapping banks of 8K-words each. MBANK = 0 selects the lower 8K-
words, MBANK = 1 selects the upper 8K-words. On reset, MBANK 
is read as a O. 

7 MSWAP Memory Swap. The MSWAP bit is used to swap the address map for 
EPROM and SRAM space O. MSWAP = 0 maps the EPROM at 
OOOOOOh-003FFFh and SRAM space 0 at FOOOOOh-F03FFFh. 
MSWAP = 1 maps the EPROM at FOOOOOh-F03FFFh and SRAM 
space 0 at OOOOOh-003FFFh. On reset, MSWAP is read as a O. 

The last portion of the control section contains the dual-port SRAM semaphore registers. 
Semaphore registers are used to coordinate communications between the host and the 
TMS320C30. Note that these semaphores do not provide hardware protection of the memory array. 
Instead, they provide a basic means (via software control) to ensure that data can be accessed from 
both sides of the dual-port SRAM without being corrupted. A software example that uses the sema­
phores is presented later in this report. 

472 TMS320C30 Applications Board Functional Description 



SRAM and EPROM Interfaces 

There are two SRAM interfaces on the APPB: one on the primary bus and one on the expan­
sion bus. Both are implemented with eight 16K-bit x 4~ 25-ns SRAMs that provide zero wait-state 
TMS320C30 operation at 32 MHz. The interfaces are quite simple and consist of a set of address 
buffers, termination resisters, and a PAL for address decode on the primary bus. Note that the 
TMS320C30 address lines are routed to various components scattered around the board and then 
to the primary bus expansion. To prevent line reflections on the SRAM addresses, buffers have been 
used to isolate the SRAM. 

There are two special features on the APPB that apply to the SRAM: 
1) You can swap the memory address ranges of the EPROM and the SRAM on the primary 

bus by setting or clearing the MSWAP bit previously described in Table 3. 
2) There are two 8K-word pages of memory on the expansion bus. 

By swapping the EPROM and SRAM, you can load in your own interrupt and reset vectors. 
Otherwise, you would have to remove the EPROMs and reprogram them with your own defined 
interrupt/reset vectors. Th(,! following code segment sets/clears the MSWAP bit. 

#define EPROM 
#define SHAM 

sel mswap(mem type) 
int-mem_type;-
{ 

char O'cntlreg 

o 
1 

/O' select EPROM O'/ 
/O' select SHAM O'/ 

(char O')Ox00805FF7j /O' pointer to control reg O'/ 

O'cntlreg 1= Ox80j /O' set MSWAP to 1 select SHAM */ if (mem_type) 
else O'cntlreg &= Ox7Fj /O' set MSWAP to 0 select EPROM O'/ 

There are 16K-words ofSRAM on the expansion bus; however, the TMS320C30 can directly 
access onl y 8K -words. Instead of wasting the unaddressable 8K-words, you can use a bank address­
ing bit (MBANK) in the APPB control register to select between the lower and upper 8K -word seg­
ments. 

The following code segment selects the current bank of memory. 

#define BANKO 
#define BANKl 

sel_mbank(bank) 
int bankj 
{ 

char O'cntlreg 

if (bank) 
else 

o 
1 

/O' select lower 8K O'/ 
/O' select upper8K */ 

(char O')Ox00805FF7j /O' pointer to control reg O'/ 

*cntlreg 1= Ox40; 
O'cntlreg &= OxBFj 

/O' select bank 1 O'/ 
/O' select bank 0 O'/ 

TheAPPB supports 2K-words of one wait-state EPROM on the primary bus for a boot loader 
and operating system support. As stated earlier, this EPROM is remappaple. 

DRAMlnterface 

The APPB provides a DRAM expansion module that is connected to the TMS320C30 prima­
ry bus. Historically, DRAM interfaces to DSP devices have not been popular because of interface 

TMS320C30 Applications Board Functional Description 473 



difficulty and limited processor address space. The TMS320C30 supplies solutions to both of those 
issues with its memory interface and 16M-words address space. Two areas of the TMS320C30 
memory interface are most useful for DRAM design: 

• Use of bank mode 

• The ability to do continous reads while in a bank without de asserting the STRB signal 

When you use these two features, it is quite simple to design a medium-speed interface to 
page-mode DRAMs. 

The TMS320C30 DRAM module consists offour banks of memory, each bank 256K x 32 
bits, that provide 1M-word (4M-bytes) of medium speed storage for the TMS320C30 (see 
Figure 3). The bank-switch function on the TMS320C30 provides fast page-mode access on back­
to-back read cycles within a DRAM page. All address and control lines to the memory array are 
buffered and series-terminated for good signal quality. The memory array uses CAS-before-RAS 
refresh to reduce component count. There is no onboard refresh timer; instead, SDACKO from the 
host PC provides a refresh request every 12-16 lAS. The D RAM access/cycle times are summarized 
in Table 4. 

474 

Figure 3. TMS320C30 Bank Addressing 

~ ::IE < 
::IE ~ IS 

::IE < 0 N 

ADDRESS 
< a: N C') 
a: 0 C') x 

ADDRESS MADDR 
o ~ x ~ 
~ x ~ IS 

ROWSEl MUXES 
~ IS ...!:!r-x 

~ 
CD N 
II) r-r-CD N 

CTl/ClKS DRAM II) r--N 

CONTROllER '-.---
CTl SEl 

CONTROL -----
SIGNAL 

RAS, CAS, WE 

SELECTION 

DATA 

In Table 4, these definitions are assumed: 

Access Time - Number of clocks from STRB active to data clocked into the TMS320C30. 
Cycle time - Number of clocks between two back-to-back cycles (includes DRAM 

RAS precharge on non-page-mode cycles). 

TMS320C30 Applications Board Functional Description 



Table 4. TMS320C30 DRAM Access and Cycle Times 

Mode Access Time (elks) Cyele Time (elks) 

Read 3 5 
Read (page mode) 3/2t 2 

Write 3 4 

t First page-mode access takes 3 clocks; the following accesses take 2 clocks each. 

The four banks of DRAM are mapped into the TMS320C30 memory space at the address lo­
cations shown in Table 5. 

Table 5. DRAM Bank Memory Locations in the TMS320C30 Memory Space 

DRAM Memory Bank No. TMS320C30 Memory Location 

a (RASO,CASO) 400000H-43FFFFH 
1 (RASl,CASl) 440000H-47FFFFH 
2 (RAS2,CAS2) 480000H-4BFFFFH 
3 (RAS3,CAS3) 4COOOOH-4FFFFFH 

Memory decode for the DRAM module is performed in two steps: 
I) The APPBmain card provides a memory select to decode the board range of 

400000H-4FFFFFh. 
2) Bank decode is then provided on the DRAM module through TMS320C30 address bits 

Al8 and A19. 

The DRAM controller consists of a pair of registered PALs, several SSI gates, and a delay 
line (used to time DRAM row/column address multiplexing). DRAM timing is generated from 
PAL UE5 (see schematics in Appendix C), while address decoding and special refresh control are' 
provided by PAL UD5. Both PALs are clocked off of a delayed HI clock. The DRAM controller 
looks for every opportunity to generate page-mode cycles to the DRAM. The TMS320C30 leaves 
STRB low for back-to-back reads; the DRAM controller looks for this condition and cycles CAS 
while holding RAS low (i.e., DRAM page-mode access). When STRB goes high, the DRAM con­
troller will take both RAS and CAS high to prepare for a new access. For proper operation, the 
TMS320C30 primary bus control register (refer to the Primary Bus Control Register subsection 
in the Third-Generation TMS320 User s Guide) must be set to operate off of the external ready sig­
nal and use a maximum bank size of 512 words (refer to the the Programmable Bank Switching 
subsection of the Third-Generation TMS320 User s Guide ). 

TMS320C30 Applications Board Functional Description 475 



Figures 4 through 6 show the timing for the various DRAM cycles. 

Figure 4. Page-Mode Read-Cycle Timing Diagram 

2 3 4 5 

H3 

H1 

I I , I 

ADD~ ;x : ;><= , 

--n , 
STRB 

1 
I 

RAS I '\ I 
, 

1 
I I 

ROWSEL 1 \1 
I I 

: :x 
, 

MADD RO~ : CO:L :X ~OL 
, 

I 

~ 
I 

CAS 
, \ I 1 r 1 I 

1 

\ ROY ~ 
, 

/ 
, 

/ 
1 , 

I , 

H««<: DATA I~~: l-
I I 

476 TMS320C30 Applications Board Functional Description 



Figure S. Single Write-Cycle Timing Diagram 

2 3 4 5 
1 1 1 1 

H3 

.1 

H1 

I I I 

ADD .=>: 
: :X 

STRB ---1-\ 
1 I I 1 

I 1 I 1 

I I I 
I I 1 

WRi\ 
1 1 1 I I 1 

1 1 1 

RAS I 1 \ I 1 I I 
I I I 
I I I 

REN 
I 

" 
I I I I 1 I 

I 
1 

I I 
I \1 II ROWSEL I 
I I I 

; ;X 
1 

: 
MADD RO~ : CO:L X 

I 
1 

I I 

CAS 1 1 
\1 I 1 

1 1 

I 1 
ROY 1 \ 1 I 

1 I 
1 

~ : 
1 

DATA ): 
I I 

TMS320C30 Applications Board Functional Description 477 



Figure 6. Single Read-Cycle Timing Diagram 

2 3 4 5 , 

H3 

H1 

I 

ADD~ X 
I I 

" 

STRB~ I / I \' I I 
I I I 
I I I 

RAS I :\ I '/ I 
I I I 
I I I 

ROWSEL 
I \1 Y I 
I I I 

MADD 

: RO~ 
: 
X CO:L :X : 

I 
CAS \ I / I 

I 

ROY '\ 
I 

/ 
I 

DATA I :< ): I 
I 

Expansion Interface 

The APPB 's two expansion connectors contain the signals from the TMS320C30 expansion 
port, serial ports, flag pins, etc. Each 50-pin connector (P3 and P4 of Figure 7) is composed of a 
dual row of25 pins located on O.l-inch centers. These expansion connectorsprovide easy connec­
tion to other hardware via standard 50-wire flat ribbon cable. Figure 6 shows the orientation of the 
connectors. See schematic sheet 7 of Appendix C for pinout details. 

478 TMS320C30 ApplicationsBoard Functional Description 



Figure 7. TMS320C30 Applications Board 

PIN 1 PIN 1 

cccccccccccccccccccccccc 
cccccccccccccccccccccccc 

i!:HS~otOOi!:&Sl'fl 

Dual-Port SRAM Interface 

ccccccccccccccccccccccc ccccccccccccccccccccccc 

All communications between the TMS320C30 and the host occur through the dual-port 
SRAM, which is 4K-bytes deep, with 8 dedicated semaphore registers. On the host side, the 
dual-port memory array is memory-mapped, while the semaphores are I/O-mapped. On the 
TMS320C30 side, the dual-port SRAM is located on the expansion bus with the memory array 
mapped from Ox00804000-0x00804FFF and the semaphores mapped from 
Ox00805FF8-Ox00805FFF. The host can directly access the dual-port SRAM without having to 
compensate for byte-wide access limitations. However, as the TMS320C30 can do only 32-bit ac­
cesses, the upper 24 bits of a data word are undefined. The TMS320C30 must therefore format data 
written to and read from the dual-port SRAM. A software example is given later in this report. 

While dual-port SRAMs provide an excellent means for multiprocessor communications, a 
certain amount of software overhead is required to coordinate data flow. As might be expected, 
there are numerous methods for coordinating data flow. This application report presents a set of 
primitives that have been developed to form a basic communications protocol. The primitives are 
written entirely in C and have been tested on the XDSlOOO with the simple test routine provided. 
Remember that there are numerous ways to do a communications protocol. The method shown in 
this report is not the best for all applications; it is simply a method that makes good use of the capa­
bility of the dual-port SRAM. 

The following are basic ideas of the communications protocol developed for this applications 
report. 

1) The dual-port memory is broken into eight equal segments. The first segment is used 
only for control structures and command passing. The remaining seven segments are 
used entirely for data passing. Segment size is set to 512 bytes. The number and size of 
segments can be changed at compile time if desired. 

TMS320C30 Applications Board Functional Description 479 



2) Each of the seven data segments is totally independent from any other data segment. 
However, only one processor can own a particular segment at any given time. The 
TMS320C30 and host can simultanously access the dual-port SRAM as long as both are 
not trying to access the same segment. 

3) The host is the master; the TMS320C30 is the slave. The TMS320C20 polls the 
dual-port control segment to determine if the host has deposited a command. If a com­
mand is present, the TMS320C30 executes the command and then returns to polling. 

4) Only the first semaphore register is used in the dual-port. Each processor uses this sema­
phore to gain access to the control segment. Access to the seven data memory segments 
are coordinated via the control structures, not the semaphores. 

5) There are seven control structures in the control segment, one for each data segment. 
Each control structure consists of 22 bytes and are defined as follows: 

Byte Name Definition 

0 pfJag Buffer present (i.e., being used) 
1 command Command to execute 
2 buf_stat Status of the data buffer 
3 nc Reserved 
4-7 count Number of 32-bit words to transfer 
8-11 addr TMS320C30 to read/write data 
12...,21 message Ten bytes reserved for message passing 

Appendix A contains routines for the communication primitives used by the host and the 
TMS320C30. Appendix Al contains routines for the PC side, Appendix A2 rQutines for the 
TMS320C30 side. Note that the routines on both sides have the same names and perform essentially 
the same function. Appendix A3 contains a memory map and description (TMS320C30 view). Af­
ter the code has be~n compiled, use the following sequence to execute the test program: 

480 

1) Reset the XDS/I000: 

xreset [RETURN] 
c30reset [RETURN] 

2) Get into the emulator and load the TMS320C30 dual-port code. 

emu30 
xr 
10 
xd 
[esc) 
q 'yes' 

[RETURN) 

'file name' 

load emulator 
reset the c30 
load the object file 
execute disconnect 
escape to main menu 
quit emulator 

At this point, your dual bus code should be executing and waiting for a host input. 

3) Execute host dual-port code. 

'file name' 

The host code will then print the numbers 0 through 25 to the screen. 

TMS320C30 Applications Board Functional Description 



Conclusion 

This report has provided basic functional details of the TMS320C30 APPB. Because of their 
complexity, the DRAM and dual-port SRAM interfaces have been discussed. The features of the 
TMS320C30 allow it to encompass a wide range of interfaces. The TMS320C30 bank-switch mode 
and continuous strobe signal on back-to-back read cycles overcome traditional DSPIDRAM prob­
lems of interface difficulty and limited processor address space. A set of communications primi­
tives routines to use with dual-port SRAM have been provided in Appendix A. These routines are 
written in C for ease of understanding and modification to meet individual needs. 

TMS320C30 Applications Board Functional Description 481 



Al 
A2 
A3 

482 

Appendix A 

TMS320C30 Application Board Routines, Memory Map and Description 

TMS320C30 Application Board Routines - PC Side 
TMS320C30 Application Board Routines - TMS320C30 Side 
Memory Map and Description (TMS320C30 View) 

TMS320C30 Applications Board Functional Description 



~ 
~ 

~ 
~ 
tv 
C a c 
.~ 
~ 
8" 
~" 

~ 
~ 

~ 
;:: 

t 
~ 
q 

'1:;" 
§. 

~ 
00 
IN 

I*Htit**fHHHH*IIH**HH****IH+t*****Hflf****ff***HffHlfHffHfffffH/ 

/. ./ 
i' APRENDIX Al '/ 
/. ./ 
/. TMS320C30 APPLICATION BOARIi ROUTINES - PC SIDE */ 
/, ./ 
/. TeXiS InstrUlwnts Jr.c. ./ 
/. 10125/89 '/ 
/. ./ 
/. Functions: ./ 
/, */ 
/. int APPBstset{) Reset APPB t/ 
/, int APPB_dpinitO Irltialize {fPB. ./ 
/. int APPB_getsell( i Cifot access to. selli.phore tnt N '/ 
i' int APPB_relsem() Reo 1 ease access to. semaphore bit N ./ 
/. tnt APPB_9.tctlblkll Get i control block in OPRAH '/ 
If lnt APPB_relctlblkO Release control block in DPRAM '/ 
il int APPB_9I'!tmtlllblk() Get a block of memory froll'! DPRAM ./ 
/. lnt APPB_putlDflllb]kO Put a block -of memory to DPRAM ./ 
/. ./ 
i' All codl'! !lias cOlpi 11'!d with MICrosoft C coltpi In vus.ion 5.1 using ttll'! II 

/. Jarill'! model. If small modI'! I is uSl'!d, thl'!n pointers used to access the 1/ 

/, dual port SRAM ~ould have to be declared and used as /farJ pointers ./ 
/1 (I.e. 32-bit pOInter). Under the large Itodel, all pointers. ar-e </ 
/. dehulted to 32 bits. ./ 
if ./ 
IlHH***fHIUffHllu*****UHIUUIHflflflUHHllffflfffHHfff-fHfIHfH/ 

• Include (stdio.h) 

1**lfHHHlf**HfHlffHfIIHHIUH****HIUffUUUlffIHHHfHfffHff**11 

if t/ 
il Constan't definitions for the TI'1S32OC'JO Applica.tions Board. II 

if t/ 
l*fltfHfHlf********IHIHf***HfffHlfHfffUflUIUHfHIHIHIIIHf+ffHII 

#define (Iutport Qutp 
#ddine irloort inp 
#deflne SEM_BASE OxQ331) 
idefine MAPJlEG 0.0338 
'define CTL..REG ~x0339 

/' 
.define CINT OxOl 
ide fine XINTCLR_ 0.02 
idefinl1' DPSEL Ox04 
#dl1'firlt' SWRESET_ OxOB 
#define XlNT 0,10 
#define CINTCtR_ 0x20 
#defHlf MBANK Ox40 
""define MSWAP OXSO 

idefine DPRAILCTL 0X(900000Q 
'define DPRAI1..SEG OxC9 
Iddine DPRAlLtEMBASE 0xC9000200 

'define DPRAILSIZE 0:<1000 
.define DPRAIUILJ(S 7 
'define DPRAILBLJCSIZE 512 
.define NIJILSEIIS S 
'define MAX-SEll_TIllE 10000 

tdefine BUF_EMPTY 
Itdefine BUFJ'ULL 

#define .NOP 0<00 
.define HOSTJfEJ'LWR Ox80 
'define HOSU1EJ1-RD Ox81 

typedef unSigned ChiI' OCHAR; 
typede-f unSigned short UINT; 
typedef unsigned Io.ng LlLONG; 

typedef strutt 

UCHAR pflug: 
UCHAR cOMland; 
UCHAR buf_stat; 
IXHAR nc; 
ULQNG count; 
ULONO addr; 
UCHAR Itessage[101; 

lDPCNTL; 

> 
't:I 
"0 
~ 
:= 
Q. 
~. 

> 
I-" 

~ s: 
r:n w 
N 
o 
("j 
w 
o 

~ 
'E. ;:; . 
~ 
0; 
o 
:= 
CIJ 

eo 
o 
~ 
"1 
Q. 

~ 
o := ..... S· 
~ 
CIJ 

~ 
("j 
r:n s: 
~ 



i 

~ 
~ 
~ 
tv 
C a c 

~ 
'15 

r 
~ a. 
~ ;:: 

l 
~ 
q 

"6. 

g' 

/*t.HlffHftHt***tHHfHUfHHHHHffIUHHfIUH .... tlHHIIHHHtfHH/ 

n ~ 

/I Test prQ~riLli. */ 

/* */ 
/* SeQuence: */ 

/* */ 
/* 11 ~r1te a bloCk of lIuor)" to ttte dual port. */ 

/* 2) Realj back the block of data froll the dual port. */ 

/* */ 
/fH*'*fHHH:lHfffH"*.tHHH**H**fHHtHHf"tfH"*lfHfttHffHtHH/ 

IrIilO( ) 

GINT sermuli(DPRAILBtJ;Sl; 
int i; 
ULONG 1If!lIIarrayC25J,/fle1l2array[251; 

APPB_dpiot(}; 

hr(i:;Q:l<25;iH) {Hmarray[U = (lILONGli; melJl2uray{tl = OOL;} 

i f(APPB_PlJt~lIIbl k(25UL,JltlDir-ray ,Ox008099(0)) 
prir,tfI H f;i11ed "emory lIIr-ite\n"l; 

i f(APPB_getllfmb 1 k(251Jl, OxOQ809900,lieIll2ilrray) i 
prIntf("hiled melflory rnd\n"); 

for-( i=O; iG5; i++) pril'ltf( "value read l.d\n" ,lIIeI2arrayCi]); 

f!).atWh 

I '*ftHltHIHftH'.+HIH*f*IHHHH:lHHHHHf4tfIH"fHfftHtfHHIHH I 
n H 
/t IV'P[Lresettl,PC side I, 
/I H 
If Reset APPB. 
/. 
If Sequence: 

'* If 1) Cleu control r·tgister. 
If 2) Set Sltrf.£SEL to 1. 

i' 

./ 

./ 
-*/ 
./ 
./ 
./ 
./ 

/HfH""*flffffHfHfHHfHHHf**fffHf**HHHfH**ff+********ffHHHUf*/ 

lnt APPB_restt() 
{ 

outport(CTLREG.OJ; 
outport (ClL.REG. SWRESET _i; 
return(O); 

/HH*****UfHf*HHf**fHfHffUHfff****UHUf******fHfH****UH****f**I 
/I H 

'* APPB_dpintO, PC side ./ 
/. */ 
i* Sequence: ./ 

'* */ 
/* 11 Set I.'f'RAH selNphores to 1 (freel, */ 
/* 21 Set DPRArI Jlappiog register. */ 
/. 31 Set ~ global enable bit to 1. */ 
/. */ 
JHHHlffHfHfl**HHIHfHfHIHHflfffHflf******HHHHf**UfIHffH+H/ 

iot APF'B_dpintt) 
( 

iot 1: 
UINT uw,ddr = saLBASE; 
LOiAR fdDrar. = (UCHAR fJDPRA/'LCTL; 

fori 1=0; i<8; i++J ilutportlseliiddrH ,11; 
outporWIAI' JlEG.DPRIl1..SEGI, 
outportICTLREG,DPSEL : SWRESELI, 
returrdOl; 



;;a 
~ 

~ 
~ 
N 
C a c 

~ 
~ 

2 
~" 

~ ;::, 

it 
~ 
;:: 
~ 

[ 
~ 
q 
'B" 
§ . 

.j>. 
00 
VI 

IHHHI.U**UHUtU**********U**************HffHtHHtf****UHUU****1 
H H 
1* APPILgetstlO, PC Slde 
/. 

/f Attellpts tv gain access of sela.phore /StlrlnUI/ , 
H Return a 0 if successful, a -1 if fiileQ. 
/. 
/f Sequence 
/. 

./ 
+i 
./ 
./ 
./ 
+i 
./ 

/t 1) Write 0 to SfDipnore. 1/ 
/t 2) Decrellent hloute, check for tiae<Jut = 0, or semaphore = O. *' 
II 3) Return pass/h.il. 1/ 
H H 
/HfHfHffH**H***HU*******Htftftitt-Htt+tHftHHHfH**fU********t****1 

int APPB_getsem(seltnulII) 
UINT selrloufI; 

UINT semaddr· = SEl'LBASE +- selllflum; 
UINT tir.eout = I1ALSEM_TII1E: 

outport{snaddr, OJ; 
t1hile{ --tilleout lo:& (wport(sewddrl & 1)); 

1ft hlfn?illJt 1 r-etur'oW); 
else returrd-l}; 

IHfHHttH*******UHUHttHHHfHffHffHHH****tffHHHU*****U*U**/ 

H H 
H APPB-rel sel() , PC side ./ 
/. ./ 
/. Relust selrlilPhore at "selnul/ • ./ 
/. Return a 0 if successful, a -1 if filled: +i 
/. */ 
/. Sequence ./ 
/. */ 
H I) Wrt te 1 to semaphore. ./ 
1* 2) Decreaent tilteout, check for tUleout = 0, (It seuphore = 1. */ 
II 3) Return pass/fai 1. ./ 
/. *, 
IffHfHUHfHHffHfHfffHfHU ... fHffHIH+tHHfHfHHHilfHtffH**H'1 

int APPB_re Ise.( sunu) 
UINT sellilnu .. ; 

UINT suaddr = SEtLBASE + sellnur'i 
UINT till'leout = MAX-SaLTIME; 

outoort(selMddr ,11; 
while( --til1eout U !(iilport(Seiliddr) &: 1)); 

ifltir.eoutl retur-:tIOI; 
else returrl(-ll; 



~ 
00 
C1'I 

~ 
'" 
~ 
~ 
N 
C a c 
.~ 

:g 
[ 
~" 

~ a 
~ 
;::: 
Q 

[ 
~ 
q 
'lj" 

§' 

j*********llfHlfHUU***ftH**H*f**f**fffffHHIIfH4HHfUHfHf***nUf/ 

H U 
1* APPB-getctlblldl, PC iide *1 

'* /f Find unused block of lIIillory in the dual port. 
1* Return i 0 if successful, i. -1 if failed. 

'* /'t Sequence 

'* If 1) Starch control structures for- fr-ee block of lIlenory. 
if 2) If bhcK free, set SellnulI! to block index, retur-n O. 
/4 3) Else, return -1 (failed to hnd block), ,. 

., 
*1 ., 
*' t/ 
*1 

*' *' ., . , 
!H**f***U**********HHH-U****-**H****U**U*****f*HfHlfflftHt**tnHltf! 

lnt APPB_getctlblk(sellloul) 
UINT tselllrlUIIl; 

iot i; 
DPCNTL *,octl = IIJPCNTL *)IJPRAM_CTL; 

lfU\PPB_getsell(Q}) r-eturrd-U; 

tor( 1=0; i<DPRAt'LBLKS; 1 tt) 

if( ~dpct\[i1.pflag) 

dpctl[l].~'flag = 1; 
dpdl[il.collDliod = NOP; 
oPctHl),tluLstat = BUF_Et1PTY: 
fsemnum = 1: 
it(APPB_reisem(O)l r-ehrn(-U: 
else r-eturn<Ol: 

APPB_l'tdseIl'lW): f"eturn(-ll; 

It*f*HHHt**HHHtHttfHHfUfffHfftfffftffHffHHttff**flftHHtt***HI 
H U 
If U'PB_f"elctlblk.(). PC side *1 

'* *, 
'* Reiea.se block of memory in the dual por-t. *I 

'* Return a 0 if successflJI, a -1 If fa.ileo. *' ,. *, 
'* Sequence *' " 

., 
,* t) Null out the contr-o\ structure. ., ,. 2) Return. ., , . ., 
It**HftHttfHffHHu"***ltltfHtHHHtfHHt*tftfft**t**tU:**HHHtHtH:IHI 

Int APPB_reldlblk(selilnUIII) 
UINT sell'lf\um; 

If\t 11 
DI'CNTL "pctl = IIJPCNTL ,)OPRAM_CTL; 

iHAPPB_getsertltO)) r"eturn( -1); 

dpct1[semnuml.pfla.g = 0; 
dpctl [sell\nurll~ cOlMia.nd = NOP; 
dpctl[sf:lflrtumJ.buf_stat::: BlIF_EKPT'r'; 
if(APPB_relsem(O») return{-1): 
~\se r-etur-n(O); 



;;'l 
'" 
i! 
~ 
~ 
Q 
c 
~ 
'15 

r 
~ a. 
~ ;:s 

I 
w 
~. g. 

oj>. 
00 
-...J 

i******HUHUIHtlfHI.HfHHUHUfIH*tHfffH********UffHHH·HHff**! 

H H 
/f APPB_putlleflblkO, PC side 1/ 
I' ., ,. Write blQck of Mlllury h the dual port. "' ,. Return a 0 if successful, a. -1 if failed. ., 
,* ., 
,* Sequince ., ,. "' i* 1) Find free block of dUi.l port to ~rite mellory. ., ,. 21 Write the Dlellory. *, 
" 3) Wl'i te Ittlory puaaeters to (ootro 1 b I oek. *, 
it ., 
/HfH*HHHH-fHf****HfH**HffH*f:HHHHHHHHHH*****HHfHH*HH/ 

int APPB_putllellblk(cnt,src,dst) 
ULONG cot: 
ULClH3 *src; 
ULONG dst, 

[OPCNTl Id,ctl = I!i'CNTL tlDPRAlLCTl, 
lILONG fopram; 
UI~T 'pblk, 
lot i; 

ifiAPPB_9ttctlb 1 k(Mpblld) return(-l I; 

dpra. = IUlONi)'IIDPR/iU'EIiBASE + Idpblk • fl'RAII-IlLLSIZEII, 

forI i=O: i(cot; IH} 

fdprifl+t = *5r(++; 

IHAPPB_gehelft(OJ) r'eturn{-H; 

dpctHdpblkLcolMtand = HOSTJlB'LWR; 
dpctHdpblkl.buLstat = BUF -FULL, 
(iDctHdpbIU.colJot = cot; 
dDctHdpblkJ.ador· = dst: 

if(APPB_r~lsem(O)) returnl-ll; 

/HffHHHffff:lfHffffffHUfHHfHHUffHtHUtHtHtff:lfffftffffftttfltt! 

" H ,. APPB.g,tleflblktl, PC side I' 

'* ./ 

'* Read block of HaGry to the dual port. *' '* Return a 0 if successful, a. -1 1f h.i led. ., 
'* *, ,. Sequence *' 
,* ., ,. 1) Find free block of dual port for b'!lOry. " ,. 21 Urite /1Iemory paruehrs to control block. *, 
'* 3) Wait for Tl1S32OC30 to put requested .eDory into the dua.l port. *' 
'* 41 Read da.ta from the dual port. *, 
;* 51 Release block of dual port mel\ory. ., 
/1 *, 
!ttttttUU*HfftffHHUtftt***ffffUHff**tUUttUfftfffUUUHHtUfHlf! 

int APPB.getr.elb lk(cnt, src, dst) 
ll.ONG cnt; 
ULor.xJ srq 
ULONG fdst; 

DPCNTL *dpetl = IDPCNTL 'IDPRAIUTL, 
llONG *op'''' 
UINT opblk, 
int 1; 
UINT ti.'QUt = IlALSEll..TIIIE, 

i fIAPPB_y"etlbl kl&dpbl kll "tu"I-II, 

,,, .. = IUlONGlIIDPRAIL(o(IIBASE + Idpbl, • DPRAlLBLJCSIZEII, 

if(APPB.getstll(O)) returnl-lI; 

opctJ[dpblkJ.co_no = HDSUElLRD, 
dpctHdpblkl.buLstat = Blf-B1F'TY; 
dpctHdpblkLcount = cnt; 
dpctl[dpblkl.a.ddr = sre; 

wlllle( -·timeout ) 
( 

iFl!APPB.getse/lW) U (dpctHdpblkl.buLstat = BUF.FULl) I break; 
if(APPB_relsellt(O» return(;"ll; 

ifIAPPB.relse./O) :: !tilleoutl return{-ll; 

fore i=O; i(cnt; 1 ++) 
fdst++ = fdpraat+; 

ifIAPPB-r,1 etl bl k Idpbl kll "lu,"I-II, 



!UftHUHUffUfUUUffHtHfHffHffffffffffHfIfHfffffHffffffffHHfff! Idtfint ra 0x00 
~ 'I tI IeItfine IflST..IEIUIl 0x80 00 
00 ,. III'PENDIX A2 I' Idtfint fIlST..I'IElI..RD Ox81 ,. ., ,. T/IS32OC3O III'PLICATIOO BOARD ROUTINES - TIIS32OC3O SID€ ., typtdtf unsigntd CMr lOiAR, 

/. ./ typtdtf unsigntd short UINT; 

'I TtXiS Instrulltnts Inc. 1/ typt<ltf unsigned long ll1Nl, 

'I 10'20'89 ., 
'I I' ty .. dtf struet > 'I FUflchonsl I' ( "0 ,. -, !.CHAR pflog, "0 
/1 Int III'PLdpinito Intiilizt APPB. ./ lCltM cOlRnd; tl) 
/. int APPB_getStl() Get iCc.tSS to stHPhore bit N 1/ lCHAR buf_sh.t; = /. int APPBJ'elstllO RelttSt iCCesS to stlliphort bit N ./ lCltM nc; Q., 
/. Iftl III'PB_9tlctlblkll Get i control block in tfRAl1 ./ I.CHAR count[41; .... 
/. int APPB_rtlctlblkl) ReltHt control block in CfRAK ./ UCfWl lddr[4J, ~ 
/. .. I III'PL9tt ... blkll Get I block of lWIIory fro. mwt ./ lCltM aesngt(101; 

~~ /. Inl III'PLput ... blkO Put I block 'Of at.'Ory t'O f.fRM tI l~TL, ,. lnt Af'PILgetlongO Rtid I long lnt fro. tht rfRAI1 ./ = . 
;;i 

/1. int tfPfLgetcolIMndl) Rud l cOIIIlnd ind pirueters frOi ~ 1/ Iyp.d.f struct .... 
/. ./ ( S· J-3 

'" /. All coGe WiS coapiltd wlth TI'tS320C30 C co.plltr version 2.1, IJsing the II lOiAR om, 
tl) ~ 

~ 
/. SKlI lodel. ./ I.CHAR ICld; 
/. ./ !LOll) .ent; ~~ ~ I fflffflfffulffluUllullIMIHIHHl-fffUffffllHfffffffffffHflffflHffffl !LOll) Nddr; 

N llf'ARI1S, 
~~ C /HfHHflfnHMfffHfHHHUHl-ffHHfffHHHlffffHfIHHlffHIHfffffff! 

Q if ./ CJ)('j 
C /. Constant definitions for t"e Tt1S320C30 Applicltions Board. ./ ~fM 

~ 
/. ./ N= 
/ffffflfUftfftHfffffiffffHfHfHHHHffHfHHHfffffHfHfffHfffffffHII => -.;:; 'dtfirrt SClLBASE 0x00805FF8 0"0 :::: Idtfine CTUlEG OxOO805fF7 2 ="0 

5- CINT -itdehne 0.01 
CJ) _. 

~. '4ffint UNTCI.R.. 0.02 .... r') 

Id-ahnt DPSEL 0x04 Q.,I» 

r 'dehnt SIillESEL OXOO tD ::. 
.dthnt UNT Oxl0 Q 

a. .dthne . CINTCI.R.. 0><20 = r:Il 

~ 
'dtfine - Ox4O 

~ .<ltho. I1SWIV' 0x80 
;: Q 
tl. I<Itfint lfRAILCTl 0x00804000 I» 

~o 'dtfine: lIPAAUIEltlIASE 0x00804200 
,., 

Idtfiat lPRAII..SlZE Oxlooo Q., - '4tfint lfRAIUll(S 7 

tl Idtfint lI'RAIl.Bl.K.SlZE 512 

~ 'd.fint IUUaIS 8 
~ Id+hrrt MX_SCIL Tll£ 10000 

~o 
'defin. 8UF..EIf'TY .. gO Idtfi .. 8UF -FI.lL 



']he TMS32OC30Applications Board Functional Description 



8 

~ 
~ 
~ 
N 
<::> a 
<::> 

~ 
'15 

8 
~. 

~ 
~ 
~ 
;:: 

t 
~ 
!:i 
"i:j' 

g' 

/IHHIIHfIHIIHHHHHHIfHHIHI*"lunfHHHHHHlIHHIHHltHfH/ 

/. ./ 
/. APPB_IetsHO. 1l1S320C30 side ./ 
/. ./ 
/. AttelPh to gain access of seNphore ~sellnua~ ./ 
/. . / 
/. Sequence ./ 
/. ./ 
/. l' Wri te 0 to seaaphore. ./ 
/. 2) Wa.it till read a O. ./ 
ItfHffHHIHfI"*IHfftHIHfffftHfffffffHfHfHfnHIHHffHfffHfHfH I 

int APPB_gehtll(seenuI) 
UINT seanu.; 

l.ICWIR fseNddr = (UCHAR fHsaLBASE + semnu.J; 

*seli.ddr = 0; whilt(lsefliddr " 1l.ILJ; return(O); 

flfftHffHlfffffHfffHHffHffHfffflllHffflHlflffHHflflflHfffHHHf/ 

It t! 
/. ~B_rtlse.(), TI1S32OC3O side ./ 
/. ./ 
/ . Releue stlapnore olt ~se.nuI' ./ 
/. ./ 
/. Sequence ./ 
/. ./ 
II - 1) Writt 1 to se.a.phore. ./ 
/. 21 Ilia till rud 1. t! 
IfHfHfHflHfllfffffffHlfHfHHffHfffHffffffffflfffffflHHtfttfffflfflI 

lnt APPB_re 1 sn( selinulJ 
UINT se.nUl; 

UCHAR fsefliddr = (OCHAR 1)(SEl'LBASE + sunuI); 

fseHddr = 1; IIIhile(~tfselliddr ~ lll)); returntO); 



~ 
<I> 

~ 
~ 
N 
C 

Q 
c 
~ 
"'5 

2 
~. 

~ 
it 
~ ;:: 
~ 

t 
~ 
<":> 

~. 

g' 

t .... 

/,*HIHHfHfIIHf**H'HHfffftffttfHfHtUUHHHHHffIfUf'-IHf*******1 

H H 
/* APPB_getctlblk( 1, TI1S320C30 sIde. */ 

'* 1/ 

/* Find unused bl(tc~ (of memory in the dual p~r-to */ 
/t Return a 0 if successful, a -1 if fai led. 1/ 

/t */ 
/* Sequence 1/ 

/. *' /. Ii Sear-ct. control structures for free block of melllor-y. t/ 

/. 21 If block free, set sEllnum to blOCK index, r-eturn O. */ 
/* 31 El Sf, return -1 (failed to find block). ./ 

/1 */ 
/HHfHf,**********f********************tf*****tI-Hfff***UfffffHfffH*HH/ 
iot APPB_getctlblHselllflUII) 

UINT *sellnum: 

iot i; 
Dl'CNTL *d"tl = IDI'CNTL *IDPRIlILCTL; 

APPB_getsem(OJ; 

for (i =0; i <DPRAtLBLKS; i H) 

ifl~ldpctlm.pfl.g ~ IULII 

dPctHiJ.pHag = 1; 
dpct\[il.colllllli.nd = NCfi; 
dpctHU.buLstat = BLF_OIPTY; 
fselll~ulI = 1: 

APPB_ri!!sflllO); returntO); 

~PPB_relselrl(OJ; returll(-U; 

1***HfHHfftff:tlfffHffHHHfHHHfHfHHfHffflffflfffffffHfHfffff**11 

H H 
if ~PBselctlblk(), TMS320C30 side. *1 
H H 
If Release block of mellory in the duat'port. 
II Return a 0 if successful, a -1 if failed. 
1* 
II Sequence 
/. 
II 1) Null out the control structure. 
II 2) Return. 
If 

*/ ., 
*/ 
*i 
./ 
*/ 
*/ 
*/ 

/HH******H*lltfHHHIIHHIHI*IH*I*HHflffff**H**I**lfftffHitfffftlft/ 

int APPB_relctlblk(selnulII) 
UINT sellnult; 

iot i; 
Dl'CNTL *dpctl = IDPCNTL 'IDPRAII..CTL; 

APPB_getseaW) ; 
dflctHsflllnulrI1.pfla9 = 0; 
dpctl[snnulJIl.colllland = NOP; 
dpctHselllnulIIJ.buLstat = BUF.B1PTY; 
APPB_relsem(O); returnlOl; 



~ 

;;l 
'" 
~ 
~ 
tv 
C 
Q 
c 
~ 
'1:l 

r 
'" 
~ 
it 
~ 

t 
f 
'€i' 
g' 

IHnUHfffHftHfffHffUfHfftHfffHHffffffHfffffHfHflfHHHHHffH! 

~ ~ 

't ~B_putllt.Olldl. TttS32OC3O side. t' 
~ I' 
't Move block of data to d\li.l port. t' 
't t, 
't StQutnce " 
't t' 
'I 11 tIove dati h the dual port. t' 
'I 2) Set dual port buffer status to BUFJULl. t/ 
't t' 
jff"**HHf-ffHHtHfoffH-IIHHHHHtHffHffHff* .. ffHffffHHHHHfHfti 

lnt APPB_putaeltb lklcnt, stC,dpb 1 k) 
UL~ cnt; 
LlL(W ISl'e; 

lilNT opblk; 

D?CNTL tdpctl • (DPCNTL tIDPAAtLCTL; 
L(;HAR tdpru; 
lII.OJ(i temp; 
lnt i.H 

doru = WCHAR t)(DPRP/UEI1BASE'" (dpblk f DPRAILBUCSllEll; 

fori i=O; i<cnt; i++) 

{ telaP = fsrc++; forij=O;j<32;j+=8) *dPril++ = hip» J; } 

APPB_9@tsellll!ol: 
doctl[d,blkJ.buL,t.t • BUfJULL; 
APPB-reiselrl{O); returnW); 

/fffHfllfftHfHHfffHHHHUffHfffttIHHHffflfffllffHffHffltHltttH/ 

~ t/ 
/t APPB_9ttlltlb1kO. TrtS32OC30 Slat. 1/ 
~ ~ 

't Move block of data frol dUll port. t' 
'I I' 
'I Sequence I' 
't I' 
'I 11 f"IoVt ~ti frol the dual port. I' 
'I 21 Rtlease block of dual port atllOry. I' 
'I I' 
/IUHHtfUHuHtffUffU .... fHfIHlIHtIHIfHfllllllllfllllfUtlIlU .. Htt/ 

int APPB_get ... blklcnt,dst,dpblkl 
u..0N3 ent; 
ll.CKi itdst; 
U!NT dpblk; 

DPC~TL tdpctl • (JlPc'NTL IIDPRAILCTL; 
LtHAR IdprH; 
ULON) ttop; 
int i,jl 

dpru = (l.CHAR I)(DPRPi'U'El'IBASE + (dpblk I IFRAI'LBlK_SlZE)); 

forI i=O; l<cnt; i++) 
( 

top = OUL; 
for(j=O;j<32;j+=81 teep := «*dpru++) WxOOOOOOffl « j; 
*dst++ = telP; 

APPB_re lctlblkldpblkl; returnlOI; 



;;l 
'" 
~ 
~ 
tv 
C a c 

~ 
~ 

~ 
~. 

~ 
it 
~ 
;: 
~ 

~ 
~ 
'"' .... -e. 
§. 

t 
Y> 

/HfUHHf****t*UfHU*******ffU4f*********UH+fHf.HU******U**fnfnfl 

h H 
1* fff'EqletlongO, Tf'lS32OC3Q side. 'II 
h H 
/f Get a long 1II0l'd of data froll the dllal port. 1/ 
/*ffHfHUH**fH***fffHf*******H+HHI**********ffHff***fffHffHfUHH/ 

Int APPB_getlong(src,'15tl 
ULONG "sre: 
ULONG jj.dst; 

int j; 
*dst = OUL; 
for(j=O;J<3'2;j+=8) -Idst 1= (1*5r·c++) & OxOOOOOOffl « j; 
return(Oi: 

I *****U .. I-HHH***fHffHHHHffffHfHfHHHHf****HffffffH*HHfHtff I 
h H 
/. fff'B_getcolIlI'tandll, T11S32OC30 side. ./ 
/. H 
/. Sear-eh the dual port control structures for commands. ./ 

It " /. SeQuence */ 
/. ./ 
/. 11 Get access to dual port sE'lN.phore O. */ 
/. 21 If at end of control structures, reset currenLblk. ./ 

/. 31 Surch control structures for a (ollDind. */ 
/* 41 If found, forflat parameters, ('eturn. ./ 
/. 51 Else, starch to the end of list, rdurn. */ 
h H 
IHfUf*****Hf*fH*flfflffff**ffffHffHHHf**Hff**H*ff*H**Hffffffff*ffl 

int APPB_getcohlla.nd(lIIpuIAS) 
MPARI'IS filipa-tillS; 

DPCNTl *dpctl = (DPCNTl fIOPRAfLCTl; 
static int currer,LbH: = -1; 

HPPB_getsf!lll(O); 

if(curru,Lblk )= DPRAtLBLKS) currenLblk = -1; 

while(currenLblk++ < DPRAI'LBLKS) 

if(dpctHcurrenLblkl.pflag II lULi 
( 

IfIParfllS-)IIIClIld = dpctlCcurrenLblk).coftlrlind &: OxOOOOOOff; 
IlIparDls-:>mblk = current_blk; 
APPB_get long (&:dpct 1 [curr-enLb 1 k]. count, &lIIparlls-)ltcnt); 
APPB_getl ong(&dpdl [currenLb IU.addr ,~lIparlls-)lliddr); 
APPB_relsem(O); returnlO); 

APPB_relsem(O); mpa.rlRs-)lIcmd = NOP; r-eturn(O); 



APPENDIX A3. Memory Map and Description (TMS320C30 View) 

Listed below is a summary of the APPB memory map. 

000000- 003FFF EPROM (Boot EPROM/remappable) 
004000- 3FFFFF Unused 
400000 - 4FFFFF DRAM space 
400000- 43FFFF 256K-word DRAM minimum configuration 
440000- 47FFFF 256K-word DRAM minimum configuration 
480000- 4BFFFF 256K-word DRAM option bank 2 
4COOOO- 4FFFFF 256K-word DRAM option bank 3 
500000 - 7FFFFF Unused 
800000- 801FFF SRAM space 1 (16K-byte zero wait-state SRAM) 
802000 - 805FFF Reserved by TI 
804000 - 805FFF I/O Devices 
804000- 804FFF 4K-byte dual-port SRAM 
805000 - 805FF6 I/O Expansion Bus 
805FF7 Control Register R 
805FF8- 805FFF dual-port RAM Semaphores (DO only) 
806000 - 807FFF Reserved by TI 
808000 - 8097FF Memory mapped Peripherals 
809800 - 809BFF RAM Block 0 
809COO- 809FFF RAM Block 1 
80AOOO- EFFFFF Unused 
FOOOOO- F03FFF SRAM space 0 (16K-byte zero wait-state SRAM, 

remappable) 
FOO800- FFFFFF Unused 

494 TMS320C30 Applications Board Functional Description. 



TMS320C30 Applications Board Functional Description 495 



Appendix B 

Modules 

Appendix Name 

Bl Module U5 - TMS320C30 Software Development Board 
B2 ModiHe U6 - TMS320C30 Software Development Board 
B3 Module RAMDEC - TMS320C30 Software Development Board 
B4 Module RDYEN - TMS320C30 Software Development Board 
B5 Module RAMCONTROL - TMS320C30 SWDS DRAM Module 
B6 Module RAMDEC - TMS320C30 SWDS DRAM Module 

496 TMS320C30 Applications Board Functional Description 



Appendix BI. TMS320C30 Software Development Board 

Module U5 
title' 
DWG NAME TMS320C30 SOFTWARE DEVELOPMENT BOARD 
DWG # 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR NATSESHAN 
DATE 10/01/88' 

XSUC8 device 'P20l8'; 

SAO Pin 1; 
SAl Pin 2; 
SA2 Pin 3; 
SA3 Pin 4; 
SA4 Pin 5; 
SAS Pin 6; 
SA6 Pin 7; 
SA7 Pin 8; 
SA8 Pin 9; 
SA9 Pin 10; 
NSMEMW Pin 11; 
GND Pin 12; 
NSMEMR Pin 13; 
NSIOW Pin 14; 
NSGBA Pin 15; 
NPQ Pin 16; 
XAEN Pin 17; 
NRG Pin 18; 
NQG Pin 19; 
NDPSEML Pin 20; 
NDPCEL Pin 21; 
SGAB Pin 22; 
NSIOR Pin 23; 
VCC Pin 24; 

"PC XT ADDRESS LINES - INPUTS 

"PC XT MEMORY WRITE STROBE 

"PC XT MEMORY READ STROBE...., INPUT 
"PC XT 10 WRITE STROBE - INPUT 
"SDB READ STROBE - OUTPUT 

. "DUAL-PORT ADDRESS RANGE STROBE - INPUT 
"PC XT BUS TRANSACTION DISABLE - INPUT 
"SDB CONTROL REGISTER R ENABLE - OUTPUT 
"SDB DUAL-PORT ADDRESS LATCH ENABLE - OUTPUT 
"DUAL-PORT SEMAPHORE SELECT - OUTPUT 
"DUAL-PORT SRAM CHIP ENABLE - OUTPUT 
"HOST DATA BUS INPUT ENABLE - OUTPUT 
"PC XT 10 READ STROBE - INPUT 

SA = [SA9, SA8, SA7, SA6, SAS, SA4, SA3, SA2, SAl ,SAO]; 
X = .x.; 

equations 

= !XAEN & (SA == "h338); 
= !XAEN & (SA == "h339); 

!NQG 
!NRG 
!NDPSEML = !XAEN & SA9 & SA8 & !SA7 & !SA6 & SAS & SA4 & !SA3 

& !NSIOW 
# !XAEN & SA9 & SA8 & !SA 7 & !SA6 & SAS & SA4 & !SA3 
& !NSIOR; 

TMS320C30 Applications Board Functional Description 497 



end US 

498 

!NDPCEL = !XAEN & !NPO; 
SGAB = !NSIOW & !XAEN 

# !NSMEMW & !XAEN ; 
!NSGBA = !XAEN & !NSIOR & (SA == "h339) 

# !XAEN & !NSIOR & SA9 & SA8 & !SA7 & !SA6 & SAS 
&SA4& !SA3 
# !XAEN & !NSMEMR & !NPO; 

TMS320C30 Applications Board Functional Description 



Module U6 
title' 

Appendix B2. Module U6 

DWG NAME TMS320C30 SOFTWARE DEVELOPMENT BOARD 
DWG # 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR NAT SESHAN '. 
DATE 10/01/88' 

XSUF10 

CIOAO 
CIOA1 
CIOA2 
CIOA3 
CIOA4 
CIOAS 
CIOA6 
CIOA7 
CIOA8 
CIOA9 
CIOAlO 
GND 
CIOA11 
CIOA12 
TIOW 
NSRANGE 
CIORNW 
NFR 
NFG 
NDPMEMGR 
NDPSEMGR 
TIOR 
NCIOSTRB 
VCC 

equations 

Device 'P20L8'; 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
Pin 5; 
Pin 6; 
Pin 7; 
Pin 8; 
Pin 9; 
Pin 10; 
Pin 11; 
Pin 12; 
Pin 13; 
Pin 14; 
Pin 15; 
Pin 16; 
Pin 17; 
Pin 18; 
Pin 19; 
Pin 20; 
Pin 21; 
Pin 22; 
Pin 23; 
Pin 24; 

X = X; 
C= .c.; 
CIOA = [CIOA12,CIOA11,CIOAlO,CIOA9,CIOA8, 

CIOA7,CIOA6,CIOAS,CIOA4,CIOA3,CI0A2,CIOAl,CIOAO]; 

!NSRANGE !NCIOSTRB & !CIOA12 
# !NCIOSTRB & (CIOA >= "h1FF7); 

!NDPMEMGR = !NCIOSTRB & !CIOA12; 
!NDPSEMGR = !NCIOSTRB & (CIOA >= "hlFF8); 

TMS320C30 Applications Board Functional Description 499 



!NFG 
!NFR 
!TIOR 

= !NCIOSTRB & !CIORNW & (CIOA == "hlFF7); 
= !NCIOSTRB & CIORNW & (CIOA == "hlFF7); 
= NCIOSTRB 

# (CIOA >= "hlFF7) 
# !CIOA12 
# !CIORNW; 

!TIOW = NCIOSTRB 
# (CIOA >= "hlFF7) 
# !CIOA12 
# CIORNW; 

test vectors 

([CIOA, NCIOSTRB, CIORNW] -> 
[TIOR, TIOW, NSRANGE, NFG, NFR, NDPMEMGR, NDPSEMGR]); 

READ OR WRITE TO A SEMAPHORE 

["h1FFS, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["hlFF9, 0, X] -> [0, 0, 0, 1, 1, 1, 0]; 
["h1FFA, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFB, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFC, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFD, 0, X] -> [0,0,0, 1, 1, 1,0]; 
["h1FFE, 0, X] -> [0,0,0, 1, 1, 1, 0]; 
["h1FFF, 0, X] -> [0,0,0,1,1,1,0]; 

WRITE TO F REGISTER 

["h1FF7, 0, 0] -> [0,0,0,0,1,1,1]; 

READ FROM F REGISTER 

["h1FF7, 0,1] -> [0,0,0,1,0,1,1]; 

NCIOSTRB DISABLED 

[ X , 1, X] -> [0, 0, 1, 1, 1, 1, 1]; 

EXTERNAL READS 

["b1000000000000, 0,1] -> [1,0,1,1,1,1,1]; 
["blO00000000001, 0,1] -> [1, 0, 1, 1, 1, 1, 1]; 
["b100000000001O, 0, 1] -> [1,0,1,1,1,1,1]; 
["b1000000000011, 0,1] -> [1, 0,1,1,1,1,1]; 
["b1000000000100, 0,1] -> [1,0,1,1,1,1,1]; 
["b1000000000101, 0, 1] -> [1,0,1,1,1,1,1]; 

. ["b1000000000110, 0,1] -> [1,0,1,1,1,1,1]; 
["b1000000000111, 0,1] -> [1,0,1,1,1,1,1]; 
["blO00000001000, 0, 1] -> [1,0, 1, 1, 1, 1, 1]; 
["blOOOOOOOOlO01, 0,1] -> [1,0,1,1,1,1,1]; 

500 TMS320C30Applications Board Functional Description 



[l\b100000000101O,0, 1] -> [1,0,1,1,1,1,1]; 
[l\blO00000001011, 0,1] -> [1,0,1,1,1,1,1]; 
[l\b1000000001100, 0,1] -> [1,0,1,1,1,1,1]; 
[l\b1000000001101, 0,1] -> [1,0,1,1,1,1,1]; 
[l\blOOOOOOOOlllO, 0,1] -> [1,0,1,1,1,1,1]; 
[l\b1000000001111,0, 1] -> [1, 0,1,1,1,1,1]; 
[l\h1FFO, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF1, 0,1] -> [1, 0,1,1,1,1,1]; 
[l\h1FF2, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF3, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF4, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF5, 0,1] -> [1,0,1,1,1,1,1]; 
[l\h1FF6, 0,1] -> [1,0, 1, 1, 1, 1, 1]; 

EXTERNAL 10 WRITES 

[l\b1000000000000, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blO00000000001, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOOlO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOOll, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOlOO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[I\b 1000000000 101 , 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOOllO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\b1000000000111, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOlOOO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOlO01, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOlOlO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\b1000000001011, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOllOO, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blOOOOOOOOll01, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\blO00000001110, 0, 0] -> [0,1,1,1,1,1,1]; 
[l\blOOOOOOOOllll, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FFO, 0, 0] -> [0,1,1,1,1,1,1]; 
[l\h1FF1, 0, 0] -> [0, 1, 1, 1, 1,1,1]; 
[l\h1FF2, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FF3, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FF4, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[I\h 1FF5, 0, 0] -> [0, 1, 1, 1, 1, 1, 1]; 
[l\h1FF6, 0, 0] -> [0,1,1,1,1,1,1]; 

test vectors 

([CIOA12, NCIOSTRB, CIORNW] -> 
. [TIOR, TIOW, NSRANGE, NFG, NFR, NDPSEMGR, NDPMEMGR)); 

DUAL-PORT SRAM READ OR WRITE 

[0, 0, X] -> [0,0,0,1, 1, 1 ,0]; 

end U6 

TMS320C30 Applications Board Functional Description 501 



Appendix B3. Module RAMDEC 

module RAMDEC 
title' 
DWG NAME TMS320C30 SOFIWARE DEVELOPMENT BOARD 
DWG # 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR TONY COOMES 
DATE 10/01/88' 

XSUB4 

a12 
a13 
a14 
a15 
a16 
a17 
a18 
a19 
a20 
a21 
a22 
a23 
m_swap 
vss 

memen 
sram 
eprom 
busen 
vee 

device 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
.Pin 5; 
Pin 6; 
Pin 7; 
Pin 8; 
Pin 9; 
Pin 11; 
Pin 13; 
Pin 14; 
Pin 15; 
Pin 10; 

Pin 18; 
Pin 17; 
Pin 16; 
Pin 12; 
Pin 20; 

'P16L8'; 

"c30 address inputs 

"sram/eprom swap bit 

"dram expansion select 
" sram select 
"eprom select 
"eprom/dram data buffer select 

madd = [a23,a22,a21,a20,a19,a18,a17,a16,a15,a14,a13,a12]; 

equations 

"On reset the eprom and sram maps are swapped 
" m_swap = 0 m_swap = 1 
"sram FOOOOO-F03FFF 000000-003FFF 
"eprom 000000-003FFF FOOOOO-F03FFF 

sram = !«(madd >= "hOOO) & (madd <= "h003) & m_swap) 
# «madd >= "hFOO) & (madd <= "hF03) & !m_swap)); 

eprom = !«(madd >= "hOOO) & (madd <= "h003) & !m_swap) 
# «madd >= "hFOO) & (madd <= "hF03) & m_swap)); 

memen = !«madd >= "h400) & (madd <= "h4FF)); 

busen = !(!eprom # !memen); 

502 TMS320C30 Applications Board Functional Description 



test vectors 
([madd, m_swap] -> [sram, eprom, memen, bus en]) 
["hOOO, 1 ] -> [0, 1, 1, 1 ]; 
["hOOO, a ] -> [ 1, 0, 1, 0]; 
["h004, 1 ] -> [ 1, 1, 1, 1 ]; 
["hFOO, 1 ] -> [ 1, 0, 1, 0]; 
["hFOO, ° ] -> [0, 1, 1, 1 ]; 
["hFFO, 1 ] -> [ 1, 1, 1, 1 ]; 
["hFOO, 1 ] -> [ 1, 0, 1, ° ]; 
["h400, a ] -> [ 1, 1, 0, 0]; 
["h4CF, 1 ] -> [ 1, 1, 0, 0]; 
["hBOO, 1 ] -> [1, 1, 1, 1 ]; 

endRAMDEC 

TMS320C30 Applications Board Functional Description 503 



module RDYEN 
title' 

Appendix B4. Module RDYEN 

DWG NAME TMS320C30 SOFIWARE DEVELOPMENT BOARD 
DWG # . 2554377 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR TONY COOMES 
DATE 10/01/88' 

XSUC3 

c1k 
busen 
eprom 
strb 
rd_wr 
bhiz 
oe 
vss 

dat_rd 
dat_wr 
prdy 
epromcs 
vcc 

c= .c.; 

equations 

device 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
Pin 5; 
Pin 7; 
Pin 11; 
Pin 10; 

Pin 19; 
Pin 18; 
Pin 17; 
Pin 12; 
Pin 20; 

'PI6R4'; 

"eprom/dram data bus enable 
"epram select 
"c30 strobe 
"c30 read/write 
"dram expansion bus hold 

"data read enable 
"data write enable 
"eprom ready 
"eprom chip select 

"note: bhiz is active for 1 TMS320C30 clock cycle at the end of a dram 
" access. This provides the necessary turn off time between 
" dram/eprom accesses. 

= 

= 

epromcs = 

prdy 

504 

!(!busen & !5trb & rd_wr & bhiz); 

(!busen & !strb & !rd~wr & bhiz); 

!(!busen & rd_wr & !strb & !eprom & bhiz); 

!(!busen & !strb & rd_wr & prdy & !eprom & bhiz); 

TMS320C30 Applications Board Functional Description 



test vectors 
([elk, strb, busen, rd_wr, eprom, oe, bhiz ] -> prdy) 
[ c, 1, 1, 1, 1, 0, 1 ]-> I' , 
[c, 0, 0, 1, 0, 0, a ]-> I' , 
[ c, 0, 0, 1, 0, 0, 1 ] -> 0' , 
[ c, 0, 0, 1, 0, 0, 1 ] -> 1; 
[ c, 0, 0, 1, 0, 0, 1 ] -> 0' , 
[ c, 1, 0, 1, 0, 0, 1 ] -> I' , 
[ c, 1, 0, 1, 0, 0, 1 ] -> I' , 

test vectors 
([strb, busen, rd_wr, eprom, bhiz ] -> [datJd, dat_wr, epromcs]) 
[ 1, 1, 1, 1, 1 ] -> [ 1, 0, 1 ]; 
[ 0, 0, 1, 1, 1 ] -> [ 0, 0, 1 ]; 
[ 0, 0, 0, 1, 1 ] -> [ 1, 1, 1 ]; 
[ 0, 1, 1, 1, 1 ]-> [ 1, 0, 1 ]; 
[ 1, 0, 1, 1, 1 ] -> [ 1, 0, 1 ]; 
check eprom 
[ 1, 0, 1, 0, 1 ] -> [ 1, 0, 1 ]; 
[ 0, 0, 1, 0, 1 ] -> [ 0, 0, ° ]; [ 0, 0, 1, 0, a ] -> [ 1, 0, 1 ]; 
[ 0, 0, 0, 0, 1 ] -> [ 1, 1, 1 ]; 
[ 0, 1, 1, 0, 1 ] -> [ 1, 0, 1 ]; 
[ 1, 0; 1, 1, 1 ] -> [ 1, 0, 1 ]; 

end RDYEN 

TMS320C30 Applications Board Functional Description 505 



Appendix B5. Module RAMCONTROL 
Module RAMCONTROL 
title' 
DWGNAME 
DWG# 
COMPANY 
ENGR 
DATE 

XDUE5 

elk 
refre'L 
strb 
rd 
memen· 
oe 
vss 

sO 
refelr 
casen 
ren 
rasen 
mrdy 
busact 
s1 
vcc 

320C30 SWDS DRAM MODULE 
2554397 
TEXAS INSTRUMENTS INCORPORATED 
TONY COOMES 
10/01/88' 

device 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
Pin 5; 
Pin 11; 
Pin 10; 

Pin 19; 
Pin 18; 
Pin 17; 
Pin 16; 
Pin 15; 
Pin 14; 
Pin 13; 
Pin 12; 
Pin 20; 

'P16R8'; 

"refresh request 
"c30 strobe 
"c30 read/write 
"memory board chip select 
"pal output enable 

"state variable 
"refresh clear 
"column address strobe 
"write strobe 
"row address strobe 
"dram ready strobe 
"dram bus active 
"state variable 

"define machine states 
"[ refelr,rasen,casen,mrdy,busact,sO,s 1 ]; 

idle 
rasO 
casO 
cas1 
whld 
trp 
refl 
ref2 
ref3 
ref4 

refreq 
strb 
me men 
oe 

c = .c.; 

506 

= "b1111111; 
= "b1011111; 
= "b1000111; 
= "b1011101; 
= "b1111110; 
= "b1111001; 
= "b0101111; 
= "bOOO1111; 
= "b0011111; 
= "b1111101; 

= !refre'L; "convert to positive logic 
= !strb_; 
= !memen_; 
= !oe_; 

TMS320C30 Applications Board Functional Description 



c = .c.; 
output = [refclr,rasen,casen,mrdy,busact,sO,sl]; 

equations 

ren .- !(lrd & !strb~; high on read, Iowan writes 
state_diagram output 

state idle: 
case (refreq & strb & memen) 

( refreq & strb & !memen) 
(refreq & !strb & memen) 
(refreq & !strb & !memen) 
(!refreq & strb & memen) 
(!refreq & strb & !memen) 
(!refreq & !strb & memen) 
(!refreq & !strb & !memen) 

endcase; 

:refl; "ref has 1st priority 
:refl; 
:refl; 
:refl; 
:rasO; 
:idle; 
:idle; 
:idle; 

state rasO: 

state 

state 

state 

state 

state 

state 

goto casO; 

casO: 
case rd 

!rd 
endcase; 

casl: 
case strb & !refreq 

strb & refreq 
!strb & !refreq 
!strb & refreq 

endcase; 

whld: 
case strb & !refreq 

strb & refreq 
!strb & !refreq 
!strb & refreq 

-endcase; 

trp: 
case refreq 

!refreq 
endcase; 

refl: 
goto ref2; 

ref2: 
goto ref3; 

"cycle cas on page mode reads 
:cas1; 
:whld; 

"cycle cas on page mode reads 
:casO; 
:trp; 
:trp; 
:trp; 

"wait for refreq or !strb 
:whld; 
:refl; 
;idle; 
:refl; 

"cas,ras high 
:refl; 
:idle; 

"cas,refclr low 

"ras low 

TMS320C30 Applications Board Functional Description 507 



state ref3: "cas high 
goto ref4; 

state ref4: "ras high 
goto idle; 

test_vectors "page mode read, ref, page mode read 
([clk,refreq ,strb, rd,memen, oe ]->[output,ren)) 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 1, 
[c, 1, 
[c, 1, 
[c, 1, 
[c, 1, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 
[c, 0, 

0, 1, 0, 1 ]->[idle, 1]; 
1, 1, 1, 1 ]->[rasO, 1]; 
1, 1, 1, 1 ]->[ casO, 1]; 
1, 1, 1, 1 ]->[ cas1, 1]; 
1, 1, 1, 1 ]->[casO, 1]; 
1, 1, 1, 1 ]->[ cas1, 1]; 
1, 1, 1, 1 ]->[trp , 1]; 
1, 1, 1, 1 ]->[refl, 1]; 
1, 1, 1, 1 ]->[ref2, 1]; 
1, 1, 1, 1 ]->[ref3, 1 ]; 
1, 1, 1, 1 ]->[ ref4, 1]; 
1, 1, 1, 1 ]->[idle, 1]; 
1, 1, 1, 1 ]->[rasO, 1]; 
1, 1, 1, 1 ]->[casO, 1]; 
1, 1, 1, 1 ]->[cas1, 1]; 
1, 1, 1, 1 ]->[casO, 1]; 
1, 1, 1, 1 ]->[cas1, 1]; 
0, 1, 1, 1 ]->[trp , 1]; 
0, 1, 0, 1 ]->[idle, 1]; 

test_vectors "write cycle 
([clk,refreq ,strb, rd, memen,·oe ]->[output,ren)) 
[c, 0, 0, 0, 0, 1 ]->[idle, 1]; 
[c, 0, 1, 0, 1, 1 ]->[rasO, 0]; 
[c, 0, 1, 0, 1, 1 ]->[casO, 0]; 
[c, 0, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 0, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 0, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 0, 0, 0, 1, 1 ]->[idle, 1]; 
[c, 0, 0, 1, 0, 1 ]->[idle, 1]; 

"write cycle Iref 
[c, 0, 0, 0, 0, 1 ]->[idle, 1]; 
[c, 0, 1, 0, 1, 1 ]->[rasO, 0]; 
[c, 1, 1, 0, 1, 1 ]->[casO, 0]; 
[c, 1, 1, 0, 1, 1 ]->[whld, 0]; 
[c, 1, 1, 0, 1, 1 ]->[refl, 0]; 
[c, 1, 1, 0, 1, 1 ]->[ref2, 0]; 
[c, 1, 0, 0, 0, 1 ]->[ref3, 1]; 
[c, 0, 0, 1, 0, 1 ]->[ref4, 1]; 
[c, 0, 0, 1, 0, 1 ]->[idle, 1]; 

end RAMCONTROL 

508 TMS320C30 Applications Board Functional Description 



module RAMDEC 
title' 

Appendix B6. Module RAMDEC 

DWG NAME 320C30 SWDS DRAM MODULE 
DWG # 2554397 
COMPANY TEXAS INSTRUMENTS INCORPORATED 
ENGR 
DATE 

XDUD5 

clk 
refclr 
a18 
a19 
memen 
strb 
mux 
oe 
vss 

rasO 
ras1 
ras2 
ras3 
rowsel 
vec 

c= .C.; 

equations 

TONY COOMES 
10/01/88' 

device 'P16R4'; 

Pin 1; 
Pin 2; "clear refresh stat 
Pin 3; "e30 address 18 
Pin 4; "c30 address 19 
Pin 5; "dram board memory enable 
Pin 6; "e30 strobe 
Pin 7; "address mux 
Pin 11; "pal output enable 
Pin 10; 

Pin 17; "ras select 0 
Pin 16; "ras select 1 
Pin 15; "ras select 2 
Pin 14; "ras select 3 
Pin 13; "row address select 
Pin 20; 

rasO := !(!refclr # (!a19 & !a18 & !memen& !strb)); 
ras1 := !(!refclr # (!a19 & a18 & !memen & !strb)); 
ras2 := !(!refclr # ( a19 & !a18 & !memen & !strb )); 
ras3 := !(!refclr # ( a19 & a18 & !memen & !strb)); 

rowsel = mux; 

TMS320C30 Applications Board Functional Description 509 



test_vectors "page mode read, ref, page mode read 
([clk,refclr, memen, strb, a19, a18, oe]->[rasO, ras1, ras2, ras3]) 
[ c, 1, 1, 1, 0, 
[ c, 1, 0, 0, 0, 
[ c, 1, 0, 0, 0, 
[ c, 1, 0, 0, 1, 
[ c, 1, 0, 0, 1, 
[ c, 1, 1, 0, 1, 
[ c, 1, 0, 1, 1, 
[ c, 0, 0, 1, 1, 
[ c, 1, 0, 1, 1, 
[ c, 0, 0, 0, 1, 
[ c, 1, 0, 0, 1, 

test_vectors "rowsel 
(mux -> rowsel) 
1 -> 1; ° -> 0; 

endRAMDEC 

510 

0, 0]->[ 1, 1, 1, 1 ]; 
0, 0]->[ 0, 1, 1, 1 ]; 
1, 0]->[ 1, 0, 1, 1 ]; 
0, 0]->[ 1, 1, 0, 1 ]; 
1, 0]->[ 1, 1, 1, ° ]; 
1, 0]->[ 1, 1, 1, 1 ]; 
1, 0]->[ 1, 1, 1, 1 ]; 
1, 0]->[ 0, 0, 0, ° ]; 
1, 0]->[ 1, 1, 1, 1 ]; 
1, 0]->[ 0, 0, 0, ° ]; 
1, 0]->[ 1, 1, 1, ° ]; 

TMS320C30 Applications Board Functional Description 



Appendix C 

TMS320C30 Application Board Schematics 

Appendix Title 

Cl TMS320C30 Software Development Schematics 
C2 TMS320C30 SWDS DRAM Module Schematics 

TMS320C30 Applications Board Functional Description 511 



Appendix Ct. TMS320C30 Software Development Schematics 

512 TMS320C30 Applications Board Functional Description 



:;l 
"" 
~ 
~ 
N 
C a c 
~ 
~ 
§' 

i' 
~ 
~ 
il a 
[ 

W 
"S' 
gO 

VI ..... 
w 

--

-

.---_~ ____ ~ ______ 7~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~~ ____ ~ __ ._~----~-----L----~~--~------~----

NOTES, UNLESS OTHERUISE SPECIFIED: 

ALL AS, ALS. LS DEVICES ARE PREFIXED UITH ,:tN- SH74 

z vee IS APPLIED TO PIN .e OF ALL 8-PIN IC's. 
PIN 14 OF ALL 14-PIN Ie's. P-IH 16 OF ALL 
16-PIN le·s. PIN 20 OF ALL 2a-PIN Ie' •• ETC. 

3. GROUND IS APPLIED TO PIN 4 OF ALL 8-PIN Ie' •• 
PIN 7 OF ALL l04-PIH IC's;:, PIN e OF ALL 1&-PIN 
le's, PIN 10 OF ALL 20-PI" IC's. ETC. 

4. DEVICE TVPE. PIN HuMJ:ERS, AHD REF-EREHCE 
DESIGNATOR OF GATES ARE SHOUN AS FOLLOU$: 

-~ 
-.-~ ~'2 •• U.7 

UO< 
ee AHD e4 '" DEV J CE TYPES 
1. 2. AND 3 = PIN· NUMBERS 
vee. At1D va? '" REFERENCE DESIGNATORS 

5 RESISTANCE VALUES ARE IN OHMS. 

1:0 RES ISTORS ARE 11'4 UATT, S~. 

7. CAPActTANCE VALUES ARE IN MICROFARADS. 

PAGE 
1 
2 
3, 
4 
S 
6 
7 
B 
') 

18 
11 
12 

COItTDITS 
TITLE PAGE 
PC leT COHHEC1URS. BUFFERS. _ TRAHSCEIVEIIS 
DUAL PORT SRAH ./WiD EXPAltSIOH BUSS COIn'ROL CI RaJ I TRY 
EXPAHSIOH BUSS 16K >< 32 SRAH 
'D1S328C38 IlUSSES 
'D1S3211C38 TIHERSIGHALS, 12-PIH Itn'ERFACE, PIJLL--IJP PACKAGES 
ADDRESS BUSS AND alH'l'ROL SIGNAL BUFFERS 
DATA BUSS ~IVES 
TARGET ~ cotItECTllRS, ItEI1OI1Y EXPAHSIOH ~ COHHEC1URS 
PARALLEL BUSS HIttORY EXPAHSIOH 
MRALLEL BUSS COITROL CI RaJI TRY' AND EPROHS 
DECOUPLIHG CAPACITORS 

REVISIONS 

I_~ I I 

COHPtrIEJt GD4ERATED DRANIHG DO HOT REVISE HAHUALLV 

~.., PART OR IDENTIFYING HUMBER T HOrtEHCLATURE OR DESCRIPT[ON ==:J.~~~ 
P A·R T S LIS T 

I iiAH bfiiiH 
H. 54-shan "6-U:-88 
EAt< £Mi't 

H SItSha'" 86-15-89 • TEXAS IHSTRUHEHTS 
Dat .. S~ste,.s Grou~ 

v H 'nIS3Z8C38 SOFTWARE DEVELOPHEHT 
A REVISION STATUS OF SHEErS Ton", Coo ... s BOARD 

roEu • • • • • • • • • • "' ~. 
SH 1 2 S ... S Eo 7 8 9 18 

Ri: til';. 13 14 15 16 17 19 19 28 2554375 7119 ~ J>iIi"J'II"" 

.EU 'I • NO I" I' ,-
SH 21 22 23 2 ... 25 26 2'1 28 29 30 NEXT ASSY USED ON B I eeeee I 2554377 _J...:IE 

":;: al a2 aa 34 35 a. a7 a8 g..... APPLICATIOH I sc .... HOHEl Is..... 1;;;- 1?_ .. 

• I ? I' I s 14 I a 12 I 1 



VI 4 .... 
~ 

SD<a:7> [31 

[31 SGAB 
PX_ 

J.!1 
XIOCHCK- ~ 11212 I XRESET DRV '~ 

SRESET- [31 
···xii<·i!:n 7 

1B I. ? AS04 103 lJCC 
u.? • 2_ 17 • 

~ • 3D I •• 
4 4_ I. 4 ~ .. 
3 .- '4 • ~, 
2 . - ,. 2 

~ .. , 
7B '2 • .- II ~, 

[3] S6BA- ~ .. 

~.~C!~.':t.~:r!Y-:-. ~ XNEMW-

Q.!. 1'2 XMEMR-

it. XIOIJ-

1'4 XIOR-

;;i 114 17 ~ .. ... . >:<.~~~.~.~:-:. 

'" 
116 16- ~ .. .... 0.I?~9.~ .. 

~ 
>+u-.. ... . 0_I?A~.~.~:-:. 
~ .. .... ~.I?!":~.L 

~ 
it. XDACK0- 4 SDA.CKEI [0, 
~ .. .... l5.~~~ ... I ASa4 

tv 121 xIRQ? Je, U.7 

C 122 XIRQ6 a 123 XIRQ5 
C 124 XIRQ4 

~ " 2 
ALSS41 18 11 125 XIRQ3 ,. a ,. I'll? 19 

~ .. .... >:<.~!W.~_:?:-:. ~ 9 2. 2'1 16 9 

:::: • •• 3V '5 8 ~ .. .... ::<.~(E .. I I ? .J,!'l _ el XI NT STATUS4 [31 

2 7 4. 4' '47 ~ .. .... :::.~~~ ... SA "' [36 129 uee 
5' 8 •• 6'-1 12 6 

~ .. : ... ::<.Q~~ ... 9 7. 7V 11 4 
;=! 1~ .y 

~ '" 19 61 

~ 
G2 ~ 

UBB 
I:l 
a ALSS41 ,. 3 

~ 'A " ,7 2 
4 2. 2' to , 

;=! XA<Il:11 
• 3. "' ,.e SA<Il: 19> [31 

~ XME - • 4A 
4'i 14 SMEMW- [3] 

0° XMEMR- 7 SA 5'1 13 SMEMR- [3' 
XIOW- • •• .y 

'2 SIOW- (sT---
;=! XIOR- • 7A 

?Y II SIOR- tS] 
.-

£. , s. OY --1 A 

19 n 
tl G2 

'" UB9 

'" ~ T~ IN. Seshan 06-14-881 B 188888 I.· .., 
'So 
~o 
0 
;=! 



~ 
'" 
~ 
~ 
N 
C a c 
-& 
'1;l 
:::-: 

I" 
~ 
~ 
~ 
;:os 
~ 

[ 

W 
-e" 
g" 

tJl ...... 
tJl 

[21 SA(8: 19> IDT71342S45 [6.9] -TIORD':/- :3 

DPCEL- 1 eEL CER 51 DPCER- [5,7] CHSTRl:- 40 ,,_ e. CIORD\,- ~5] 
PAL:20L8-15 8NEHW- 1 ~ DPOEL 6. OER 'O'ER 46. DPOER- ~ S IORD'i- 5 ./AS 11 

• €I 1--=-''-3 DPR/WL 2 R,/ WL R/I.IR sa CIOR/I.I 5 6 UC4 
~ II SJOW- 2~ DPSEML- 3 SEMt SEMR 49 DPSEMR- Ase4 
~ 12 A8e8 e? A0L A0R 45 13 UA? BlOA<B: 11> [4.7] 

+-1 ~! 01;~ ~~~:L[2J SMEr1R- 4 r---. UDB ~ ~ ~~~ =;~ I:; ; g 15 1/01 213 DPSEML- SIOR 5 6 S Ie A3L A3R ~ l)ce eINT!) [f?] 

+--t ~~ ~:g~~: :~ U:;0S ~; ~:~ ~~: ~ " _ ., ALS54:t _ 
~ 113 1.--'04 17 XAEH I 13 A6L A6R Ts--t- ~ D P Q 5 I) ~ lA I" ~~~ __ ~1 g [9 1 .... 05 16 PQ- RG- RCK 14 A?L A7R ~ ALS74 ~~ 2A _~,~, ~.;?-.! .. " 

[2] S IHI-Il IHI 1/06 15 SGBA (2] 8101-1- 8 15 A8L A8R ~ ~ 31"1 3~ ~-t 
[2] St1Er1R- 13 111 02 AS32 9 IE. A9l A9R :36 9 RCK UE9 _ . ~ 41'i 4':t.' ~_.:::-
[2] SIQW- 14 ~~; UD9 10 5 AIOl AIOR! 47 10' ' CK_ 0. ~ ~ 5A 5'1 H:~ 

- (2J StOR 28 DPNENGR-~4 11 4 AllL AllR~ CL ~ 6A 6'~' "--:=;--
114 ~ _6 DPCER (I 17 127 0 "----~ 1 1 .!6 

UC8 BIOSTRB- 5 ~ I00L 10eR ~ 1 ~_~ ~~ 7A 7'-': p17-
--- U~;32 ~; ~~ ~~~~ ~~;: I;~ ; ~ ~ 8~ ---

[5 7] PAL2eLS-I5 ~ I08L I03R IS0 3 ALS175 ~ ~ 
, ~; 11 ~ 104L I04R~ ~ 1D lQ~ UD10 

~2 3 12 ~~ ~~~~ ~g~:I;;~ 2 5 Ilj -t 2 
~ ~! 01 22 TIOR [8J ~ 7 24 I07L I07R 134 7 ~ 2D ~Q ~ IIPSEL-
L4 5 21 DPSEMGR- 3 12 2Q 10 ':> 

~ IS LlOl 20 DPMEMGR UFS ~ 3D 3Q ~ 
~ 16 1/02 19 FG- 18 :m"rtt STAruS<B:7) 
~ 17 I,/Q3 18 FR ...!:....::::.. 4D ~ 1"'4 iii CINT 
~ 18 1,/04 17 CIOR/L-i- [5.7] RCK 40 p.:..... n--~-
~ 18 [/05 16 SRANGE- ~ ALS521 ESET- CK 2 DPSEL 

. ~!~ g !~~ [/g; 15 now 13 ALS204 ~~;! PO CL UE1B ! ~~~~SET 12] 

_ CJOA<H.1Z} ~ 11; UA7 ~ 14 c 6 ~.; 5 CII~TCLR o ____ ~_o __ 

[S 7) ClOST - 23 ~!~ TIOL-i- [8) ~!~ 1~ PS Ie * ~~~~~ --'"-~--ftV] 
[2'1 SD<8:7> UF18 ~:~ ~~ ~~ 12 D is Q~ o ____ ~ __ "_ 

LS377 ~ ~* ALS74 
~ lD 10. ~ ,..f----f QO ~ ~ UE9 H-----* 2D 20. ~ ~ 0.1 FCK 11 CK Q ~ CIOD<B:31) (4.5.8] 
~3D 3Q~ ~Q2 ~ t 4 13 4D 4o.~ ~ 0.3 I~_ ALS541 <!o '" 

L 5 14 5D 50 ~ ~ 04 ~ lA 1'1 ~.~ 
'""61"7 6D E.O ~ ~ 05 H-i "'A ~"'.' ~_.~_~ 
~ 7D 7Q~ Q<O:7> ~ Q6 ALS17S ~;. ~~'Ilb 2 
"otr=-it 8D 80 DP L 1 Q7 ~ ~ ~ 4~ -'t. ~§-
~ ~K G UC9 6 5 ID }g K 6 ~:~ 5A ;~ I ~;_: 

UC11l ~ 2D ~ t--i-"- ~ G 8·A ~:~ lift-
-- 712 2 u h-t7 79 7A ,·'tlT 

~ 3D 30. 11 R 1 $A 8'1 ~-
DPSEMGR 113 0 E 30 ~ BIOSTRB 19 .tl 
BIOSTRB- 9. 8 DPSEMR- BIOSTRB- 4D ~ p;!. G2 UES 

~cc U~;32 FG- AS32 CK ~ g~ 
[7) BIO TRB D is Q 5 BIOSTRBO 13 I .. HHT- UB3 [UE8 

ALS74 BIOSTRB- 12 STATUS3 SWRESET- 11 

UD5 U:i82 [6.9 J TRESET- 1 e -=' ),.!L->COERf.EsklTci:=================="'J1[ SDl 
(5,7,11) CHI 8~CKCLQrL ~:~~~E ~D3 SIORD't- (2) ISRESET 9J 11~!!11 "'E I"ZEIFSO"NO IDR .... Wl~IG~j.J rItE':! 

1 AS32 TEXAS H. $Qshan 06-14-881 B 188888 2554377 0'" 
ucc UB3 IHS'rRUt1EHTS I UE DATE I SCnLE: NONEI ~-'--03-_= 



U\ ..... 
0\ 

~ 
~ 
~ 
~ a c 
~ 

I 
~ 
it 
~ 
5. 
[ 

r 
'6' 
gO 

0 

[3J 

[7] 

[7] 

) 

, 

[3.5.81 

[3.71 , 

-

"BANK STATUS6 

MMSTRB-

MIOR/W-

~7 
CY7C164-25 
AO 

, 18 
A' 

J~ ~: A2 

J. 21 
A. 
A' 

~ A. 
t}-+. AS [/09 I-#-\'-
~ A? 1 .... 01 ~ 
~ AS 1/02 p~~ ~ AS I/oa 

~ AI. 

ff.H- All 
,12 ~ A'2 

A .. 
1 CE' 
1 ilE 

UJ4 

~ 
C'1'7C164-25 
A. 

~ Al 

~ A2 

~ •• 
~ A. 
• 1 AS 

t* ~ Ae. [/00 ~ 
t: ~ 

Ai' [/01 I !.~ ~ 
AS 1/02 

11. 7 

t:~ * 
AS I/03 
AI. 

t'2 ~ All 
.,2 
.IS 

1 CE' 
1 "E 

UJ3 

CIOD<8:31> 
BIOA<8: 12> 

-

0 

CV7C164-25 

~ A. 

~ A' 
~ A2 

~ AS 

~ A. 

~ A' 
~ A6 II'OB 

~ A7 I/01 

~~ ~ AS 1/02 

t:~ * 
AS 1/03 
AI. 

t'2 ~ All 
A12 
AIS , 
CE' , 
"E 

UH4 

t~ :~ 
CY7C164-25 

•• Al 

~ A2 

~ A' . 

~ A. 

~ AS 

~ AS 1/00 

,~~ ! A? 1/01 
AS 1/02 tie: AS 1/03 

til 7 
A'B 
All 

~12 : A'2 .,3 , 
CE' 

1 ilE 
UH3 

-

0 - -

CY7C164-25 

r~ A. 
Al 

t~ i: A2 
A. 

~1 A4 
~ AS 

~ ~ AS [/00 ~ 

~ ~ A? 1/01 ~ 
~ AS 1/02 ~ 

(--ll-!.1 ~i0 ~ A9 lIDS ~ 
~ AI. 

~ All 

~ A12 
A" 1 CE' 

1 ilE 
UG4 

C'/7C164-25 

t~ !~ AO 
Al 

t~ i: A2 
A. 

~ A. 

t~ ; AS 

~ AS 1/00 
I !! ;~ ~ ~~ .! A? 1/01 

~ AS 1/02 
I !~ ~; ~ ~ ~ AS 1/03 

~ 
.,. 

~ All 

~ A12 
A13 , 
CE' 

1 "E 
UG3 

I TEXAS I "- Soshan e6-1'114-881~ ~ZE r~;~88 
IHSTRU"EHTS I 1:!$SUE :DI"IT r SC: ... LE: NON;f 

- . 0 

-

CY7CI64-2:5 r. A. 
Al 

t~ ;; A2 
A3 

~ A. 

~-+ AS 
A6 1,-"013 

fe-+ A? I.! 0 1 
A8 [ .... 02 

tie ~ A. 1.--'03 
A,e 

t!~ ~ All 
A12 • A'3 

1 CE 
1 ilE 

UF4 

CY7Cl€-4-25 
~ AO· 
~ ., 
~ A2 

t! ;~ A8 
A. 

t~ ~ AS 
A. 1/00 

t~ ! A? 1/01 
.s 1/02 

t~· ~ A. 1/03 
AI. 

t:~ ~ All 
A12 • A13 

1 CE , 
"E 

UF3 

:DRAWING NO 

2554377 

I SHEET 

0 

--

13 24 

~ 
~ 

~ 
~ 15 813 

1'6 31 

I 

I 
I"~ 
! 

~J 114 



~ 
'" 
~ 
~ 
N 
C a 
c 

~ 
~ 

8 
g" 
;:: 
",. 

tx:I 
0 ;:, 

a. 
~ 
;:: 
g. 
0 
;:: 
£. 
i::l 
'" '" <"') .... 'B. 
g. 
;:: 

tit ..... 
--J 

[3.4.BI CIOD<II: 31> 

[B. 1111 CD(II:31> 

2 
3" 

~~ 

10 
IT 
12 
13 
i4 
is 
is 
17 
18 
18 
20 
21 
22 
23 
24 
2s 
2s 
n 
28 
28 
30 
3T 

C4 
D5 
A2 
AS 
B4 
C5 
DO 
A4 
BS 
C5 
AS 
B6 
D7 
A6 
C? 
B7 
A7 
AS 
B8 
AS 
B8 
Co 
Ai0 
D8 
BT0 
Ail 
Ci0 
lITT 
A12 
1JT0 
CT1 
B"i2 

34 DO 
50 Dl 

2 D2 
3' D8 

19 D4-
85 D5 
51 De. 

4 D7 
20 D8 
86 D8 

5 D10 
21 Dl1 
52 D12 

e. DI3 
87 D14 
22 015 

7 DIG 
S D17 

28 018 
8 D 

24 D 
89 D21 
Ie D22 
54 D23 
25 D24-
11 D25 
40 D26 
26 D27 
12 
55 D28 

D29 
41 I D313 

271 081 

L_6__ L __ __ 5__ ._L ___ 2 _----.J 

3211C311 

UB6 

AO 
Al 
.2 
A3 
A4 
A5 
A6 
A7 
AO 
A3 
A19 
AI1 
A12 
A13 
A14 
A15 
A16 
AI? 
A18 
A19 
A20 
A21 
A22 
Al3 

90 
102 
1.3 
104 
11215 
12'0 
ITS 
ISS 
184-
138 
150 
132 
148 
165 
14. 
164 
180 
i4? 
168 
T?8 
"i85 
"f78 
"i62 
184 

Ft5 
6T2 
GiS 
'6T4 
6T5 
HiS 
HT4 
TiS 
JT4 
JT3 
KT5 
Ti2 
KT4 
LiS 
KT3 
Li4 
MT5 
K12 
Li3 
MT4 
Nf5 
i1T3 
LT2 
NT4 

3 
10 
IT 
12 
18 
i4 
16 
16 
17 
18 
18 
20 
2T 
22 
23 

R/W 94 134 CR,-'W-

STRS 77 F2 CSTRB-

HOLDA 62 

3 .. 
"5 .-
7 .­.-
18 
IT 
12 
18 
i4 
is 
16 
17 
18 
18 
20 
21 
22 
28 
24 
2s 
2s 
2? 
28 
28 ..-

-31 

04 
Ps 
N6 
Os 
Ps 
ii7 
Os 
N? 
P7 
07 
PO 
Qe 
Qe 
PO 
N8 
Qi"0 
iiS 
PTe 
QTT 
t=i"TO 
PiT 
Qf2 
ti"T0 
NIT 
Pi2 
013 
QT:4 
MTI 
NT2 
PT3 
QT5 
PiS 

214 
205" 
18E. 
215 
2e11 
17'2 
21E. 
187 
202 
2T7 
203 
2T8 
21"3 
2(14 
188 
22. 
174 
205 
22T 
"1"90 
~ 
222 
175 
TIi1 
207 
223 
224 
""176 
182 
208 
225 
2T0 

1000 
1001 
1002 
1003 
1004 
10DS 
lODE, 
1007 
1008 
1009 
10010 
10011 
10DIZ 
10013 
IOD14 
10DIS 
10DIE. 
10017 
10018 
IOD19 
IOD20 
IOD21 
IOD22 
IOD23 
IOD24 
IOD25 
IOD2E. 
IOD27 
IOD28 
Iorr29 
IOD30 
IOD31 

32ElC3El 

UB6 

CA(II: 23} [7~').11] 

CIOA<El: 12} [3.71 

IORO 18_ AI:? ('.J. 
IOAI 14 A14 -,-
IOA2 56 Dl1 2 

m~ g~*=-l= 
lOR? 44_~ ---;;;---
rORS 72 El2 ---8.' ... 
IORS 58 ~~----~ 
IORIO 45 CIS --'-0-
I(lAI! 58 D14 --'-1--

IOA12 73 ~---=-=-:--::'"12: 

DX0 213 03 CD;'(O (8] 
DX1 197 P2 CII>':l _.= [8] 

SCOUT 74 ___ Q~_,~~~ _____ .. ~ '---

Xl 32 

~~ tC B3 
Ai 

CHI [3,7.11 J 
-ff~3 R~~_.!.!.l 

T'ACi< 91 ___ 8_'_ .gAcK_-___ -.-.f21 

IOR/i:j 4E __ Dl __ CIOR~ll- [3,7)1 I: 
IOSTRB 79 F4 ___ CTQgRB- _~.:.:=------=-= 

tlSTRB 63 ~3 ___ U!§TPB-:_ il.::3] 

EiAt~KSEL ::: L 

CR/ll- [11] 
C,STF~ 

DR ..... ·H N"" NO' 2554377 _ .... r~:v 

~ror-~c--=~9~~=';-----1- I I EHm ~05~:= 



VI ...... 
00 

;;l 
'" 
~ 
~ 
tv 
C a c 

~ 
~ §. 
§. 
'"' 
~ 
it 
~ 
;: 

l 
~ 
q 
'6' 
§. 

vee 1 

-

. , 

uce 1 

[9.11 ] 

[3,91 
_ .... [3, 8J 

I 

1 

ZZK 

RNlll 

J ~ ~ 

I OSc>LL"OA J 
.. 

OUTF8~--'C"L"'K'::-____ .L~8 
UAG AS04 

____ UA7 

~ ~ I 

I ZZK I 
RN1Z .. 

vee 

4 Ie. 15 17 Is 18 Is 12 118 

:2 18 14 15 Ie. 17 Ie Is 11 e 3ZIIC38 ~ 3211C311 [111CRDV- El 61 
HOLD- F3 78 

[3J CIORD':.:' D2 47 
celKIN Bl 16 

[3] CRESET- Fl 76 
[3:] CINTO H2 1137 
[9J CINTI HI 1136 
[9] CINT2 Jl 121 
(9J CINTS J2 122 

CINT4 J3 123 
CINT5- J4 124 
CINT6- Kl 13G 
CINT? K2 137 
CINT8 Ll 151 
CINT0T-KS' 138 
CINT0R- L2 152 
CINTIT K4 133 
CINTIR- Mt 166 
CHITTO L8 153 
CINTTl- M2 167 

171 
(3J CDRet Ql "'2'i'"T" 
[3] CFSRO P3 198 
[8] CDRI Nt 181 
[9] CFSRI M3 168 

CC0 T F14 89 
eel Et5 75 
eseIN FI3 88 
CMCS F12 S? 

9 17 111316 18 15 1:2 Is 14 

~ 
~ 

BHIZ-

TIORD'i­
TRESE! 

22K 

RN9 

E.E..!­

----'2 /s 415 

L­
L--

'l~8 19 110 

RDV 
HOLD 
TO"Ri)"Q" 
X2/CLKIN 
R""E"SET 
TNf0 
"fNfi 
TIf'f2 
nrf3 
INT4 
iN'f5 
fWf6 
INf7 
fN'f§ 
TH"i'"Sfif 
fN'fSItR 
IHTS1 T 
INTSIR 
INTT0 
INTTI 
PADTOG 
DR. 
FSR0 
DRI 
FSRI 
eo 
el 
SCIN 
MGS 
MCI trP 

Z2K I 
RHl1 

vee 1 1 

I I I 

UB6 

CLKxe 170 H5 CCLKX0 (9J 

Fsxe 212 Q2 CFSX0 [a] 

CLKRO 184 N4 CCLKR0 [9] 

eLKXl 182 N2 CCLKXl [9J 

FSXl 19E. PI CFSXl [9] 

CLKRI 154 L4 CCLKRI [9J 

TCLKe 199 P4 CTCLK0 [9J 

TCLKI 185 N5 CTCLKI [9] 

XFO .2 62 CXFFJ [9] 

XFl 93 63 CXFl [9] 

H4 109 ~JDD 
H12 117 UDD 
08 53 vnn 
Me 173 unD 
HS 11121 MDIJDD 
M4 169 PDI)DD 
L8 158 IOUDD 
M12 177 IOl.JDD 
HIt 116. ADIJDD 
D12 57 ADl.JDD 
E8 68 DDUDD 
D4 49 DDI}DD 

E4 64 Il)SUBS 

H3 IGS uss 
H8 1138 VSS 
HIS 118 vss 
C8 38 USS 
C3 33 DUGS 
N3 18::;! DUSS 
~113 193 DIJSS 
CI8 43 DUGS 
B2 17 Cl}SS 
Pl4 209 Cl,lSS 
B14 28 IUSS 

LJBIlF'~~ 

LOCATOR ~ 

UB6 

PEl PEl 

eel .'l)~ 
cel2l 12131) ~ 
CSCIN 1215 I) ~~ 
ucc 071) ~ 

[5J CSCOUT~ 8 sour (91) ~~ 
~ SCLK 111) ~ 

u~~081 _ 

[5,7,111CH3 13~ 

UCC 12 
AS08 

UDO 

J REV 

TEXAS N. So&shan 10-1213-88 2554377 . '" 
I NSTRUIIENTS ~EET 86-- _._. 

I 



~ 
~ 

~ 
~ 
~ 
Cl c 
~ 
'15 

i 
~ a 
~ 
~ 
[ 
~ 
'" ... .;:;. 

§" 

U\ .... 
\0 

-

B I 7 1 ,6 5 ~ 4 J 3 I 2 1 

I 1 AS244 RA.5 33 6. OO{8:13} [18,111 I AS244 '10 •• 7 33 80 BIOA{8:12> 
r-*-< 16 . lR I RA1 7 e 1 ---t-< 16 I lA IRIOAI 5 IS 1 

[5) CR .... W 

?-r-+- lAI 1'il ~ I RA2 3 4 2 ~-+ 1At l'il ~ I 8 .. ? 

~R= !:; !~~~ RA3 1 23 ~=t ~=~ ~~;~ 1 24 
?--~ lA~'i4 12 RNl ~-----A- lA~'14 12 RIOAS RNa t=P.t= ;:; Vf ;~; ~ 33 t= =* ;:; l-1' ~~; ; :~~:~ ~ ~~ 2AB 2':.'3 ~ IRA4 3 4 .. ~ ~ 2AS 2"3 ~ I ? I 8 4 1 
.2--+-H- 2A4 2':14 ~ I RA5 1 :2 5 .z- -H- 2A4 2 ... 4 ~---I 5 E'-.H 
~ 26 UA3 I :=~; : ~ -lL: 213 UD4 I "I RIOA? ~ ; * 

2 
4 
6 
e 

11 
13 
15 
17 

RH2 RH7 

16 AS244 RA8 3 33 48 t----J.-.: 16 AS244 RIOA8 1 ~ 

m m:; m~; ; !~ ~8= ::~ m:~ m~r~ ~ 
I A4H:f--! 'l'4 12 11 8 lA4H:f--!'14 12 
2A1 2'11 9 RA12 RH3 12 11 2141 2':.'1 9 RIOA12 RH6 

2A3 2':13 5 33 (4,5] CMSTREI- 15 2AB 2\'3 5 33 

2 8 
48 
6113 
a11 

f--

2A2 2'12 7 RA1S I ~ CIOR/l~- ~~ 2A2 2\,2 ~7 RIlOR'/W l ----i 
2A4 2'14 -i- RR/~- I 6 512 [5] CIOSTRB 17 2A4 2'14 m 7 1. 8121 [3,4]1 
26 I ~ ~!: W [10][3.5] CIOA(8: 12> ~ 26 I IIRMSTRB- ~ : M~~~~~ ~1~ c 

UAl :3 4 SRAMCE- [Ie] ~ UD3 RIOSTRB- 1 2 BIOStRB (3) 

~ c I eMil: 23'1 

J ~ ~ . 
_ ----J 

[5.9.111 

[11 ] RSRAMCE-

2 ALSS41 18 
:3 IA 1':<' 17 
4 2A 2'..:' 16 

!~ ~!~ !0 ~~!i TIOA<B: 12> [9]1 

10 7 SA 5'..:' 1310 
9 8 6A 6'..:' 129 

9 7A 7':<' 118 
1 ~ 8':<' 

19 ~ 
G2 

[8.S.11J CHI :2 ALS541 18THI [9] 
[5.6.11] CH3 :3 lA l'i 17TH:3 [9] 
[8.5] CIOR .... W- 4 2A 2Y 16TIOR/~- [9] 
[3.S]CIOSTRB- 5 31"1 3'1 15TIOSTRB- [93 
[15] CIACK- S 4A 4'..:' 14TIACK- [9] 
------ 7 SA 5"1 13 

UH18 

S SA 6"1 12 
:9 7A 7'i 11 ALS541 187 

1 ~ S\:' 3 lA 1':..' 176 

19 ~ 4 2A 2'1 165 
5 SA 8'..:' 154 

- UH9 6 4A 4'1 143 
7 SA 5'i 132 
8 6A 6'1 121 
9 7A ?'i 1 t 0 
1 ~ 6':<' 

19 ~ 
02 

.!!!!!!! 

10-03-86 



Vl 7 • N 
0 

'1~3 
• .1'8. 

£!! 
~~'.';:J !CD(II: 31>_. 2 oA D(II:31> [9.111 3' •• '8 3. CIOD(II: 31> [3.4.51," 

.7 • 3. 2. 17 38 
•• 2 2 • .. 3. 16 251 
•• 3 28 • ... IS 28 '4 .. 27 • •• 1421 
'3 • 2. 7 • • 13 26 
• 2 • 2. 8 7. 12 2S-
.. 7 24 • •• 11 24 

[ll1BR- •• • • 

• 8 • 2. •• tS 23 
17 • 22 2. 17 22 
16 18 2. 4 •• 16 21 
IS 1'1 2. • •• 15 28 

;;i 
Cl 1 1 

•• y .. ''''2 •• • •• 14 19 

•• 6B 13 13 •• 7 68 13 18 

~ 7. 78 12 1-4 .7 • 7:B 12 17 

•• SlI 11 IS ,. • 8:8 11 Ie. 

~ 
~ 
N 
e> 
Q •• 

' .. V ~ .. 
IS 16 •• 2 

..V ~ .. ,,,. e> .7 a 2A 2B 17 17 1 .. ' 3 2A 28 17 14 

~ •• 4 SA 38 16 18 .3 • SA 38 16. 13 •• S 4A - 4B 15 IS .2 • 4A 4B IS 12 

"cJ 2. S SA 58 14 28 .. . SA 58 14 11 - 2. .. GA·- 6B 13 21 •• 7 SA 6B 13 19 

~r 22 8 -7A 78 12 22 • • 7A . 7B 12 9 
23 9 SA BS II 23 • • SA 8B 11 e 

g' 
o, 

~ 

J 
.!.li-.!.!.Q! 

a •• IS 24 7 '.V~ .. .. , 2. 17 26 • 2A 28 17 6 

~ •• 16 26- • 4 SA 38 16 5 

•• 15.27 • 6 ~ 4B IS .. ::s 5. 1428 • 6 SA 58 14 3 

B. •• 13 2$ 2 .. SA 68 13 2 

7. 12 38 • e 7A 7B 12 1 

~ •• 11 31 • SeA 8:e 110 - [3l TIOU-

~ o, 
<"\ 

~ I H. S.shan e6-1-4-6e 
~. -Q' 
::s 



:;l 
<\\ 

~ 
~ 
N 
C a c 
~ 

~ 
£ 
~. 

§ 
'" 
~ 
I:> 

it 
~ 
;:s 
~ 
~. 

~ 
tl 
~ 
<"") 

~. 
~. 
;:s 

VI 
N .... 

1 [rJ TIOD(S: 31) P4 P4 4 1 _.. 1·0 -------

[6] CTCLKI ~~ CTCLK0 (6] 

[6J CCLKX0 0. 10. CCLKR0 [6] 

[61 CDxe 071( 1.8 CDR0 CGJ 

[6] CFSX9 09 11. CFSR0 CGJ 

[6] CCLKXI ~~ 13 114 CCLKRI [6] 

[6] CDX1 15 11. CDRt CGJ 
[6] CFSXl 1? I( 1'8 CFSRI CGJ 

[6] CXFl 19 120 CXF0 CGJ 

TIOA<0:12> ~'~ 11 23 124 12 [71 

9 25 12G 10 

7 27 12. • 
5 29 I •• G 

3L:. )..!..£2_ 

P4 P4 
S 33 I I .. 4 

,L f---2.:~ ISG 2 

-!;t7 ... • 
[8] TRESET- 140 TIORD't- [3] 

C7J 

~~~ [7] TJOSTRB 434 144 TIOR,/W- [7] 

[7] THI ~~~ 471 148 TH3 [7]

150
~~ COJ

CA<II: 23> [S. 7 .111

uee 0~1)) 1202 uee
1 1213 104 0

3 05 I.G 2
5 07 10. 4

7 0' I,. 0

=±ill H±t 9 1:3 114 S

11 IS I,. 10

13 17 1'8 12

15 19 120 14

t} ~~ ~-16
19 25 ~ ~
21 27 128 2.

23 29 13. 22

~,~
f'2 f'2

[Ill DSTRB- 33 I 1:;:4 DR~'U- [11J

[11J MENEH- 35 I I .. DRD'..:'.- [Ill

[6,111 BHIZ- S7 I 133 SDACI(0 C2J

:~:)~
[11] DHI ~~ DH8 [8.11]

~* ~~ l)ee 48 I ,)...!..§.L lJf..g

DD<0:31> [B.ll1
pf--p-,

~~I.)CC

~~-~
S __ ~~2 .5 .7 I) >-~.±

~!.) ~~_.L
11 I~ 112
ll~ 114":3

15~ ~6 !2.
171 ~11.
18!-}- >-1:::0 I:!
211 7 >-lB-
23·4*~~1_£.

=f-"-~~"-'-: ~~. ~;
23 -"',,-it ~ __ 2i

..ll.!.~) In

'':>9

'I

Pi Pi

~l.~ >-1.H-i· 4
~~~2. 
124 >-1E-- 2. 
~!-7~,30 
.±0~~, 
.fl.'.~ )-1 44 
..±'L!-7 >-1 4" _ 

..:!2.!.~>-~ 
IJCC I 431) ~~£ 

DR .... ..,. t t.fGNO 

2554377 

1 _n _____ n_nn 1 1--.. --· .. -- I ~~---,.-I 4 I 



U, 
tv 
tv 

;;l 
'" 
~ 
t;:J 
N 
c:;, 

Q 
c:;, 

~ 
"5 

E 
~. 

~ a 
~ 
;::: 

t 
~ 
q 

"6. 
§O 

D 

; 

, 

< 

[7] SRAMCE-

[7] SRAMH-

~ 
C'17CIG4-25 
AO 

~ Al 

~ A2 
A3 

~ A4 

~ A5 
6 2 Ae. I/Oa H A? I/O 1 

hl 1018 1/02 
AS 1/03 

m AI. 
All 

~ 
A12 
A13 
CE 

,--- r--'--" IlE 
UJ2 

C'/7CI64-25 

~ AO 

~ Al 

~ A2 

~ A3 

~ A. 

~ A5 

~ AE. I IDe 

~ A7 1/01 

?-+ AS 1/02 

hl AS 1/03 

~ AI. 

~ All 

~ A12 
A13 P-'fo IT 

1 'JE 
UH2 

[5.8] CD<8:31> 

[7.11] BA<8: 13} 

~ 
C'17C164 25 
AO 

~ Al 

~ A2 

~ A3 

~ A4 g A5 
13 • A6 1/013 

* 7 3 A7 1/01 

~~ ~ ±t:t Ae I/02 

~ 
AS 1/03 
A10 

r All 
A12 

~ A13 
CE 

1 WE 

UG2 

C\'7CI64-25 

~ AO 

~ Al 

~ .2 
~ A3 

~ A4 

~ A5 

~ ~ A6 I/OB 

~ ~ A7 I,JOt 

~ ~ AS 1/02 

~ ~i0 ~ AS 1/08 

~ AI. 

~ All 

~ A12 
AIS P-'fo IT 

1 WE 

UF2 

- -

C'17CI64-26 C'17C164 25 
o 17 A. R AO H Al Al 

A2 2 19 A2 

~ A3 ~ AS 

~ A4 ~ "4 
5 1 AS +-+ A5 

r+H- H A. 1/00 13 lE. ++ A6 1/00 ~+~-1i 14 • A7 1/01 I ~~ :~ A7 1.'01 1'5 ,. H H I!~ 
~ 

A8 1/02 1'6 18 
A8 1/02 

~ 
A9 [/03 

*+ AS 1/03 .l~, 27 

A10 AI0 

#+ All g All 
Al2 A12 

~ AIS ~Lfe A13 
IT IT 

1 WE -4 WE 

UE2 UC2 

C':.'7CI64-25 C'l7C 164-2S 

~ AO ?--g AO 

~ Al ~ Al 

~ A2 ~ A2 

~ A3 ~ A3 

~ A4 ~ A4 

~ A5 ~T AS 
I 13 12 '*-+ A6 1/013 113 20 

H A6 1."00 r-f~ 
~ ~ .7 1/01 11421 A7 1/01 ~ 
~ ?-+ A8 1/02 I ~~ ;; A8 1/02 r+-~ 
~ ~ A9 1/03 ~ .8 I,JOB r!2-~ 

~ AI. ~ AI. 

TI-T All r-f-k.+ All 

~ Al2 &+ At::: 
A13 ~ At::': ~ IT " IT 

1 WE 1 IJE 

UD2 UB2 

I TEXAS I" HN S •• h.n e6~~lT;_8B r~~E; IF~~~;; DR ... ~ING NQ2S5~377 __ ~ __ G:~ 
I HSl"RUHEHTS 11 SSUE Do*ITE I SCALE: NONE I SHEET 18 



;;l 
~ 

~ 
~ 
N 
C a c 

~ 
~ 

2 
~. 

~ 
~ 

~ 
~ 
~ 

[ 

W 
'€i' 
§" 

. til 
N 
~ 

[5] 
DR/W- [9] 

[5] CSTRB-
DSTRB- [9] 

[,L5,7] CHI , . ..---... 
DHI [Sl 

;32 

11 DH3 [8.8] 

PAL16L8-10 

------~~~~~~~,l 
12 
IS 
14 

[8.9] DD<8:31> 

15 
16 
17 
18 
IS ,,0 

UB4 

01 
1/01 
1/02 
1/03 

1/04 14 :"::3 
{/05 13 22 
r ('06 12 BU3EN-

02 

PAL 16R4-10 

CK 

" I.JIJI 
12 I/02 
13 01 

~I4 
Q2 

7 I. 08 
e 16 Q4 

9 17 1 ..... 03 

II ~ [/04 
OE 

UC3 

11SWAP [3] 

':.'7C2818 
8 8 

"" OUllO 8 • 
1 7 Al OUTl 10 1 
2 • A2 OUT2 11 2 
3 5 A3 OuT3 13 3 
4 4 A4 OUT4 144 
5 A5 OUTS 15 5 

• A6 aUTE. 16 6 
7 1 07 OUT? 17 ? 
8 23 A8 
9 22 AS 
1021 A18 

2. CST 
uee 18 CS2 

18 CS3 UHl 

19 
18 
17 
10 
15 
14 
13 

.12 

BR- [8] [8] DRD'i-

au [8] 
PRD'i-

<I) ): 12 CRD'1- __ E.2 
_...2='-=-_1 ..... ::l~~!11 

REPROMC$-

SRAM- 1121 0 
CSTRB- '9 8 RSRAtlCE--

AS32 

~_l.ll. 

UES 

~ "1 
33 

BA<8: 13> [7.18] 

~Y7C2813 

8 9 8 
7 ,. 8 • • AO DUTO 8 I. AO OUTO '9 24 

1 Al OUTl 10 17 Al OUTl l~J 25 
6 11 1121 2 A2 OUl2 11 18 02 OU12 11 26 

3 5 OUTS 1311 
4 4 04 OUT4 14 12 
6 3 A5 OUTE; 15 18 

2 A. OUTe. 16 14 
1 A7 OUT? 17 15 
23 AS 

S 22 AS 

3 6 A3 OUTS 18 1:01 A3 OUTS 13 27 
4 4 "4 OUT4 14 20 4 4 OUT4 14 2_~ 
5 3 A5 OUTS 15 21 AS OUTS 15 29 
6 2 .6 OUTE. IE. 22 H' OUTE. iE. 80 
7 1 .7 OUT? 17 2 3 7 1 I)U17 17 31-

• 2S 
A8 28 A8 

• 22 
A. 8 22 A' 1021 AIO 

20 c:sT 
1021 AI. 1021 A10 

:2e CST 213 CST 
uee 19 CS2 ,. 

C58 UFl 
vee _19 CS2 UCC 19 CS2 

18 CS3 UD1 18 CS3 UB1 

~SIZEIF:5CM NO 

le-03-88 B BBBBB 
rR .... 1-I1 t~G ~lO 

25543 

11 



U\ 
N 
.j:>. 

;;J 
'" 
~ 
~ 
W 
C 
[3 
C 

~ 
~ 

B g. 
;:, 

'" tI:l 
0 
I:l 

it 
~ ;:, 
~ 
0" 
;:, 
E2.. 
tl 
'" '" r, .... 

.;;:;" 
g. 
;:, 

vee 

vee 

_..'!ff. 

.. -~ vce 

. ,. 
C1S 

10 
C3. 

r:-l-:-T,. 1.,. 1.,. I ,. 1,0 1.,. 1.,. 1.,. 1,. 1.,. 1.,0 1,. -~ .1. 

1_~c'2 1 C33 1 e34 1 C35 1 e36 1 e37 1 C38 1 e38 } e48 1 e41 1 C42 1 C.3 } e~ C45 

vee 

+14.7 -:.I4.7 +1-4.7 +i-~.7- +1.4-.-7 ~14.7 I CTl 1 CT2 1 eT3 } CT' } CT. } CT6 

£16-16-88 



;;l 
'" 
~ 
~ 
tv 
<:::> a 
<:::> 
::... 
~ 
8 
§-
'" 
~ a. 
~ 
;:, 
Q 
§-
::2.. 

~ 
'"' .... 
"6-
~. 

11l 

~ 

,----~ 
~WtE~~ UHLESS OTHERlilSE SPECIFIED' 

ALL AS ~~LS, LS IiEI.,IICES ARE PREFIXED WITH AN 8N74 

L lice IS APPLIED TO PIN 8 OF ALL 8-PIH Ie's, 
F'IH 14 OF' ALL 14-PIN Ie's, PIN IE. OF ALL 
16~PIN IC'$c PIN 20 OF ALL 20-PIH IC's, ETC. 

GRI)Ut~D IS APPLIED TO PHI 4 OF ALL a-PIN IC's, 
PIN? OF "LL 14-PIt~ Ie'·s. PIN B OF ALL lE.-PIN 
IC'sc PIN Ie OF ALL 20-PIH Ie's, ETC 

4 [lEIJJCE T'lPE, PIN ~IUMBERS_ AtiD REFERENCE 
DESIGt~ATOR OF (aWES ARE SHOWN AS FOLLot~''5 

'0 3 --=~- ;; ~..2..._ 
--- 04 

LIe? 
UO!:. 

~o HND 04 = [lEI.)] CE T'IF'ES 
I 2, Mlii 3 PIN ~lIJnBERS 

!JOb AND lI07 ". PFFEREtlfE DESIGtiATORS 

f"ESI':,TAt-jCE l)f~LUFS ARE HI OHIlS. 

PES I STI~If.':S HRE 1/4 UATT S:·; 

CAPACITtlNCE" I}ALU'"o. ARE" ft-t t1I(POFARADS 

~ 3 L ____ 2. __ .J __ _ 
REUISIOtiS 

~ --~~------- --~~:;.;;~,. r 

COMPUTER GENERATED DRAHING DO NOT REVISE MAHUnLLY 

~',;,;"l 
j---9:!."L-~ PA~r OR ID~::,~~~:~_!_~~~1B~R A'-~~::;-~~I-: I S T ~lOtlE~l~CL;ruR'E_.:::: __ ~~~_~~ __ "~~~~~=~~-·--

----------

"II';~'j- PE"{fIo~~~s~r~~O~&ES~!T:- 8 10 
-~'-Eli- - -- - -- - -,-
---:;1=1" 11 lY 1'2 14 15 161";- 18 18 7119 
F'EJi - - --- - - ---

8-1-1- 21 22 :3 24 25 2F. 27 28 28 USED ON I R~W',,! ,; 3:;' ;: ~ -:-. ~ 38 39 40 APPLICATION -- - - - r -- --- I" 

,-------- ----------~~"'~OLEMAN .7~~~:-8-;r--_'i·-------~~~~,~~~~u~:,~;' 

I 
.1 4 

'UlGR 
T. COOMES e7-12-88 

~~-

32BC3B s .... Os DRAH HIJOUJ,E 

~ LD:O:-~=J::-m"~ Fi6 2S.!)439T? 

.y .... ~".E[ ____ = -- -- L;~'ET 
I 

r~·-
B 

> 
"0 
"0 
(!) 

:= 
Q. 
~' 

(j 
N 

r-3 s: 
'J1 
Vol 
N 
o 
(j 
Vol 
o 
'J1 

~ 
t:; 
'J1 
t:; 

~ 
s: 
o 
Q. 
c:: 
;;-
'J1 
n ::r 
(!) 

3 
Qj 
...... 
;:;' 
rIJ 



Vl 
N 
0'\ 

S;;l 
'" 
~ 
~ 
N 
o o 
o 
~ 

~ 
2" 
gO 

""' 
~ 
it 
~ 
;:: 
::?, 
c" ;:: 
e.. 
~ 
'"' .... 

""6" 
g" 
;:: 

IJCC 6 ) ~'R1 ~~ ~ 
4.7K 4_7K CASEN-

~---.--

_L~]. __ ~_~.f!::!L 

D P Ql.§_ 
A171 

UCS 
~ I D _~JCKcr IT 16 1~ I 

1. 
"-
P 

A171 

UCS 

REFCLR-

Q g PL16RB 

12 01 
13 Q2 

CAS EN-

MIl ... •· 

AS08 
UHS 

13 

12 I r!.-~-r-~ 

_I ~~:~~rn-

-~---". 
11 1 
14 03 IE- MUEN- _ ~N-

6 15 Q4 '15 RASEN- __ .. 

RE£S:.!-B-

( 7] 

7 116 Q5 14 DRD'l- (7] 
117 Q6 13 BHIZ-=---1 7J 
IrB 07 12--

CK 08 
~.,,,,.,.r~- ..r:----'1OE UES 

. _ .. ~! I" ~ ,t!~ _____ 1_ __ f <",,_. MHl 1 

l-·.······· .. 1--·-----
~.~.?~tL~ _ _ .. _ .• _1 D P Q 12-... 

AS74 
UJS 

P_1 ___ !1~~ Cf( Q I E-

rr 

2-L-1~-S08 

RASE~I.=--_~~ r ~A~ 
L-!1H:---------PL1GR4 .. --. - RASEH- 1: u:~~· --11 33 

CA RtE:CLR- ~~ 1101 19 ---- 12 L t-r- -~ _2_ --::::::- j-;=~;- +1+-

1

1"/l CA<0:23> cO 19 4 12 I/02 18 Lr ~'C J +[ ~} ""n ,q (?J MSTRB- 5 13 01 17 _ UF5 r ~ 8 ~R> ~~='l 
[7] ME MEN- 6 14 Q2 1&.__ ~~ RH4 ___ ~ ~~ ~! ~~ _ _ ___ ----------~5S 632 .. 

9 17 I/08 13 - -l AS,2 

IS U04 12 L~,~~ UFS 

I
.. . __ ~,,2.lli::.._.._J I I OE UDS ~:32 ---. UFS 

DL2SNS 01 12 31 ::z A ROWSEL 

_ 13_~~f:ll-_ 02 ~ ~ 
IN 03 -G-~ ~ 

04 8 -20 oL4 
e5 ~ -.t0E 

___ ~_~ __ £:Q!~~~_L_ ,~§ ! 

UBS 

DRAM CONTROL 

z 
-1-- --. -



;;l 
<I> 

~ 
~ 
N 
C a c 
~ 
'"<:l 

[ 
gO 

'"' 
~ a 
~. 

§ 
Q 

! 
W 'B0 
~. 

Vl 

~ 

GO II .. ~L._u 
: , , 

(2)---~ CAS0- ----; 
[2] RASO· ! 

"':;U:~:Lr Mwe T I I ! r 
MS44C25' 

€I Eo A9 
1. 7 At 
:2 e A2 
3 9 AS 
4 11 A4 
5 12 AS 
6 13 FIE. 
? 14 A7 
:3 15 AS 

~~....§ TF 
16 '6 

DQ]~. 
DQ22 1 
DQB 18 2 __ 

DQ4 !~ 

t 4 RAS 
I? CAS 

~.t= :~ ~ u UJl 

MS44C25E 

0~ Fl0 
1............J At 
2 e A2 
:3 9 AS 
4 !.1 1=14 
5 12 AS 
Eo 13 A6 
7 .-!...:!.. A? 
8 _ 15 A8 

5 TF 
IE. G 
4 RAS 

DQ'M4 DQ2 2 5 
DOS 18 Eo 
DQ4 19 7 

L-.~17 C'AS 3 -[8; .. -.~.-= HA<II;~>lIHl 

[71 DD<II;31> 

MS44C 5E 
o 6 Ae 

7 A' 
8 .2 

3 9 AS 1 8 
4 11 A4 DOI:2:3 
6 12 AS DQ2 18 10 
6 18 FIG DQB 19 11 
7 14 A7 DQ4 
8 15 AS 

5 TF 
lG_ 6 

. - 17 £AS ~ .. s 
:3 W UG1-

Dill 1 12 
D02:2 18 
DOS 18 14 
DQ4 19 15 

H-+++ 

HS44C25! 

AO 

A' 
A2 
A3 
A4 
A5 
AG .7 
A8 
TF 

DQI 1 IE. 
DQ2 2 17 
DQ3 18 18 
DQ4 19_..!1. 

riMS44C251 

DOl 1 20 
DG!2 2 21 
DQ3 18 22 
DQ4 IS 23 

~£AS 3 ~ UDl 

ffS44C~IT 

~1_..§_ A0 
1 7 _ At 

tl~t- ~! DO'\" .. 74 
r:~~ i~~~ft 

1!~\1l!, J::±=f:3= ItUCl 

t1S 44C:":' !:.f 

5.-L. A. 1 7 At 

.. ~~~. ~~ 
411 A4 

l~l! ~* s-r5 AS 
~_ rF 

-- 16 G 
--4 RAS 

~;~lL·"%§· 
DC) 3 X~._.~~rJ 
Dr!4 12 :?..!.. 

---17 c~s 

~ n UBi 

DRAH BANK II 

J;HOoTE 3J%E FS H NO ·-~fOiiTI"i:j'GtrO-·- . 

07-12-88 B 88888 _~ 25S43(,'-' 

·--,---·-=----.--~--.---__=_--_i_rJL:..:..::==.::..::....JL,--_:3---'-·T·~-==-·~-r .. : .. ~ 113 



Vl 
tv co 

;;l 
'" 
~ 
~ 
N 
C a c 
~ 
'I:i 

~ 
~' 

~ a. 
~ 
;:, 
!4 

t 
~ 
q 
'B' 
g' 

~ ____ -L ______ ~ ____ -L ______ ~ ____ -L ______ ~ ____ ~:~I__ 4_ _.1. __ .. 

[2] RASl- ===================~::~I===========================~~~~====================::: C2;---j- CASe- - ! I 
Dljii:::rL '1H.~· . I I , ---, 

1 • 
DQl 2 1 
DQ2 IS 2 

~~! IS :3 

ilS«C~5j 

~,_ 6 FlO 
J_ 7 At 
2. a A2 
:3 9 AS 
4 __ 11 A4 DQl 1 4 
5 12 AS DQ2 2 5 
6 ~ AS DQ3 18 6 
7 14 A? DQ .. 19--1-
L...!...5 AS 

"5 TF 
_ 16 G 

__ ,__ ;7 ~ .-1=. 4 !!AS 
-_ ..• ' u UH2 

[81 = HA(8: 8) 

[71 DD(8: 31) 

MS44C25! 

13 6 Ae 
1 7 Al 
2 8 A2 
:3 S AS 
4 11 A-4 
5 12 AS 
6 13 AG 
7 14 A? 
8 15 AS 

is ~F 
'" 1<A'S 
17 J c~s 

DOl 1 8 
DQl 2 9 
DQ3 18 10 
DQ4 1~ 

.$ .JTI UG2 

•• 
1 
2 
3 • 
4 11 
• 12 
613 
7 I. 
S 15 

5 
II 
4 

M$44CZS 

AO 
AI 
.2 
A3 

•• 
AS .. .7 
AS 
TF 
~ 

DQl 1 12 
DQ2 2 13 
DQ3 19 14-
DQ4 19 15 

ffS 
~~ 
3 Ii UF2 

11$44C 

\1 6 FlO 
I? 1="11 
2 8 A2 
a 9 A3 
4 11 A4 
5 12 AS 
6 13 A6 
7 14 A7 
8 16 Ae 

DQl 1 16 

~~; ~8 it 
DQ4 !~j! 

I .-,-! .41:·.1~ l- '-;--r~· __ --.,~c~w UE2 

"544(:..:'51 

A8 
Al 
.2 
.3 ." AS 

" ~ = 

DQI 1 213 
DQ2 :2 "Ti 
DQ3 18 22 
Do.4 19 23 

il UD2 

Il",:r4i:]f 
€I 6. _ H~) 

~~~t_ ~~ 
4-01. 1 ~4
5-0

- i} AS

l~U ~~
-'--·~~6 ~F

--"4 P.A~;

0"'1' 24
DI)~) ~')~j.~

D'.'. ' ._". :.~ ... 2;._I: ..
ttl"' 1 I ~-~ ~ . ..,

-----j 7 (A'~

---- -_·s IT UCZ

-t1';-;44('L;~~

T:r_ :i
L.§. ~2
L'? __ ~3

-J~~ = ..@ is AS
_!?, TF
_-----1~ G

L- ,'=;7 rt~

DO .. 1 ~ •.• " ...• e-. DQ2 ; __ 2'0)
DO:: .1 . .:? '3"121
DQ-1 _!~.=:~~ llill

·Hl~;

L_ ~5 'Q" UBZ

DJMH BAHJ(1

-------~----------~--------~----------~~~~~~---------C~~~~

I pc"

:;i
<'I>

~
~
~ a c
~ -g,
2
g"
'"
~
1:1

it
~ ::

t
~
q

"6. g.

Vl

t(5

J...gJ. __ ... __

D l~-~i'= __

? 6,

.-~~=.. I I
_.=~A~:i.~~~- , r , 1

._+ ..

• •
}~{-
'3:- ,9 AS

I4-::.!J. A4
~ 12 AS

'6'·--13 AEo

FI~ ~~
DQ1Etii" D02 2 -r-
DQ3 18 2:
DQ4 19 :3

~~~:~1§ k 
~:T? CAS 
... B r-11 UJ3 

MS44C2 

• --" AO 
1 ? Al 
'2~:Ji:_ A2 
, 9 

AS 
~:11 A4 DQ,I 1 . 
5 12 •• DQ2 2 5 
6 --1:3 •• DOS 1-0 6 
7 14 A7 DO. ,. 7 
8-=~S A8 

TF . ,. 
0 

e 6 A0 
1 ? At 
2 S A2 
3 9 AS 
4 1 J A4 
5 12 AS 
6 13 AEo 
7 14 A7 
8 15 AS 

5 TF , .. 
DQ1 1 9 
DQ2:2 9 
DQ3 18 10 
DQ4 19 11 

4 lfAS 
17 CAS Ll::!:=+=l~=39J1 UG3 

o • •• ? Al 
S .2 • .. 
11 •• DQ1 1 12 
12 AS DQ2 2 IS 
13 AE- DOS IS 14 
I. • 7 . DO • 19 15 
I. AS • TF ,. 

t !' __ 4 
~ • lfAS 

____ ' ._ ~_ ~7 CAS 17 CAS 

WUH3 3 
jj UF3 

[0] I1A(B:O> [71 DD(B:31> 
-

1 
2 
3 

• 
5 

• 7 

• 

• 1 
2 
3 
4 11 

• 12 
• IS 7 I. 
8 I. 

5 

DOt 1 16 
D02:2 17 
D03 18 IS 
DQ4 19 t! 

"544.2: 

•• Al 
A2 
A3 

•• DQI 1 2. 

•• DQ2 2 21 

•• DOS 19 22 
.7 DO. 19 23 

•• 
TF ,. 0 

• RAS 
17 ~ 
3 

jj UD3 

._.L __ . __ .. __ L ..... . 

f1S44C2t;E, 

tf~~:,_ :~ 
L.l. A2 
L..§:. __ ~8 

..:i..._~ 1 A4 
_~_,J...2 AS 
.£._!_~ AE­
...?_ •. L~. k7 

_ _4 R-I~S 

~mt~:~ 
m~ti~ 

-i/- £"AS 
_., .-.::. ~l UC3 

I1S44C2Sf' 

~-~-- A0 
1 ? Al 
28 A2 2-__ 1- A8 
• 11 .. ~~~~=:lt S 12 A5 
Eo ):3 .6 DQ,Cl I~_ ... ~Q 
? J± .7 Del ... J_::L?_~ 
8 15 AS 

5 TF 
.llo .. __ 1 .... - RAS 

_.......J 7 c-A"S ___ L 
jj UD3 

DRAI1 DAHl( 2 

r--'-__ :-___ -r ___ -=-___ .-r-'-__ -, __ -l-,r-___ 
O
-::
7
_-_

'2_-_"_".L::::;=::':"':=:l .- "'=:."~~iit~~7:185 j ":" 



VI 
v.> 
o 

~ 
'" 
~ 
~ 
"> 
C a c 

~ 
~ §. 

§" 
'" 
~ 
~ 

~ 
;: 
Q 
§. 
~ 

~ 
'"' .... 
'6' 
§. 

• I 4 ~ ________ "u 

[21 RASS ! 
HEiF-;,-::' - , I I , I -. 

r81 

[71 

AO 
Al 
.2 

:3 3 AS 
411 A4 
5 "12 AS 
6-13 Ae. 
7 14 A7 
8"" 15 AS 
--- 5 TF 

11:; G 

Dill 2 1 D.'~. 
DQ3 18 :2 
DQ4 18 :3 

4 'RAS ~ ~ 17 'CAS 

=.-=-3 w UJ4 

NS44C2S 
a .0 
I Al 
2 .2 
S A3 
4 11 A4 Dill 1 4 
5 12 AS DQ2 2 S 
6 13 Re. DO. IS • 
7 _ 14 A7 D04 18 7 
8_ 15 A8 

S TF 
16 73 
4 ~ 

::==1= 17 C"AS 

iJ UH4 
- HA<O:B> 

DD<O:31> 

MS44C2 E 

• •• 7 ., 
8 .2 
9 A. 
11 A4 
12 AS 
13 AS 
14 A7 

8 15 AS 

• TF 16 '6 
4 RAS 

DQl 1 8 
DQ2 2 9 
DQS 18 Ie 
DQ4 1~ 

Cj£AS 
:3 ~ UG4 

MS44C2 
• 6 Ae 
I 7 ., 
2 • A2 
3 9 .3 
4 11 A4 DOl I 12 
5 12 OS D02 2 13 
6 I. A. D03 18 14 
7 14 A7 DQ4 19 15 
8 IS A8 • TF 

16 .. 
4 •• S 
17 'fitS 
3 

" UF4 

e • •• 1 7 Al 
2 8 .2 
3 9 A. 
4 11 A4 DQI 1 lG 
• 12 A. DQ2 2 17 
6 13 •• DQS 18 18 

14 A? 
15 AS 

D04 lU.9 

5 TF 
16 G 
4 "R"AS 
17 CAS 
3 

W UE4 

I1S44C25i 
0 A. 
1 Al 
2 .2 
3 A3 
4 11 A4 DQI 1 -2. 
S 12 AS Dil2 2 21 
• 13 A6 DO. 18 22 
7 14 A7 D04 19 23 
8 IS A8 

S TF 
16 G 
4 RAS 
17 CAS 
3 

ii UM 

DRAH DAHl( 3 

f1$.-14(:;;:~; -
o 6 AO IT Al 2-8 

A2 • • A3 
411 A4 

~~~ -ti"nl .~~L~ A5 
E- 1.3 06
2. 14 A7
s_....!..§ A8

S TF
IE- G
4 RAS
17 CAS

-.~-- TI UC4

8-.L .0
I 7 At
2 • .2
3 __ L A3
4 II A4 DQl~~ 5 12 A5 DQ2 2 28

...§-1 3 A. DO-=: _lc~":Q
7 I. A7 D04 _~~_~_
8 IS A8

S TF
16 G
4 _ RAS
I? CAS

? W UB4

L_._ ----8-- .7-12-88 ··~"~~~i~~~:~7-_~~?';'.

;;:l
'"
~
~
N
C a c
~
~

B
§"
""
2'
it
~
;::

g.
§
f2..

~
q
"6'
§'

V\
W
I-'

,~~!~ __ 1 __ ---, ___ -,--__ --",-__ -,--__ ----,--__ ---,--' ___ ,---__ ,--__ -,----__ ~. _=--_--L _____ ! __

~.q~ ·~1~~':-T~~:T'j0

l~~-l-:~J:
1,. I I. I,. 1,. I ,. 1,-:-1,.
} C4 } CS } C6 } 07 } C8 } C8 I C10

~f·~'---·I--~~~-~T-l-01~-:~r:-T~,.-T, 10 1 _ 10 1-~0--~-:-1 10

l~~' __ l~t:-L~'--.J~C15 } C1S } 017 } C18 L~--I C2.

I)ec

---~1'~~~-- r':~--I~:~-1·.'0 1.,. T:-T'~~----r~t--;:-:r~~'-'-l 10

1:1~l:2 ___ I':~'-1':2~_~I:-"--L:~.1~~2':'_I~'=----I C80

~~L'-T--~':-'--l-~'-:---I-~:'-"x 10

l'~l __ J':'3~J'::_1 C34

-~-r:'-7--l: 4 _ 7
LT~lCT2

CA(I!:Z3} [Z.81

Pf --Fl02 UCC

,uce :~ I) >~~~
----""-17 >-1 •• "
:L-9~1 >10e--=! .5 e,»)--;--,,--,,_

w---1-7 >--1J~--E
~--.L~ ~-~--t ;-il'" >-lJ-i.. 8

-~I _ '1-5 II ') >~§._: ~
171 >-~~ _

~STRB­

(2) nn1Et!..­

_@~IZ-

~

..1l4~a··!.:! ~)*22 1E-
-E-4 >_l-~ ~3

2S I)).!n..._ c.

~~-~
281 ~~-12_~

R!7r'--?·'-
P2 P2

_:~ ~1 IMR'-'t~~;,.l

-~~ : 5 0!~~~i=-g_i·-
~4)..!.:!2.
~~
~ ~~~ ~.lll._
-~~ .

~~
vee 49 I -) ~l~f.f

EXPAHSION HEADERS

DD(e:31> 13.4.5.61
I PI

5

11

I}

l§

17 ~ §

L~

-,?~

,,;1tl ~I::,
I I ;"~OWtAN .7~~T; B8tP.;~~:----c"'m'G-..o;5~~397 --

l ____ ". ____ ' __ ;: _____ '~ --- --- l5:UE n~TE _ s~~~.:.~~=';="= - - 3HEET i-~?

VI
w
tv

;;l
~

~
~
N
C a
c

~
'5

~
~o

~
~

~
;:::

'"' §"
E?.

~
'"'
'6 0

§"

[On CA<8: 23>

CA0
AS257

CA8 3
,.

CA 1 5 " CA 10 6 2.

~ 11 2.

~n .. -"2''.3.''.L .. _.L~L
10 3A
14 3B
13 4A

1 4'
15 SEL

oc
UAl

Elf'·
AS257 ,.

CA4
,.

-CAl~ 2.
Ci-i~S-- 11 2.

~~~~~H 14 .- 10 -3A 
14 31:1 
13 4A . 

~-~'-~-~~ 1 4 • 

__ -.!...5 SEL 
oc 

UA2 

C.6 2 
AS257 

CA 15 3 
,. 

~ 5 lB 

-------cAi6 6 2. 
~-- 11 2. 

CA I? 10 3A 
14 3B 
13 4A 

POWSEL 1 4B 
16 SEL 

oc 
UA3 

I 
-, : I -L. __ 2 ___ •.. L._. .... I 

1~ '33 MA. 

2'1 
.4 i1A1 

11A 2 

" 
4,/112 

r~::j± 

" 
2~ I- §]t" MH3 ~~~ ·.··.4·MA4 I 3~_.;'~ L_~_ 5 . 8---

" 112 

19 '1._7 -
RH2 

L-.. 

1~ '331~ MA 6 
l1""A7 

2' 01A8 

3' 

4':.:' 112 J 7[§t..-

I1A<8:B> [3 0 4.5.61 

ADDRESS NUX 

T. COLEMAN €I8-16.-88 B 000ae 2SS4397 

:51ZE FSCM 1'10 ---rR;;;;<:Hi"iG"'fiO-- ---- . 

~"~__ --.------------ SCA~_~_ 2 - _'~=·~~_=_~=~I-~-;~~·~~~- B8 

·l"'" _ :4' 



TMS320 Bibliography 

Since the TMS32010 was disclosed in 1982, the TMS320 family has received an ever-in­
creasing amount of recognition. The number of outside parties contributing to the extensive devel­
opment support offered by Texas Instruments is rapidly growing. Many technical articles are being 
written about TMS320 applications in the field of digital signal processing. 

The following articles and papers have been published since 1982 regarding the Texas Instru­
ments TMS320 Digital Signal Processors. Readers who are interested in gaining further informa­
tion about these processors and their applications may obtain copies of these articles/papers from 
their local or university library. 

The articles are broken down into 12 different application categories. Articles in each catego­
ry are in reverse chronological order (most recent first). Articles having the same publication date 
are shown in alphabetical order by authors name. 

The application categories are: 
1) General Purpose DSP 
2) Graphics/Imaging 
3) Instrumentation 
4) Voice/Speech 
5) Control 
6) Military 
7) Telecommunications 
8) Automotive 
9) Consumer 
10) Industrial 
11) Medical 
12) Development Support 

General Purpose DSP 
1) R. Chassaing, "A Senior Project Course in Digital Signal Processing with the TMS320," 

IEEE Transactions on Education, USA, Volume 32, Number 2, pages 139-145, May 
1989. 

2) P.E. PapamichaIis, C.S. Burrus, "Conversion of Digit-Reversed to Bit-Reversed Order 
in FFT Algorithms," Proceedings of ICASSP 89, USA, pages 984-987, May 1989. 

3) P.E. Papamichalis, "Application, Progress and Trends in Digital Signal Processing," 
Proceedings of Mikroelktronik Conference, Baden-Baden, March 1989. 

4) R. Chassaing, "Adaptive Filtering with the TMS320C25 Digital Signal Processor," Pro­
ceedings of 1989 ASEE Conference, USA, pages 215-217, 1989. 

5) P.E. Papamichalis, R. Simar, Jr., "The TMS320C30 Floating-Point Digital Signal Pro­
cessor," IEEE Micro Magazine, USA, pages 13-29, December 1988. 

6) K. Rogers, "The Real-Time Thing (Digital Signal Controller)," Electronic Engineering 
Times, USA, Number 506, page 85, October 1988. 

7) P.E. Papamichalis, "Impact of DSP Devices on Fast Algorithms," Proceedings of the 
·1988 IEEE DSP Workshop, USA, September 1989. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 533 



534 

8) G. Umamaheswari, e. Eswaran, A Jhunjhunwala, "Signal Processing with a Dual-Bank 
Memory," Microprocessor Microsystems, Great Britain, Volume 12, Number 4, pages 
206-210, May 1988. 

9) G. Castellini, P. Luigi, E. Liani, L. Pierucci, F. Pirri, S. Rocchi, "A Multiprocessor Struc­
ture Based on Commercial DSP," Proceedings of ICASSP 88, USA, Volume V, page 
2096, April 1988. 

10) M.R. Civanlar, R.A Nobakht, "Optimal Pulse Shape Design Using Projections onto 
Convex Sets," Proceedings of ICASSP 88, USA, Volume D, p. 1874, April 1988. 

11) L.1. Eriksson, M.e. Allie, e.D. Bremigan, R.A Greiner, "Active Noise Control Using 
Adaptive Digital Signal Processing," Proceedings oflCASSP 88, USA, Volume A, page 
2594, April 1988. 

12) G. Mirchandani, D.D. Ogden, "Experiments in Partitioning and Scheduling Signal Pro­
cessing Algorithms for Parallel Processing," Proceedings of ICASSP 88, USA, Volume 
D, page 1690, April 1988. 

13) P. Papamichalis, "FFf Implementation on the TMS320C30," Proceedings of ICASSP 
88, USA, Volume D, page 1399, April 1988. 

14) Ae. Rotger-Mora, "An N-Dimensional SIMD Ring Architecture for Implementing 
Very Large Order Adaptive Digital Filters," Proceedings of ICASSP 88, USA, Volume 
V, page 2140, April 1988. 

15) J. Santos, J. Parera, M. Veiga, "A Hypercube Multiprocessor for Digital Signal Process­
ingAlgorithm Research," Proceedings ofICASSP 88, USA, Volume D, page 1698, April 
1988. 

16) R. Simar, A Davis, "The Application of High-Level Languages to Single-Chip Digital 
Signal Processors," Proceedings ofICASSP 88, USA, Volume D, page 1678, April 1988. 

17) K. Bala, "Running on Embedded Power. (Dedicated 32-Bit Microprocessors Used in 
New Microcontrollers)(Technology Trends: Microprocessors and Peripherals)," Elec­
tronic Engineering Times, USA, Number 478, page 34, March 1988. 

18) J. Cooper, "DSP Chip Speeds VME Transfer," ESD: Electronic Systems Design, USA, 
Volume 18, Number 3, pages 47,48,50,51, March 1988. 

19) L. Vieira de Sa, F. Perdigao, "A Microprocessing System for the TMS32020," Micropro­
cessing Microprogramming, Netherlands, Volume 23, Number 1-5, pages 221-225, 
March 1988. 

20) G. Wade, "Offset FFf and Its Implementation on the TMS320C25 Processor," Micro­
processing Microsystems, Great Britain, Volume 12, Number 2, pages 76-82, March 
1988. 

21) R. Chassaing, "Digital Broadband Noise Synthesis by Multirate Filtering Using the 
TMS320C25," Proceedings of 1988 ASEE Conference, USA, pages 394-397, 1988. 

22) R. Chassaing, "A Senior Project Course on Applications in Digital Signal Processing 
with the TMS320," Proceedings of 1988ASEE Conference, USA, pages 354-359,1988. 

23) L.N. Bohs, R.e. Barr, "Real-Time Adaptive Sampling with the Fan Method," Proceed­
ings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology 
Society, USA, Volume 4, pages 1850-1851, November 1987. 

24) T. Kimura, Y. Inabe, T. Hayashi, K. Uchimura, K. Hamazato, "Dual-Chip SLIC Using 
VLSI Technology," Conference Record of GLOBE COM Tokyo '87, Volume 3, pages 
1766-1770, November 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



25) W.S. Gass, R.T. Tarrant, T. Richard, B.I. Pawate, M. Gammel, P.K. Rajasekaran, R.H. 
Wiggins, C.D. Covington, "Multiple Digital Signal Processor Environment for Intelli­
gent Signal Processing," Proceedings of the IEEE, USA, Volume 75, Number 9, pages 
1246-1259, September 1987. 

26) L. Johnson, R. Simar, Jr., "A High Speed Floating Point DSP," Conference Record of 
MIDCON/87, USA, pages 396-399, September 1987. 

27) K.S. Lin, G.A. Frantz, R.Simar, Jr., "The TMS320 Family of Digital Signal Processors," 
Proceedings of the IEEE, USA, Volume 75, Number 9, pages 1143-1159, September 
1987. 

28) S.L. Martin, "Wave of Advances Carry DSPs To New Horizons. (Digital Signal Process­
ing)," Computer Design, USA, Volume 26, Number 17, pages 69-82, September 1987. 

29) C. Murphy, A. Coats, J. Conway, P. Colditz, P. Rolfe, "Doppler Ultrasound Signal Anal­
ysis Based on the TMS320 Signal Processor," 27thAnnuai Scientific Meeting of the Bio­
logical Engineering Society, Great Britain, Volume 10, Number 2, pages 127-129, Sep­
tember 1987. 

30) G.S. Kang, L.J. Fransen, "Experimentation With An Adaptive Noise-Cancellation Fil­
ter," IEEE Transactions on Circuits and Systems, USA, Volume CAS-34, Number 7, 
pages 753-758, July 1987. 

31) R. Chassaing, "Applications in Digital Signal Processing with the TMS320 Digital Sig­
nal Processor in an Undergraduate Laboratory," Proceedings of the 1987 ASEEAnnual 
Conference, USA, Volume 3, pages 1320-1324, June 1987. 

32) D. W. Horning, "An Undergraduate Digital Signal Processing Laboratory," Proceedings 
of the 1987 ASEE Annual Conference, USA, Volume 3, pages 1015-1020, June 1987. 

33) D. Locke, "Digitising In The Gigahertz Range," lEE Colloguium on Advanced AID 
Conversion Techniques, Great Britain, Digest Number 48, 10/1-4, April 1987. 

34) S. Orui, M. Ara, Y. Orino, E. Sazuki, H. Makino, "Realization of IIR Filter using the 
TMS320," Resident Reports of Kogakuin University, Japan, Number 62, pages 
195-204, April 1987. 

35) R. Simar, T. Leigh, P. Koeppen, 1. Leach, 1. Potts, D. Blalock, "A 40 MFLOPS Digital 
Signal Processor: The First Supercomputer on a Chip," Proceedings of ICASSP 87, 
USA, Catalog Number 87CH2396--0, Volume 1, pages 535-538, April 1987. 

36) R. Simar, "TMS320: Texas Instruments Family of Digital Signal Processors," Proceed­
ings of SPEECH TECH 87, USA, pages 42-47, April 1987. 

37) G.Y. Tang, B.K. Lien, "A Multiple Microprocessor System For General DSP Opera­
tion," Proceedings of ICASSP 87, USA, Catalog Number 87CH2396-O, Volume 2, 
pages 1047-1050, April 1987. 

38) L. Vieira de Sa, "Second MicroProcessor Enhances TMS32020 System," EDN: Elec­
tronic Design News, USA, Volume 32, Number 9, pages 230-232, April 1987. 

39) T.J. Moir, T.G. Vishwanath, D.R. Campbell, "Real-Time Self-Tuning Deconvolution 
Filter and Smoother," Internationallournal of Control, Great Britain, Volume 45, Num­
ber 3, pages 969-985, March 1987 

40) R. Simar, M. Hames, "CMOS DSP Packs Punch of a Supercomputer," EDN: Electronic 
Design News, USA, Volume 35, Number 7, pages 103-106, March 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 535 



536 

41) S. Sridharan, "On Improving the Performance of Digital Filters Designed Using the 
TMS32010 Signal Processor," Journal of Electrical and Electronic Engineers of Aus­
tralia, Australia, Volume 7, Number 1, pages 80--82, March 1987. 

42) R. McCammon, "Software Routine Probes TMS32010 Code," EDN: Electronic Design 
News, USA, Volume 32, Number 4, pages 200,202, February 1987. 

43) J. Prado, R. Alcantara, "A Fast Square-Rooting Algorithm Using A Digital Signal Pro­
cessor," Proceedings of IEEE, USA, Volume 75, Number 2, pages 262-264, February 
1987. 

44) T.G. Vishwanath, D.R. Camppbell, TJ. Moir, "Real-Time Implementation Using a 
TMS32010 Microprocessor," IEEE Transactions on Industrial Electronics, USA, Vol­
ume 1E-34, Number 1, pages 115-118, February 1987. 

45) R Chassaing, "Applications in Digital Signal Processing with the TMS320 Digital Sig­
nal Processor in an Undergraduate Laboratory," Proceedingsof1987 ASEE Conference, 
OSA, pages 1320--1324, 1987. 

46) R.M, Sovacool, "EPROM Enhances TMS32020 Mu C's Memory," EDN: Electronic 
Design News, USA, Volume 32, Number 1, page 231,1987. 

47) F. Kocsis, F. Marx, "Fast DFT Modules For The TMS32010 Digital Signal Processor," 
Meres and Automation, Hungary, Volume 35, Number 1, pages 6-11,1987. 

48) Y.v.V.S. Murty, W.J. Smolinski, "Digital Filters for Power System Relaying," Interna­
tional Journal of Energy Systems, USA, Volume 7, Number 3, pages 125-129, 1987. 

49) S. Wang, "The TMS32010 High Speed Processor and Its Applications," Mini-Micro 
Systems, China, Volume 8, Number 3, pages 24-32, 1987. 

50) G.A. Frantz, K.S. Lin, J.B. Reimer, J. Bradley, "The Texas Instruments TMS320C25 
Digital Signal Microcomputer," IEEE Microelectronics, USA, Volume 6, Number 6, 
pages 10--28, December 1986. 

51) P. Renard, "ND Converters: The Advantage of a Mixture of Techniques," Mesures, 
France, Volume 51, Number 16, pages 80--81, December 1986. 

52) M. Ara, E. Suzuki, "Design of Real Time Filter Using DSP," Resident Reports ofKoga­
kuin University, Japan, Number 61, pages 115-127 October 1986. 

53) 1. Reidy, "Connection of a 12-Bit ND Converter to Fast DSPs/' Electronik, Germany, 
Volume 35, Number 22, pages 132-134, October 1986. 

54) G.R.Steber, "Implementation of Adaptive Filters on the TMS32010 DSP Microcom­
puter," Proceedings of IECON 86, Catalog Number 86CH2334-1, Volume 2, pages 
653-656, September/October 1986. 

55) D. Collins, M.A. Rahman, "Digital Filter Design Using The TMS320 Digital Signal 
Processor," Proceedings of EUSIPCO-86, Volume 1pages 163-166, September 1986. 

56) R. Simar, Jr., J.B. Reimer, "TheTMS320C25: A 100 ns CMOS VLSI Digital Signal Pro­
cessor," 1986 Workshop on Applications of Signal Processing to Audio and Acoustics, 
September 1986. 

57) 1. pudas, A. Stipkovits, E. Simonyi, "On The recursive Momentary Discrete Fourier 
Transform," Proceedings ofEUSIPCO-86, Volume 1, pages 303-306, September 1986. 

58) E. Feder, "Digital Signal Processor - General Purpose or Dedicated? ," Electronics In­
dustry, France, Number 111, pages 74-82,September 1986. 

59) K. Herberger, "The Use of Signal Processors For Simulating Data Circuits," Proceed­
ings of EUSIPCO-86, Volume 2, pages 1109-1112, September 1986. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



60) K. Kassapoglou, P. Hulliger, "Implementation of Recursive Least Squares Identification 
Algorithm on The TMS320," Proceedings of EUSIPCO-86, Volume 2, pages 
1263-1266, September 1986. 

61) G. Lucioni, "General Processor Application; CAD Tool For Filter Design," Proceedings 
of EUSIPCO-86, Volume 2, pages 1335-1338, September 1986. 

62) R. Schapery, "A lO-MIP Digital Signal Processor From Texas Instruments," Conference 
Record of Midcon 86, USA, 112/1-11, September 1986. 

63) "DSP Microprocessors," Inf. Elettronica, Italy, Volume 14, Number 7-8, pages 21-28, 
64) R.L. Barnes, S.H. Ardalan, "Multiprocessor Architecture For Implementing Adaptive 

Digital Filters," Conference Record ofICC-86, Catalog Number 86CH2314-3, Volume 
1, pages 180-185, June 1986. 

65) AD.E. Brown, "EPROMS Simplify TMS32010 Memory System," EDN: Electronic 
Design News, USA, Volume 31, Number 13, page 230, June 1986. 

66) T. Kolehamainen, T. Saramaki, M. Renfors, Y. Neuvo, "Signal Processor Implementa­
tion of Computationally Efficient FIR Filter Structures-Theory and Practice," 2ndNor­
dic Symposium on VLSI in Computers and Communications, 10 pages, June 1986. 

67) T.G. Marshall Jr.,"Transform Methods For Developing Parallel Algorithms For Cy­
clic-Block Signal Processing," Conference Record of ICC-86, Catalog Number 
86CH2314-3, Volume 1, pages 288-294, June 1986. 

68) S. Abiko, M. Hashizume, Y. Matsushita, K. Shinozaki, T. Takamizawa, C. Erskine, S. 
Magar, "Architecture and Applications of a 100-ns CMOS VLSI Digital Signal Proces­
sor," Proceedings ofICASSP 86, USA, Catalog Number 86CH2243-4, Volume 1, pages 
393-396., April 1986. 

69) T.P. Barnwell, "Algorithm Development and Multiprocessing Issues for DSP Chips," 
Proceedings of Speech Technology 86, April 1986. 

70) W. Gass, "TMS32020 - The Quick and Easy Solution to DSP Problems," Proceedings 
of Speech Technology 86, April 1986. 

71) M. Hashizume, S. Abiko, Y. Matsushita, K. Shinozaki,T. Takamizawa, S. Magar, J. 
Reimer, "A 100-ns CMOS VLSIDigital Signal Processor Using Double Level Metal 
Structure," Semiconductor Group 1986 Technical Meeting, April 1986. 

72) R.E. Morley, AM. Engebretson, and J.G. Trotta, "A Multiprocessor Digital Signal Pro­
cessing System for Real-Time Audio Applications," IEEE Transactions on Acoustics, 
Speech and Signal Processing, USA, Volume ASSP-34, Number 2, April 1986. 

73) S.G. Smith, A Fitzgerald, P.B. Denyer, D. Renshaw, N.P. Wooten, R. Creasey, "A Com­
parison of Micro-DSP And Silicon Compiler Implementations of a Pol yphase-Network 
Filter Bank," Proceedings of ICASSP 86, USA, Catalog Number 86CH2243-4, Volume 
3, pages 2207-2210, April 1986. 

74) J. Reimer, M. Hames, "Next Generation CMOS Chip Stakes High-Performance Claim 
on lO-MIPS DSP Operations," Electronic Design, USA, Volume 34, Number 8, pages 
141-146, April 1986. 

75) w.w. Smith, "Playing to Win: Product Development with the TMS320 Chip," Speech 
Technology Magazine, March/April1986. 

76) D. Essig, C. Erskine, E. Caudel, and S. Magar, "A Second-Generation Digital Signal 
Processor," IEEE Journal of Solid-State Circuits, USA, Volume SC-21, Number 1, 
pages 86-91, February 1986. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 537 



538 

77) W.K Anakwa, T.L. Stewart, "TMS320 Microprocessor-Based System For Signal Pro­
cessing," Proceedings of the ISMM International Symposium, pages 64-65, February 
1986. 

78) M. Orrienzetter, "Universal Signal Processors Offers High Data Throughput," Electro­
nik, Germany, Volume 35, Number 4, pages 71-77, February 1986. 

79) P.P. Regamey, "Matched Filtering Using a Signal Microprocessor TMS320," Mitt. 
AGEN, Switzerland, Number 42, pages 31-35, February 1986. 

80) "TI Set To Show 2nd-Generation DSP," Electronics, USA, pages 23-24, February 3, 
1986. 

81) "TI Preps CMOS Versions of Signal-Processor Chips," Electronics Engineering Times, 
USA, page 6, February 3, 1986. 

82) D. Wilson, "Digital Signal Processing Moves on Chip," Digital Design, USA, Volume 
16, Number 2, pages 33-34, February 1986. 

83) "TI Chip Heads for Fast Lane of Digital Signal Processing," Electronics, USA, page 9, 
January 27,1986. 

84) R.D. Campbell andS.R. McGeoch, "TheTMS32010 Digital Signal Processor-An Edu­
cational Viewpoint," Internationall ournalfor ElectricalEngineering Education, Great 
Britain, Volume 23, Number 1, pages 21-31, January 1986. 

85) P. Eckelman, "The Cascadable Signal Processor For Digital Signal Processing," Elec­
tronics Industry, Germany, Volume 17, Number 10, pages 26--27, 1986. 

86) R. Cook, "Digital Signal Processors," High Technology, USA, Volume 5, Number 10, 
pages 25-30, October 1985. 

87) c.P. Howard, "A High-Level Approach to Digital Processing Design," Proceedings of 
MILCOMP/85, USA, October 1985. 

88) H.E. Lee, "Versatile Data-Acquisition System Based on the Commodore C-64/C-128 
Microcomputer," Proceedings of the Symposium of Northeastern Accelerator Person­
nel, USA, Volume 57, Number 5, pages 983-985, October 1985. 

89) N.K Riedel, D.A. McAninch, C. Fisher, and N.B. Goldstein, "A Signal Processing Im­
plementation for an IBM PC-Based Workstation," IEEE Micro, USA, Volume 5, Num­
ber 5, pages 52-67, October 1985. 

90) KE. Marrin, "VLSI and Software Move DSP Into Mainstream," Computer Design, 
USA, Volume 24, Number 9, pages 69-72, September 1985. 

91) "Signal Processor ICs: Highly Integrated ICs Making DSP More Attractive," Electron­
ics Engineering Times, USA, pages 37-38, September 2,1985. 

92) KE. Marrin, "VLSI and Software Move DSP Techniques into Mainstream," Computer 
Design, USA, September 1985. 

93) "High-Speed Four-Channel Input Board," Electronics Weekly, USA, Number 1277, p. 
31, July 24, 1985. 

94) "4-ChanneIAnalog-Input Board Puts Signal-Processing on VMFBus," EDN: Electron­
ic Design News, USA, Volume 30, Number 17, page 74, July 1985. 

95) R.H. Cushman, "Third-Generation DSPs Put Advanced Functions On-Chip," EDN: 
Electronic Design News, USA, July 1985. 

96) w.w. Smith, Jr., "Agile Development System, Running on PCs, Builds TMS320-Based 
FIR Filter," Electronic Design, USA, Volume 33, Number 13, pages 129-138, June 6, 
1985. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



97) S. Magar, SJ. Robertson, and W. Gass, "Interface Arrangement Suits Digital Processor 
to Multiprocessing," Electronic Design, USA, Volume 33, Number 5, pages 189-198, 
March 7, 1985. 

98) G. Kropp, "Signal Processor Offers Multiprocessor Capability," Elektronik, Germany, 
Volume 34, Number 6, pages 53-58, March 1985. 

99) S. Magar, D. Essig, E. Caudel, S. Marshall and R. Peters, "An NMOS Digital Signal 
Processor with Multiprocessing Capability," Digest of IEEE International Solid-State 
Circuits Conference, USA, February 1985. 

100) "TI 'Shiva' Chip Outlined," Electronics Engineering Times, USA, page 15, February 
18,1985. 

101) S. Magar, E. Caudel, D. Essig, and C. Erskine, "Digital Signal Processor Borrows from 
P to Step up Performance, Electronic Design, USA, Volume 33, Number 4, pages 
175-184, February 21, 1985. 

102) C. Erskine, S. Magar, E. Caudel, D. Essig, and A. Levinspuhl, "A Second-Generation 
Digital Signal Processor TMS32020: Architecture and Applications," Traitement de 
Signal, France, Volume 2, Number 1, pages 79-83, January-March 1985 .. 

103) S. Baker, "TI 'Shiva' Chip Outlined," Electronic Engineering Times, USA, Number 
317, page 15,February 1985. 

104) S. Baker, "Silicon Bits," Electronic Engineering Times, USA, Number 316, page 42, 
February 1985. 

105) H. Bryce, "Board Arrives For Digital Signal Processing on the VMEbus," Electronic 
Design, USA, Volume 33, Number 2, page 266,1985. 

106) K. Marrin, "VME-Compatible DSP System Incorporates TMS320 Chip," EDN: Elec­
tronic Design News, USA, Volume 30, Number 2, page 122, January 1985. 

107) C. Erskine and S. Magar, "Architecture and Applications of A Second-Generation 
Digital Signal Processor," Proceedings of IEEE International Conference on Acous­
tics, Speech, and Signal Processing, USA, 1985. 

108) D.P. Morgan and H.E Silverman, "An Investigation into the Efficiency of a Parallel 
TMS320 Architecture: DFT and Speech Filterbank Applications," Proceedings of 
IEEE International Conference on Acoustics, Speech, and Signal Processing, USA, 
Volume 4, pages 1601-1604, 1985. 

109) P. Harold, "VME Bus Meeting Sparks Change in Standard, New Products," EDN: 
Electronic Design News, USA, Volume 29, Number 26, page 18, December 1984. 

110) W. Loges, "A Code Generator Sets up the Automatic Controller Program for the 
TMS320," Elektronik, Germany, Volume 33, Number 22, pages 154-:-158, November 
1984. 

111) H. Volkers, "Fast Fourier Transforms with the TMS320 as Coprocessor," Elektronik, 
Germany, Volume 33, Number 23, pages 109-112, November 1984. 

112) Keun-Ho Ryoo, "On the Recent Digital Signal Processors," Journal of South Korean 
Institute of Electrical Engineering, South Korea, Volume 33, Number 9, pages 
540-549, September 1984. 

113) D. Wilson, "Editor's Comment," Digital Design, USA, Volume 14, Number 9, page 
14, September 1984. 

114) "Signal Processors Will Squeeze Into One Chip, Says TI's French," Electronics, USA, 
Volume 57, Number 9, pages 14,20, May 1984. 

Digital Signal Processing Applications with the TMS320 Family, Va!. 3 539 



540 

115) S. Mehrgardt, "32-Bit Processor Produces Analog Signals," Elektronik, Germany, Vol­
ume 33, Number 7, pages 77-82, April 1984. 

116) S. Magar, "Signal Processing Chips Invite Design Comparisons," Computer Design, 
USA, Volume 23, Number 4, pages 179-186, April 1984. 

117) S. Mehrgardt, "General-Purpose Processor System for Digital Signal Processing," 
Elektronik, Germany, Volume 33, Number 3, pages 49-53, February 1984. 

118) T. Durham, "Chips: Familiarity Breeds Approval," Computing, Great Britain,page 26, 
January 1984. 

119) J. Bradley and P. Ehlig, "Applications of the TMS32010 Digital Signal Porcessor and 
Their Tradeoffs," Midcon/84 Electronic Show and Convention, USA, 1984. 

120) 1. Bradley and P. Ehlig, "Tradeoffs in the Use ofthe TMS32010 as a Digital Signal Pro­
cessing Element," Wescon/84 Conference Record, USA, 1984. 

121) E. Fernandez, "Comparison and Evaluation of 32-Bit Microprocessors," Mini/Micro 
Southeast Computer Conference and Exhibition, USA, 1984. 

122) D. Garcia, "Multiprocessing with the TMS3201O," Wescon/84 Conference Record, 
USA,1984. 

123) S. Magar, "Architecture and Applications of a Programmable Monolithic Digital Sig­
nal Processor - A Tutorial Review," Proceedings of IEEE International Symposium 
on Circuits and Systems, USA, 1984. 

124) D. Quarmby (Editor), "Signal Processor Chips," Granada, England 1984. 
125) R. Steves, "A Signal Processor with Distributed Control and Multidimensional Scal­

ability," Proceedings of IEEE NationalAerospace and Electronics Conference, USA, 
1984. 

126) V. Vagarshakyan and L. Gustin, "On A Single Class of Continuous Systems - A Solu­
tion to the Problem on the Diagnosis of Output Signal Characteristics Recognition Pro­
cedures," IZV. AKAD. NAUK ARM. SSR, SER. TEKH. NAUK, USSR, Volume 37, 
Number 3, pages 22-27,1984. 

127) 1. So, "TMS320 - A Step Forward in Digital Signal Processing," Microprocessors and 
Microsystems, Great Britain, Volume 7, Number 10, pages 451-460, December 1983. 

128) 1. Elder and S. Magar, "Single-Chip Approach to Digital Signal Processing," Wes­
con/83 Electronic Show and Convention, USA, November 1983. 

129) M. Ma1cangi, "VLSI Technology for Signal Processing. III," Elettronica Oggi, Italy, 
Number 11, pages 129-138, November 1983. 

130) P. Strzelcki, "Digital Filtering," Systems International, Great Britain, Volume 11, 
Number 11, pages 116-117, November 1983. 

131) W. Loges, "Digital Controls Using Signal Processors," Elektronik, Germany, Volume 
32, Number 19, pages 51-54, September 1983. 

132) "TI's Voice Chip Makes Debut," Computerworld, USA, Volume 17, Number 15, page 
91, April 1983. 

133) L. Adams, "TMS320 Family 16/32-Bit Digital Signal Processor, An Architecture for 
Breaking Performance Barriers," Mini/Micro West 1983 Computer Conference and 
Exhibition, USA, 1983. 

134) R. Blasco, "Floating-Point Digital Signal Processing Using a Fixed-Point Processor," 
Southcon/83 Electronics Show and Convention, USA, 1983. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



135) R. Dratch, "A Practical Approach to Digital Signal Processing Using an Innovative 
Digital Microcomputer in Advanced Applications," Electro '83 Electronics Show and 
Convention, USA, 1983. 

136) C. Erskine, "New VLSI Co-Processors Increase System Throughput," Mini/Micro 
Midwest Conference Record, USA, 1983. 

137) L. Kaplan, "Flexible Single Chip Solution Paves Way for Low Cost DSP," North­
con/83 Electronics Show and Convention, USA, 1983. 

138) L. Kaplan, "The TMS3201O: A New Approach to Digital Signal Processing," Electro 
'83 Electronics Show and Convention, USA, 1983. 

139) S. Mehrgardt, "Signal Processing with a Fast Microcomputer System," Proceedings 
ofEUSIPCO-83 Second European Signal Processing Conference, Netherlands, 1983. 

140) L. Morris, "A Tale of Two Architectures: TI TMS 320 SPC VS. DEC Micro/J-ll," 
Proceedings of IEEE International Conference on A coustics, Speech and Signal Pro­
cessing, USA, 1983. 

141) L. Pagnucco and D. Garcia, "A 16/32 Bit Architecture for Signal Processing," Mini/ 
Micro West 1983 Computer Conference and Exhibition, USA, 1983. 

142) 1. Potts, "A Versatile High Performance Digital Signal Processor," Ohmcon/83 Con­
ference Record, USA, 1983. 

143) J. Potts, "New 16/32-Bit Microcomputer Offers 200-ns Performance," Northcon/83 
Electronics Show and Convention, USA, 1983. 

144) R. Simar, "Performance of Harvard Architecture in TMS320," Mini/Micro West 1983 
Computer Conference and Exhibition, USA, 1983. 

145) K. McDonough, E. Caudel, S. Magar, and A. Leigh, "Microcomputer with 32-Bit 
Arithmetic Does High-Precision Number Crunching," Electronics, USA, Volume 55, 
Number 4, pages 105-110, February 1982. 

146) K. McDonough and S. Magar, "A Single Chip Microcomputer Architecture Optimized 
for Signal Processing," Electro/82 Conference Record, USA, 1982. 

147) L. Kaplan, "Signal Processing with the TMS320 Family," Midcon/82 Conference Re­
cord, USA, 1982. 

148) S. Magar, "Trends in Digital Signal Processing Architectures," Wescon/82 Conference 
Record, USA, 1982. 

Graphics/Imaging 
1) J.A. Lindberg, "Color Cell Compression Shrinks NTSC Images," ESD: Electronic Sys-

tems Design Magazine, USA, Volume 17, Number 10, pages 91-96, October 1987 
2) S. Ganesan, "A Digitial Signal Processing Microprocessor Based Workstation For My­

oelectric Signals," Fifth International Conference on System Engineering, USA, Cata­
log Number 87CH2480-2, pages 427-438, September 1987. 

3) JU. Pokovny, O. Skoloud, "Digitisation of a Video Signal From a Television For a Mi­
crocomputer," Sdelovaci Tech., Czechoslovakia, Volume 35, Number 6, pages 207-211, 
June 1987. 

4) M.E. Bukaty, "A Vehicle Identification System For Surveillance Applications," Topical 
Meeting on Machine Vision. Technical Digest Series, USA, Volume 12, pages 106-109, 
March 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 541 



5) KN. Ngan, AA Kassim, H.S. Singh, "Parallel Image-Processing System Based on 
THe TMS32010 Digital Signal Processor," lEE Proceedings in Electronics, Great Brit­
ain, Volume 134, Number 2, pages 119-124, (March 1987. 

6) KN. Ngan, AA Kassim, H. Singh, "A TMS32010-Based Fast Parallel Vison Proces­
sor," Proceedings ofthe1nternational Workshop on IndustrialApplications of Machine 
Vision and Machine Intelligence, Catalog Number 87THOI66-9, pages 156-161, Feb­
ruary 1987. 

7) P. Bellamah, "Hardware-Software Increases Video Storage Capacity," PC Week, USA, 
Volume 4, Number 4, page 15, January 271987. 

8) 1.M. Younse, "Motion Detection Using the Statistical Properties of a Video Image," Pro­
ceedings of SPIE International Society of Optical Engineering, USA, Volume 697, 
pages 233-243, August 1986. 

9) T. Gehrels, B.G. Marsden, R.S. McMillan, J.Y. Scotti, "Astrometry With a Scanning 
CCD," Astronomylournal, USA, Volume 91, Number 5, pages 1242-1248, May 1986. 

10) S. Srinivasan, AK Jain, T.M. Chin, "Cosine Transform Block CodecFor Images Using 
TMS3201O," IEEE International Symposium on Circuits and Systems, USA, Catalog 
Number 86CH2255-8, Volume 1, pages 299-302, May 1986. 

11) D.M. Holburn and I.D. Sommerville, "A High-Speed Image Processing System Using 
the TMS32010," Software and Microsystems, Great Britain, Volume 4, Number 5-6, 
pages 102-108, October-December 1985. 

12) C. D. Crowell and R. Simar, "Digital Signal Processor Boosts Speed of Graphics Dis­
play Systems," Electronic Design, USA, Volume 33, Number 7, pages 205-209, March 
1985. 

13) 1. Reimer and A Lovrich, "Graphics with the TMS32020," WESCON/85 Conference 
Record, USA, 1985. 

14) H. Megal and A Heiman, "Image Coding System - A Single Processor Implementa­
tion," MILCOM/85 IEEE Military Communications Conference Record, USA, 1985. 

15) G. Gaillat, "The CAPITAN Parallel Processor: 600 MIPS for Use in Real Time Imag­
ery," Traitement de Signal, France, Volume 1, Number 1, pages 19-30, October-Decem­
ber 1984. 

Instrumentation 

542 

1) G.R. Halsall, D.R. Burton, M.J. Lalor, C.A Hobson, "A Novel Real-Time Opto-Elec-
tronic Profilometer Using FFT Processing," Proceedings of ICASSP 89, USA, pages 
1634--1637, May 1989. 

2) AJ. Pratt, R.E. Gander, B.R. Brandell, "Real-Time Median Frequency Estimator," Pro­
ceedings of the NinthAnnual Conference of the IEEE Engineering in Medicine andBiol­
ogy Society, USA, Volume 4, pages 1840-1841, November 1987. 

3) D.Y. Cheng, A Gersho, "A Fast Codebook Search Algorithm For Nearest-Neighbor 
Pattern Matching," Proceedings of ICASSP 86, USA, Catalog Number 86CH2243-4, 
Vall, pages 265-268, April 1986. 

4) Y. Chikada, M. Ishiguro, H. Hirabayashi, M. Morimoto, K Morita, T. Kanazawa, H. 
Iwashita, K Nakazima, S. Ishikawa, T. Takahashi, K Handa, T.Kazuga, S. Okumura, 
T. Miyazawa, K Miura, S. Nagasawa, "A Very Fast FFT Spectrum Analyzer For Radio 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



Astronomy," Proceedings ofICASSP 86, USA, Catalog Number 86CH2243-4, Volume 
4, pages 2907-2910, April 1986. 

5) R.C. Wittenberg, "Four Microprocessors Power Multifunction Analyzer," Electronic 
Engineering Times, USA, Number 306, page 30, November 1984. 

6) D. Lee, To. Moran, and R. Crane, "Practical Considerations for Estimating Flaw Sizes 
from Ultrasonic Data," MaterialsEvaluation, Volume 42, Number 9, pages 1150-1158, 
August 1984. 

7) S. Magar, R. Hester, and R. Simpson, "Signal-Processing c Builds FFT-Based Spectrum 
Analyzer," Electronic Design, USA, Volume 30, Number 17, pages 149-154, August 
1982. 

Voice/Speech 
1) A. Aktas, H. Hoge, "Multi-DSP and VQ-ASIC Based Acoustic Front-End for 

Real-Time Speech Processing Tasks," Proceedings of EUROSPEECH 89, pages 
586-589, September 1989. 

2) D. Bergmann, D. Boillon, F. Bonifacio, R. Breitschadel, "Experimental Speech Input/ 
Output System," Proceedings ofICASSP 89, USA, pages 1138-1141, May 1989. 

3) J. DellaMorte, P.E. Papamichalis, "Full-Duplex Real-Time Implementation of the 
FED-STD-1015 LPC-lOe Standard V.52 on the TMS320C25," Proceedings of 
SPEECH TECH 89, pages 218-221, May 1989. 

4) B.I. Pawate, G.R. Doddington, "Implementation of a Hidden Markov Model-Based 
Layered Grammar Recognizer," Proceedings of ICASSP 89, USA, pages 801-804, May 
1989. 

5) P.E. Papamichalis, "High Quality Speech Coding: Some Recent Algorithms," Proceed­
ings of SPEECH TECH 89, pages 329-333, May 1989. 

6) J.C. Ventura, "Digital Audio Gain Control for Hearing Aids," Proceedings of ICASSP 
89, USA, pages 2049-2052, May 1989. 

7) N. Matsui, H. Ohasi, "DSP-Based Adaptive Control of a Brushless Motor," IEEE I ndus­
try Application Society Annual Meeting, USA, October 1988. 

8) A. Albarello, R. Breitschaedel, A. Ciaramella, E. Lenormand, "Implementation of an 
Acoustic Front-End For Speech Recognition," CSELT Technical Report, Italy, Volume 
16, Number 5, pages 455-459, August 1988. 

9) D. Curl, "Voice Over Data Means More For Your Money," Communications, Great Brit­
ain, Volume 5, Number 8, pages 27-29, August 1988. 

10) H. Hanselman, H. Henrichfreise, H. Hostmann, A. Schwarte, "Hardware/Software En­
vironment for DSP-Based Multivariable Control," 12th. IMACS World Congress, July 
1988. 

11) J.B. Attili, M. Savic, J.P. Campbell, Jr., "A TMS32020-Based Real Time Text-Indepen­
dent, Automatic Speaker Verification System," Proceedings of ICASSP 88, USA, Vol­
ume S, page 599, April 1988. 

12) D. Chase, A. Gersho, "Real-Time VQ Codebook Generation Hardware For Speech Pro­
cessing," Proceedings of ICASSP 88, USA, April 1988. 

13) T. Kohonen, K. Torkkola, M. Shozaki, J. Kangas, O. Venta, "Phonetic Typewriter for 
Finnish and Japanese," Proceedings of ICASSP 88, USA, Volume S, page 607, April 
1988. 

Digital Signal Processing Applications with the TMS320 F amity, Vol. 3 543 



544 

14) I. Lecomte, M. Lever, L. Lelievre, M. Delprat, A Tassy, "Medium Band Radio Commu­
nications," Proceedings of ICASSP 88, USA, April 1988. 

15) J.B. Reimer, KS. Lin, "TMS320 Digital Signal Processors in Speech Applications," 
Proceedings of SPEECH TECH '88, April 1988. 

16) M. Smmendorfer, D. Kopp, H. Hackbarth, "A High-Performance Multiprocessor Sys­
tem for Speech Processing Applications," Proceedings of ICASSP 88, USA, Volume V, 
page 2108, April 1988. 

17) P. Vary, K Hellwig, R. Hoffmann, R.J. Sluyter, C. Garland, M. Russo, "Speech Codec 
for the European Mobile Radio System," Proceedings of ICASSP 88, USA, Volume S, 
page 227, April 1988. 

18) A Hunt, "A Speaker-Independent Telephone Speech Recognition System: The VCS 
TeleRec," Speech Technology, USA, Volume 4, Number 2, pages 80-82, March-April 
1988. 

19) R.A Sukkar, J.L. LoCicero, J .W. Picone, "Design and Implementation of a Robust Pitch 
Detector Based on a Parallel Processing Technique," IEEE J oumal of SeLected Areas 
of Communications, USA, Volume 6, Number 2, pages 441-451, February 1988. 

20) AZ. Baraniecki, "Digital Coding of Speech Algorithms and Architecture," Proceedings 
of IECON '87, November 1987. 

21) G.R. Steber, "Audio Frequency DSP Laboratory on a Chip-TMS32010," Proceedings 
of IE CON '87, Volume 2, pages 1047-1051, November 1987. 

22) S.H. Kim, KR. Hong, H.B. Han, W.H. Hong, "Implementation of Real Time Adaptive 
Lattice Predictor on Digital Signal Processor," Proceedings of TEN CON 87, South Ko­
rea, Volume 3, pages 1131-1135, August 1987. 

23) J.B. Reimer, M.L. McMahan, W.W. Anderson, "Speech Recognition For a Low Cost 
System Using a DSP," Digest of TechnicaL Papers for 1987 InternationaL Conference 
on Consumer ELectronics, June 1987. 

24) A Ciaramella, G. Venuti, "Vector Quantization Firmware For an Acoustical Front-End 
Using the TMS32020," Proceedings of ICASSP 87, USA, Catalog Number 
87CH2396-0, Volume 4, pages 1895-1898, April 1987. 

25) G.A Frantz, KS. Lin, "A Low Cost Speech System Using the TMS320CI7," Proceed­
ings of SPEECH TECH '87, pages 25-29, April 1987. 

26) Z. Gorzynski, "Realtime Multitasking Speech Application on the TMS320," Micropro­
cessors and Microsystems, Great Britain, Volume 11, Number 3, pages 149-156, April 
1987. 

27) P. Papamichalis, D. Lively, "Implementation of the DOD Standard LPC-1O/52E on the 
TMS320C25," Proceedings of SPEECH TECH '87, pages 201-204, April 1987. 

28) B.I. Pawate, M.L. McMahan, R.H. Wiggins, G.R. Doddington, P.K Rajasekaran, "Con­
nected Word Processor on a Multiprocessor System," Proceedings ofICASSP 87, USA, 
Catalog Number 87CH2396-0, Volume 2, pages 1151-1154, April 1987. 

29) S. Roucos, A Wilgus, W. Russell, "A Segment Vocoder Algorithm For Real-Time Im­
plementation," Proceedings of ICASSP 87, USA, Catalog Number 87CH2396-0, Vol­
ume 4, pages 1949-1952, April 1987. 

30) H, Yeh, "Adaptive Noise Cancellation For Speech With a TMS32020," Proceedings of 
ICASSP 87, USA, Catalog Number 87CH2396-0, Volume 2, pages 1171-1174, April 
1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



31) R. Conover, D. Gustafson, "VLSI Architecture For Cepstrum Calculations," 1987 IEEE 
Region 5 Conference, USA, Catalog Number 87CH2383-8, pages 63-64, March 1987. 

32) K. Field, A Derr, L. Cosell, C. Henry, M. Kasner, J. Tiao, "A Single Board Multrate APC 
Speech Coding Terminal," Proceedings of ICASSP 87, USA, Catalog Number 
87CH2396-0, Volume 2, pages 960-963, April 1987. 

33) H. Brehm, W. Stammler, "Description and Generation of Sperically Invariant 
Speech-Model Signals," Signal Processing, Netherlands, Volume 12, Number 2, pages 
119-141, March 1987. 

34) AZ. Baraniecki, "Digital Coding of Speech Algorithms and Architectures," Proceed­
ings of IECON '87, Volume 2, pages 977-984,1987. 

35) B. Flocon, P. Lockwood, J. Sap, L. Sauter, "MARIPA: Speaker Independent Recogni­
tion of Speech on IBM-PC," Eighth International Conference on Pattern Recognition, 
Catalog Number 86CH2342-4, pages 893-895, October 1986. 

36) M.T. Reilly, "A Hybridized Linear Prediction Code Speech Synthesizer," Conference 
Records forMILCOM 86, USA, Catalog Number 86CH2323-4, Volume 2, 32.5/1...:.5, 
October 1986. 

37) K. Torkkola, H. Riittinen, T. Kohonen, "Microprocessor-Based Word Recognizer For 
a Large Vocabulary," Eighth International Conference on Speech Recognition Proceed­
ings, Catalog Number 86CH2342-4, pages 814-816, October 1986. 

38) C.H. Lee, D.Y. Cheng, D.A Russo et aI, "An Integrated Voice-Controlled Voice Mes­
saging System," Proceedings of Speech Technology 86, April 1986. 

39) Kun-Shan Lin and G.A Frantz, "A Survey of Available Speech Hardware for Computer 
Systems," Proceedings of Speech Technology 86, April 1986. 

40) L.R. Morris, "Software Engineering for an IBM pern-SPEECH Realtime Digital 
Speech Spectrogram Production System," Proceedings of Speech Technology 86, April 
1986. 

41) K. Torkkola, H. Riittinen, "A Microprocessor-Based Recognition System For Large Vo­
cabularies," Proceedings ofICASSP 86, USA, Catalog Number 86CH2243-4, Volume 
1, pages 333-337, April 1986.1) 

42) Z. Gorzynski, "Real Time Software Engineering on the TMS320: Application in a Pitch 
Detector Implementation," International Conference on Speech Input/Output; Tech­
niques and Applications, Conference Publication Number 258, pages 270-275, March 
1986. 

43) S. Ganesan, M.O. Ahmad, "A Real Time Speech Signal Processor," Proceedings of the 
ISMM Internal Symposium, pages 4~9, February 1986. 

44) L. Gutcho, "DECtalk-a Year Later," Speech Technology, Volume 3, Number 1, pages 
98-102, August-September 1985. 

45) B. Bryden, H.R. Hassanein, "Implementation of a Hybrid Pitch-Excited/Multipulse Vo­
coder for Cost-Effective Mobile Communications," Proceedings of Speech Technology 
85, April 1985. 

46) M. McMahan, "A Complete Speech Application Development Environment," Proceed­
ings of SPEECH TECH 85, pages 293-295, April 1985. 

47) H.Hassanein and B. Bryden, "Implementation of the Gold-Rabiner Pitch Detector in 
a Real Time Environment Using an Improved Voicing Detector," Proceedings of IEEE 
International Conference on Acoustics, Speech and Signal Processing, USA, 1985. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 545 



546 

48) K. Lin and G. Frantz, "Speech Applications with a General Purpose Digital Signal Pro­
cessor," IEEE Region 5 Conference Record, USA, March 1985. 

49) K. Lin and G. Frantz, "Speech Applications Created by a Microcomputer," IEEE Poten­
tials, USA, December 1985. 

50) M. Malcangi, "Programmable VLSI's for Vocal Signals," Electronica Oggi, Italy, Num­
ber 10, pages 103-113, October 1984. 

51) V. Kroneck, "Conversing with the Computer," Elektrotechnik, Germany, Volume 66, 
Number 20, pages 16-18, October 1984. 

52) P.K.Rajasekaran and G.R. Doddington, "Real-Time Factoring of the Linear Prediction 
Polynomial of Speech Signals," Digital Signal Processing -1984: Proceedings of the 
International Conference, pages 405-410, September 1984. 

53) M. Hutchins and L. Dusek, "Advanced ICs Spawn Practical Speech Recognition," Com­
puter Design, USA, Volume 23, Number 5, pages 133-139, May 1984. 

54) E. Catier, "Listening Cards or Speech Recognition," Electronique Industrielle, France, 
Number 67, pages 72-76, March 1984. 

55) O. Ericsson, "Special Processor Did Not Meet Requirements - Built Own Synthesizer," 
ElteknikAktuell Elektronik, Sweden, Number 3, pages 32-36, February 1984. 

56) H. Strube, "Synthesis Part of a 'Log Area Ratio' Vocoder Implemented on a Signal-Pro­
cessing Microcomputer," IEEE Transactions on A coustics, Speech and Signal Process­
ing, USA, Volume ASSP-32, Number 1, pages 183-185, February 1984. 

57) B. Bryden and H. Hassanein, "Implementation of Full Duplex 2.4 Kbps LPC Vocoder 
on a Single TMS320 Microprocessor Chip," Proceedings of IEEE International Confer­
ence on Acoustics, Speech and Signal Processing, USA, 1984. 

58) M. Dankberg, R. litis, D. Saxton, and P. Wilson, "Implementation ofthe RELP Vocoder 
Using the TMS320," Proceedings of IEEE International Conference on Acoustics, 
Speech and Signal Processing, USA, 1984. 

59) A. Holck and W. Anderson, "A Single-Processor LPC Vocoder," Proceedings of IEEE 
International Cqnference on Acoustics, Speech and Signal Processing, USA, 1984 . 

. 60) N. Morgan, "Talking Chips," McGraw-Hill, 1984. 
61) A. Kumarkanchan, "Microprocessors Provide Speech to Instruments," Journal ofInsti­

tuteofElectronic and TelecommunicationEngineers, India, Volume 29, Number 12, De­
cember 1983. 

62) L. Dusek, T. Schalk, and M. McMahan, "Voice Recognition Joins Speech on Program­
mable Board," Electronics, USA, Volume 56, Number 8, pages 128-132, April 1983. 

63) 1.R. Lineback, "Voice Recognition Listens For Its Cue," Electronics, USA, Volume 56, 
Number 1, page 110, January 1983. 

64) D. Daly and L. Bergeron, "A Programmable Voice Digitizer Using the TI TMS320 Mi­
crocomputer," Proceedings of IEEE International Conference onAcoustics, Speech and 
Signal Processing, USA, 1983. 

65) W. Gass, "The TMS32010 Provides Speech I/O for the Personal Computer," Mini/Micro 
Northeast Electronics Show and Convention, USA, 1983. 

66) A. Holck, "Low-Cost Speech Processing with TMS3201O," Midcon/83 Conference Re­
cord, USA, 1983. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



67) H. Strube, R. Wilhelms, and P. Meyer, "Towards Quasiarticulatory Speech Synthesis in 
Real Time," Proceedings ofEUSIPCO-83 Second European Signal Processing Confer­
ence, Netherlands, 1983. 

68) T. Schalk and M. McMahan, "Firmware-Programmable lAC Aid Speech Recognition," 
Electronic Design, Volume 30, Number 15, pages 143-147, July 1982. 

Control 
1) I. Ahmed, "16-Bit DSP Microcontroller Fits Motion Control System Application," 

PCIM, October 1988. 
2) D. Bursky, "Merged Resources Solve Control Headaches," Electronic Design, USA, pp 

157-159, October 1988. 
3) I. Ahmed, "Implementation of Self Tuning Regulators with TMS320 Family of Digital 

Signal Processors," MOTOR CON '88, pages 248-262, September 1988. 
4) D. Dunnion, M. Stropoli, "Design a Hard-Disk Controller with DSP Techniques," Elec­

tronic Design, USA, pages 117-121, September 1988. 
5) R. van der Kruk, 1. Scannell, "Motion Controller Employs DSP Technology," PCIM, 

September 1988. 
6) s.w. Yates, R.D. Williams, "A Fault Tolerant Multiprocessor Controller For Magnetic 

Bearings," IEEE Micro, USA, Volume 8, Number 4, page 6, August 1988. 
7) I. Garate, R.A. Carrasco, A.L. Bowden, "An Integrated Digital Controller For Brushless 

AC Motors Using a DSP Microprocessor," Third International Conference on Power 
Electronics and Variable-Speed Drive, Conference Publication 
Number 291, Conference Publication Number 291, pages 249-252, July 1988. 

8) 1.M. Corliss, R. Neubert, "DSP Keeps Keep Disk Drive on Track," Computer Design, 
USA, pages 60-65, June 1988. . 

9) Y.Y.Y.S. Murty, W.J. Smolinski, S. Sivakumar, "Design ofa Digital Protection Scheme 
For Power Transformers Using Optimal State Observers," lEE Proc. C, Generation 
Transmission, Distribution, Great Britain, Volurne 135, Number 3, pages 224-230, May 
1988. 

10) R.D. Jackson, D.S. Wijesundera, "Direct Digital Control ofInduction Motor Currents," 
lEE Colloquim on 'Microcomputer Instrumentation and Control Systems in Power 
Electronics, Great Britain, Digest Number 61,1/1-3, April 1988. 

11) A. Lovrich, G. Troullinos, R. Chirayil, "An All Digital Automatic Gain Control," Pro­
ceedings of ICASSP 88, USA, Volume D, page 1734, April 1988. 

12) K. Bala, "Running on Imbedded Power," Electronics Engineering Times, USA, March 
1988. 

13) I. Ahmed, S. Meshkat, "Using DSPs in Control," Control Engineering, February 1988. 
14) M. Babb (Editor), "Solving Control Problems With Specialized Processors," Control 

Engineering, February 1988. 
15)S. Meshkat, "High-Level Motion Control Programming Using DSPs," Control Engi­

neering, February 1988. 
16) S. Meshkat, I. Ahmed, "Using DSPs inAC Induction Motor Drives," ControlEngineer­

ing, February 1988. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 547 



548 

17) 1. Tan, N. Kyriakopoulos, "Implemmention of a Tracking Kalman Filter on a Digital 
Signal Processor," IEEE Transactions of Industrial Electronics, USA, Volume 35, Num­
ber 1, pages 126-134, February 1988. 

18) H. Hanselman, "LQG-Control of a Highly Resonant Disc Drive Head Positioning Ac­
tuator," IEEE Transactions on Industrial Electronics, USA, Volume 35, Number 1, 
pages 100-104, February 1988. 

19) I. Ahmed, "DSP Architectures for Digital Control Systems," SATECH 1988,1988. 
20) S. Meskat, "Advanced Motion Control Systems,"lntertec Communications - Ventura, 

CA.,1988. 
21) I. Ahmed, S. Lundquist, "DSPs Tame Adaptive Control," Machine Design, USA, Vol­

ume 59, Number 28, pages 125-129, November 1987. 
22) B.K. Bose, P.M. Szczesny, "A Microcomputer-Based Control and Simulation of an Ad­

vanced IPM Synchronous Machine Drive System For Electric Vehicle Propulsion," 
Proceedings of IECON '87, Volume 1, pages 454-463, November 1987. 

23) Y. Dote, M. Shinojima, R.G. Hoft, "Digital Signal Processor (DSP)-Based Novel Vari­
able Structure Control For Robotic Manipulator," Proceedings of IECON .'87, Volume 
1, pages 175-179, November 1987. 

24) J.P. Pratt, S. Gruber, " A Real-Time Digital Simulation of Synchronous Machines: Sta­
bility Consiferations and Implementation," IEEE Transactions on Industrial Electron­
ics, USA, Volume lE-34, Number 4, pages 483-493, November 1987. 

25) I. Ahmed, "Deadbeat Controllers and Observers with the TMS320," MOTORCON '87, 
pages 22-33, September 1987. 

26) I. Ahmed, S. Lindquist, "Digital Signal Processors: Simplifying High-Performance 
Control," Machine Design, September 1987. 

27) RD. Ciskowski, C.H. Liu, H.H. Ottesen, S.U. Rahman, "System Identification: An Ex­
perimental Verification," IBM Journal of Research Developments, Volume 31, Number 
5, pages 571-584, September 1987. 

28) J.A. Taufiq, RJ. Chance, C,]. Goodman, "On-Line Implementation of Optimised PWM 
Schemes For Traction Inverter Drives," International Conference of 'Electric Railway 
Systems For a New Century, Conference Publication Number 279, September 1987. 

29) Y. Dote, M. Shinojima, H. Yoshimura, "Microprocessor-Based Novel Variable Struc­
ture Control For Robot Manipulator," Proceedings of the 10th. IFAC World Congress, 
July 1987. 

30) H. Hanselmann, A. Schwarte, "Generation of Fast Target Processor Code From High 
Level Controller Descriptions," Presented at 10th. IFAC World Congress, July 1987. 

31) E. Debourse, "Emergence ofDSPs in Machine-Tool Axes Control Systems: Application 
of Distributed Interpolation Concepts," Proceedings of the International Workshop on 
Industrial Automation, February 1987. 

32) C. Chen, "The Mathematical Model and Computer Simulation of an LCI Drive," Elec­
trical Machinery Power Systems, USA, Volume 13, Number 3, pages 195-206, 1987. 

33) RD. Ciskowski, C.H. Liu, H.H. Ottesen, S.U. Rahman, "System Identification: An Ex­
perimental Verification," IBM Journal Research Development, USA, September 1987. 

34) H. Hanselmann, "Implementation of Digital Controllers - A Survey," Automatica, Vol­
ume 23, Number 1, pages 7-32, 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



35) H. Henrichfreise, W. Moritz, H. Siemensmeyer, "Control of a Light, Elastic Manipula­
tion Device," Conference on Applied Motion Control, 1987. 

36) M.e. Stich, "Digital Servo Algorithm For Disk Actuator Control," Conference on 
Applied Motion Control, pages 35-41,1987. 

37) T. Takeshita, K. Kameda, H. Ohashi, N. Matsui, "Digital Signal Processor Based High 
Speed Current Control of Brushless Motor," Electronic Engineering, Japan, USA, Vol­
ume 106, Number 6, pages 42-49, November-December 1986. 

38) R. Lessmeier, W. Schumacher, W. Leonard, "Microprocessor-Controlled AC-Servo 
Drives With Synchronous or Induction Motors: Which is Preferable?," IEEE Transac­
tions On Industry Applications, USA, September/October 1986. 

39) R. Alcantara, J. Prado, C Guegen, "Fixed-Point Implementation of the Fast Kalman Al­
gorithm: Using the TMS32010 Microprocessor," Proceedings of EUSIPCO-86, Vol­
ume 2, pages 1335-1338, September 1986. 

40) B. Nowrouzian, M.H. Hamza, "DC Motor Control Using a Switched-Capacitor Cir­
cuit," Proceedings of the lASTED International Symposium on High Technology in the 
Power Industry, pages 352-356, August 1986. 

41) N. Matsui, T. Takeshita, "Digital Signal Processor-Based Controllers For Motors," 
SICE, July 1986. 

42) H. Hanselmann, "Using Digital Signal Processors For Control," ProceedingsofEICON, 
1986. 

43) H. Hanselman, W. Moritz, "High Banwidth Control of the Head Positioning Mechanism 
in a Winchester Disc Drive," Proceedings of IE CON, pages 864-869, 1986. 

44) R. Cushman, "Easy-to-Use DSP Converter ICs Simplify Industrial-Control Tasks," 
Electronic Design, USA, Volume 29, Number 17, pages 218-228, August 1984. 

45) W. Loges, "Signal Processor as High-Speed Digital Controller," Elektronik lndustrie, 
Germany, Volume 15, Number 5, pages 30-32, 1984. 

46) W. Loges, "Higher-Order Control Systems with Signal Processor TMS320," Elektronik, 
Germany, Volume 32, Number 25, pages 53-55, December 1983. 

Military 
1) Y. Lazzari, Quacchia, M. Sereno, E. Turco, "Implementation of a 16 Kbit/s Split 

Band-Adaptive Predictive Codec For Digital Mobile Radio Systems," CSELTTechnical 
Reports, Italy, Volume 16, Number 5, pages 443-447, August 1988. 

2) P. Papamichalis, J. Reimer, "Implementation of the Data Encryption Standard Using the 
TMS3201O," DigitalSignal Processing Applications, 1986. 

Telecommunications 
1) S. Casale, R. Russo, G.c. Bellina, "Optimal Architectural Solution Using DSP Proces-. 

sors for the Implementation of an ADPCM Transcoder," Proceedings of GLOBE COM 
'89, pages 1267-1273, November 1989. 

2) A. Lovrich and J.B. Reimer, "A Multi-Rate Transcoder," Transactions on Consumer 
Electronics, USA, November 1989. 

3) J.L. Dixon, Y.K. Varma, N.R. Sollenberger, D.W. Lin, "Single DSP Implementation of 
a 16 Kbps Sub-Band Speech Coder for Portable Communications," Proceedings of 
ICASSP 89, USA, pages 184-187, May 1989. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 549 



550 

4) J.L. So, "Implementation of an NIC (Nearly Instantaneous Companding) 32 Kbps 
Transcoder Using the TMS320C25 Digital Signal Processor," Proceedings of GLOBE­
COM 88, Section 43.4, November 28 - December 1,1988. 

5) V. Lazzari, Quacchia, M. Sereno, E. Turco, "Implementation of a 16 Kbit/s Split 
Band-Adaptive Predictive Codec For Digital Mobile Radio Systems," CSELTTechnical 
Reports, Italy, August 1988. 

6) V. Del Bello, "Signal Processor For Telephone Functions," Elettronica Oggi, Italy, 
Number 63, pages 155-157, June 1988. 

7) N. Tamaki, "Studies on Subscriber Line Equalizer Using Decision Feedback Equalizing 
Circuit," Transactions of the Institue of Information Communication EnglishB., Japan, 
Volume 17IB, Number 5, pages 616-625, May 1988. 

8) A Charbonnier, J-P. Petit, "Sub-Band ADPCM Coding for High Quality Audio Sig­
nals," Proceedings of ICASSP 88, USA, Volume A, page 2540, April 1988. 

9) D. Chase, A Gersho, "Real-Time VQ Codebook Generation Hardware for Speech Pro­
cessing," Proceedings of iCASSP 88, USA, Volume 3, pages 1730-1733, April 1988. 

10) Y.K. Jain, S.S. Skrzypkowiak, R.B. Heathcock, "TMS320C25 Based Enhanced 
ADPCM Transcoder," Proceedings of ICASSP 88, USA, Volume S, page 635, April 
1988. 

11) T.c. J edrey, N .E. Lay, W. Rafferty, "An All Digita18-DPSK TCM Modem for Land Mo­
bile Satellite Communications," Proceedings of ICASSP 88, USA, Volume b, page 
1722, April 1988. 

12) A, Lovrich, G. Troullinos, R. Chirayil, "An All Digital Automatic Gain Control," Pro­
ceedings of ICASSP 88, USA, Volume D, page 1734, April 1988. 

13) P. Voros, "High-Quality Sound Coding Within 2x64 Kbit/s Using Instantaneous Dy­
namic Bit-Allocation," Proceedings of ICASSP 88, USA, Volume A, page 2536, April 
1988. 

14) H.P. Widmer, R. Keung, "HF Data Communication For Extremely Low SNR and High 
Interference Level," Fourth International Conference on HF Radio Systems and Tech­
niques, Conference Publication Number 284, pages 33-37, April 1988. 

15) w.B. Michael, P.D. Hill, "Performance Evaluation of a Real-Time TMS32010-Based 
Adaptive Noise Canceller (ANC)," IEEE Transactions on Acousticical Speech Signal 
Processing, USA, Catalog Number 86CH2255-8, Volume 3, pages 892-895, March 
1988. 

16) H. Ando, M. Nakaya, H. Hona, 1. Iizuka, Y. Horiba, "A DSP Line Equalizer VLSI for 
TCM Digital Subscriber-Line Transmission," IEEE lournal of Solid-State Electronics, 
USA, Volume 23, Number 1, pages 118-123, February 1988. 

17) N. Tamaki, "Studies on an Adaptive Line Equalizer For Subscriber Loops," Transac­
tions of the Institute of Electronic Information Communication English B., Japan, Vol­
ume 17IB, Number 2, pages 172-180, February 1988. 

18) A Ayerbe Garcia, J.M. Guell Rabasso, AL. Villen, J.A Martinez Ayuso, "ADPCM-32 
Kbit/S Coder/Decoder For Telephone Channels," MundoElectron., Spain, Number 178, 
pages 103-109, November 1987. 

19) M. Ishikawa, Y. Tanaka, T Kimura, "An Adaptive Line Equalizer VLSI Using Digital 
Signal Processing," IEEE lournal Solid-State Circuits, USA, Volume 23, Number 3, 
pages 830-835, November 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



20) O. Matsubara, K Yabuta, E. Sato, H. Takatori, "A Switched Capacitor Line Equalizer 
For Digital Subscriber Loop Transmission," Conference Record of GLOBE COM Tokyo 
'87, Japan, Volume 3, pages 1746-1751, November 1987. 

21) Mills, J.D., v.P. Telang, C.E. Rohrs, "A Data and Voice System For The General Service 
Telephone Network," Proceedings of IE CON '87, Volume 2, pages 1143-1148, Novem­
ber 1987. 

22) C. Nuthalapati, "A FET Processor Based Phase Noise Measurement System For Radar 
ATE," Proceedings of AUTOTESTCON '87, Catalog Number 87CH2510-6, pages 
47-51, November 1987. 

23) N. Tamaki, S. Sugimoto, F. Mano, "A Line Terminating Circuit Using the DSP Tech­
nique," Conference Records of GLOBECOM Tokyo '87, Japan, Volume 3, pages 
1731-1735, November 1987. 

24) G.J. Saulnier, W.A. Haskins, P. Das, "Tone Jammer Suppression in a Direct Sequence 
Spread Sprectrum Receiver Using Adaptive Lattice and Transversal Filters," Confer­
ence Records of MIL COM 87, USA, Volume 1, pages 123-127, October 1987. 

25) R.N. Bera, KS. Rattan, "Real-Time Simulation of the Unmanned Research Vehicle Us­
ing Multi-Rate Sampling," Fifth International Conference on System Engineering, 
USA, Catalog Number 87CH2480-2, pages 573-578, September 1987. 

26) D. Shear, "Design and Build a Transponder Using DSP Tools. (A Related Article on the 
Functional Capability of the Acoustic Transponder)," EDN: Electronic Design News, 
USA, Volume 32, Number 18, pages 137-148, September 1987. 

27) S.H. Kim, KR. Hong, H.B. Han, WH. Hong, "Implementation of Real Time Adaptive 
Lattice Predictor on Digital Signal Processor," Proceedings ofTENCON 87, South Ko­
rea, Volume 3, pages 1131-1135, August 1987. 

28) W Mattern, "Multifrequency Communications Channel Decoder With The Type 
TMS32010 Signal Processor Circuit," Electronics Industry, France, Number 127, Sup­
plement Number 13, pages 29-33, June 1987. 

29) A. Ciaramella, G. Venuti, "Vector Quantization Firmware For an Acoustical Front-End 
Using the TMS32020," Proceedings of ICASSP 87, USA, Catalog Number 
87CH2396-0, Volume 4, pages 1895-1898, April 1987. 

30) MJ. Pettitt, D. Remedios, AW Davis, A. Hadjifotiou, S. Wright, "A Coherent Trans­
mission System Using DFB Lasers and Phase Diversity Reception," lEE Colloqium on 
'High Capacity Fibre Optic Systems', Great Britain, Digest Number 23,9/1-5, February 
1987. 

31) GJ. Saulnier, K Yum, P. Das, "The Suppression of Tone-Jammers Using Adaptive Lat­
tice Filtering," IEEE International Conference on Communications '87, USA, Volume 
2, pages 869-873, June 1987. 

32) H.H. Lu, D. Hedberg, B. Fraenkel, "Implementation of High-Speed Voiceband Data 
Modems Using The TMS320C25," Proceedings of ICASSP 87, USA, Catalog Number 
87CH2396-0, Volume 4, pages 1915-1918, April 1987. 

33) S. Ono, N. Kondoh, M. Kobayashi, M. Hata, "A New Automatic Equalizer For Digital 
Subscriber Loops," Electronics and Communications in Japan, Part 1, Japan, Volume 
70, Number 4, pages 93-102, April 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 551 



552 

34) J.M. Perl, M. Aharoni, "TMS3201O Implementation of an Improved Kineplex Type HF 
Modem," Proceedings ofMELECON, Catalog Number 87CH2425-7, pages 135-140, 
March 1987. 

35) R. Schwarze, W. Tobergte, "Digital Signal Processors in Data Transmission," Electro­
nik, Germany, Volume 36, Number 3, pages 73-78, February 1987. 

36) 1.1. Statman, E.R. Rodenmich, "Parameter Estimation Based on Doppler Frequency 
Shifts," IEEE Transactions on Aerospace and Electronic Systems, USA, Volume 
AES-23, Number 1, pages 31-39, January 1987. 

37) R. Komiya, K. Yoshida, N. Tamaki, "The Loop Coverage Between TCM and Echo Can­
celler Under Various Noise Considerations," IEEE Transactions on Communications, 
USA, Volume COM-34, Number 11, pages 1058-1067, November 1986. 

38) I. Ahmed, A. Lovrich, "Adaptive Line Enhancer Using the TMS320C25," Conference 
Records of Northcon/86, USA, 14/3/1-10, September/October 1986. 

39) H. Brehm, W. Stammler, M. Warner, "Design of a Highly Flexible Digital Simulator For 
Narrowband Fading Channels," Proceedings of EUSIPCO-86, Volume 2, pages 
1113-1116, September 1986. 

40) 1.M. Perl, A. Bar, J. Cohen, "TMS-320 Implementation ofax2400 BPS V.26 Modem," 
Proceedings of EUSIPCO-86, Volume 2, pages 1121-1124, September 1986. 

41) C.R. Spitzer, "All-Digital Jets Are Taking Off," IEEE Spectrum, USA, Volume 23, 
Number 9, pages 51-56, September 1986. 

42) D. Boudreau, "2400 BPS TMS32010 Modem Implementation For Mobile Satellite 
Applications," Proceedings of the Thirteenth BiennialSymposium on Communications, 
Canada, Volume B-3, pages 1-4, June 1986. 

43) R. Chirayil, A. Lovrich, G. Troullinos, "2400 BPS Modem Implementation Using a 
General Purpose DSP," Digest of Technical Papers for 1986 International Conference 
on Consumer Electronics, pages 110-111, June 1986. 

44) D. Hanke, K. Wilhelm, H. Meyer, "Development and Application ofIn-Flight Simulator 
For Flying Qualities Research at DFVLR," Proceedings ofNAECON 1986, USA, Cata­
log Number 86CH2307-7, Volume 2, pages 490-498, May 1986. 

45) P.D. Hill, W.B. Mikhael, "Performance Evaluation of a Real-Time TMS3201O-Based 
Adaptive Noise Fil ter," Proceedings of 1986 IEEE International Symposium on Circuits 
and Systems, USA, Volume 36, Number 3, pages 411-412, May 1986. 

46) S.M. Kuo, M.A. Rodriquez, "Implementation of an Adaptive Frequency Sampling Line 
Enhancer," Proceedings of 1986 IEEE International Symposium on Circuits and Sys­
tems, USA, Catalog Number 86CH2255-8, Volume 3, pages 896-899" May 1986. 

47) G. Troullinos, J. Bradley, "Split-Band Modem Implementation Using The TMS32010 
Digital Signal Processor," Conference Records ofElectro/86 andMini/MicroNortheast, 
USA, 14/1/1-21, May 1986. 

48) R. Vemula, E. Lee, "A Microprocessor-Based Noise Cancellor For The Cockpit," Pro­
ceedings of NAECON 1986, USA, Catalog Number 86CH2307-7, Volume 4, pages 
1323...,1327, May 1986. 

49) c.R. Cole, A. Haoui, P.L. Winship, "A High-Performance Digital Voice Echo Canceller 
on a SINGLE TMS32020," Proceedings of ICASSP 86, USA, Catalog Number 
86CH2243-4, Volume 1, pages 429-432, April 1986. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



50) F.L. Kitson, KA Zeger, "A Real-Time ADPCM Encoder Using Variable Order Predic­
tion (Speech)," Proceedings of ICASSP 86, USA, Catalog Number 86CH2243-4, Vol­
ume 2, pages 825-828, April 1986. 

51) G. Mirchandani, R.C. Gaus, Jr., L.K Bechtel, "Performance Characteristics of a Hard­
. ware Implementation of The Cross-Talk Resistant Adaptive Noise Canceller," Proceed­
ings of ICASSP 86, USA, Catalog Number 86CH2243-4, Volume 1, pages 93-96, April 
1986. 

52) G.S. Muller, C.K Pauw, "Acoustic Noise Cancellation," Proceedings of lCASSP 86, 
USA, Catalog Number 86CH2243-4,V6Iume 2, pages 913-916, April 1986. 

53) 1. Rothweiler, "Performance of a Real Time Low rate Voice Codec," Proceedings of 
ICASSP 86, USA, Catalog Number 86CH2243-4, Volume 4, pages 3039-3042, April 
1986. 

54) PJ. Wilson,J.M. Puetz,AY. McCree,D.T. Wang, "An Integrated Voice Codecand Echo 
Canceller Implemented in a Single DSP Processor," Proceedings of ICASSP 86, USA, 
Catalog Numb.er 86CH2243-4, Volume 2, pages 1333-1336, April 1986. 

55) G. AIbertengo, S. Benedetto, E. Biglieri, "A DSP Application: An Adaptive Echo Can­
celler," Proceedings of the lASTED International Symposium: Modelling, Identifica­
tion, and Control, MIC '86, pages 69-72, February 1986. 

56) AW, Davis, S. Wright, MJ. Pettitt, J.P. King, K Richards,"Coherent Optical Receiver 
For 680 Mbit/S Using Phase Diversity," Electron. Lett., Great Britain, Volume 22, Num­
ber 1, pages 9-11, January 1986. 

57) C.R. Cole, A Haoui, P.L. Winship, "A High-Performance Digital Voice Echo Canceller 
on a Single TMS32020," Proceedings of IEEE International Conference on Acoustics, 
Speech and Signal Processing, USA, 1986. 

58) H. Hanselman, W. Moritz, "High Bandwidth Control of the Head Positioning Mecha­
nism in a Winchester Disc Drive," Proceedings of IECON, 1986. 

59) Sleeper Product - "A Combo VoicelData I/O Card - Awakens Interest," Electronic En­
gineering Times, USA, pages 80-81, November 11, 1985. 

60) R. Chjirayil, P. Ehlig, J. Bradley, G. Troullinos, "Modem Implementation Using The 
TMS3201O," Proceedings of the National Communications Forum, 1985, Volume 39, 
pages 711-715, September 1985. 

61)P. EhIig, "DSP Chip Adds Multitasking Telecomm Capability to Engineering Worksta­
tion," Electronic Design, USA, Volume 33, Number 10, pages 173-184, May 2,1985. 

62) WJ. Christmas, "A Microprocessor-Based Digital Audio Coder and Decoder," Interna­
tional Conference on Digital Processing of Signals in Communications, Number 62, 
pages 22-26, April 1985. 

63) J. Reimer, M. McMahan and M. Arjmand, "ADPCM on a TMS320 DSP Chip," Pro­
ceedings of SPEECH TECH 85, pages 246-249, April 1985. 

64) P. Mock, "Add DTMF Generation and Decoding to DSP- P Designs," Electronic De­
sign, USA, Volume 30, Number 6, pages 205-213, March 1985. 

65) V. Milutinovic, "4800 Bitls Microprocessor-Based CCITT Compatible Data Modem," 
Microprocessing and Microprogramming, Volume 15, Number 2, pages 57~ 74, Febru­
ary 1985.1) 

66) G. Corsini and P. Terreni, "A Radar Echo Simulator Based on P TMS320," Proceedings 
of MELECONI85 IEEE Mediterranean Electrotechnical Conference (Sponsors: Mayor 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 553 



of Madrid, Ministers of Industry and Energy, Spanish National Telephone Co.), USA, 
Volume 2, pages 327-330, 1985. 

67) T. FjaIIbrant, "A TMS320 Implementation of a Short Primary Block ATC-System with 
Pitch Analysis," International Conference on Digital Processing of Signals in Commu­
nications, Number 62, pages 93-96,1985. 

68) D.P. Kelly and J.L. Melsa, "Syllabic Companding and 32 Kb/s ADPCM Performance," 
IEEE International Conference on Communications, USA, Volume 1, pages 414-417, 
1985. 

69) A. Vaghar, and V. Milutinovic, "An Analysis of Algorithms for Microprocessor Imple­
mentation of High-Speed Data Modems," Proceedings of IEEE International Confer­
ence on Acoustics, Speech and Signal Processing, USA, Volume 4, pages 1656-1659, 
1985. 

70) J. Perl, "Channel Coding in a Self-Optimizing HFModem," International Zurich Semi­
nar on Digital Communications; Applications of Source Coding, Channel Coding and 
Secrecy Coding: Proceedings, pages 101-106, 1984. 

71) R. ChirayiJ, P. EhIig, "Integrating Low to Medium and High Speed Modems," Mini-Mi­
cro Southwest-84 Computer Conference and Exhibition, September 1984, 

Automotive 
1) Kun-Shan Lin, "Trends of Digital Signal Processing in Automotive," International 

Congress on Transportation Electronic (CONVERGENCE '88), October 1988. 
2) KE. Beck, M.M. Hahn, "A Real-Time Combustion Analysis Instrument," SAE Techni­

cal Paper Series, USA, February-March 1988. 
3) M. Payne, "Do Not Disturb: Lotus in Action. (Lotus Racing Cars Use of an Active Sus­

pension System)," Electronics Weekly, USA, i20 1394, page 12, January 1988. 
4) D.A. Williams, S. Oxley, "Application of the Digital Signal Processor to an Automotive 

Control System," 6th. International Conference on Automotive Electronics, October 
1987. 

5) CM. Anastasia, G.W. Pestana, "A Cylinder Pressure Sensor for Closed Loop Engine 
Control," SAE Technical Paper Series, February 1987. 

Consumer 

554 

1) A. Lovrich and J.B. Reimer, "A MuIti-Rate Transcoder,"Digest of Technical Papers for 
1989 International Conference on Consumer Electronics, June 7-91989. 

2) G.A. Frantz, J .B. Reimer, and R.A. Wotiz, " Julie, The Application ofDSP to a Product," 
Speech Tech Magazine, USA, September 1988. 

3) J.B. Reimer and G.A. Frantz, "Customization of a DSP Integrated Circuit for a Customer 
Product," Transactions on Consumer Electronics, USA, August 1988. 

4) lB. Reimer, P.E. Nixon, E.B. Boles, and G.A. Frantz, "Audio Customization of a DSP 
IC," Digest of Technical Papers for 1988 International Conference on Consumer Elec­
tronics, June 8-101988. 

5) H. Mitschke, "Video Recorder: Picture From A Store," Funschau, West Germany, Num­
ber 9, pages 56--58, April 1988. 

6) lB. Reimer, P.E. Nixon, E.B. Boles, G.A. Frantz, "Audio Customization ofa DSP IC," 
Digest of Technical Papers for 1987 International Conference on Consumer Electron­
ics, June 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



7) G.R. Steber, "Audio Frequency DSP Laboratory on a Chip-TMS32010," Proceedings 
of IECON '87, Volume 2, pages 1047-1051, November 1987. 

Industrial 
1) R.C. Chance, T.A. Taufiq, "A TMS32010 Based Near Optimized Pulse Width Modu-

lated Waveform Generator," Third International Conference on Power Electronics & 
Variable Speed Drives, Conference Publication Number 291, July 1988. 

2) G. Anwar, R. Horowitz, M. Tomizuka, "Implementation of a MRAC for a Two Axis Di­
rect Drive Robot Manipulator Using a Digital Signal Processor," American Control 
Conference, pages 658-660, June 1988. 

3) D.E. Luttrell, T.A. Dow, "Control of Precise Positioning System with Cascaded Coli­
near Actuators," American Control Conference, pages 121-126, June 1988. 

4) Y.V.V.S. Murty, WJ. Smolinski, S. Sivakumar, "Design ofa Digital Protection Scheme 
For Power Transformers Using Optimal State Observers," lEE Proc. C, Generation 
Transmission, Distribution, Great Britain, Volume 135, Number 3, pages 224-230, May 
1988. 

5) M. Ruscio, M. Santoro, M. Adomi, A. Chiaravalloti, "Digital Control System For The 
Coordinated Boilerrrurbine Control in the ENEL Piombino Power Station," Elettroten­
cia, Italy, Volume 75, Number 3, pages 253-258, March 1988. 

6) J.A. Taufiq, RJ. Chance, CJ. Goodman, "On-Line Implementation of Optimised PWM 
Schemes For Traction Inverter Drives," International Conference of 'Electric Railway 
Systems For aNew Century', Great Britain, Conference Publication Number 279, pages 
63-67, September 1987. 

7) Y. Dote, M. Shinojima, H. Hoshimura, "Microprocessor-Based Novd Variable Struc­
ture Control for Robot Manipulator," Proceedings of the 10th. IFAC World Congress, 
July 1987. 

8) H. Henrichfriese, W. Moritz, H. Siemensmeyer, "Control of a Light, Elastic Manipula­
tion Device," Conference on Applied Motion Control, pages 57-66,1987. 

9) Y. Wang, M. Andrews, S. Butner, G. Beni, "Robot-Controller System," 15th Annual 
Symposium on IncrementalM otion ControISystems&Devices, pages 17-26, June 1986. 

10) R. Cushman, "Easy-to-Use DSP Converter ICs Simplify Industrial-Control Tasks," 
Electronic Design, USA, Volume 29, Number 17, pages 218-228, August 1984. 

11) P. Rojek and W. Wetzel, "Multiprocessor Concept for Industrial Robots: Multivariable 
Control with Signal Processors," Elektronik, Germany, Volume 33, Number 16, pages 
109-113, August 1984. 

12) G. Farber, "Microelectronics-Developmental 'frends and Effects on Automation Tech­
niques," RegelungstechnikPraxis, Germany, Volume 24, Number 10, pages 326-336, 
October 1982. 

Medical 
1) ES. Schlindwein, D.H. Evans, "A Real-Time Autoregressive Spectrum Analyzer for 

Doppler Ultrasound Signals," Ultrasound in Medicine and Biology, Volume 15, Num­
ber 3,pages 263-272, 1989 

2) N. Dillier, "Programmable Master Hearing Aid With Adaptive Noise Reduction Using 
A TMS32020," Proceedings of ICASSP 88, USA, Volume A, page 2508, April 1988. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 555 



3) P.B. Knapp, H.S. Lusted, "A Real-Time Digital Signal Processing System for Bioelec­
tric Control of Music," Proceedings of ICASSP 88, USA, Volume A, page 2556, April 
1988. 

4) R.B. Knapp, B. Townshend, "A Real-Time Digital Signal Processing System for an Au­
ditory Prosthesis," Proceedings ofICASSP 88, USA, Volume A, page 2493, April 1988. 

5) L.R. Morris, P.B. Barszczewski, "Design and Evolution of a Pocket-Sized DSP Speech 
Processing System for a Cochlear Implant and Other Hearing Prosthesis Applications," 
Proceedings of ICASSP 88, USA, Volume A, page 2516, April 1988. 

6) T.J. Sullivan, S.M. Natarajan, "VLSI Based Design of a Battery-Operated Digital Hear­
ing Aid," Proceedings of ICASSP 88, USA, Volume A, page 2512, April 1988. 

7) AJ. Pratt, R.E. Gander, B.R. Brandell, "Real-Time Median Frequency Estimator," Pro­
ceedings oftheNinthAnnual Conference of the IEEE Engineering in Medicine andBiol­
ogy Society, USA, November 1987. 

8) H. Xu, Y.H. Liang, L.G. Zhou, "The Real-Time Realization of Fetal ECG Heart Rate 
Monitor by Adaptive System," Proceedings oftheNinthAnnual Conference of the IEEE 
Engineering in Medicine and Biology Society, USA, (Catalog Number 87CH2513-0), 
Volume 3, pages 1662-1663, November 1987. 

9) L.R. Morris, page Braszczewski, J. Bosloy, "Algorithm Selection and Software Time/ 
Space Optimisation for a DSP Micro-Based Speech Processor For a Multi-Electrode 
Cochlear Implant," Proceedings of ICASSP 87, USA, Catalog Number 87CH2396-0, 
Volume 2, pages 972-975, April 1987. 

10) K.c. McGill, K.L. McMillan, "A Smart Trigger For Real-Time Spike Classification," 
Proceedings of the EighthAnnual Conference of the IEEE Engineering in Medicine and 
Biology Society, USA, Catalog Number 86CH2368-9, Volume 1, pages 275-278, No­
vember 1986. 

11) C. Murphy, page Rolfe, "Application of the TMS320 Signal Processor For The 
Real-Time Processing of The Doppler Ultasound Spectra," Proceedings of the Eighth 
Annual Conference of the IEEE/Engineering in Medicine and Biology, USA, Catalog 
Number 86CH2368-9, Volume 2, pages 1175-1178, November 1986. 

12) "Innovations: Digital Hearing Aid," IEEE Spectrum, USA, 22 December 1985. 
13) A Casini, G. Castellini, P.L. Emiliani, and S. Rocchi, "An Auxiliary Processor for Bio­

medical Signals Based on a Signal Processing Chip," Digital SignaIProcessing-1984: 
Proceedings of the International Conference, pages 228-232, September 1984. 

14) T.R. Myers, "A Portable Digital Speech Processor for an Auditory Prosthesis," Wes­
con/84 Conference Record, USA, 1984. 

Development Support 

556 

1) M. Karjalainen, "A LISP-Based High-Level Programming Environment for the 
TMS320C30," Proceedings of ICASSP 89, USA, pages 1150-1153, May 1989. 

2) B.c. Mather, "Digital Filter Design Package (DFP2), Version 2.12," IEEE Spectrum, 
USA, Volume 25, Number 7, page 16, July 1988. 

3) R. Weiss, "PC Package Ends DSP Drugery. (Monarch Software Package,Digital Signal 
Processing)," Electronic Engineering Times, USA, Number 494, p. 57, July 1988. 

4) A Kohl, "PC Development Environment For Signal Processors," Elektron. Prax., West 
Germany, Volume 23, Number 4, April 1988. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



5) R. Simar, Jr., A Davis, "The Application of High-Level Languages to Single-Chip digi­
tal Signal Processors," Proceedings of ICASSP 88, USA, Volume 3, pages 1678-1681, 
April 1988. 

6) A Bindra, "New chips, Tools For Signal Processing on Tap: DSP Seminar Attracts 
Third-Party Developers," Electronic Engineering Times, USA, Number 470, page 6, 
January 1988. 

7) R.1. Chance, "Simulation of Multiple Digital Signal Processor Systems," Journal ofMi­
crocomputer Applications, Great Britain, Volume 11, Number 1, pages 1-19, January 
1988. 

8) A. Kohl, "Pascal and C-Compilers for the Type TMS320C25 Signal Processor," Elek­
tron. Ind., West Germany, Volume 19, Number 4, pages 58,60,62,1988. 

9) R.1. Chance, B.S. Jones, "A Combined SoftwareIHardware Development Tool For The 
TMS32020 Digital Signal Processor," Journal of Microcomputer Applications, Great 
Britain, Volume 10, Number 3, pages 179-197, July 1987. 

10) M.A Zissman, G.c. O'Leary, D.H. Johnson, "A Block Diagram For a Digital Signal 
Processing MIMD Computer," Proceedings of ICASSP 87, USA, Catalog Number 
87CH2396-0, Volume 4, pages 1867-1870, April 1987. 

11) M.1. Tracy, "Forth as a Language For Digital Signal Processing," 1987 Rochester Forth 
Conference on Comparative Computer Architectures, USA, Volume 5, Number 1, pages 
221-224,1987. 

12) A. Gharahgozlou, M. Banaouas, E. Babani, "Software Development For a Microproces­
sor on a 'Host' Computer," ElectronicIndustry, France, Number 115, pages 61-64, No­
vember 1986. 

13) D.R. Campbell, C. Canning, K. Miller, "Crossassembler For The TMS32010 Digital 
Signal Processor," Microprocessors andMicrosystems, Great Britain, Volume 10, Num­
ber 8, pages 434-441, October 1986. 

14) J. Chance, "Simulation Experiences in the Development of Software For Digital Signal 
Processors," Microprocessors andMicrosystems, Great Britain, Volume 10, Number 8, 
pages 419-426, October 1986. 

15) AC.P. van Meer, "TMS3201O Evaluation Module Controller," Einhoven University of 
Technology, Report Number EUT-86,E-162, 42 pages, October 1986. 

16) S.E. Reyer, "A Demonstration Unit For Digital Signal Processing Development and Ex­
perimentation," Proceedings of IECON '86, Catalog Number 86CH2334-1, Volume 2, 
pages 641-646, September/October 1986 

17) l.R. Parker, "A Subset FORTRAN Compiler For a Modified Harvard Architecture," 
SIGPLAN Not, USA, Volume 21, Number 9, pages 57-62, September 1986. 

18) H. Harrison, "A High-Level Language Programming Environment for Speech and Sig­
nal Processing," Proceedings of Speech Technology 86, April 1986. 

19) S. Suehiro, K. Sugimoto, "Forth Machine With Hardware Interpreter Designed to In­
crease Execution Speed," NekkeiElectron., Japan, Number 396, pages 213-245,1986. 

20) G. Frantz and K. Lin, "The TMS320 Family Design Tools," Proceedings of SPEECH 
TECH 85, pages 238-240, April 1985. 

21) R. Schafer, R. Merseraeau, and T. Barnwell, "Software Package Brings Filter Design to 
PCs," Computer Design, USA, Volume 23, Number 13, pages 119-125, November 
1984. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 557 



558 

22) G. Pawle and T. Faherty, "DSP/Development Board Offers Host Independence," Com­
puter Design, USA, Volume 23, Number 12, pages 109-116, October 15, 1984. 

23) R. Mersereau, R. Schafer, T. Barnwell, and D. Smith, "A Digital Filter Design Package 
for PCs and TMS320," MIDCON/84 Electronic Show and Convention, USA, 1984. 

24) R. Cushman, "Sophisticated Development Tool Simplifies DSP-Chip Programming," 
Electronic Design, USA, Volume 28, Number 20, pages 165-178, September 1983. 

25) W. Gass and M. McMahan, "Software Development Techniques for the TMS320," 
SOUTHCON/83 Electronics Show and Convention, USA, 1983. 

26) R. Wyckoff, "A Forth Simulator for the TMS320 IC," Rochester Forth Applications 
Conference, USA, pages 141-150, June 1983. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 



aid converter 351 

adaptive filter implementation 191 

adaptive predictor 196 

addressing modes 39 

applications 26, 43 
benchmarks 29,47 
biquad implementation 45 
DCT transforms 53 
digital filtering 26 
FFf transforms 53 
graphics 423 
graphics/image processing 29, 47 
hardware 333 
instrumentation 29 
numeric processing 29 
telecommunications 27,47,401 

applications board (,C30) 467 

architecture 15 
buses 37 
CPU 37 
dedicated hardware multiplier 16 
external interfaces 24 
Harvard architecture 15 
instruction cycle 16 
peripherals 37 
pipelining 15,24 
TMS320C30 34 

arctangent functions 283 

-auxiliary registers 37 

Index 

bank switching 345 
bibliography 533 
bit reversal 287 
buses 37 

expansion 350 
primary 337 

C callable functions 151 
C compiler, libraries 232 
C compiler 74 
CELP speech coder 403 
clock. oscillator 356 
complex array bit reversal 287 
complex conjugate array multiples 286 
contents (of this applications book) 8 
CPU 

auxiliary registers 37 
organization 36 

m 
dla converter 353 
DCT transforms 169 
DCT transforms 53 
development systems 8 
divide functions 284 
DMA 24 
documents 8 

559 



doublelength math 144, 146, 147 

DSP 
architecture 15,34 
characteristics 13 

echo canceller 197 

error analysis 148 

expansion bus 350 

exponential functions 282 

external interfaces (,C30) 24 

family of processors (320) 5, II 

features 
first generation TMS320 17 
second generation TMS320 19 
third generation TMS320 22, 33 
TMS320C14/E14 6 
TMS320C2x 6 
TMS320C50 7 

FFf transforms 53, 287 

finite impulse response filter (see FIR) 

FIR filter 13, 26, 44 

floating point 
conversions 287 
doublelength arithmetic 137 
format converter (IEEE) 365 
formats 38, 139 

floating point coverter (IEEE) 365 

function approximation 279 

Gas Light Software 290 

graphic application 423 

m 
hardware applications 333 

hardware development systems 8, 26 

560 

hardware multiplier 16 

hartley transforms 67, 70 

Harvard architecture 15 

II 
integer arithmetic 285 

integer formats 38 

interface categories (,C30) 335 

inverse functions 280 

II 
linear algebra routines 288 

LMS algorithm 199 

memory, organization 35 

multiply functions 284 

m 
natural log functions 283 

noise canceller 198 

non-linear equation approximation 280 

overview of book 3 

peripherals 37 
peripherals (,C30) 24 

pipelining 15,24,40 

polynomial approximation 279 

primary bus 337 

m 
read cycle timing 476,478 

ready generation 341 

real"time processing 13 



references 8 

reset signal 357 

roundoff noise model 225 

serial port 359 

sine/cosine functions 282 

singlelength math 142, 145 

software 
floating-point formats 38 
integer formats 38 
TMS320C25 21 

software development systems 8,26,41 

speech coder 403 

SPOX 403,407 

square root functions 280 

SRAM, dual port 470 

stock market example 14 

II 
telecommunications 401 
three-D graphics system 423 

TMS320C30 applications board 467 
TMS34010 graphics processor 441 

vector primitive 287 
vector utilities 286 

wait states 337 
write cycle timing 476 

II 
XDS 1000 system 362 

561 







r 













Printed in U.S.A., March 1990 

~ 
TEXAS 

INSTRUMENTS 

SPRA017 


